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Abstract

The composition of basaltic melts in equilibrium with the mantle can be determined for several Martian meteorites and in-situ

rover analyses. We use the melting model MAGMARS to reproduce these primary melts and estimate the bulk composition

and temperature of the mantle regions from which they originated. We find that most mantle sources are depleted in CaO

and Al2O3 relative to models of the bulk silicate Mars and likely represent melting residues or magma ocean cumulates. The

concentrations of Na2O, K2O, P2O5, and TiO2 are variable and often less depleted, pointing to the re-fertilization of the sources

by fluids and low-degree melts, or the incorporation of residual trapped melts during the crystallization of the magma ocean.

The mantle potential temperatures of the sources are 1400-1500 ºC, regardless of the time at which they melted and within the

range of the most recent predictions from thermochemical evolution models.
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Key Points:9

• Basalts that sampled discrete mantle regions throughout Mars’s history provide10

information about the mantle composition and temperature11

• The mantle potential temperature of primitive basalts appears constant (1400–12
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• Incompatible element concentrations in the mantle vary due to magma ocean crys-14

tallization, partial melting and metasomatism15
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Abstract16

The composition of basaltic melts in equilibrium with the mantle can be determined for17

several Martian meteorites and in-situ rover analyses. We use the melting model MAG-18

MARS to reproduce these primary melts and estimate the bulk composition and tem-19

perature of the mantle regions from which they originated. We find that most mantle20

sources are depleted in CaO and Al2O3 relative to models of the bulk silicate Mars and21

likely represent melting residues or magma ocean cumulates. The concentrations of Na2O,22

K2O, P2O5 and TiO2 are variable and often less depleted, pointing to the re-fertilization23

of the sources by fluids and low-degree melts, or the incorporation of residual trapped24

melts during the crystallization of the magma ocean. The mantle potential temperatures25

of the sources are 1400–1500 ℃, regardless of the time at which they melted and within26

the range of the most recent predictions from thermochemical evolution models.27

Plain Language Summary28

Martian meteorites and rocks analyzed by rovers are witnesses of magmatic pro-29

cesses on Mars. In this study, we use the mantle melting model MAGMARS to deter-30

mine the composition and temperature of the mantle regions from which primitive basalts31

have originated. Primitive basalts are closely related to mantle melts and hence record32

the properties of their mantle source. We find that the mantle compositions needed to33

explain these melts were poor in CaO and Al2O3. They likely represent a mantle that34

melted on several occasions or that crystallized from an early magma ocean. The com-35

position of these primitive basalts indicates that some elements (Na2O, K2O, P2O5 and36

TiO2) were subsequently added to the mantle source by fluids and low-degree melts. Al-37

ternatively, these elements can be explained by the trapping of melts during the evolu-38

tion and progressive crystallization of the magma ocean. The temperature of the man-39

tle sources projected to the surface conditions for easier comparison, (i.e., potential tem-40

perature) was 1400–1500 ℃, regardless of the time at which these sources melted and41

is within the range of the most recent predictions from planetary-scale models of inte-42

rior dynamics.43

1 Introduction44

Our knowledge of the thermal state, composition and structure of the Martian man-45

tle is derived from a diverse and continuously expanding array of geophysical and geo-46

chemical constraints. Early measurements of the moment of inertia factor, soil compo-47

sitions at the Viking landing sites, and the definitive recognition that the “SNC mete-48

orites” are from Mars (Baird et al., 1976; Johnston & Toksöz, 1977; Bogard & Johnson,49

1983), unequivocally pointed to a FeO-rich mantle (Mg/(Fe+Mg)×100 in moles or Mg#50

= 75–81) compared to Earth (90). Model compositions of the “primitive mantle” were51

rapidly put forth (e.g., Dreibus & Wänke, 1985) and allowed to create simple models of52

the Martian interior structure (Longhi et al., 1992; Bertka & Fei, 1997; Elkins-Tanton53

et al., 2003). Additional analyses of crustal rocks by subsequent orbiting probes and rovers,54

the discovery of new Martian meteorites (Agee et al., 2013; Humayun et al., 2013), geode-55

tic and seismic data from the recent InSight mission (e.g., Khan et al., 2021; Huang et56

al., 2022), and geodynamic modeling (e.g., Plesa et al., 2022), are now allowing to draw57

ever improving representations of the interior structure of Mars and its evolution through58

time.59

Currently available compositions of the Martian mantle (e.g., Dreibus & Wänke,60

1985; Lodders & Fegley, 1997; Yoshizaki & McDonough, 2020; Khan et al., 2022, abbre-61

viated as DW85, LF97, YM20 and K22 hereinafter) represent average and idealized prim-62

itive compositions that are useful to derive average characteristics (density, solidus tem-63

perature, seismic wave velocity, etc.) but that probably do not represent actual regions64

of the mantle. The study of Martian meteorites has long shown that the mantle is highly65
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heterogeneous—both in terms of isotopic composition and Mg#—and suggests that a66

significant portion of the crust was formed very early (20–100 Myr; e.g., Borg et al., 1997;67

