
P
os
te
d
on

26
M
ar

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
97
96
31
.1
95
99
19
3/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Ice Concentration Scaling Laws for Freshwater Lakes in Numerical

Weather and Climate Prediction

Murray Mackay1

1Environment and Climate Change Canada

March 26, 2023

Abstract

If lake ice is assumed to deform and fail as a linear viscoelastic material under the action of wind stress, then a simple ice

concentration scaling law can be constructed suitable for one-dimensional lake models embedded within environmental prediction

systems. Most 1-D lake models assume no ice mechanics at all, while others adapt the viscous-plastic rheology common in

ice-ocean models for the purpose of estimating ice fraction. Elastic buckling is generally disregarded as a significant failure

mechanism in ice under low stress conditions at geophysical scales. However, by adding viscosity to the constitutive equation,

the conditions for viscoelastic buckling seem quite plausible over a wide range of lake size and ice thickness. An ice concentration

scaling law based on this process is evaluated here in multiannual simulations over North America and found to produce superior

ice phenology statistics compared with simulations based on plastic failure or no ice mechanics.
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• Most one-dimensional lake models neglect ice mechanics or assume plastic failure, and 8 
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• Assuming lake ice fails as a linear viscoelastic material at geophysical scales leads to a 10 

simple parameterization of ice concentration. 11 

• The new scheme outperforms plastic failure or the absence of mechanics with respect to 12 

ice – on and ice duration. 13 
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Abstract 15 

If lake ice is assumed to deform and fail as a linear viscoelastic material under the action of wind 16 

stress, then a simple ice concentration scaling law can be constructed suitable for one-17 

dimensional lake models embedded within environmental prediction systems.  Most 1-D lake 18 

models assume no ice mechanics at all, while others adapt the viscous-plastic rheology common 19 

in ice-ocean models for the purpose of estimating ice fraction.  Elastic buckling is generally 20 

disregarded as a significant failure mechanism in ice under low stress conditions at geophysical 21 

scales.  However, by adding viscosity to the constitutive equation, the conditions for viscoelastic 22 

buckling seem quite plausible over a wide range of lake size and ice thickness.  An ice 23 

concentration scaling law based on this process is evaluated here in multiannual simulations over 24 

North America and found to produce superior ice phenology statistics compared with simulations 25 

based on plastic failure or no ice mechanics.   26 

 27 

Plain Language Summary 28 

Most mid- and high- latitude lakes experience periods of partial ice cover (i.e. ice concentration 29 

< 100%) during early winter.  While very small lakes might freeze solid in a single night under 30 

calm conditions, larger lakes may take days or weeks to completely freeze because wind stress 31 

continually breaks the ice cover resulting in patches of open water.  The extent of wintertime 32 

open water is very important for both lake ecology and for regional weather conditions (e.g. 33 

lake-effect snowstorms).  Many weather and climate models employ one-dimensional lake 34 

models that do not represent fractional ice cover at all, or parameterize it based on mechanical 35 

ideas from sea ice models, resulting in poor timing and duration of simulated ice cover.  Here we 36 

propose a new scheme based on different mechanics that improves these simulated features. 37 

1 Introduction 38 

The interface between a lake and the overlying atmosphere regulates flux exchange 39 

between the two, and the state of ice at the lake surface – both in terms of thickness and 40 

concentration (i.e. fractional cover) – is the predominant governing factor for much of the year in 41 

high- and mid-latitude regions. Areas of thick ice, especially if snow covered, severely restrict 42 

the transmission of shortwave radiation and gas exchange with obvious impacts on lake ecology.  43 
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On the other hand many lakes experience only partial ice cover for much (if not all) of the 44 

winter, and patches of open water can lead to for example surface oxygen renewal and nutrient 45 

redistribution (through circulation) and increased primary production (through increased light 46 

penetration), not to mention major fluxes of heat and moisture into the generally cold, dry air 47 

above.  It is clear that climate and numerical weather prediction modelling systems that 48 

