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Abstract

Ensemble forecasting is a promising tool to aid in making informed decisions against risks of coastal storm surges. Although

tropical cyclone (TC) ensemble forecasts are commonly used in operational numerical weather prediction systems, their potential

for disaster prediction has not been maximized. Here we present a novel, efficient, and practical method to utilize a large ensemble

forecast of 1000 members to analyze storm surge scenarios toward effective decision making such as evacuation planning and

issuing surge warnings. We perform the simulation of TC Hagibis (2019) using the Japan Meteorological Agency’s (JMA)

non-hydrostatic model. The simulated atmospheric predictions were utilized as inputs for a statistical surge model named

the Storm Surge Hazard Potential Index (SSHPI) to estimate peak surge heights along the central coast of Japan. We show

that Pareto optimized solutions from an ensemble storm surge forecast can describe potential worst (maximum) and optimum

(minimum) storm surge scenarios while exemplifying a diversity of trade-off surge outcomes among different coastal places. For

example, some of the Pareto optimized solutions that illustrate worst surge scenarios for inner bay locations are not necessarily

accountable for bringing severe surge cases in open coasts. We further emphasize that an in-depth evaluation of Pareto optimal

solutions can shed light on how meteorological variables such as track, intensity, and size of TCs influence the worst and

optimum surge scenarios, which is not clearly quantified in current multi-scenario assessment methods such as those used by

JMA/National Hurricane Center in the United States.
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Key Points: 9 

• The potential of ensemble tropical cyclone forecasting for assessing storm surge multi-10 

scenarios is shown. 11 

• Pareto optimized solutions from an ensemble storm surge forecast can efficiently illustrate 12 

potential worst and minimum storm surge scenarios.  13 

• Analyses of meteorological variables of ensemble members in Pareto frontiers help 14 

understand the impact of a tropical cyclone on predicted storm surge multi-scenarios. 15 
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Abstract 17 

Ensemble forecasting is a promising tool to aid in making informed decisions against risks of 18 

coastal storm surges. Although tropical cyclone (TC) ensemble forecasts are commonly used in 19 

operational numerical weather prediction systems, their potential for disaster prediction has not 20 

been maximized. Here we present a novel, efficient, and practical method to utilize a large 21 

ensemble forecast of 1000 members to analyze storm surge scenarios toward effective decision 22 

making such as evacuation planning and issuing surge warnings. We perform the simulation of TC 23 

Hagibis (2019) using the Japan Meteorological Agency's (JMA) non-hydrostatic model. The 24 

simulated atmospheric predictions were utilized as inputs for a statistical surge model named the 25 

Storm Surge Hazard Potential Index (SSHPI) to estimate peak surge heights along the central coast 26 

of Japan. We show that Pareto optimized solutions from an ensemble storm surge forecast can 27 

describe potential worst (maximum) and optimum (minimum) storm surge scenarios while 28 

exemplifying a diversity of trade-off surge outcomes among different coastal places. For example, 29 

some of the Pareto optimized solutions that illustrate worst surge scenarios for inner bay locations 30 

are not necessarily accountable for bringing severe surge cases in open coasts. We further 31 

emphasize that an in-depth evaluation of Pareto optimal solutions can shed light on how 32 

meteorological variables such as track, intensity, and size of TCs influence the worst and optimum 33 

surge scenarios, which is not clearly quantified in current multi-scenario assessment methods such 34 

as those used by JMA/National Hurricane Center in the United States. 35 

Plain Language Summary 36 

Ensemble forecasting generates multiple predictions of a weather event with various possible 37 

outcomes based on varying initial conditions, model parameters, and physics. The potential of 38 

ensemble tropical cyclone (TC) forecasting for assessing storm surge multi-scenarios has largely 39 

been overlooked previously. Enhanced analysis can unlock and maximize the benefit of ensemble 40 

forecasting. This study simulated an extremely large ensemble (=1000 members) to reforecast past 41 

TC Hagibis which hit the central coast of Japan in 2019 and utilized the results to predict storm 42 

surges. We propose that Pareto optimality can identify good ensemble members that reasonably 43 

represent potential worst/minimum storm surge scenarios, meaning no other ensemble members 44 

can represent better than those. Comprehensive analyses of Pareto members can give forecasters 45 

and decision makers a better understanding of how the predicted track, wind intensity, and size of 46 

a TC can impact the worst and best storm surge scenarios. This type of analysis is expected to 47 

improve the planning of evacuations and the issuing of storm surge warnings. 48 

1 Introduction 49 

Since 1737, 29 coastal storm surge events have claimed at least 5,000 people globally. Two 50 

of these events happened in the 21st century and ranked as two of the five worst coastal disasters 51 

in the running millennium (Needham et al., 2015; Takagi et al., 2022). Rappaport (2014) has shown 52 

that 49% of tropical cyclone (TC)-induced deaths are directly attributed to storm surges. Hence, it 53 

is crucially important to improve the understanding of storm surge and their associated risk as it is 54 

among the deadliest and most destructive natural disasters. 55 

In recent years, forecast services have likely reduced TC-induced deaths relative to historical 56 

standards. For example, several countries have already adopted a dynamical TC ensemble 57 

prediction system (EPS) to capture forecast uncertainties and reduce sampling errors in the three-58 

dimensional meteorological simulation (Sharma et al., 2022). Numerical weather prediction 59 
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centers such as Japan Meteorological Agency (JMA), National Centers for Environmental 60 

Prediction in the United States (US), European Centre for Medium-Range Weather Forecasts 61 

generate TC track forecasts from their ensemble forecast models and utilize them in their 62 

operational settings (Swinbank et al., 2016). Yamaguchi et al. (2015) have shown that EPS can 63 

provide skillful guidance of TC genesis forecasts with a forecast lead time extending to two weeks 64 

in seven TC basins. Nevertheless, there is a great potential to maximize the use of this EPS not 65 

only in TC activity (e.g., track, intensity) forecast but also in forecasting hazards (e.g., storm 66 

surge), aiding end users to be prepared better before the dangerous situation (Kobayashi et al., 67 

2020; Duc et al., 2021). 68 

Titley et al. (2019) have recently conducted a questionnaire survey at operational TC forecast 69 

centers worldwide to understand the current and potential use of EPS in operational TC 70 

forecasting. They reported that over 90% of respondents used an ensemble forecast for TC track 71 

forecast, followed by genesis and intensity forecasts. In contrast, less than 10% of surveyed 72 

forecasters use ensemble products for hazard (e.g., storm surge) forecasting. Deterministic 73 

forecasts are often used for hazard forecasting as it is produced using the best available TC data 74 

and unperturbed models. In some cases, ensemble mean (e.g., track and intensity of TC) is used as 75 

inputs for hazard forecast to compare the result with the deterministic forecasts, although the full 76 

use of EPS in hazard forecasting remains challenging (Titley et al., 2019). A lack of detailed 77 

analysis of ensemble members (beyond ensemble mean/median analysis) and less technical 78 

expertise on ensemble-based hazard forecasts hinder its' application among hazard forecasters. 79 

Wilson et al. (2019) reported that a deterministic mindset resulted in tendencies to modify 80 

understanding of probabilistic concepts when presented with different meteorological variables. 81 

Furthermore, local authorities responsible for hazard forecasting avoid EPS information as citizens 82 

and emergency managers habitually trust a single forecast only, and they are not sufficiently 83 

educated to deal with the probabilistic prediction (Lombardi et al., 2018). These findings highlight 84 

that ensemble-based hazard (e.g., storm surge) forecast is unfamiliar in disaster risk management 85 

communities. 86 

Notwithstanding the challenges mentioned above, ensemble surge prediction system (ESPS) has 87 

recently received considerable attention from both the research and operational communities. For 88 

instances, Flowerdew et al. (2013), Greenslade et al. (2017), and Kristensen et al. (2022) have 89 

successfully developed and evaluated the performance of an operational ESPS for United 90 

Kingdom, Australia, and Norway, respectively. Along the coastline of Canada, it was found that 91 

20-member ESPS could reasonably estimate both the uncertainty in peak surge height and timing 92 

of surge events resulting from imperfectly forecast atmospheric conditions six days before (Bernier 93 

& Thompson, 2015). A 50-member ensemble simulation of 10 surge events during 2010 in Venice 94 

by Mel & Lionello (2014) has shown that the distribution of maximum sea level is acceptably 95 

realistic with respect to the deterministic forecast. They also found that the uncertainty became its 96 

maximum during storm surge peaks and increased linearly with the forecasting lead time. 97 

Although these ensemble simulation studies paved the way for a robust surge hazard assessment 98 

over a single forecast-based assessment, they considered ensemble TC forecast information only 99 

for developing and evaluating the performance (skill and accuracy) of an ESPS. In addition to 100 

quantifying the uncertainty of surge height, ensemble-based storm surge multi-scenario (e.g., 101 

worst/optimum case) analysis is equally important, aiding disaster risk managers in evacuation 102 

planning (Kohno et al., 2018). 103 
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To the best of our knowledge, the potential of ensemble TC forecasting for assessing storm surge 104 

multi-scenarios has largely been overlooked previously. However, recent developments have seen 105 

the introduction of multi-scenario storm surge predictions, such as the worst-case scenario from 106 

six typical TC tracks by the JMA (H. Hasegawa et al., 2017) and the maximum storm tide height 107 

by the National Hurricane Center in the US (NHC, n.d.). These worst-case scenarios are composite 108 

products, representing the maxima among all scenarios. Therefore, it is possible that the worst-109 

case values for two adjacent locations may have come from two different ensemble TC track run. 110 

Therefore, the users (e.g., emergency managers) cannot understand which forecasted TC track or 111 

which combination of forecasted TC meteorological variables (track, intensity, size, translation 112 

speed) may trigger the worst surge scenario for a particular location based on a composite product. 113 

This can make it difficult for decision-makers to determine the appropriate level of storm surge 114 

warning and evacuation orders. In addition, storm surge is spatially heterogeneous because of its' 115 

dependency on a TC characteristic and coastal geometry. It is entirely plausible that the worst case 116 

scenario may not occur everywhere within a forecasted TC threat zone (Islam & Takagi, 2020a, 117 

2020b). If the decision makers in cities/tourist districts with highly valuable economies issue a 118 

higher warning level without any concrete understating over a worst event, they will inevitably 119 

suffer significant economic losses because of false alarming (in case the area has not affected by 120 

worst storm surge) and eventually can lower citizens trust over official warning (Sawada et al., 121 

2022; Takagi et al., 2018). 122 

Here we present Pareto optimality - a novel way of assessing storm surge multi-scenarios based 123 

on ensemble TC forecasts. Our approach is more advanced than existing assessments. We 124 

employed a multi-objective function to determine possible worst/optimum cases to quantify the 125 

hazards in a large region. Our approach involved a comprehensive analysis of Pareto optimal 126 

solutions in understanding the combination of forecasted TC meteorological variables - such as 127 

track, intensity, size, and translation speed of TC - that could result in the worst/optimum surge 128 

scenario. We utilized an extremely large ensemble (=1000 member) forecasts of TC Hagibis that 129 

made landfall in central Japan in 2019. Our Pareto-based optimal solutions provide an 130 

instantaneous overall assessment of storm surge multi-scenarios without any computational 131 

burdens. The proposed method will allow forecasters to predict storm surge multi-scenarios 132 

harnessing ensemble TC forecasts efficiently and help emergency responders as means of 133 

quantifying surge hazards effectively. 134 

2 Data and Methods 135 

2.1 TC Hagibis and ensemble forecast 136 

TC Hagibis in 2019, one of the most destructive and deadliest TC that hit Japan in decades 137 