Debaille et al., 2008; Humayun et al., 2013; Nyquist et al., 2016; Kruijer et al., 2017; Bou-68

vier et al., 2018) during (or briefly after) the crystallization of a Martian Magma Ocean69

(MMO). However, the major-element composition of the mantle reservoirs formed dur-70

ing the early differentiation of Mars is poorly constrained and model-dependent (e.g.,71

Borg & Draper, 2003; Elkins-Tanton et al., 2005).72

To derive more detailed models of the interior structure of Mars, independent con-73

straints on the composition and temperature of discrete regions of the Martian mantle74

are desirable. A subset of Martian basalts, characterized by varied crystallization ages75

and high Mg# have been suggested to represent primitive basalts in near-equilibrium76

with their mantle sources and have been used to determine the P–T conditions of their77

mantle source through experiments (Musselwhite et al., 2006; Monders et al., 2007; Fil-78

iberto et al., 2008; Filiberto, Dasgupta, et al., 2010; Filiberto, Musselwhite, et al., 2010)79

or modeling (Lee et al., 2009; Filiberto & Dasgupta, 2011, 2015; Filiberto, 2017; Bara-80

toux et al., 2011; Balta & McSween, 2013a). Most of these basalts cannot be produced81

by melting the primitive mantle and are instead expected to derive from mantle sources82

of diverse compositions (e.g., Schmidt & McCoy, 2010; Collinet et al., 2015, Fig. 1).83

Here, we use MAGMARS, a new model developed to simulate melting in the Mar-84

tian mantle (Collinet et al., 2021), to re-evaluate the melting conditions and the ther-85

mal state of the mantle sources of primitive Martian basalts, which crystallized at dif-86

ferent times and therefore represent snapshots of Mars’ thermochemical evolution. In87

addition, MAGMARS allows us to estimate for the first time the major-element com-88

position of these local mantle sources. We find that the P–T melting conditions appear89

to have remained relatively stable through time and that mantle sources display vari-90

able CaO/Al2O3, low overall abundances of incompatible elements but enrichment of al-91

kalis, P and Ti relative to Ca and Al. We discuss the implications of these findings for92

the early differentiation of Mars and its long-lived magmatism.93

2 Selected compositions of primitive Martian basalts94

While the majority of mantle melts were modified by igneous differentiation as they95

ascended through the crust (Udry et al., 2018; Payré et al., 2020; Ostwald et al., 2022;96

Farley et al., 2022; Wiens et al., 2022), a limited number of Martian basalts bear wit-97

ness to the composition and temperature of the mantle at the time of their formation98

(i.e., primitive basalts). To identify primitive basalts, we first make the assumption that99

the average Martian mantle contains olivine Mg# ≥ 77 (Table 1, Table S1 and Fig. 1),100

and would produce primary melts with a Mg# ≥ 54 (Koliv−liq
D,Fe−Mg of 0.35; Filiberto & Das-101

gupta, 2011). A mantle of Mg# 77 is intermediate between the most commonly accepted102

primitive mantle compositions (Dreibus & Wänke, 1985; Yoshizaki & McDonough, 2020).103

Here, we only consider martian basaltic compositions with a Mg# ≥ 48, which could de-104

rive from primary mantle melts of Mg# ≥ 54 following a maximum of 10 wt.% of olivine105

fractionation.106

The Spirit rover analyzed numerous basalts with Mg# 48–55 at Gusev crater (McSween,107

Wyatt, et al., 2006; Squyres et al., 2007; Ming et al., 2008) that could represent prim-108

itive basalts (Monders et al., 2007; Filiberto, Dasgupta, et al., 2010; Schmidt & McCoy,109

2010). Among these, the Adirondack-class basalts are poor in K2O and could derive from110

a residual mantle depleted in incompatible elements by prior melting events (Schmidt111

& McCoy, 2010; Collinet et al., 2021) while most of the basalts analyzed in the vicin-112

ity of the Columbia Hills are more enriched in alkali elements and poorer in CaO (Fig.113

1). The ancient regolith breccia NWA 7034/7475/7533 (Humayun et al., 2013; Nyquist114

et al., 2016; Cassata et al., 2018; Bouvier et al., 2018) is also characterized by a high Mg#115