incorporate some representation of lakes need to consider the nature of lake ice carefully, 49 

especially under conditions of fractional cover.  For modelling systems that employ 3-50 

dimensional lake models with fully dynamic ice schemes (e.g. Durnford et al., 2018) this is 51 

generally not a problem.  However, many forecasting systems represent lakes with simple one-52 

dimensional thermodynamic models, for which ice mechanics must be parameterized in order to 53 

simulate the correct balance of ice cover and open water. 54 

One – dimensional lake schemes have been used in a number of short-range forecasting 55 

studies that examined ice conditions (eg. Rontu et al., 2019; Eerola et al., 2014; Balsamo et al., 56 

2012).  In all of these studies ice-on tended to occur too early, at least partially due to the fact 57 

that the lake scheme employed (FLake – Mironov et al., 2010) did not represent fractional ice 58 

cover.  In this scheme, once ice grows to a thickness of 1 mm it is assumed to cover the entire 59 

lake (or gridcell for large lakes).  In reality such ice is easily broken by wind or waves and rafted, 60 

resulting in both open water and ice-covered areas.  However, the period of partial ice cover may 61 

be short lived for small lakes and larger lakes could benefit from data assimilation – at least for 62 

short range forecasts.  63 

The situation is more problematic for long range forecasts and climate simulations.  In a 64 

climate modelling study over Northern Europe based on the Max Plank Institute’s REMO 65 

coupled with FLake, Pietikäinen et al. (2018) found ice-on dates were again too early: 2-3 weeks 66 

for moderately sized (100 – 1000 km2) Finnish lakes, but more than 1 month early for Lakes 67 

Vättern (1912 km2) and Onega (9700 km2) and more than 2 months early for Lake Ladoga 68 

(17,700 km2).  In Le Moigne et al. (2016), ice-on is not evaluated per se though the authors 69 

discuss the necessity of setting ice and snow albedos arbitrarily low in FLake in order to account 70 

for radiative impacts of fractional ice cover.  This issue was also noted by Subin et al. (2012) for 71 

the Lake, Ice, Snow, and Sediment Simulator (LISSS), a one – dimensional lake model that also 72 

neglects fractional ice cover.  In addition, while ice-on dates were not evaluated extensively, this 73 



manuscript submitted to Geophysical Research Letters 

 

study did note that ice-on occurred several weeks too early for their simulation of Great Slave 74 

Lake.   75 

Below we propose a simple approach to represent ice concentration in any 1-dimensional 76 

lake model.  The key ingredient is the determination of a critical ice thickness above which ice 77 

concentration tends to remain stable at 100%.  Below this thickness ice is assumed to break and 78 

ridge or raft, resulting in the presence of some open water. 79 

 80 

2 A Universal Scaling Law for Critical Lake Ice Thickness? 81 

Open water leads in ice cover (for both lakes and oceans) are frequently generated under 82 

the action of wind stress that mechanically breaks sufficiently thin ice and forces the rubble into 83 

ridges (e.g. Hopkins, 1998) a process that has been successfully represented in a modelling study 84 

of Lake Peipsi by Leppäranta and Wang (2008).  Following Hibler (1979), Leppäranta and Wang 85 

view ice as a viscous-plastic medium with a yield strength given by 86 

𝑃 = 𝑃∗ℎ 𝑒𝑥𝑝{−𝐶(1 − 𝐴)}  (1), 87 

where h is the mean ice thickness, A is the ice compactness, C is a strength reduction factor, and 88 

P* is the compressive strength of compact ice (per unit thickness).  Leppäranta and Wang (2008) 89 

suggest these last two parameters be >>1 and 10-100 kPa respectively.  When fully compact (i.e. 90 

A=1) the ice will break due to wind stress τa when 91 

ℎ < 𝐻 =  (
𝜏𝑎

𝑃∗) 𝐿   (2), 92 

where L is taken as the fetch over the lake.  When ice thickness is greater than this critical 93 

threshold it is considered stable; when it is thinner it breaks and forms pressure ridges and open 94 

water leads.  An order of magnitude argument suggests that for wind stress ~ 0.15 Pa and P* = 95 