(Shimozono et al., 2020; Ma et al., 2021), has been chosen to demonstrate our multi-scenario storm 138 

surge assessment. Hagibis was formed in the western North Pacific Ocean on 2 October 2019 and 139 

made landfall in central Japan on 12 October 2019 (around 0900 UTC), as depicted in Figure 1. 140 

At the landfall time, its maximum wind speeds sustained at 80 kt. This combined with heavy 141 

rainfall, resulted in high storm surges and severe flooding in the area (Shimozono et al., 2020; Ma 142 

et al., 2021; JMA, 2021). 143 

The atmospheric ensemble forecasts of TC Hagibis were obtained by running JMA's former 144 

operational limited-area model called NHM (non-hydrostatic model; Saito et al., 2006). The 145 

integration domain (see Figure S1) had a grid spacing of 5 km consisting of 817 × 661 horizontal 146 
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grid points and 50 vertical levels. Boundary conditions were interpolated to the NHM domain from 147 

JMA's global model forecasts and the forecast perturbations of JMA's operational one-week EPS. 148 

Since we used NHM for all forecast members, the only source of uncertainty stemmed from initial 149 

conditions. This uncertainty is encapsulated in error covariances of current atmospheric states 150 

(analysis error covariances), estimated using a data assimilation system. An ensemble Kalman 151 

filter (EnKF) was employed to sample from these error covariances and generate an analysis 152 

ensemble. While operational forecast centers generally use around 100 ensemble members, a state-153 

of-the-art data assimilation system with 1000 ensemble members, called the four-dimensional 154 

variational-ensemble assimilation technique (4DEnVAR), was utilized in this study (Kobayashi et 155 

al., 2020). Our 4DEnVAR system only applied horizontal localization, with the horizontal 156 

localization length scales derived from the JMA's operational four-dimensional variational 157 

assimilation system's climatological horizontal correlation length scales. This helped to remove 158 

sampling noise in estimating forecast error covariances and maintain the coherent vertical structure 159 

between atmospheric fields, which is critical in predicting tropical cyclones. As the ensemble 160 

member count was large (=1000), localization was relaxed by retaining vertical correlations and 161 

removing horizontal correlations at distant locations (Duc et al., 2021). 162 

Unlike EnKF, EnVAR solely estimates the means of analysis ensembles and not the analysis 163 

ensembles themselves, even though this method heavily relies on forecast ensembles to estimate 164 

these means. To solve this issue, a common approach is to run a separate EnKF in parallel to 165 

generate analysis ensembles. However, our 4DEnVAR system is unique in that an EnKF is not 166 

necessary. Instead, the same EnVAR program was used to generate analysis perturbations, as 167 

suggested in the context of inflation functions (Duc et al., 2020), where we demonstrated that using 168 

quadratic inflation functions implies using the Kalman gain to generate analysis perturbations. 169 

Using the same program for analysis means and analysis perturbations is essential because it 170 

ensures consistency between the two when the same background error covariance, localization, 171 

and observations are utilized in both cases. The assimilation system commenced at 00UTC on 7 172 

October 2019, with a 3-hour assimilation cycle and continued until 18:00UTC 10 October 2019. 173 

The final analysis ensemble was then used as initial conditions for 39h forecasts with NHM. The 174 

assimilation domain was chosen the same as the forecast domain in Figure S1 and we assimilated 175 

all routine observations obtained from JMA's database. Here, we opted for a 39h forecast horizon 176 

because JMA's operational Meso-scale Ensemble Prediction System (MEPS) also generates 39h 177 

forecasts at 6-hour intervals (JMA, 2023). 178 

2.2 Ensemble storm surge forecast 179 

We used storm surge hazard potential index (SSHPI; eq. 1), a statistical model to compute peak 180 

storm surge height. While the coastal engineers and ocean modelers are interested in the forecast 181 

of storm surge hydrograph, most of the decision makers responsible for issuing surge warning and 182 

relief measures have a primary interest in the value of predicted peak surge height. The SSHPI 183 

uses meteorological variables sensitive to storm surge, including TC intensity (Vmax), size (radius 184 

of 50-kt wind; R50), and translation speed (S). In addition, the SSHPI considers coastal geometry 185 

(a = 1 = open coasts and a = −1 = bays), landfall location sensitivity (DL), and regional scale 186 

bathymetry (L30). The SSHPI does not incorporate factors associated with wave set-up and 187 

astronomic tide to keep the configuration simple. TC Hagibis ensemble forecasts (=1000 member; 188 

see Section 2.1), particularly during landfall, was used as meteorological forcing of the SSHPI. 189 

We produced corresponding 1000 perturbed surge forecasts with a lead time of 39h. The 190 
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bathymetry of the target region was obtained from the Japan Oceanographic Data Center (Japan 191 

Oceanographic Data Center, 2020). The effectiveness of the SSHPI for predicting peak surge 192 

hazard potential was discussed in Islam et al. (2021, 2022). The formulation of the SSHPI is the 193 

following: 194 

 195 

SSHPI = (
𝑉𝑚𝑎𝑥

𝑉𝑟𝑒𝑓
)2 (

𝑅50

𝑅𝑟𝑒𝑓
) (

𝑆

𝑆𝑟𝑒𝑓
)𝑎 (

𝐿30

𝐿∗
) (𝐷𝐿)            (1) 196 

𝑅50

𝑅𝑟𝑒𝑓
= 

{
  
 

  
 1.5

𝑅50

𝑅𝑟𝑒𝑓
   

0.5

  𝑖𝑓 
𝑅50

𝑅𝑟𝑒𝑓
≥ 1.5 

𝑖𝑓 0.5 <
𝑅50

𝑅𝑟𝑒𝑓
< 1.5

𝑖𝑓 
𝑅50

𝑅𝑟𝑒𝑓
≤ 0.5

  ;     (
𝑆

𝑆𝑟𝑒𝑓
)𝑎 = 

{
  
 

  
 1.5

(
𝑆

𝑆𝑟𝑒𝑓
)𝑎

0.5

  𝑖𝑓 (
𝑆

𝑆𝑟𝑒𝑓
)𝑎  ≥  1.5 

   𝑖𝑓 0.5 < (
𝑆

𝑆𝑟𝑒𝑓
)𝑎 < 1.5 

𝑖𝑓 (
𝑆

𝑆𝑟𝑒𝑓
)𝑎  ≤  0.5

;   
𝐿30

𝐿∗
=  {

𝐿30

𝐿∗
, 𝑖𝑓 

𝐿30

𝐿∗
 ≥ 1

  

1, 𝑖𝑓 
𝐿30

𝐿∗
 ≤ 1

 197 

𝐷𝐿 = 

{
 
 
 

 
 
 

1                 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑎𝑙𝑙𝑠 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑇𝐶 𝑡𝑟𝑎𝑐𝑘 𝑎𝑛𝑑 𝑥 ≤ 20  
𝑂𝑅

         𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑎𝑙𝑙𝑠 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑇𝐶 𝑡𝑟𝑎𝑐𝑘 𝑎𝑛𝑑 𝑥 ≤ 10

  1 −
0.03(𝑥 − 20)

20
   𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑎𝑙𝑙𝑠 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑇𝐶 𝑡𝑟𝑎𝑐𝑘 𝑎𝑛𝑑 𝑥 > 20

1 −
0.05(𝑥 − 10)

10
    𝑖𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑓𝑎𝑙𝑙𝑠 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑇𝐶 𝑡𝑟𝑎𝑐𝑘 𝑎𝑛𝑑 𝑥 > 10

 

     

    

 198 

Vref, Rref, and Sref, are reference constants as follows: 50-kt equivalents of the tropical storm 199 

category, 95 NM (historical mean R50 at the time of landfall in Japan mainland), and 35 km/h 200 

(historical mean S at the time of landfall in Japan), respectively (Islam et al., 2021). L30 is the 201 

horizontal distance (km) between the shoreline and the 30-m depth contour. L* was chosen to be 202 

10 km. DL is defined by different expressions depending on the surge estimated points' (e.g., tidal 203 

station) position (right/left) respective to the TC track and horizontal distance (x in km) between 204 

the TC landfall location and a surge estimated point. Compared to Vmax, the upper and lower bounds 205 

of R50, S, and L30 in eq. 1 restrict their contribution in generating surge hazards and, thus, prevents 206 

discrete jumps in the SSHPI. 207 

Figure 1 shows a storm surge modeling domain and the position of tide gauges used for validating 208 

surge model and predicting surge hazards in this study. There are two domains, covering Tokyo 209 

Bay and Suruga Bay individually. Each domain has tide gauges located both in inner bays and 210 

open coasts. It should be noted that the tide gauges chosen for this study are the only stations that 211 

possess recorded (historical) storm surge data, which is kept by JMA (JMA, 2022) and Japan Coast 212 

Guard (Japan Oceanography Data Center, 2021). The empirical relationship for expected storm 213 

surge in each tide gauge was determined in Islam et al. (2021, 2022) by drawing a line of best fit 214 

through the historical surge data and the SSHPI and thus, used for the surge forecasts in this study. 215 

 216 
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 217 

Figure 1. Domain of the storm surge forecasts model and the locations of the tide gauges used for 218 

model validation and surge forecasts. 219 

2.3 Pareto optimality and assessing storm surge multi-scenarios 220 

It is unrealistic to anticipate a "nice" forecast scenario that accurately predicts the exact intensity 221 

of a hazard at all locations within a given domain for a particular condition (e.g., worst/optimum). 222 

An improved forecast at one location is usually accompanied by a deterioration of forecast at 223 

another location and vice versa. The best we can do is to quantify the trade-off between different 224 

objectives. Here, we conducted multi-objective optimization to select ensemble forecast members 225 

(among 1000 ensemble forecasts; see Section 2.1 and 2.2) that reasonably characterize the 226 

potential worst/optimum storm surge case for a particular location (e.g., Tokyo Bay) by computing 227 

the Pareto frontier. The Pareto frontier captures the trade-offs between objectives. It is the set of 228 

all Pareto-optimum solutions where a single Pareto optimal solution denotes a solution that is not 229 

dominated by any other solution (Kochenderfer & Wheeler, 2019). 230 

In this study, we analyzed a subset of 1000 forecasted surge scenarios for each tide gauge in a 231 

specific domain, referred to as solution z. Each scenario is evaluated based on d objectives, 232 

represented by the values y1(z), y2(z),….., yd(z). As an example, we considered a scenario in Tokyo 233 

Bay where the objectives are to maximize the forecasted peak surge at four tide gauges: Harumi, 234 

Chiba, Yokohama, and Mera (as shown in Figure 1). This objective function considers the potential 235 

worst-case scenario in Tokyo Bay for a set of 1000 ensemble surge forecasts. We compared the 236 

given two solutions z and z', if for every objective i, yi (z) ≥ yi (z') and the strict inequality holds 237 

for at least for one objective, we considered that solution z dominates z'. In other words, if one 238 

solution (e.g., ensemble member no. 10) provides 160 cm, 155 cm, 140 cm, 110 cm of forecasted 239 

peak surge in Harumi, Chiba, Yokohama, and Mera, respectively, but another solution (e.g.,  240 
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ensemble member no. 20) yields 160 cm, 155 cm, 140 cm, 90 cm of forecasted peak surge for the 241 

same tide gauges, then the solution given by ensemble member no. 10 dominates the solution 242 

provided by ensemble member no. 20. This is because a smaller storm surge (90 cm) in Mera is 243 

undesirable as stated in the objective function. A similar objective function but minimizing the 244 

forecasted peak surge at four tide gauges: Harumi, Chiba, Yokohama, and Mera (as shown in 245 