(54; Wittmann et al., 2015) and, despite its complex history, could approach the com-116
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position of a mantle melt based on trace (Humayun et al., 2013) and major element com-117

positions (Collinet et al., 2015). We also test whether two individual clasts could be rep-118

resentative of primitive basalts later remelted by impacts: a vitrophyre (Udry et al., 2014)119

and an alkali-rich microbasalt known as “Clast VI” (Humayun et al., 2013).120

Recent geophysical constraints suggest that large portions of the mantle could be121

more Mg-rich (Mg# = 81; Khan et al., 2022) than previously assumed (e.g., Dreibus &122

Wänke, 1985; Yoshizaki & McDonough, 2020), as also evidenced by the study of Mar-123

tian meteorites. The most primitive depleted shergottite (Yamato 980459, nearly iden-124

tical to NWA 5789; Greshake et al., 2004; Gross et al., 2011) and the most primitive en-125

riched shergottite (LAR 06319, nearly identical to NWA 1068; Barrat et al., 2002; Pes-126

lier et al., 2010) have Mg# of 66 and 58, respectively. Y 980459 contains olivine Mg#127

85–86 and is thought to represent a primary melt composition (e.g., Musselwhite et al.,128

2006; Matzen et al., 2022). The olivine megacrysts in LAR 06319 and NWA 1068 have129

Mg# ≤ 77 (Basu Sarbadhikari et al., 2009) but were initially more magnesian (Mg# 80)130

and were modified by Fe–Mg diffusion (Balta et al., 2013; Collinet et al., 2017). NWA131

2737 is a dunitic cumulate (Mg# 79) with olivine-hosted melt inclusions. Its primary132

melt is taken as the reconstructed composition of the parental trapped liquid (PTL; He133

et al., 2013). Given the multitude of evidence of Mg-rich mantle reservoirs, we also cal-134

culated alternative primary melt compositions for the Gusev basalts and NWA 7034/7475/7533135

bulk rock and basaltic clasts that would be in equilibrium with a Mg# of 81. In this case,136

larger amounts of olivine have to be added to the parental melt compositions (Table 1).137

Table 1. List of Martian primitive basalts, fraction of olivine addition required to reach

mantle-melt equilibrium, and associated inferred mantle Mg#

age (Ga) oliv (wt.%) Mg#

NWA 7034 Vitrophyre [1] 4.49 [2] +10 / +26 77 / 81

NWA 7533 Clast VI [3] 4.49 [2] +9 / +24 77 / 81

NWA 7475 bulk [4] 4.49 [2] 0 77

Adirondack-class basalts [5] 3.7 [6] +3 / +17 77 / 81

Columbia Hills Humboldt Peak [7] 3.7 [6] +7 / + 20 77 / 81

Fastball [8] 3.7 [6] 0 / +13 77 / 81

Stars, etc. [8] 3.7 [6] +5 / +17 77 / 81

Ace [8] 3.7 [6] +9 / +29 77 / 81

Irvine [7] 3.7 [6] +8 / +25 77 / 81

chassignite NWA 2737 [9] 1.3 [10] +9 79

depleted shergottite Y 980459 [11] 0.47 [12] 0 / +7 85 / 86

enriched shergottite LAR 06319 [13] 0.19 [14] 0 / +5 80 / 81

[1] Udry et al. (2014), [2] Costa et al. (2020), [3] Humayun et al. (2013), [4] Wittmann et al. (2015)

[5] McSween, Wyatt, et al. (2006), [6] Greeley et al. (2005), [7] Ming et al. (2008)

[8] Squyres et al. (2007), [9] He et al. (2013), [10] Udry and Day (2018)

[11] average of Misawa (2004), Shirai and Ebihara (2004) and Greshake et al. (2004)

[12] Shih et al. (2005), [13] Basu Sarbadhikari et al. (2009), [14] Shafer et al. (2010)

3 Methods138

To constrain the mantle sources of the target basaltic compositions described above139

(Table 1 and S1), we first simulate the melting of various primitive mantle compositions140

(DW85, YM20 and K22) using MAGMARS (Collinet et al., 2021). We then adjust the141

mantle compositions incrementally (Mg#, TiO2, Al2O3, CaO, Na2O, K2O, and P2O5142

concentrations) until the liquids produced are identical to the target compositions (i.e.,143

–4–
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Figure 1. Comparison between the composition of Martian primitive basalts (left extremity of

colored lines), their recalculated primary melts (symbols) and the melts produced by melting of

the primitive mantle of Dreibus and Wänke (1985) at 1.5 (grey line) and 3.0 GPa (black line), as

calculated by MAGMARS. The high SiO2 content of primary melts (A) is consistent with shallow

melting conditions (≪ 3.0 GPa). But compared to shallow DW85 melts (1.5 GPa), many pri-

mary basalts have either lower or higher CaO contents (B) and higher Na2O and K2O contents