27.5 kPa (e.g. Hibler & Walsh, 1982) we get 𝐻 ≈ 5.4 𝑥10−6𝐿.  Thus for Lake Peipsi with a 96 

mean fetch of about 50 km, Leppäranta and Wang (2008) find that ice is “movable” (i.e. subject 97 

to mechanical breakup and ridging) when it is thinner than about 27 cm, and stable when it is 98 

thicker, in agreement with observations. 99 

At first glance this relationship between critical ice thickness H and fetch L may seem 100 

reasonable as larger ice fields would sustain more wind stress and thus require greater thickness 101 
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to be mechanically stable.  However (2) clearly fails for very large lakes.  Great Bear and Great 102 

Slave lakes in northern Canada have mean fetch on the order of 170 km, yet both lakes routinely 103 

freeze solid with ice thicknesses of only 55 – 65 cm, whereas (2) implies 93 cm.  Leppäranta and 104 

Wang (2008) (see also Kirillin et al., 2012) emphasized that P* could be tuned based on data.  105 

However, tuning (2) for Great Bear and Great Slave lakes degrades results for Lake Peipsi (see 106 

below). 107 

A scaling law based on (2), however, is not the only choice. For example, if elastic 108 

buckling was deemed important prior to ridging then the strength of ice (e.g.  Parmerter, 1974) is 109 

given by  110 

𝑃 = (
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

  (3), 111 

where E and ν are the Young’s modulus and Poisson’s ratio for ice, ρw is the density of water, 112 

and g is the acceleration due to gravity.  This follows from treating the ice cover as a thin plate 113 

floating on an elastic (i.e. Winkler) foundation (Hetenyi, 1946). Because this would lead to ice 114 

much stronger than (2), Rothrock (1975) appears to rule out elastic buckling as an important 115 

mechanism in ridging, a sentiment echoed in Schulson (2004). 116 

Other studies have retained the buckling process, though there has been considerable 117 

latitude with respect to the value of the Young’s modulus selected.  Parmerter (1974, 1975) 118 

found that 0.3 GPa gave good results in a study of sea ice rafting.  Hopkins (1998) chose E = 0.1 119 

GPa in order to achieve reasonable results in an ice ridging model.  On the other hand Parmerter 120 

and Coon (1972) found that E = 1 GPa worked well for their ridging model.   121 

Now from (3) we find that  122 

𝐿𝜏𝑎 = (
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1

2
   (4) 123 

becomes 124 

𝐻 = [
𝜏𝑎

𝛼𝐸1/2]
2/3

𝐿2/3  (5) 125 

where  126 
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𝛼 = [
𝜌𝑤𝑔

12(1 − 𝜈2)
]

1/2

= 29.96 [Pa1/2𝑚−1/2] 127 

assuming ν = 0.3 (Gammon et al., 1983). 128 

There are scant relevant observed data to verify these scaling laws for a critical ice 129 

thickness over lakes, primarily because of the difficulty in safely measuring ice thickness under 130 

conditions of incomplete or marginally complete ice cover. Somewhat fortuitously, the Canadian 131 

Ice Service (CIS), has observed weekly ice concentration data from over 100 North American 132 

lakes since about 1995, and weekly ice thickness data from two measurement programs (1947-133 

2002; 2002-2020) over a few lake and ocean locations.  All three programs are independent and 134 

served different objectives, though there is some overlap for three important lakes – Great Bear 135 

Lake (31,153 km2), Great Slave Lake (27,200 km2) and Baker Lake (1887 km2), which we have 136 

plotted in Fig. 1.  137 

 138 

Fig. 1  Critical ice thickness as a function of lake area. Black vertical lines and symbols represent 139 

observed estimates.  Blue curves represent plastic failure (2) with P* = 27.5 kPa (upper curve) 140 

and P* = 45 kPa (lower curve).  Red curve represents elastic buckling failure (5) with E = 1 GPa.  141 