Figure 1) was considered to determine ensemble forecasts member that characterizes a potential 246 

optimum surge case. In order to select the most appropriate ensemble TC member that may cause 247 

the worst surge case in the inner bay, but also results in the optimum surge at the open coast, we 248 

further assume that objectives are to be maximized for the inner bay tide gauges (Harumi, Chiba, 249 

and Yokohama), but minimized for open coast tide gauges (Mera) at the same time.  250 

The details of the implementation of the algorithm used here are described in Tommy (2021). This 251 

algorithm can compute the Pareto frontier for four objectives within a minute, meaning the runtime 252 

should be acceptable to any operational hazard forecast settings.  253 

3 Results 254 

3.1 Model evaluation 255 

3.1.1 TC ensemble forecasts validation 256 

From the forecasts of atmospheric fields given by NHM, TC tracks and intensities were detected. 257 

Here, TC centers are defined as the average of the mean sea level pressure minima, geopotentials 258 

at 850 hPa and 700 hPa. Figure 2(b) shows 1000 track forecasts generated from 1000 initial 259 

conditions obtained from the 4DEnVAR data assimilation system, along with the ensemble mean 260 

forecast, control forecast, and best track. The ellipses in the figure illustrate uncertainties of the 261 

TC centers, which are determined by the forecast error covariances of the TC centers. The arrows 262 

show the distance errors between the observations (i.e., the best track) and the ensemble mean. For 263 

comparison, the operational 20-member JMA ensemble forecast (MEPS) is included in Figure 2a. 264 

As shown in Figure 2, 4DEnVAR outperforms MEPS in terms of track forecasts and its ensemble 265 

mean is almost identical to the best track with only minor distance errors.  266 

 267 
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Figure 2. A comparison of 39h (at 1800 UTC on 10 October 2019) ensemble track forecasts for 268 

TC Hagibis issued by (a) the operational ensemble prediction system MEPS of JMA and (b) the 269 

4DEnVAR data assimilation system. The ellipses represent forecast error covariances of the TC 270 

centers. The arrows denote the distance errors between the ensemble mean and best track. 271 

Figure 3 presents the forecasted intensity of TC Hagibis as indicated by its central pressure. It is 272 

evident from the figure that the 4DEnVAR (Figure 3b) surpasses JMA's operational MEPS (Figure 273 

3a) in predicting the intensity. Even though both ensemble forecasts show overestimation of 274 

intensity, the tendency of overestimation becomes more apparent with increasing forecast ranges 275 

in MEPS (Figure 3a). Despite having a smaller number of ensemble members, MEPS exhibits 276 

greater uncertainty in intensity forecast as compared to 4DEnVAR. This can be attributed to the 277 

fact that JMA's operational MEPS employs singular vectors to generate initial conditions for 278 

ensemble members, which maximizes their spread (JMA, 2023). 279 

  280 

Figure 3. A comparison of 39h (at 1800 UTC on 10 October 2019) ensemble intensity forecast for 281 

TC Hagibis issued by (a) the operational ensemble prediction system MEPS of JMA and (b) the 282 

4DEnVAR data assimilation system. The distributions of ensemble intensities are represented as 283 

box-and-whisker plots. 284 

3.1.2 Storm surge ensemble forecasts validation 285 

A comparison of the forecasted and measured peak storm surge (Japan Oceanography Data Center, 286 

2021; JMA, 2022) at eight different tide gauges is shown in Figure 4a. It is noted that a significant 287 

deviation from the climatological mean surge height is observed at all stations during TC Hagibis.  288 

We evaluate JMA best track (JMA, 2021) as an ideal meteorological forcing input as well as our 289 

39h ensemble TC forecasts. Both ensemble median forecasts and best track estimates 290 

systematically underestimate the observed peak levels. Nevertheless, the observed peak surge 291 

values are enveloped by the full ensemble of the forecasts in most tide gauges, implying that the 292 

ensemble spread is large enough to represent the uncertainty in the prediction. The average mean 293 

absolute error of the eight stations is 11.3 cm. In the case of Mera and Omaezaki, wave set-up is 294 

often the dominant driver for generating storm surges (Islam et al., 2018, 2022), which is not 295 

considered in the SSHPI. Therefore, the ensemble surge forecast underestimated observed surges. 296 
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Figure 4. (a) A comparison of the 39h (at 1800 UTC on 10 October 2019) ensemble peak surge 298 

forecasts and the observed peak surge height for TC Hagibis at eight tide gauges. (b) Probability 299 

of exceeding (Y-axis) for a given storm surge threshold (X-axis) during TC Hagibis landfall time 300 

(at 0900 UTC, 12 October 2019). It was estimated by fitting ensemble forecasts empirically. A 301 

circle that shares the same color as a line represents the peak surge height recorded at a specific 302 

tide gauge. 303 

The probability of surpassing a specific surge threshold during the landfall time of TC Hagibis is 304 

illustrated in Figure 4b, as determined by the 39h ESPS. The observed peak surge levels are within 305 

the predicted range, except for Mera and Omaezaki. For example, the probability of surpassing the 306 

observed peak surge for Harumi (138 cm) is 26.4%. In general, Figure 4 indicates that the SSHPI 307 

and its corresponding 39h peak surge forecasts are comparable in quality to those produced by 308 

numerical surge models such as Liu et al. (2021). The latter study reported an RMSE of ~10 cm 309 

when predicting the maximum total water level in Tokyo Bay during TC Hagibis with a 72h 310 

forecast horizon, using atmospheric forcing fields from the Global Forecast System and a 311 

hydrodynamic model known as the Semi-implicit Cross-scale Hydroscience Integrated System, 312 

which has a nearshore resolution of ~150 m. 313 

3.2 Multi-scenario analysis 314 

3.2.1 Pareto optimal multi-scenarios 315 

The Pareto-optimal frontier, as shown in Figure 5, illustrates a group of solutions that depict the 316 

forecasted potential worst and optimum storm surge scenarios for TC Hagibis in Tokyo Bay. The 317 

two-dimensional Pareto frontiers (Figure 5a), allow for a straightforward evaluation of trade-offs 318 

among the forecasted peak storm surge levels. The results identify the best one or two members 319 

from the 1000 TC forecasts to represent the potential worst (Harumi, Chiba: ~155 cm) or optimum 320 

(Harumi, Chiba: ~106 cm) surge scenario in the inner Tokyo Bay. Here, the tide gauges (Harumi, 321 

Chiba) possess similar coastal geometry features, including bathymetry, and are situated in close 322 

proximity to each other (Figure 1). Therefore, the predicted surge response (from 1000 TC 323 

forecasts; Figure 5a) between them is almost linear. 324 
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Figure 5b reveals a diversity of trade-off surge outcomes in the Pareto frontier for Tokyo Bay. It 325 

includes four Pareto frontiers for worst-surge scenarios and six Pareto frontiers for optimum surge 326 

scenarios. This diversity is due to the emergence of trade-offs among tide gauges with distinct 327 

coastal geometry characteristics, including bathymetry. For instance, some of the identified most 328 

severe surge scenarios for open coastlines in Tokyo Bay do not result in high surge levels in the 329 

inner bay. Specifically, a Pareto optimal solution in Figure 5b predicts that Mera would experience 330 

the worst surge levels of 90 cm (<1% exceedance probability; Figure 5c), while Harumi and Chiba 331 

would experience approximately 135 cm (>25% exceedance probability; Figure 5c) of highest 332 

surge levels under the same scenario. This storm surge level (~135 cm) in Harumi and Chiba is 333 

substantially less than the worst surge levels (~155 cm) predicted by other optimal solutions. 334 

Additionally, the surge intensity may vary across Tokyo Bay, depending on the characteristics of 335 

the approaching TC and the impact can be much more severe in some places compared to others. 336 

For example, several Pareto optimal solutions shown in Figure 5d predict that the inner Tokyo Bay 337 

such as Harumi would witness surge levels higher than 150 cm, while it would keep as minimum 338 

as 70 cm along the open coastline (e.g., Mera). Owing to such surge incongruence among the 339 

coastal locations, creating multiple scenarios for different coastal places can lead to multiple 340 

optimal solutions, as seen in Figures 5b and 5d. This emphasizes the importance of considering 341 

multiple scenarios when issuing warnings and assessing the risks posed by extreme weather events 342 

like storm surges. 343 

 344 
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Figure 5. Forecasted Pareto optimal multi-scenarios due to TC Hagibis, apply for (a) Harumi and 345 

Chiba in Tokyo Bay [objective function (red dot): max surge height in Harumi and Chiba; 346 

objective function (blue dots): min surge height in Harumi and Chiba]; (b) Tokyo Bay (Harumi, 347 

Chiba, Yokohama and Mera) using the parallel coordinate plot [objective function (red lines): max 348 

surge height in Harumi, Chiba, Yokohama, and Mera; objective function (blue lines): min surge 349 

height in Harumi, Chiba, Yokohama, and Mera]; (c) Probability of exceeding (Y-axis) a storm 350 

surge threshold (X-axis) determined from each Pareto optimal solution in Figure 5b, at TC Hagibis 351 

landfall time (at 0900 UTC, 12 October 2019). It was estimated by fitting ensemble forecasts 352 

empirically; (d) Parallel coordinate plot including forecasted Pareto optimal solutions where 353 

forecasted peak surge intensity varies across Tokyo Bay [objective function (red lines): max surge 354 

height in Harumi, Chiba, and Yokohama + min surge height in Mera; objective function (blue 355 

lines): min surge height in Harumi, Chiba, and Yokohama + max surge height in Mera]. 356 

The results displayed in Figure 6a are comparable to those in Figure 5b but for Suruga Bay. It 357 

includes nine Pareto frontiers for worst-surge scenarios and one Pareto frontier for optimum surge 358 

scenario. Figure 6a predicts that all selected tide gauges would experience the worst surge levels 359 

of ~85 cm (<1% exceedance probability; Figure 6b), while the minimum surge height would be 360 

~55 cm (>99% exceedance probability; Figure 6b). It is noteworthy that only one worst-surge 361 

scenario is found to be shared by both the Pareto frontiers of Tokyo Bay (Figure 5b) and Suruga 362 

Bay (Figure 6a), which represents a potential worst-case across the Japanese coastline during TC 363 

Hagibis. This indicates that among 1000 TC ensemble forecasts, a particular TC ensemble member 364 

has the potential to bring severe surge levels to both Bays. The reason behind this commonality 365 

will be discussed in Section 3.2.2. 366 

 367 

Figure 6. (a) Parallel coordinate plot with Pareto optimal multi-scenarios for Suruga Bay, at TC 368 

Hagibis landfall time (at 0900 UTC, 12 October 2019) [objective function (red lines): max surge 369 

height in Uchiura, Shimizuminato, Tago, and Omaezaki; objective function (blue lines): min surge 370 

height in Uchiura, Shimizuminato, Tago, and Omaezaki]; (b) Probability of exceeding (Y-axis) a 371 

storm surge threshold (X-axis) determined from each Pareto optimal solution in Figure 6a. It was 372 

estimated by fitting ensemble forecasts empirically. 373 

In addition to Pareto Frontiers illustrated in Figures 5b and 6a, we further noticed many distinct 374 

trade-offs when both bays were considered together (Figure 7). For instance, we incorporated the 375 

representative tide gauges for each category of coastal geometry, such as inner bay (Harumi in 376 