(C-D), and must therefore derive from mantle sources of contrasting compositions.
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when the concentrations of all major and incompatible elements are within 1 wt.% rel-144

ative). Next, we mathematically remove a fraction (33 to 50 wt.%) of the melt (of com-145

position identical to the target compositions) and repeat the same procedure to iden-146

tify more refractory mantle compositions that can still produce identical melts. This ap-147

proach, in the absence of independent constraints on the melt fraction, leads to the iden-148

tification of several possible mantle sources for each target composition. To discuss the149

non-uniqueness of the sources and quantify model uncertainties for the Fastball primary150

melt (representative example), we performed ∼500000 MAGMARS calculations by ran-151

domly varying the parameters around their average values. This automated search iden-152

tified slightly larger compositional trends compared to the manual search. However, the153

mantle sources identified manually were found sufficient to discuss the mantle source ori-154

gin and melting temperature. It is this dataset (Table S2) that is described in the fol-155

lowing sections.156

4 Results157

The compositions of the mantle sources that can produce melts identical to the tar-158

get primary basalts (Table 1 and Fig. 1) are shown in Figure 2 and reported in Table159

S2. Each primary basalt composition can be matched by melting a series of mantle sources160

characterized by various concentrations of incompatible elements (Al2O3, CaO, Na2O,161

K2O), both isobarically and polybarically. Despite the non-uniqueness of solutions, first-162

order chemical differences between the sources of the different basaltic compositions can163

be identified. For example, the possible sources of shergottites are all notably poorer in164

Al2O3 and Na2O than the sources of the Gusev basalts (Fig. 2a). Among the latter, the165

sources of the Columbia Hills basalts are characterized by high Na2O, K2O, and P2O5166

concentrations (Fig. 2b–d) compared to the source of the Adirondack basalts. The source167

of the NWA 2737 chassignite shows the highest K2O/Na2O ratio. Finally, one of the sources168

that can match the composition of Clast VI (NWA 7533) is nearly identical to the DW85169

primitive mantle.170

The melt fractions required to produce the primary basalt compositions are com-171

prised between 5 and 30 wt.%. The associated mantle potential temperatures (Tp) are172

between 1320 and 1520 ℃ (Fig. 3a and Table S2). The average pressure of melting is173

relatively low for all samples (1.1–2.0 GPa), and is largely constrained by the SiO2 and174

MgO concentrations of the target primary melts (Fig. 1a). If a Mg# of 81 (K22) is as-175

sumed instead of 77 for NWA 7034/7475/7533 and Gusev basalts, then the primary basalts176

would contain a larger olivine component and the mantle Tp (1390–1570 ℃) and aver-177

age pressure of melting (1.9–3.0 GPa) would both be higher (Fig. 3).178

5 Discussion179

5.1 Thermal state of the Martian mantle180

Compared to the Tp estimates of Filiberto (2017), and using the same starting as-181

sumptions (mantle of Mg# 77 and batch melting), we find that Gusev crater basalts are182

derived from slightly cooler mantle sources on average, with Tp of ∼1400 ℃ (vs. ∼1450183

℃), but that the ranges of possible Tp largely overlap (1360–1460 vs. 1390–1550 ℃, re-184

spectively). Allowing for a higher Mg# of the mantle sources (77–81), we find that Gu-185

sev basalts and all (pre-)Noachian to Hesperian samples point to a Tp of 1340–1520 ℃186

(Fig. 3a).187

We calculate a Tp of 1420–1430 ℃ for the primary melt composition reconstructed188

from NWA 2737 melt inclusions (He et al., 2013), assumed to be parental to the middle-189

Amazonian nakhlites and chassignites (1.34 Ga; Udry & Day, 2018). However, the man-190

tle source could have been metasomatized (Day et al., 2018, also see section 5.2) and could191

–6–
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Figure 2. Incompatible element concentrations of the mantle sources of primary basalts (sym-

bols) compared to residual model Martian mantles (lines). Each line represents the trajectory of

residues produced by progressive melting of a primitive mantle composition (apex) at 1.5 (grey)

and 3.0 GPa (black). For the DW85 model (solid lines), tick marks indicate the composition of

residues after specific degrees of melting (in wt.%). All mantle source compositions are relatively

poor in CaO and Al2O3 compared to the primitive mantle and are characterized by variable

CaO/Al2O3 (A). The source of NWA 7533 clast VI is similar to a primitive mantle (DW85) and

the source of the Adirondack basalts resemble a residual mantle following prior partial melting in

all compositional spaces (A–D). All other sources are too rich in alkali elements—Na2O (B) and

especially K2O (C)—and other incompatible elements, such as P2O5 (D), to derive from model

Martian mantles by partial melting alone and other processes must be considered (see section

5.2).
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have contained up to 250 ppm of water (McCubbin et al., 2016), which would translate192

into a lower Tp of 1380 ℃ (Katz et al., 2003).193

The more recent olivine-phyric shergottites (160-500 Ma; Moser et al., 2013; Wu194

et al., 2021; McFarlane & Spray, 2022) are picritic basalts that have been linked to plumes195

with a Tp of at least 1480–1550 ℃ (e.g., Musselwhite et al., 2006; Filiberto & Dasgupta,196