Green curve represents viscoelastic buckling failure (11) with E = 9.0 GPa, η = 10
11

 kg m
-1

s
-1

, and 142 

assuming steady wind forcing for 6 hours.  All solid curves assume wind stress ~ 0.15 Pa.  Fetch 143 

is estimated as the square root of lake area.  The dotted horizontal black line represents a 144 

threshold of 1.0 cm for complete ice cover (i.e. no ice mechanics).  See text for details. 145 
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 146 

In this figure, solid vertical black lines ending with filled triangles represent the interquartile 147 

range of ice thickness when ice concentration was first recorded as 100% (Great Bear Lake: n=4; 148 

Great Slave Lake: n=14; Baker Lake: n=16).  The vertical black dashed lines ending with 149 

unfilled triangles represent the interquartile range of ice thickness when ice concentration was 150 

last recorded as 90% (Great Bear Lake: n=4; Great Slave Lake: n=12; Baker Lake: n=15).  Thus 151 

we estimate that the average critical ice thickness when these lakes first reached 100% ice cover 152 

is approximately midway between these solid and dashed segments.  Lake Peipsi (2611 km2) is 153 

also indicated in Fig. 1 (open circle) near the point of marginally complete ice cover.  Note that 154 

in this figure mean lake fetch L is estimated as the square root of lake area, with the exception of 155 

Baker lake which is highly elongated in the east-west direction, roughly 100 km in extent. 156 

Fig. 1 also shows the scaling models described above.  The blue curves show (2) with: P* 157 

= 27.5 kPa (upper curve), and P* = 45 kPa (lower curve).   Neither curve is consistent with all of 158 

the observed data presented.  Elastic buckling failure (5) is represented by the red curve.  Even 159 

assuming the Young’s modulus as low as E = 1 GPa, the ice is still much stronger than the 160 

observed data suggest. 161 

 162 

2.1 The Viscoelastic Buckling of Lake Ice 163 

The condition for classical elastic buckling of a floating thin plate (3) due to some axial 164 

force F can be written 165 

 (
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

𝐸1/2 = 𝐹.  (6) 166 

Classical buckling is generally understood as a bifurcation in the equilibrium condition of the 167 

structure in question, where the buckled solution is infinitesimally close to the unbuckled 168 

solution (e.g. Flügge, 1962, ch. 44).  Buckling in and of itself does not necessarily imply failure 169 

– in our context the actual breakage and ridging or rafting of ice – though this is generally tacitly 170 

assumed for thin sheets of ice.  A rigorous post-bucking analysis would require a nonlinear finite 171 

amplitude theory (e.g. Biot, 1965), beyond the scope of this study.  As a first step here we extend 172 
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the linearized, small amplitude stability analysis of thin elastic (floating) sheets of ice into the 173 

viscoelastic realm and assume failure to occur shortly after the conditions for buckling are met. 174 

The generalization of elasticity theory to viscoelastic materials can be achieved for a 175 

large class of problems by way of a correspondence principle, first elucidated by Alfrey (1944), 176 

Biot (1954), and Lee (1955).  In viscoelasticity, the constitutive equations are generalized based 177 

on linear differential operators (P(t), Q(t)) of the rheological model selected, introducing a time 178 

dependence to the governing equations.  It has long been recognized that taking the Laplace 179 

transform of the viscoelastic equations renders a set of equations in transform space formally 180 

identical to a corresponding elastic problem if E in the elastic system is replaced by  𝑄̂(𝑠)/𝑃̂(𝑠) 181 

in the transformed problem where  𝑄̂, 𝑃̂ are the Laplace transforms of Q, P respectively.  To 182 

solve the viscoelastic problem one simply needs to compute the inverse Laplace transform once 183 

this substitution is made. 184 

Thus in Laplace transform space, the condition for viscoelastic instability corresponding 185 

to (6) becomes 186 

 (
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

(
𝑄̂(𝑠)