Tokyo Bay and Shimizuminato in Suruga Bay) and open coast (Mera in Tokyo Bay and Tago in 377 
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Suruga Bay) in the objective function. This resulted in a large number of Pareto frontiers (worst 378 

case: nine; optimum case: twenty-two), with multiple overlapping solutions between worst and 379 

optimum cases. Thus, 33% of Pareto optimal solutions (red lines) predict that inner Tokyo Bay 380 

will experience the worst surge levels of ~150 cm, while inner Suruga Bay will witness ~60 cm, 381 

equivalent to minimum surge cases predicted by 41% of Pareto optimal solutions (blue lines; 382 

Figure 7). Although we maximize the potential of the large (i.e., 1000) ensemble forecasts, our 383 

proposed method is also found to be useful with the small ensemble size. We repeated the same 384 

analysis with 36 ensemble size. Although some worst and minimum storm surge scenarios were 385 

missed, a meaningful set of Pareto optimal solutions was still obtained (see Figure S2 in the 386 

supplementary section). 387 

 388 

Figure 7. Parallel coordinate plot with Pareto optimal multi-scenarios determined for both Tokyo 389 

Bay and Suruga Bay [objective function (red lines): max surge height in Harumi, Shimizuminato, 390 

Mera, and Tago; objective function (blue lines): min surge height in Harumi, Shimizuminato, 391 

Mera, and Tago] 392 

3.2.2 TC track and meteorological variables analysis of Pareto optimal solutions  393 

It would be interesting to analyze the tracks and associated meteorological variables of the 394 

identified Pareto optimal solutions in Figures 5b and 6a. For example, Figure 8 reveals the strong 395 

sensitivity of the storm surge scenarios to the landfall location of TC Hagibis, leading to 396 

contrasting Pareto optimal solutions for Tokyo Bay (Figure 5b) and Suruga Bay (Figure 6a). It 397 

also demonstrates that the forecasted TC tracks for worst and optimum surge scenarios are 398 

significantly different from one other in both bays. For example, TC tracks (red lines; Figure 8a) 399 

that run parallel to the longitudinal axis of Tokyo Bay and pass over it would result in severe storm 400 

surges than TCs (blue lines; Figure 8a) that would travel 100 km or more to the west of the axis. 401 

Prior to landfall, under the worst case, easterly wind (Figure 9a) is forecasted to cause a buildup 402 

of water on the west coast (e.g., Yokohama) and initial draw-down in the north-eastern end of the 403 

Tokyo Bay (e.g., Chiba). Later, a surge level difference (0.6–0.8 m; Figure 5b) between the inner 404 

and lower ends of the bay is projected to occur (due to strong southerly winds) during the peak 405 

storm surge at the inner bays. During TC makes landfall under the optimum case (Figure 8a), the 406 

destructive right-side semicircle of the TC (Figure 9f) will interact with the vast land area rather 407 

than the ocean water, leading to less water being pushed towards Tokyo Bay (Figure 5b). 408 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

  409 

Figure 8. Forecasted TC Hagibis track in 39h lead time, respective to each Pareto frontier 410 

determined for (a) Tokyo Bay (as shown in Figure 5b); (b) Suruga Bay (as shown in Figure 6a). 411 

Red, blue, and white lines correspond to the forecasted worst, optimum, and ensemble mean TC 412 

track. 413 

Notably, the optimized ensemble TC members for minimum surge scenarios in Tokyo Bay are 414 

forecasted to be stronger and larger than the members belonging to the worst surge cases until 24 415 

hours prior to landfall, despite being centered in the same location. This is evident in Figure 9d, 416 

9e, as opposed to Figure 9i, 9j. Despite both sets (worst and minimum) of optimized ensemble TC 417 

members weaken as they approach the mainland of Japan (Figure 9c, 9h and Figure 10), the worst 418 

TC members intensify by 7-kt (Vmax) and remain large (R50: ~120 NM) in the last 12 hours before 419 

landfall (Figure 9a, 9b and Figure 10). This large swath of strong winds is forecasted to affect a 420 

greater sea area and induce a motion in a greater quantity of water in Tokyo Bay. 421 

 422 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

 423 

Figure 9. Forecasted composite 10 m wind field (kt-vectors), generated from optimized ensemble 424 

TC members for worst surge scenarios in Tokyo Bay (as shown in Figure 5b) during (a) landfall 425 

time (at 0900 UTC, 12 October 2019); (b) 6-h before landfall (at 0300 UTC, 12 October 2019); 426 

(c) 12-h before landfall (at 2100 UTC, 11 October 2019); (d) 24-h before landfall (at 0900 UTC, 427 

11 October 2019); (e) 39-h before landfall (at 1800 UTC, 10 October 2019); (f-j) same as (a-e) but 428 
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generated from optimized ensemble TC members for minimum surge scenarios in Tokyo Bay (as 429 

shown in 5b). 430 

Figure 8a highlights that in addition to TC tracks that pass directly over Tokyo Bay, one particular 431 

worst TC forecast (red line) makes landfall around 70 km west of the longitudinal axis of Tokyo 432 

Bay. This specific track is forecasted to cause severe storm surges in both Tokyo Bay (Figure 5b) 433 

and Suruga Bay (Figure 6a). This particular ensemble forecast has a wider range of intense winds 434 

(R50: ~140 NM) across a larger area and a slower movement speed (S: ~32 km/h), despite having 435 

a similar landfall wind intensity (Vmax: ~75-kt) compared to other worst-case TC forecasts. This 436 

unique phenomenon corroborates earlier numerical analyses that propose the likelihood of a severe 437 

storm surge scenario in the upper-bay region when a large and intense TC moves slowly, parallel 438 

to the longitudinal axis of Tokyo Bay, after making landfall 25 km southwest. (Islam & Takagi, 439 

2020b). 440 

 441 

Figure 10. Evolution (composite) of maximum wind speed (Vmax) and radius of 50-kt wind (R50) 442 

for worst and optimum TC forecasts in Tokyo Bay (as shown in Figure 5b) in 39-h lead time. 443 

4 Conclusions and discussion 444 

The application of ensemble TC forecasting in hazard prediction, such as storm surge, has been 445 

greatly overlooked despite its use in forecasting TC track, intensity, and genesis. Enhanced 446 

analysis can unlock and maximize the benefit of ensemble forecasting. Here, we proposed Pareto 447 

optimality – a novel and practical way to identify potential ensemble TC (Hagibis) forecast from 448 

an extremely large ensemble (=1000 member) that can effectively assess storm surge multi-449 

scenarios, including possible worst and optimum cases for a coastal location. The variability in 450 

storm surge intensity across the coastline makes it challenging for decision-makers to plan 451 

effective evacuation measures. To address this, we have demonstrated that a diversity of trade-off 452 

surge outcomes among coastal places can be identified by choosing the Pareto optimized forecasts. 453 

The in-depth evaluation of Pareto optimal solutions can shed light on how meteorological variables 454 

such as track, intensity, and size of TCs influence the worst and optimum surge scenarios, which 455 
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are not well understood by emergency managers using current multi-scenario assessment methods 456 

(such as those used by JMA and NHC). 457 

The significance of evaluating trade-offs based on Pareto optimization has long been 458 

acknowledged in the context of sustainable development goals and management of ecosystem 459 

services (Flecker et al., 2022). However, its application in disaster-risk communities is noticeably 460 

lacking. During a coastal storm surge event, effective evacuation planning and warning issuance 461 

involve multi-criteria problems such as storm surge intensity, coastal population vulnerability, and 462 

available evacuation resources. Traditionally, this decision-making process has relied on a hazard 463 

map, which typically depicts the severity of the predicted storm surge (e.g., exceeding a critical 464 

surge height; J. Hasegawa et al., 2017). However, this approach does not fully capture the diversity 465 

of potential storm surge scenarios across the coastlines, which can lead to ineffective evacuation 466 

planning. A recent TC Fani in 2019 serves as evidence to support this statement. TC Fani struck 467 

the southeastern part of India, approximately 450 km from the southwest coast of Bangladesh, as 468 

a Category 4 TC (in Saffir-Simpson Hurricane Wind Scale). Prior to TC Fani reaching the 469 

Bangladesh coast as a tropical storm, the Bangladesh Meteorological Department (BMD) issued 470 

‘danger’ signal number seven (out of ten), which led to the evacuation of one million people 471 

(Bangladesh Meteorological Department, 2021). Later, the catastrophe, such as storm surge level 472 

(~1 m), did not hit the danger level as anticipated. BMD's evacuation order for the entire southwest 473 

coast was not based on a specific surge scenario (e.g., worst case) and forecasted meteorological 474 

conditions associated with it, leading to an excessive number of evacuees. Such a false alarm 475 

demotivated people to seek shelter when a Category 2 TC Amphan caused ~2.75 m storm surges 476 

and claimed at least 26 lives in 2020, despite the issuance of ‘great danger’ signal number ten 477 

(Raju, 2019; ReliefWeb, 2021; Alam et al., 2023). It seems that BMD took a safer and conservative 478 

decision during TC Fani by issuing signal no. 7, nevertheless, this cannot be considered effective 479 

decision-making. While such a complex decision-making process can certainly be improved by 480 

quantifying the uncertainty through an ensemble multi-scenario forecast, incorporating Pareto 481 

optimality can further maximize the benefits of it. 482 

Pareto optimal solution provides an effective first filter to identify ensemble multi-scenario surge 483 

forecasts. This information can be presented visually to enhance the understanding of the 484 

uncertainty in the forecast. The median of Pareto optimal solutions could be utilized given a series 485 

of worst/minimum surge estimations for a specific location by several ensemble members. For 486 

example, Figure 5b identifies four worst scenarios for Harumi in Tokyo Bay where the median 487 

surge level is 150 cm. Although we stress the importance of diversity in trade-offs surge outcomes, 488 

a certain scenario (e.g., median of Pareto optimal solutions) can be given more weight depending 489 

on the values of society and decision-makers. In the decision-making process, a user-defined 490 

acceptable level of uncertainty or reference surge height (e.g., 25-year return period of surge) can 491 

be set for a specific location (e.g., Harumi). The forecaster can then determine if the height of the 492 

Pareto optimal solution exceeds this acceptable level. Subsequently, a relevant warning signal can 493 

be issued in a forecast horizon (e.g., 39-h lead time). The warning signal can be tailored to a 494 

specific location, if a diversity in the trade-off between surge outcomes exists among Pareto 495 

frontiers. For example, Pareto optimal solutions in Figure 5b predicted that TC Hagibis will bring 496 

worst surge level as maximum as 160 cm in the inner Tokyo Bay, requiring the issuance of an 497 

emergency warning, closing flood gates, and large-scale evacuation of the coastal population 498 

living below the storm surge height. On the other hand, those living along open coastlines are 499 

advised to stay indoors as the predicted worst surge level (90 cm) does not meet the criteria for 500 

issuing an emergency warning. Once this forecast becomes available, decision-makers (e.g., 501 
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emergency managers) can start evacuation planning based on the forecasted worst TC track, wind 502 

intensity, and peak surge height. For instance, TC track that forecasted to bring severe storm surges 503 

of 160 cm in the inner Tokyo Bay, would make landfall 70 km west of the central bay axis with a 504 

landfall Vmax of 75 kt, which is stronger by 11-kt from the historical mean (64-kt; (Islam et al., 505 

2022)). Furthermore, it is projected to be twice as large as the historical average (65 NM) and 506 

move at a slower speed by 9 km/h compared to the average translation speed (41 km/h) in Tokyo 507 