2015). The Tp of MAGMARS simulations (1470–1520 ℃) are within error of these pre-197

vious constraints if batch melting is assumed, and slightly lower in the polybaric case198

(1440–1450 ℃). The presence of water in the source of shergottites could in principle lower199

the minimum Tp and has been suggested to account for their relatively high SiO2 con-200

centrations (Balta & McSween, 2013b). However, the small initial water concentration201

of the source (14–73 ppm; McCubbin et al., 2016) and the fact that the SiO2 concen-202

tration of shergottite melts can be reproduced with MAGMARS under nominally an-203

hydrous conditions preclude a significant effect of water.204

Finally, we re-calculate using MAGMARS the Tp and pressures of melting of the205

bulk volcanic provinces of Baratoux et al. (2011), as constrained by the Gamma Ray Spec-206

trometer (GRS) on board NASA’s Mars Odyssey spacecraft. Baratoux et al. (2011) used207

pMELTS in their analysis, which has since been shown to overestimate FeO and under-208

estimate SiO2 concentrations by up to 8 wt.% (Collinet et al., 2021), significantly more209

than anticipated by El Maarry et al. (2009). For Hesperian provinces, while the ranges210

of Tp are similar (1390–1460 vs. 1370–1420 ℃ previously), MAGMARS predicts a slightly211

higher pressure of melting (1.6–2.3 vs. 1.3–1.6 GPa). However, we find that only Ascraeus212

and Elysium Mons (out of the 6 Amazonian volcanic provinces) can be matched with213

a DW85 mantle composition using MAGMARS (Table S3). The composition of the other214

4 provinces can either not be reproduced at all (Arsia and Pavonis Mons) or only with215

an extremely small melt fraction of <2 wt.% (Olympus Mons and Alba Patera). With216

a YM20 composition (Mg# of 79, 81 after 15 wt.% of melting), a higher Tp of 1520–1660217

℃ and higher pressures of melting (2.3–3.5 GPa) are necessary to match the Hesperian218

volcanic provinces. A higher Mg# mantle also allows to reproduce the composition of219

a greater number of Amazonian volcanic provinces (5, all but Arsia Mons) with Tp of220

1380–1460℃ and pressures of 2.8–3.1 GPa.221

The lack of temperature and pressure trends over time displayed by this set of con-222

straints renders it impossible to calculate rates of secular cooling or lithosphere thick-223

ening (Fig. 3a,b). This could be due to the limited number of primitive basalts avail-224

able that might not be representative of the average mantle. To test this possibility, we225

compare the mantle temperature estimates derived from MAGMARS to the results of226

a global convection model incorporating the most recent interior structure constraints227

from InSight (Plesa et al., 2022). The maximum temperature (and minimum pressure)228

at which the mantle is melting decreases with time (i.e. secular cooling). However, at229

any given time, melt is produced from regions of the mantle with highly variable Tp, which230

encompass the Tp of the mantle sources estimated in this study. The Gusev basalts are231

the only primitive basalts whose location is known with certainty. Additionally, NWA232

7034 and the depleted shergottites have recently been suggested to have originated from233

Karratha and 09-000015 craters, respectively (Lagain et al., 2021, 2022). Under all three234

locations and at the appropriate—and highly contrasting— crystallization ages, the Tp235

of the mantle sources would have been nearly identical and in the range 1525–1562 ℃236

(Fig. 3c,d and S3). This confirms that despite the overall decrease in mantle temper-237

ature with time, a limited basaltic sample suite can record near-constant mantle tem-238

perature. The thermochemical evolution model predicts that the mantle temperature239

should first increase due to the decay of radioactive elements and peak at the Noachian/Hesperian240

transition before slowly decreasing (e.g., Plesa et al., 2022). This thermal maximum is241

not recorded by the 3.7 billion years old Gusev basalts but seems consistent with our re-242

interpretation of the Tp of Hesperian volcanic provinces (1520–1660 ℃; Baratoux et al.,243

–8–
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2011), assuming that the average mantle is relatively MgO-rich (Mg# of 79; Yoshizaki244

& McDonough, 2020).245

Perhaps the main discrepancy between the thermochemical evolution model and246

the MAGMARS constraints is the shallow depth of melting that we estimate for the source247

of shergottites, which is predicted to be well within the lithospheric mantle (Plesa et al.,248

2022). Filiberto (2017) noted that if a larger amount of olivine fractionation had taken249

place, the primary melts of shergottites could have been in equilibrium with the convect-250

ing mantle at 3–5 GPa. While this pressure of melting is more consistent with the thick251

lithosphere of the late Amazonian (Fig. S3), such melt compositions would require a high252

Tp of 1710 ± 73 ℃, which exceeds significantly the maximum Tp achievable by thermal253

evolution models at that time (Fig. 3d). Therefore, we consider it more likely that the254

Tp of the sources was low (1470–1520 ℃) and that the pressure of melting derived from255

MAGMARS simulations (1.6 ± 0.5 GPa) does not represent the average pressure of melt-256

ing but simply the final pressure of equilibration with the mantle. If shergottites formed257

in the Tharsis region (e.g., Lagain et al., 2021), deeply-sourced primary melts could have258

re-equilibrated with a warm lithospheric mantle, locally heated by magmas, at the base259

of the crust (110–130 km; Wieczorek et al., 2022).260

5.2 Origin of the mantle sources and their variable concentrations of in-261

compatible elements262

The mantle source of Clast VI (NWA 7533) could be nearly identical to the prim-263

itive mantle (Fig. 2), as previously suggested based on rare-earth element (REE) mod-264

eling (Humayun et al., 2013). All other mantle sources are depleted in CaO and Al2O3265

relative to the various primitive mantle compositions proposed in literature (DW85, LF97,266

YM20 and K22). One possibility is that these mantle sources represent melting residues267

from which 10–20 wt.% melt had been removed prior to producing the melts that even-268

tually formed the primitive basalts used in this study (Fig. 2a). However, the concen-269

trations of alkalis and other incompatible elements (e.g., TiO2, P2O5) are, in most cases,270

too high at a given Al2O3 concentration, regardless of the style (batch vs. fractional) and271

pressure of melting (Fig. 2b–d). Only the Adirondack basalts are consistent in detail with272

the simple re-melting of a mantle residue, following ±10 wt.% prior melting of a prim-273

itive mantle (see also Collinet et al., 2021). Other processes must be invoked to explain274

the chemical variability of the remaining mantle sources.275

The Columbia Hills basalts are often assumed to be related to the Adirondack basalts,276

as both groups were analyzed by Spirit at Gusev crater. Compared to the Adirondack277

basalts, they are rich in alkali elements as well as other incompatible elements (TiO2,278

P2O5) and poor in CaO and Al2O3 (Fig. 1). McSween, Ruff, et al. (2006) suggested that279

the Columbia Hills basalts could have derived from melts similar to the Adirondack basalts280

by fractional crystallization. The higher incompatible element concentrations (e.g., K,281

P, Ti) of the Columbia Hills basalts have also been suggested to result from the contam-282

ination of Adirondack-like primitive melts by a crustal component (Schmidt & McCoy,283

2010). However, crustal assimilation and fractional crystallization (AFC) of basaltic melts284

should lower markedly the MgO concentrations (and Mg#; Ostwald et al., 2022). As the285

Mg# of the Columbia Hills and Adirondack basalts are similar, most workers now re-286

gard them as two sets of near-primary melts (Schmidt & McCoy, 2010; Filiberto & Das-287

gupta, 2011; Collinet et al., 2015). Schmidt and McCoy (2010) proposed that the high288

K2O content of the Columbia Hills basalts could be accounted for by melting a fertile289

mantle source with a higher K2O content compared to the Dreibus and Wänke (1985)290

composition. According to their model, the Adirondack basalts would be slightly younger291

and produced by re-melting the same region of the mantle. However, the similarly low292

CaO and Al2O3 concentrations of their sources (Fig. 2a) suggest that both the Adiron-293

dack and Columbia Hills basalts were derived from depleted mantles, affected by 10–20294

wt.% prior melting at ∼ 3.0 GPa. Metasomatism has been invoked to reconcile the high295

–9–



manuscript submitted to Geophysical Research Letters

Figure 3. Temporal evolution of Tp (A) and the average pressure and depth of melting

or conditions of mantle–melt re-equilibration (B). The rectangles represent the sources of the

basaltic compositions listed in Table 1. The rounded fields are the sources of the GRS volcanic

provinces of Baratoux et al. (2011), re-calculated with MAGMARS. The black lines represent the

evolution of the potential temperatures and pressures of the part of the mantle that is affected by

partial melting in the thick-crust geodynamical model of Plesa et al. (2022). The minimum pres-

sure of melting (dashed line in B) can be interpreted as the thinnest thermal lithosphere observed

anywhere on the planet. Panels C and D represent regional variations in Tp for this geodynamical

model at the time of Gusev basalt (C) and depleted shergottites (D) crystallization. At their

possible source locations (white stars, see text for references), the Tp are nearly identical: 1562

vs. 1525 ℃ (see also Fig. S3).
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water and incompatible element concentrations of nakhlites-chassignites with their Sr-296

Nd isotopic compositions indicative of ancient depleted sources (Goodrich et al., 2013;297