Bay. The forecasted landfall location and meteorological conditions of the worst TC indicate that 508 

Tokyo Bay would be situated in the destructive right-side semicircle of the TC track, resulting in 509 

prolonged exposure to severe storm surges and strong winds. Emergency managers can utilize this 510 

information to disseminate surge warnings to residents and commence evacuation procedures with 511 

a 39-hour lead time. This evacuation can be done by dividing coastal regions into different zones 512 

depending on their vulnerability. Although disaster planning is not so straightforward as explained 513 

here, our proposed ensemble-based storm surge multi-scenario analysis is expected to motivate 514 

forecasters and risk management practitioners to explore new ways to assess storm surge hazards 515 

and reduce the associated risk. 516 

Finally, we acknowledge that this study focuses exclusively on peak surge height while 517 

determining total sea water level that includes the influence of astronomic tide, wave set-up, and 518 

river discharge are also critical and can be done utilizing a full physical numerical model. 519 

Furthermore, several algorithms are currently available to determine a Pareto frontier. We 520 

encourage researchers from multiple disciplines to build on our approach to help us reach an 521 

improved understanding of Pareto optimality based multi-scenario analysis. 522 
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Observed storm surge data can be downloaded from the JMA 531 

(https://www.data.jma.go.jp/kaiyou/db/tide/genbo/index.php) and JODC 532 

(https://jdoss1.jodc.go.jp/vpage/tide.html) websites. Predicted tide data can be obtained from the 533 

JMA (https://www.data.jma.go.jp/kaiyou/db/tide/suisan/index.php) website. TC best track data 534 

can be derived from the JMA (https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-535 

eg/trackarchives.html) website. Ensemble forecast data may be available upon request. 536 
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Abstract 17 

Ensemble forecasting is a promising tool to aid in making informed decisions against risks of 18 

coastal storm surges. Although tropical cyclone (TC) ensemble forecasts are commonly used in 19 

operational numerical weather prediction systems, their potential for disaster prediction has not 20 

been maximized. Here we present a novel, efficient, and practical method to utilize a large 21 

ensemble forecast of 1000 members to analyze storm surge scenarios toward effective decision 22 

making such as evacuation planning and issuing surge warnings. We perform the simulation of TC 23 

Hagibis (2019) using the Japan Meteorological Agency's (JMA) non-hydrostatic model. The 24 

simulated atmospheric predictions were utilized as inputs for a statistical surge model named the 25 

Storm Surge Hazard Potential Index (SSHPI) to estimate peak surge heights along the central coast 26 

of Japan. We show that Pareto optimized solutions from an ensemble storm surge forecast can 27 

describe potential worst (maximum) and optimum (minimum) storm surge scenarios while 28 

exemplifying a diversity of trade-off surge outcomes among different coastal places. For example, 29 

some of the Pareto optimized solutions that illustrate worst surge scenarios for inner bay locations 30 

are not necessarily accountable for bringing severe surge cases in open coasts. We further 31 

emphasize that an in-depth evaluation of Pareto optimal solutions can shed light on how 32 

meteorological variables such as track, intensity, and size of TCs influence the worst and optimum 33 

surge scenarios, which is not clearly quantified in current multi-scenario assessment methods such 34 

as those used by JMA/National Hurricane Center in the United States. 35 

Plain Language Summary 36 

Ensemble forecasting generates multiple predictions of a weather event with various possible 37 

outcomes based on varying initial conditions, model parameters, and physics. The potential of 38 

ensemble tropical cyclone (TC) forecasting for assessing storm surge multi-scenarios has largely 39 

been overlooked previously. Enhanced analysis can unlock and maximize the benefit of ensemble 40 

forecasting. This study simulated an extremely large ensemble (=1000 members) to reforecast past 41 

TC Hagibis which hit the central coast of Japan in 2019 and utilized the results to predict storm 42 

surges. We propose that Pareto optimality can identify good ensemble members that reasonably 43 

represent potential worst/minimum storm surge scenarios, meaning no other ensemble members 44 

can represent better than those. Comprehensive analyses of Pareto members can give forecasters 45 

and decision makers a better understanding of how the predicted track, wind intensity, and size of 46 

a TC can impact the worst and best storm surge scenarios. This type of analysis is expected to 47 

improve the planning of evacuations and the issuing of storm surge warnings. 48 

1 Introduction 49 

Since 1737, 29 coastal storm surge events have claimed at least 5,000 people globally. Two 50 

of these events happened in the 21st century and ranked as two of the five worst coastal disasters 51 

in the running millennium (Needham et al., 2015; Takagi et al., 2022). Rappaport (2014) has shown 52 

that 49% of tropical cyclone (TC)-induced deaths are directly attributed to storm surges. Hence, it 53 

is crucially important to improve the understanding of storm surge and their associated risk as it is 54 

among the deadliest and most destructive natural disasters. 55 

In recent years, forecast services have likely reduced TC-induced deaths relative to historical 56 

standards. For example, several countries have already adopted a dynamical TC ensemble 57 

prediction system (EPS) to capture forecast uncertainties and reduce sampling errors in the three-58 

dimensional meteorological simulation (Sharma et al., 2022). Numerical weather prediction 59 
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centers such as Japan Meteorological Agency (JMA), National Centers for Environmental 60 

Prediction in the United States (US), European Centre for Medium-Range Weather Forecasts 61 

generate TC track forecasts from their ensemble forecast models and utilize them in their 62 

operational settings (Swinbank et al., 2016). Yamaguchi et al. (2015) have shown that EPS can 63 

provide skillful guidance of TC genesis forecasts with a forecast lead time extending to two weeks 64 

in seven TC basins. Nevertheless, there is a great potential to maximize the use of this EPS not 65 

only in TC activity (e.g., track, intensity) forecast but also in forecasting hazards (e.g., storm 66 

surge), aiding end users to be prepared better before the dangerous situation (Kobayashi et al., 67 

2020; Duc et al., 2021). 68 

Titley et al. (2019) have recently conducted a questionnaire survey at operational TC forecast 69 

centers worldwide to understand the current and potential use of EPS in operational TC 70 

forecasting. They reported that over 90% of respondents used an ensemble forecast for TC track 71 

forecast, followed by genesis and intensity forecasts. In contrast, less than 10% of surveyed 72 

forecasters use ensemble products for hazard (e.g., storm surge) forecasting. Deterministic 73 

forecasts are often used for hazard forecasting as it is produced using the best available TC data 74 

and unperturbed models. In some cases, ensemble mean (e.g., track and intensity of TC) is used as 75 

inputs for hazard forecast to compare the result with the deterministic forecasts, although the full 76 

use of EPS in hazard forecasting remains challenging (Titley et al., 2019). A lack of detailed 77 

analysis of ensemble members (beyond ensemble mean/median analysis) and less technical 78 

expertise on ensemble-based hazard forecasts hinder its' application among hazard forecasters. 79 

Wilson et al. (2019) reported that a deterministic mindset resulted in tendencies to modify 80 

understanding of probabilistic concepts when presented with different meteorological variables. 81 

Furthermore, local authorities responsible for hazard forecasting avoid EPS information as citizens 82 

and emergency managers habitually trust a single forecast only, and they are not sufficiently 83 

educated to deal with the probabilistic prediction (Lombardi et al., 2018). These findings highlight 84 

that ensemble-based hazard (e.g., storm surge) forecast is unfamiliar in disaster risk management 85 

communities. 86 

Notwithstanding the challenges mentioned above, ensemble surge prediction system (ESPS) has 87 

recently received considerable attention from both the research and operational communities. For 88 

instances, Flowerdew et al. (2013), Greenslade et al. (2017), and Kristensen et al. (2022) have 89 

successfully developed and evaluated the performance of an operational ESPS for United 90 

Kingdom, Australia, and Norway, respectively. Along the coastline of Canada, it was found that 91 

20-member ESPS could reasonably estimate both the uncertainty in peak surge height and timing 92 

of surge events resulting from imperfectly forecast atmospheric conditions six days before (Bernier 93 

& Thompson, 2015). A 50-member ensemble simulation of 10 surge events during 2010 in Venice 94 

by Mel & Lionello (2014) has shown that the distribution of maximum sea level is acceptably 95 

realistic with respect to the deterministic forecast. They also found that the uncertainty became its 96 

maximum during storm surge peaks and increased linearly with the forecasting lead time. 97 

Although these ensemble simulation studies paved the way for a robust surge hazard assessment 98 

over a single forecast-based assessment, they considered ensemble TC forecast information only 99 

for developing and evaluating the performance (skill and accuracy) of an ESPS. In addition to 100 

quantifying the uncertainty of surge height, ensemble-based storm surge multi-scenario (e.g., 101 

worst/optimum case) analysis is equally important, aiding disaster risk managers in evacuation 102 

planning (Kohno et al., 2018). 103 
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To the best of our knowledge, the potential of ensemble TC forecasting for assessing storm surge 104 

multi-scenarios has largely been overlooked previously. However, recent developments have seen 105 

the introduction of multi-scenario storm surge predictions, such as the worst-case scenario from 106 

six typical TC tracks by the JMA (H. Hasegawa et al., 2017) and the maximum storm tide height 107 

by the National Hurricane Center in the US (NHC, n.d.). These worst-case scenarios are composite 108 

products, representing the maxima among all scenarios. Therefore, it is possible that the worst-109 

case values for two adjacent locations may have come from two different ensemble TC track run. 110 

Therefore, the users (e.g., emergency managers) cannot understand which forecasted TC track or 111 

which combination of forecasted TC meteorological variables (track, intensity, size, translation 112 

speed) may trigger the worst surge scenario for a particular location based on a composite product. 113 

This can make it difficult for decision-makers to determine the appropriate level of storm surge 114 

warning and evacuation orders. In addition, storm surge is spatially heterogeneous because of its' 115 

dependency on a TC characteristic and coastal geometry. It is entirely plausible that the worst case 116 

scenario may not occur everywhere within a forecasted TC threat zone (Islam & Takagi, 2020a, 117 

2020b). If the decision makers in cities/tourist districts with highly valuable economies issue a 118 

higher warning level without any concrete understating over a worst event, they will inevitably 119 

suffer significant economic losses because of false alarming (in case the area has not affected by 120 

worst storm surge) and eventually can lower citizens trust over official warning (Sawada et al., 121 

2022; Takagi et al., 2018). 122 

Here we present Pareto optimality - a novel way of assessing storm surge multi-scenarios based 123 

on ensemble TC forecasts. Our approach is more advanced than existing assessments. We 124 

employed a multi-objective function to determine possible worst/optimum cases to quantify the 125 

hazards in a large region. Our approach involved a comprehensive analysis of Pareto optimal 126 

solutions in understanding the combination of forecasted TC meteorological variables - such as 127 

track, intensity, size, and translation speed of TC - that could result in the worst/optimum surge 128 

scenario. We utilized an extremely large ensemble (=1000 member) forecasts of TC Hagibis that 129 

made landfall in central Japan in 2019. Our Pareto-based optimal solutions provide an 130 

instantaneous overall assessment of storm surge multi-scenarios without any computational 131 

burdens. The proposed method will allow forecasters to predict storm surge multi-scenarios 132 

harnessing ensemble TC forecasts efficiently and help emergency responders as means of 133 

quantifying surge hazards effectively. 134 

2 Data and Methods 135 

2.1 TC Hagibis and ensemble forecast 136 

TC Hagibis in 2019, one of the most destructive and deadliest TC that hit Japan in decades 137 

(Shimozono et al., 2020; Ma et al., 2021), has been chosen to demonstrate our multi-scenario storm 138 

surge assessment. Hagibis was formed in the western North Pacific Ocean on 2 October 2019 and 139 

made landfall in central Japan on 12 October 2019 (around 0900 UTC), as depicted in Figure 1. 140 

At the landfall time, its maximum wind speeds sustained at 80 kt. This combined with heavy 141 

rainfall, resulted in high storm surges and severe flooding in the area (Shimozono et al., 2020; Ma 142 

et al., 2021; JMA, 2021). 143 

The atmospheric ensemble forecasts of TC Hagibis were obtained by running JMA's former 144 

operational limited-area model called NHM (non-hydrostatic model; Saito et al., 2006). The 145 

integration domain (see Figure S1) had a grid spacing of 5 km consisting of 817 × 661 horizontal 146 
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grid points and 50 vertical levels. Boundary conditions were interpolated to the NHM domain from 147 

JMA's global model forecasts and the forecast perturbations of JMA's operational one-week EPS. 148 

Since we used NHM for all forecast members, the only source of uncertainty stemmed from initial 149 

conditions. This uncertainty is encapsulated in error covariances of current atmospheric states 150 

(analysis error covariances), estimated using a data assimilation system. An ensemble Kalman 151 

filter (EnKF) was employed to sample from these error covariances and generate an analysis 152 

ensemble. While operational forecast centers generally use around 100 ensemble members, a state-153 

of-the-art data assimilation system with 1000 ensemble members, called the four-dimensional 154 

variational-ensemble assimilation technique (4DEnVAR), was utilized in this study (Kobayashi et 155 

al., 2020). Our 4DEnVAR system only applied horizontal localization, with the horizontal 156 

localization length scales derived from the JMA's operational four-dimensional variational 157 

assimilation system's climatological horizontal correlation length scales. This helped to remove 158 

sampling noise in estimating forecast error covariances and maintain the coherent vertical structure 159 

between atmospheric fields, which is critical in predicting tropical cyclones. As the ensemble 160 

member count was large (=1000), localization was relaxed by retaining vertical correlations and 161 

removing horizontal correlations at distant locations (Duc et al., 2021). 162 

Unlike EnKF, EnVAR solely estimates the means of analysis ensembles and not the analysis 163 

ensembles themselves, even though this method heavily relies on forecast ensembles to estimate 164 

these means. To solve this issue, a common approach is to run a separate EnKF in parallel to 165 

generate analysis ensembles. However, our 4DEnVAR system is unique in that an EnKF is not 166 

necessary. Instead, the same EnVAR program was used to generate analysis perturbations, as 167 

suggested in the context of inflation functions (Duc et al., 2020), where we demonstrated that using 168 

quadratic inflation functions implies using the Kalman gain to generate analysis perturbations. 169 

Using the same program for analysis means and analysis perturbations is essential because it 170 

ensures consistency between the two when the same background error covariance, localization, 171 

and observations are utilized in both cases. The assimilation system commenced at 00UTC on 7 172 

October 2019, with a 3-hour assimilation cycle and continued until 18:00UTC 10 October 2019. 173 

The final analysis ensemble was then used as initial conditions for 39h forecasts with NHM. The 174 

assimilation domain was chosen the same as the forecast domain in Figure S1 and we assimilated 175 

all routine observations obtained from JMA's database. Here, we opted for a 39h forecast horizon 176 

because JMA's operational Meso-scale Ensemble Prediction System (MEPS) also generates 39h 177 

forecasts at 6-hour intervals (JMA, 2023). 178 

2.2 Ensemble storm surge forecast 179 

We used storm surge hazard potential index (SSHPI; eq. 1), a statistical model to compute peak 180 

storm surge height. While the coastal engineers and ocean modelers are interested in the forecast 181 

of storm surge hydrograph, most of the decision makers responsible for issuing surge warning and 182 

relief measures have a primary interest in the value of predicted peak surge height. The SSHPI 183 

uses meteorological variables sensitive to storm surge, including TC intensity (Vmax), size (radius 184 

of 50-kt wind; R50), and translation speed (S). In addition, the SSHPI considers coastal geometry 185 

(a = 1 = open coasts and a = −1 = bays), landfall location sensitivity (DL), and regional scale 186 

bathymetry (L30). The SSHPI does not incorporate factors associated with wave set-up and 187 

astronomic tide to keep the configuration simple. TC Hagibis ensemble forecasts (=1000 member; 188 

see Section 2.1), particularly during landfall, was used as meteorological forcing of the SSHPI. 189 

We produced corresponding 1000 perturbed surge forecasts with a lead time of 39h. The 190 
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bathymetry of the target region was obtained from the Japan Oceanographic Data Center (Japan 191 

Oceanographic Data Center, 2020). The effectiveness of the SSHPI for predicting peak surge 192 

hazard potential was discussed in Islam et al. (2021, 2022). The formulation of the SSHPI is the 193 

following: 194 

 195 
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Vref, Rref, and Sref, are reference constants as follows: 50-kt equivalents of the tropical storm 199 

category, 95 NM (historical mean R50 at the time of landfall in Japan mainland), and 35 km/h 200 

(historical mean S at the time of landfall in Japan), respectively (Islam et al., 2021). L30 is the 201 

horizontal distance (km) between the shoreline and the 30-m depth contour. L* was chosen to be 202 

10 km. DL is defined by different expressions depending on the surge estimated points' (e.g., tidal 203 

station) position (right/left) respective to the TC track and horizontal distance (x in km) between 204 

the TC landfall location and a surge estimated point. Compared to Vmax, the upper and lower bounds 205 

of R50, S, and L30 in eq. 1 restrict their contribution in generating surge hazards and, thus, prevents 206 

discrete jumps in the SSHPI. 207 

Figure 1 shows a storm surge modeling domain and the position of tide gauges used for validating 208 

surge model and predicting surge hazards in this study. There are two domains, covering Tokyo 209 

Bay and Suruga Bay individually. Each domain has tide gauges located both in inner bays and 210 

open coasts. It should be noted that the tide gauges chosen for this study are the only stations that 211 

possess recorded (historical) storm surge data, which is kept by JMA (JMA, 2022) and Japan Coast 212 

Guard (Japan Oceanography Data Center, 2021). The empirical relationship for expected storm 213 

surge in each tide gauge was determined in Islam et al. (2021, 2022) by drawing a line of best fit 214 

through the historical surge data and the SSHPI and thus, used for the surge forecasts in this study. 215 

 216 
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Figure 1. Domain of the storm surge forecasts model and the locations of the tide gauges used for 218 

model validation and surge forecasts. 219 

2.3 Pareto optimality and assessing storm surge multi-scenarios 220 

It is unrealistic to anticipate a "nice" forecast scenario that accurately predicts the exact intensity 221 

of a hazard at all locations within a given domain for a particular condition (e.g., worst/optimum). 222 

An improved forecast at one location is usually accompanied by a deterioration of forecast at 223 

another location and vice versa. The best we can do is to quantify the trade-off between different 224 

objectives. Here, we conducted multi-objective optimization to select ensemble forecast members 225 

(among 1000 ensemble forecasts; see Section 2.1 and 2.2) that reasonably characterize the 226 

potential worst/optimum storm surge case for a particular location (e.g., Tokyo Bay) by computing 227 

the Pareto frontier. The Pareto frontier captures the trade-offs between objectives. It is the set of 228 

all Pareto-optimum solutions where a single Pareto optimal solution denotes a solution that is not 229 

dominated by any other solution (Kochenderfer & Wheeler, 2019). 230 

In this study, we analyzed a subset of 1000 forecasted surge scenarios for each tide gauge in a 231 

specific domain, referred to as solution z. Each scenario is evaluated based on d objectives, 232 

represented by the values y1(z), y2(z),….., yd(z). As an example, we considered a scenario in Tokyo 233 

Bay where the objectives are to maximize the forecasted peak surge at four tide gauges: Harumi, 234 

Chiba, Yokohama, and Mera (as shown in Figure 1). This objective function considers the potential 235 

worst-case scenario in Tokyo Bay for a set of 1000 ensemble surge forecasts. We compared the 236 

given two solutions z and z', if for every objective i, yi (z) ≥ yi (z') and the strict inequality holds 237 

for at least for one objective, we considered that solution z dominates z'. In other words, if one 238 

solution (e.g., ensemble member no. 10) provides 160 cm, 155 cm, 140 cm, 110 cm of forecasted 239 

peak surge in Harumi, Chiba, Yokohama, and Mera, respectively, but another solution (e.g.,  240 
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ensemble member no. 20) yields 160 cm, 155 cm, 140 cm, 90 cm of forecasted peak surge for the 241 

same tide gauges, then the solution given by ensemble member no. 10 dominates the solution 242 

provided by ensemble member no. 20. This is because a smaller storm surge (90 cm) in Mera is 243 

undesirable as stated in the objective function. A similar objective function but minimizing the 244 

forecasted peak surge at four tide gauges: Harumi, Chiba, Yokohama, and Mera (as shown in 245 

Figure 1) was considered to determine ensemble forecasts member that characterizes a potential 246 

optimum surge case. In order to select the most appropriate ensemble TC member that may cause 247 

the worst surge case in the inner bay, but also results in the optimum surge at the open coast, we 248 

further assume that objectives are to be maximized for the inner bay tide gauges (Harumi, Chiba, 249 

and Yokohama), but minimized for open coast tide gauges (Mera) at the same time.  250 

The details of the implementation of the algorithm used here are described in Tommy (2021). This 251 

algorithm can compute the Pareto frontier for four objectives within a minute, meaning the runtime 252 

should be acceptable to any operational hazard forecast settings.  253 

3 Results 254 

3.1 Model evaluation 255 

3.1.1 TC ensemble forecasts validation 256 

From the forecasts of atmospheric fields given by NHM, TC tracks and intensities were detected. 257 

Here, TC centers are defined as the average of the mean sea level pressure minima, geopotentials 258 

at 850 hPa and 700 hPa. Figure 2(b) shows 1000 track forecasts generated from 1000 initial 259 

conditions obtained from the 4DEnVAR data assimilation system, along with the ensemble mean 260 

forecast, control forecast, and best track. The ellipses in the figure illustrate uncertainties of the 261 

TC centers, which are determined by the forecast error covariances of the TC centers. The arrows 262 

show the distance errors between the observations (i.e., the best track) and the ensemble mean. For 263 

comparison, the operational 20-member JMA ensemble forecast (MEPS) is included in Figure 2a. 264 

As shown in Figure 2, 4DEnVAR outperforms MEPS in terms of track forecasts and its ensemble 265 

mean is almost identical to the best track with only minor distance errors.  266 

 267 
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Figure 2. A comparison of 39h (at 1800 UTC on 10 October 2019) ensemble track forecasts for 268 

TC Hagibis issued by (a) the operational ensemble prediction system MEPS of JMA and (b) the 269 

4DEnVAR data assimilation system. The ellipses represent forecast error covariances of the TC 270 

centers. The arrows denote the distance errors between the ensemble mean and best track. 271 

Figure 3 presents the forecasted intensity of TC Hagibis as indicated by its central pressure. It is 272 

evident from the figure that the 4DEnVAR (Figure 3b) surpasses JMA's operational MEPS (Figure 273 