McCubbin et al., 2013; Day et al., 2018) and could also help explain the high K2O con-298

centrations analyzed in numerous rocks from Gale crater (e.g., Schmidt et al., 2014). Sim-299

ilarly, we posit that the relative enrichment of incompatible elements in the Columbia300

Hills basalts (alkali elements as well as elements like P and Ti that are less mobile in flu-301

ids) could be explained by the secondary addition of low-degree melts to a Adirondack-302

like mantle source. The highest possible K2O concentrations that we calculate for the303

Columbia Hills mantle sources are in the range 0.13–0.15 wt.%. This is much smaller than304

the percent level K2O concentrations of highly metasomatized and phlogopite-bearing305

terrestrial peridotites (e.g., Condamine & Médard, 2014) but similar to other intraplate306

peridotites containing no hydrous phases (e.g., Smith et al., 1993). The source of the Columbia307

Hills basalts was likely affected by low degrees of cryptic metasomatism and was thus308

not significantly hydrated.309

The isotopic systematics of Martian meteorites suggest the existence of a magma310

ocean that crystallized early in Mars’ history (e.g., Elkins-Tanton et al., 2005; Debaille311

et al., 2008; Kruijer et al., 2017; Bouvier et al., 2018). Some of the resulting heterogene-312

ity was never erased by convection and ancient mantle sources were affected by partial313

melting and formed the shergottites as recently as 170 million years ago (Moser et al.,314

2013; Wu et al., 2021; McFarlane & Spray, 2022). The major and incompatible element315

concentrations of the sources of shergottites must in part reflect the processes of magma316

ocean crystallization. For example, the superchondritic CaO/Al2O3 ratio of shergottites317

has been suggested to result from the fractionation of majorite in the deep mantle (Borg318

& Draper, 2003). Here, we find that the sources of shergottites had mildly superchon-319

dritic CaO/Al2O3 ratios that could have appeared at low pressure, following 15–20 wt.%320

melting of the primitive mantle (Fig. 2a). A 20 wt.% depletion from a primitive man-321

tle is also sufficient to decrease the incompatible element concentrations to levels iden-322

tical to those of the source of depleted shergottites (Fig. 2b–d). In this case, however,323

the melting residue only reaches a Mg# of 77 (when starting from a DW85 mantle) to324

81 (YM20), following 20 wt.% of melting. The much higher Mg# of the source of Y 980659325

(85–86) remains easier to explain if it formed as a magma ocean cumulate (e.g., Borg326

& Draper, 2003; Elkins-Tanton et al., 2005). The enriched shergottites have higher con-327

centrations of incompatible elements. Their composition in radiogenic isotopes indicates328

that the enriched signature is most likely derived from evolved residual melts that were329

trapped in mantle cumulates during the crystallization of an early MMO, rather than330

from crustal assimilation (e.g., Borg & Draper, 2003; Symes et al., 2008; Debaille et al.,331

2008; Brandon et al., 2012; Ferdous et al., 2017; Armytage et al., 2018). This could also332

explain the slightly higher concentrations of minor incompatible elements that we cal-333

culate for the source of enriched shergottites (Fig. 2).334

6 Conclusions335

The mantle temperature of the sources that gave rise to known primitive basalts336

appears to have remained relatively stable through time (Tp of 1400–1500 ℃). This could337

be due to a sampling bias. The higher mantle Tp (∼1600 ℃) of the Hesperian volcanic338

provinces (Baratoux et al., 2011), recalculated with MAGMARS and assuming a man-339

tle with Mg# of 79 or higher (Yoshizaki & McDonough, 2020; Khan et al., 2022), hint340

at a significant secular cooling (>100 ℃) as expected from thermochemical evolution mod-341

els (Plesa et al., 2022). The shergottite melts were likely produced at pressures greater342

than 3 GPa but re-equilibrated with the lithospheric mantle at 1–2 GPa, for example343

at the base of the thick Tharsis crust.344

With the exception of the source of NWA 7034 and paired rocks, the mantle sources345

of known Martian basalts were poorer in Al2O3 and CaO compared to primitive man-346

tle compositions (e.g., Dreibus & Wänke, 1985; Yoshizaki & McDonough, 2020). The com-347
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positions of the sources of Gusev crater basalts that we calculate do not explicitly re-348

quire a magma ocean stage and could represent simple depleted mantle reservoirs affected349

by 10–20 wt.% prior melting (Adirondack basalts) or depleted mantle reservoirs re-fertilized350

by fluids and low-degree silicate melts (Columbia Hills basalts). On the other hand, the351

major element composition of the source of depleted shergottites cannot be easily ex-352

plained by partial melting alone and suggest, along with their Sr-Nd-Hf isotope system-353

atics, that they formed as mantle cumulates during the crystallization of the MMO. The354

sources of enriched shergottites are consistent with trapping a more evolved residual melt.355