3a) in predicting the intensity. Even though both ensemble forecasts show overestimation of 274 

intensity, the tendency of overestimation becomes more apparent with increasing forecast ranges 275 

in MEPS (Figure 3a). Despite having a smaller number of ensemble members, MEPS exhibits 276 

greater uncertainty in intensity forecast as compared to 4DEnVAR. This can be attributed to the 277 

fact that JMA's operational MEPS employs singular vectors to generate initial conditions for 278 

ensemble members, which maximizes their spread (JMA, 2023). 279 

  280 

Figure 3. A comparison of 39h (at 1800 UTC on 10 October 2019) ensemble intensity forecast for 281 

TC Hagibis issued by (a) the operational ensemble prediction system MEPS of JMA and (b) the 282 

4DEnVAR data assimilation system. The distributions of ensemble intensities are represented as 283 

box-and-whisker plots. 284 

3.1.2 Storm surge ensemble forecasts validation 285 

A comparison of the forecasted and measured peak storm surge (Japan Oceanography Data Center, 286 

2021; JMA, 2022) at eight different tide gauges is shown in Figure 4a. It is noted that a significant 287 

deviation from the climatological mean surge height is observed at all stations during TC Hagibis.  288 

We evaluate JMA best track (JMA, 2021) as an ideal meteorological forcing input as well as our 289 

39h ensemble TC forecasts. Both ensemble median forecasts and best track estimates 290 

systematically underestimate the observed peak levels. Nevertheless, the observed peak surge 291 

values are enveloped by the full ensemble of the forecasts in most tide gauges, implying that the 292 

ensemble spread is large enough to represent the uncertainty in the prediction. The average mean 293 

absolute error of the eight stations is 11.3 cm. In the case of Mera and Omaezaki, wave set-up is 294 

often the dominant driver for generating storm surges (Islam et al., 2018, 2022), which is not 295 

considered in the SSHPI. Therefore, the ensemble surge forecast underestimated observed surges. 296 
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Figure 4. (a) A comparison of the 39h (at 1800 UTC on 10 October 2019) ensemble peak surge 298 

forecasts and the observed peak surge height for TC Hagibis at eight tide gauges. (b) Probability 299 

of exceeding (Y-axis) for a given storm surge threshold (X-axis) during TC Hagibis landfall time 300 

(at 0900 UTC, 12 October 2019). It was estimated by fitting ensemble forecasts empirically. A 301 

circle that shares the same color as a line represents the peak surge height recorded at a specific 302 

tide gauge. 303 

The probability of surpassing a specific surge threshold during the landfall time of TC Hagibis is 304 

illustrated in Figure 4b, as determined by the 39h ESPS. The observed peak surge levels are within 305 

the predicted range, except for Mera and Omaezaki. For example, the probability of surpassing the 306 

observed peak surge for Harumi (138 cm) is 26.4%. In general, Figure 4 indicates that the SSHPI 307 

and its corresponding 39h peak surge forecasts are comparable in quality to those produced by 308 

numerical surge models such as Liu et al. (2021). The latter study reported an RMSE of ~10 cm 309 

when predicting the maximum total water level in Tokyo Bay during TC Hagibis with a 72h 310 

forecast horizon, using atmospheric forcing fields from the Global Forecast System and a 311 

hydrodynamic model known as the Semi-implicit Cross-scale Hydroscience Integrated System, 312 

which has a nearshore resolution of ~150 m. 313 

3.2 Multi-scenario analysis 314 

3.2.1 Pareto optimal multi-scenarios 315 

The Pareto-optimal frontier, as shown in Figure 5, illustrates a group of solutions that depict the 316 

forecasted potential worst and optimum storm surge scenarios for TC Hagibis in Tokyo Bay. The 317 

two-dimensional Pareto frontiers (Figure 5a), allow for a straightforward evaluation of trade-offs 318 

among the forecasted peak storm surge levels. The results identify the best one or two members 319 

from the 1000 TC forecasts to represent the potential worst (Harumi, Chiba: ~155 cm) or optimum 320 

(Harumi, Chiba: ~106 cm) surge scenario in the inner Tokyo Bay. Here, the tide gauges (Harumi, 321 

Chiba) possess similar coastal geometry features, including bathymetry, and are situated in close 322 

proximity to each other (Figure 1). Therefore, the predicted surge response (from 1000 TC 323 

forecasts; Figure 5a) between them is almost linear. 324 
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Figure 5b reveals a diversity of trade-off surge outcomes in the Pareto frontier for Tokyo Bay. It 325 

includes four Pareto frontiers for worst-surge scenarios and six Pareto frontiers for optimum surge 326 

scenarios. This diversity is due to the emergence of trade-offs among tide gauges with distinct 327 

coastal geometry characteristics, including bathymetry. For instance, some of the identified most 328 

severe surge scenarios for open coastlines in Tokyo Bay do not result in high surge levels in the 329 

inner bay. Specifically, a Pareto optimal solution in Figure 5b predicts that Mera would experience 330 

the worst surge levels of 90 cm (<1% exceedance probability; Figure 5c), while Harumi and Chiba 331 

would experience approximately 135 cm (>25% exceedance probability; Figure 5c) of highest 332 

surge levels under the same scenario. This storm surge level (~135 cm) in Harumi and Chiba is 333 

substantially less than the worst surge levels (~155 cm) predicted by other optimal solutions. 334 

Additionally, the surge intensity may vary across Tokyo Bay, depending on the characteristics of 335 

the approaching TC and the impact can be much more severe in some places compared to others. 336 

For example, several Pareto optimal solutions shown in Figure 5d predict that the inner Tokyo Bay 337 

such as Harumi would witness surge levels higher than 150 cm, while it would keep as minimum 338 

as 70 cm along the open coastline (e.g., Mera). Owing to such surge incongruence among the 339 

coastal locations, creating multiple scenarios for different coastal places can lead to multiple 340 

optimal solutions, as seen in Figures 5b and 5d. This emphasizes the importance of considering 341 

multiple scenarios when issuing warnings and assessing the risks posed by extreme weather events 342 

like storm surges. 343 

 344 
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Figure 5. Forecasted Pareto optimal multi-scenarios due to TC Hagibis, apply for (a) Harumi and 345 

Chiba in Tokyo Bay [objective function (red dot): max surge height in Harumi and Chiba; 346 

objective function (blue dots): min surge height in Harumi and Chiba]; (b) Tokyo Bay (Harumi, 347 

Chiba, Yokohama and Mera) using the parallel coordinate plot [objective function (red lines): max 348 

surge height in Harumi, Chiba, Yokohama, and Mera; objective function (blue lines): min surge 349 

height in Harumi, Chiba, Yokohama, and Mera]; (c) Probability of exceeding (Y-axis) a storm 350 

surge threshold (X-axis) determined from each Pareto optimal solution in Figure 5b, at TC Hagibis 351 

landfall time (at 0900 UTC, 12 October 2019). It was estimated by fitting ensemble forecasts 352 

empirically; (d) Parallel coordinate plot including forecasted Pareto optimal solutions where 353 

forecasted peak surge intensity varies across Tokyo Bay [objective function (red lines): max surge 354 

height in Harumi, Chiba, and Yokohama + min surge height in Mera; objective function (blue 355 

lines): min surge height in Harumi, Chiba, and Yokohama + max surge height in Mera]. 356 

The results displayed in Figure 6a are comparable to those in Figure 5b but for Suruga Bay. It 357 

includes nine Pareto frontiers for worst-surge scenarios and one Pareto frontier for optimum surge 358 

scenario. Figure 6a predicts that all selected tide gauges would experience the worst surge levels 359 

of ~85 cm (<1% exceedance probability; Figure 6b), while the minimum surge height would be 360 

~55 cm (>99% exceedance probability; Figure 6b). It is noteworthy that only one worst-surge 361 

scenario is found to be shared by both the Pareto frontiers of Tokyo Bay (Figure 5b) and Suruga 362 

Bay (Figure 6a), which represents a potential worst-case across the Japanese coastline during TC 363 

Hagibis. This indicates that among 1000 TC ensemble forecasts, a particular TC ensemble member 364 

has the potential to bring severe surge levels to both Bays. The reason behind this commonality 365 

will be discussed in Section 3.2.2. 366 

 367 

Figure 6. (a) Parallel coordinate plot with Pareto optimal multi-scenarios for Suruga Bay, at TC 368 

Hagibis landfall time (at 0900 UTC, 12 October 2019) [objective function (red lines): max surge 369 

height in Uchiura, Shimizuminato, Tago, and Omaezaki; objective function (blue lines): min surge 370 

height in Uchiura, Shimizuminato, Tago, and Omaezaki]; (b) Probability of exceeding (Y-axis) a 371 

storm surge threshold (X-axis) determined from each Pareto optimal solution in Figure 6a. It was 372 

estimated by fitting ensemble forecasts empirically. 373 

In addition to Pareto Frontiers illustrated in Figures 5b and 6a, we further noticed many distinct 374 

trade-offs when both bays were considered together (Figure 7). For instance, we incorporated the 375 

representative tide gauges for each category of coastal geometry, such as inner bay (Harumi in 376 

Tokyo Bay and Shimizuminato in Suruga Bay) and open coast (Mera in Tokyo Bay and Tago in 377 
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Suruga Bay) in the objective function. This resulted in a large number of Pareto frontiers (worst 378 

case: nine; optimum case: twenty-two), with multiple overlapping solutions between worst and 379 

optimum cases. Thus, 33% of Pareto optimal solutions (red lines) predict that inner Tokyo Bay 380 

will experience the worst surge levels of ~150 cm, while inner Suruga Bay will witness ~60 cm, 381 

equivalent to minimum surge cases predicted by 41% of Pareto optimal solutions (blue lines; 382 

Figure 7). Although we maximize the potential of the large (i.e., 1000) ensemble forecasts, our 383 

proposed method is also found to be useful with the small ensemble size. We repeated the same 384 

analysis with 36 ensemble size. Although some worst and minimum storm surge scenarios were 385 

missed, a meaningful set of Pareto optimal solutions was still obtained (see Figure S2 in the 386 

supplementary section). 387 

 388 

Figure 7. Parallel coordinate plot with Pareto optimal multi-scenarios determined for both Tokyo 389 

Bay and Suruga Bay [objective function (red lines): max surge height in Harumi, Shimizuminato, 390 

Mera, and Tago; objective function (blue lines): min surge height in Harumi, Shimizuminato, 391 

Mera, and Tago] 392 

3.2.2 TC track and meteorological variables analysis of Pareto optimal solutions  393 

It would be interesting to analyze the tracks and associated meteorological variables of the 394 

identified Pareto optimal solutions in Figures 5b and 6a. For example, Figure 8 reveals the strong 395 

sensitivity of the storm surge scenarios to the landfall location of TC Hagibis, leading to 396 

contrasting Pareto optimal solutions for Tokyo Bay (Figure 5b) and Suruga Bay (Figure 6a). It 397 

also demonstrates that the forecasted TC tracks for worst and optimum surge scenarios are 398 

significantly different from one other in both bays. For example, TC tracks (red lines; Figure 8a) 399 

that run parallel to the longitudinal axis of Tokyo Bay and pass over it would result in severe storm 400 

surges than TCs (blue lines; Figure 8a) that would travel 100 km or more to the west of the axis. 401 

Prior to landfall, under the worst case, easterly wind (Figure 9a) is forecasted to cause a buildup 402 

of water on the west coast (e.g., Yokohama) and initial draw-down in the north-eastern end of the 403 

Tokyo Bay (e.g., Chiba). Later, a surge level difference (0.6–0.8 m; Figure 5b) between the inner 404 

and lower ends of the bay is projected to occur (due to strong southerly winds) during the peak 405 

storm surge at the inner bays. During TC makes landfall under the optimum case (Figure 8a), the 406 

destructive right-side semicircle of the TC (Figure 9f) will interact with the vast land area rather 407 

than the ocean water, leading to less water being pushed towards Tokyo Bay (Figure 5b). 408 
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  409 

Figure 8. Forecasted TC Hagibis track in 39h lead time, respective to each Pareto frontier 410 

determined for (a) Tokyo Bay (as shown in Figure 5b); (b) Suruga Bay (as shown in Figure 6a). 411 

Red, blue, and white lines correspond to the forecasted worst, optimum, and ensemble mean TC 412 

track. 413 

Notably, the optimized ensemble TC members for minimum surge scenarios in Tokyo Bay are 414 

forecasted to be stronger and larger than the members belonging to the worst surge cases until 24 415 

hours prior to landfall, despite being centered in the same location. This is evident in Figure 9d, 416 

9e, as opposed to Figure 9i, 9j. Despite both sets (worst and minimum) of optimized ensemble TC 417 

members weaken as they approach the mainland of Japan (Figure 9c, 9h and Figure 10), the worst 418 

TC members intensify by 7-kt (Vmax) and remain large (R50: ~120 NM) in the last 12 hours before 419 

landfall (Figure 9a, 9b and Figure 10). This large swath of strong winds is forecasted to affect a 420 

greater sea area and induce a motion in a greater quantity of water in Tokyo Bay. 421 

 422 
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 423 

Figure 9. Forecasted composite 10 m wind field (kt-vectors), generated from optimized ensemble 424 

TC members for worst surge scenarios in Tokyo Bay (as shown in Figure 5b) during (a) landfall 425 

time (at 0900 UTC, 12 October 2019); (b) 6-h before landfall (at 0300 UTC, 12 October 2019); 426 

(c) 12-h before landfall (at 2100 UTC, 11 October 2019); (d) 24-h before landfall (at 0900 UTC, 427 

11 October 2019); (e) 39-h before landfall (at 1800 UTC, 10 October 2019); (f-j) same as (a-e) but 428 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

generated from optimized ensemble TC members for minimum surge scenarios in Tokyo Bay (as 429 

shown in 5b). 430 

Figure 8a highlights that in addition to TC tracks that pass directly over Tokyo Bay, one particular 431 

worst TC forecast (red line) makes landfall around 70 km west of the longitudinal axis of Tokyo 432 

Bay. This specific track is forecasted to cause severe storm surges in both Tokyo Bay (Figure 5b) 433 

and Suruga Bay (Figure 6a). This particular ensemble forecast has a wider range of intense winds 434 

(R50: ~140 NM) across a larger area and a slower movement speed (S: ~32 km/h), despite having 435 

a similar landfall wind intensity (Vmax: ~75-kt) compared to other worst-case TC forecasts. This 436 

unique phenomenon corroborates earlier numerical analyses that propose the likelihood of a severe 437 

storm surge scenario in the upper-bay region when a large and intense TC moves slowly, parallel 438 

to the longitudinal axis of Tokyo Bay, after making landfall 25 km southwest. (Islam & Takagi, 439 

2020b). 440 

 441 

Figure 10. Evolution (composite) of maximum wind speed (Vmax) and radius of 50-kt wind (R50) 442 

for worst and optimum TC forecasts in Tokyo Bay (as shown in Figure 5b) in 39-h lead time. 443 

4 Conclusions and discussion 444 

The application of ensemble TC forecasting in hazard prediction, such as storm surge, has been 445 

greatly overlooked despite its use in forecasting TC track, intensity, and genesis. Enhanced 446 

analysis can unlock and maximize the benefit of ensemble forecasting. Here, we proposed Pareto 447 

optimality – a novel and practical way to identify potential ensemble TC (Hagibis) forecast from 448 

an extremely large ensemble (=1000 member) that can effectively assess storm surge multi-449 

scenarios, including possible worst and optimum cases for a coastal location. The variability in 450 

storm surge intensity across the coastline makes it challenging for decision-makers to plan 451 

effective evacuation measures. To address this, we have demonstrated that a diversity of trade-off 452 

surge outcomes among coastal places can be identified by choosing the Pareto optimized forecasts. 453 

The in-depth evaluation of Pareto optimal solutions can shed light on how meteorological variables 454 

such as track, intensity, and size of TCs influence the worst and optimum surge scenarios, which 455 
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are not well understood by emergency managers using current multi-scenario assessment methods 456 

(such as those used by JMA and NHC). 457 

The significance of evaluating trade-offs based on Pareto optimization has long been 458 

acknowledged in the context of sustainable development goals and management of ecosystem 459 

services (Flecker et al., 2022). However, its application in disaster-risk communities is noticeably 460 

lacking. During a coastal storm surge event, effective evacuation planning and warning issuance 461 

involve multi-criteria problems such as storm surge intensity, coastal population vulnerability, and 462 

available evacuation resources. Traditionally, this decision-making process has relied on a hazard 463 

map, which typically depicts the severity of the predicted storm surge (e.g., exceeding a critical 464 

surge height; J. Hasegawa et al., 2017). However, this approach does not fully capture the diversity 465 

of potential storm surge scenarios across the coastlines, which can lead to ineffective evacuation 466 

planning. A recent TC Fani in 2019 serves as evidence to support this statement. TC Fani struck 467 

the southeastern part of India, approximately 450 km from the southwest coast of Bangladesh, as 468 

a Category 4 TC (in Saffir-Simpson Hurricane Wind Scale). Prior to TC Fani reaching the 469 

Bangladesh coast as a tropical storm, the Bangladesh Meteorological Department (BMD) issued 470 

‘danger’ signal number seven (out of ten), which led to the evacuation of one million people 471 

(Bangladesh Meteorological Department, 2021). Later, the catastrophe, such as storm surge level 472 

(~1 m), did not hit the danger level as anticipated. BMD's evacuation order for the entire southwest 473 

coast was not based on a specific surge scenario (e.g., worst case) and forecasted meteorological 474 

conditions associated with it, leading to an excessive number of evacuees. Such a false alarm 475 

demotivated people to seek shelter when a Category 2 TC Amphan caused ~2.75 m storm surges 476 

and claimed at least 26 lives in 2020, despite the issuance of ‘great danger’ signal number ten 477 

(Raju, 2019; ReliefWeb, 2021; Alam et al., 2023). It seems that BMD took a safer and conservative 478 

decision during TC Fani by issuing signal no. 7, nevertheless, this cannot be considered effective 479 

decision-making. While such a complex decision-making process can certainly be improved by 480 

quantifying the uncertainty through an ensemble multi-scenario forecast, incorporating Pareto 481 

optimality can further maximize the benefits of it. 482 

Pareto optimal solution provides an effective first filter to identify ensemble multi-scenario surge 483 

forecasts. This information can be presented visually to enhance the understanding of the 484 

uncertainty in the forecast. The median of Pareto optimal solutions could be utilized given a series 485 

of worst/minimum surge estimations for a specific location by several ensemble members. For 486 

example, Figure 5b identifies four worst scenarios for Harumi in Tokyo Bay where the median 487 

surge level is 150 cm. Although we stress the importance of diversity in trade-offs surge outcomes, 488 

a certain scenario (e.g., median of Pareto optimal solutions) can be given more weight depending 489 

on the values of society and decision-makers. In the decision-making process, a user-defined 490 

acceptable level of uncertainty or reference surge height (e.g., 25-year return period of surge) can 491 

be set for a specific location (e.g., Harumi). The forecaster can then determine if the height of the 492 

Pareto optimal solution exceeds this acceptable level. Subsequently, a relevant warning signal can 493 

be issued in a forecast horizon (e.g., 39-h lead time). The warning signal can be tailored to a 494 

specific location, if a diversity in the trade-off between surge outcomes exists among Pareto 495 

frontiers. For example, Pareto optimal solutions in Figure 5b predicted that TC Hagibis will bring 496 

worst surge level as maximum as 160 cm in the inner Tokyo Bay, requiring the issuance of an 497 

emergency warning, closing flood gates, and large-scale evacuation of the coastal population 498 

living below the storm surge height. On the other hand, those living along open coastlines are 499 

advised to stay indoors as the predicted worst surge level (90 cm) does not meet the criteria for 500 

issuing an emergency warning. Once this forecast becomes available, decision-makers (e.g., 501 
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emergency managers) can start evacuation planning based on the forecasted worst TC track, wind 502 

intensity, and peak surge height. For instance, TC track that forecasted to bring severe storm surges 503 

of 160 cm in the inner Tokyo Bay, would make landfall 70 km west of the central bay axis with a 504 

landfall Vmax of 75 kt, which is stronger by 11-kt from the historical mean (64-kt; (Islam et al., 505 

2022)). Furthermore, it is projected to be twice as large as the historical average (65 NM) and 506 

move at a slower speed by 9 km/h compared to the average translation speed (41 km/h) in Tokyo 507 

Bay. The forecasted landfall location and meteorological conditions of the worst TC indicate that 508 

Tokyo Bay would be situated in the destructive right-side semicircle of the TC track, resulting in 509 

prolonged exposure to severe storm surges and strong winds. Emergency managers can utilize this 510 

information to disseminate surge warnings to residents and commence evacuation procedures with 511 

a 39-hour lead time. This evacuation can be done by dividing coastal regions into different zones 512 

depending on their vulnerability. Although disaster planning is not so straightforward as explained 513 

here, our proposed ensemble-based storm surge multi-scenario analysis is expected to motivate 514 

forecasters and risk management practitioners to explore new ways to assess storm surge hazards 515 

and reduce the associated risk. 516 

Finally, we acknowledge that this study focuses exclusively on peak surge height while 517 

determining total sea water level that includes the influence of astronomic tide, wave set-up, and 518 

river discharge are also critical and can be done utilizing a full physical numerical model. 519 

Furthermore, several algorithms are currently available to determine a Pareto frontier. We 520 

encourage researchers from multiple disciplines to build on our approach to help us reach an 521 

improved understanding of Pareto optimality based multi-scenario analysis. 522 
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Open Research 530 

Observed storm surge data can be downloaded from the JMA 531 

(https://www.data.jma.go.jp/kaiyou/db/tide/genbo/index.php) and JODC 532 

(https://jdoss1.jodc.go.jp/vpage/tide.html) websites. Predicted tide data can be obtained from the 533 

JMA (https://www.data.jma.go.jp/kaiyou/db/tide/suisan/index.php) website. TC best track data 534 

can be derived from the JMA (https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-535 

eg/trackarchives.html) website. Ensemble forecast data may be available upon request. 536 
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Figure S1. The analysis and forecast domain of the data assimilation system 4DEnVAR and 

the forecast model NHM. The best track of the TC Hagibis is also plotted. 

 

 

Figure S2. Parallel coordinate plot with Pareto optimal multi-scenarios based on 36 

ensemble forecasts for (a) Tokyo Bay (Harumi, Chiba, Yokohama and Mera) [objective 

function (red lines): max surge height in Harumi, Chiba, Yokohama, and Mera; objective 

function (blue lines): min surge height in Harumi, Chiba, Yokohama, and Mera]; (b) Suruga 

Bay (Uchiura, Shimizuminato, Tago, and Omaezaki) [objective function (red lines): max 

surge height in Uchiura, Shimizuminato, Tago, and Omaezaki; objective function (blue 

lines): min surge height in Uchiura, Shimizuminato, Tago, and Omaezaki]. 