It is also possible that the relative enrichment of the minor incompatible elements (Na,356

K, Ti and P) of the Columbia basalts is a vestige of magma ocean processes and does357

not result from metasomatism. But regardless of its origin, this relative enrichment is358

limited, with concentrations of Na2O, P2O5, and TiO2 not exceeding the range displayed359

by primitive mantle compositions.360
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Ostwald, A., Udry, A., Payré, V., Gazel, E., & Wu, P. (2022). The role of assimila-617

tion and fractional crystallization in the evolution of the Mars crust. Earth and618

Planetary Science Letters, 585 , 117514. doi: 10.1016/j.epsl.2022.117514619
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S1 Non-uniqueness and model uncertainties

MAGMARS uncertainties are discussed in detail in section 3.2 of Collinet et al. (2021)
and propagated by combining analytical, experimental, and model uncertainties. They are
provided as fixed average uncertainties for the composition of melts produced by melting
any mantle composition, at any pressure and temperature: ± 1.3 wt.% SiO2, 0.21 wt.%
TiO2, 0.38 wt.% Al2O3, 0.11 wt.% Cr2O3, 0.85 wt.% FeO, 0.06 wt.% MnO, 0.75 wt.% MgO,
0.61 wt.% CaO, 0.28 wt.% Na2O, 0.12 wt.% K2O, 0.12 wt.% P2O5, for lherzolite melting.
To quantify the uncertainties on the mantle composition and melting conditions that can
produce a specific primary basalt, we run a large number of simulations while varying system-
atically the parameter space (black contours in Figure S1). We retain only the simulations
that produce a melt identical to the basalt Fastball (representative example) within the
model uncertainties stated above (blue circles). Figure S1 can be compared to Figure 2 and
shows that despite the substantial uncertainties associated with the method, the conclusions
of the study remain unchanged.
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Another large set of simulations is filtered assuming that the model uncertainties are smaller
than reported in Collinet et al. (2021) (Figure S2). While it is possible that the MAGMARS
model uncertainties are overly conservative, the goal here is simply to isolate model uncer-
tainties and non-uniqueness. Even assuming a small model uncertainty, there is a large array
of possible mantle sources and melting conditions that can produce nearly identical basaltic
melts (the composition of Fastball in this case).
For a given basaltic melt (e.g., Fastball), the most refractory mantle sources are associated
with the lowest melt fraction and lowest mantle temperatures due to the smaller release of
latent heat of melting (Fig. S1a,b). To produce the same average basaltic liquid by polybaric
melting as by isobaric melting, melting must start deeper and extend to a shallower region
of the mantle, where the solidus temperature is low. The Tp is therefore lower compared to
the isobaric case (Table S2, Fig. S1a, S2a, also see Fig. 2 in Collinet et al., 2021).
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Figure S1: MAGMARS simulations able to reproduce the composition of Fastball (blue
circle) assuming the average model uncertainty of Collinet et al. (2021): ± 1.3 wt.% SiO2,
0.21 wt.% TiO2, 0.38 wt.% Al2O3, 0.11 wt.% Cr2O3, 0.85 wt.% FeO, 0.06 wt.% MnO, 0.75
wt.% MgO, 0.61 wt.% CaO, 0.28 wt.% Na2O, 0.12 wt.% K2O, 0.12 wt.% P2O5. The black
envelope represents the conditions sampled by 105000 MAGMARS simulations.
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Figure S2: MAGMARS simulations able to reproduce the composition of Fastball assuming
a low uncertainty of ± 0.5 wt.% SiO2, 0.05 wt.% TiO2, 0.15 wt.% Al2O3, 0.11 Cr2O3, 0.25
wt.% FeO, 0.06 MnO, 0.25 wt.% MgO, 0.15 wt.% CaO, 0.07 wt.% Na2O, 0.03 wt.% K2O,
0.05 wt.% P2O5 (red circles). The open and closed blue triangles represent the sample
sources reported in Figure 2 and Table S2. The black envelope represents the conditions
sampled by 375000 MAGMARS simulations.
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Figure S3: Temperature profiles of the mantle below Gusev crater, and the possible location
of the sources of depleted shergottites (09-000015, Tooting; Lagain et al. (2021)) and NWA
7034 (Karratha; Lagain et al. (2022)) at the time of their crystallization, from the thick-crust
model of Plesa et al. (2022). The mantle below Tooting crater does not reach the solidus
of Ruedas and Breuer (2017) (grey line). Below the other 3 craters, the solidus is crossed
at ∼5 GPa and the mantle potential temperatures are nearly identical (filled circles on the
upper temperature axis): 1556 ℃ (Karratha), 1562℃ (Gusev) and 1525 ℃ (09-000015).
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