𝑃̂(𝑠)
)

1/2

= 𝐹̂(𝑠)   (7) 187 

where 𝐹̂(𝑠) is the Laplace transform of the wind forcing F(t), now in general a function of time. 188 

This can be solved by inverse Laplace transform once a suitable rheological model is selected.  A 189 
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simple choice that includes both elastic and creep deformation is the Maxwell fluid, represented 190 

by 191 

 𝑃̂(𝑠) = 1 +
𝜂

𝐸
𝑠;       𝑄̂(𝑠) = 𝜂𝑠, 192 

where η is a viscosity.  Now (7) becomes 193 

 (
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

=
1

√𝜂
𝐹̂(𝑠)𝐺̂(𝑠) ,  (8) 194 

where 195 

 𝐺̂(𝑠) = (
1+

𝜂

𝐸
𝑠

𝑠
)

1/2

  196 

has the inverse Laplace transform 197 

𝐺(𝑡) =
1

2
(

𝐸

𝜂
)

1/2

exp (−
1

2

𝐸

𝜂
𝑡) [𝐼0 (

1

2

𝐸

𝜂
𝑡) + 𝐼1 (

1

2

𝐸

𝜂
𝑡)] ; t>0. (9) 198 

where I0 and I1 are modified Bessel functions of the first kind.  It is important to notice that (9) is 199 

valid only for t>0; the case for t=0 must be handled separately and added.  It is clear on physical 200 

grounds that for t=0 we expect to recover the purely elastic case.  For now we must add an 201 

unknown function G0 to the RHS of (9), evaluated below, to solve over the full time domain. 202 

By the convolution theorem of Laplace transforms, (8) with (9) becomes after inversion  203 

(
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

=
1

√𝜂
{∫ 𝐹(𝑡 − 𝜏)𝐺(𝜏)

𝑡

0+ 𝑑𝜏 + 𝐺0}   204 

                   =
√𝐸

2𝜂
∫ 𝐹(𝑡 − 𝜏)

𝑡

0+ exp (−
1

2

𝐸

𝜂
𝜏) [𝐼0 (

1

2

𝐸

𝜂
𝜏) + 𝐼1 (

1

2

𝐸

𝜂
𝜏)] 𝑑𝜏 +

𝐺0

√𝜂
 .  (10) 205 

This represents the general condition for linear viscoelastic buckling of a Maxwell material 206 

under some time dependent wind forcing F(t). Notice that both the material constants E, η, as 207 

well as the time history of the forcing are relevant to the buckling criterion.  This distinguishes it 208 
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from the purely elastic case which is instantaneous - it either buckles or it doesn’t – depending 209 

on E, and the instantaneous magnitude (not the time history) of the applied force.  210 

Consider now the case of a steady wind stress applied at t=0, so that 211 

𝐹(𝑡) = 𝐿𝜏𝑎ℋ(𝑡) 212 

where ℌ(t) is the unit Heaviside function.  For this case (10) becomes 213 

(
𝜌𝑤𝑔𝐻3

12(1 − 𝜐2)
)

1
2

= 𝐿𝜏𝑎

√𝐸

2𝜂
∫ exp (−

1

2

𝐸

𝜂
𝜏) [𝐼0 (

1

2

𝐸

𝜂
𝜏) + 𝐼1 (

1

2

𝐸

𝜂
𝜏)]

𝑡

0

𝑑𝜏 +
𝐺0

√𝜂
 214 

                     =
𝐿𝜏𝑎

√𝐸
{−1 + exp (−

1

2

𝐸

𝜂
𝑡) [(

𝐸

𝜂
𝑡 + 1) 𝐼0 (

1

2

𝐸

𝜂
𝑡) + (

𝐸

𝜂
𝑡) 𝐼1 (

1

2

𝐸

𝜂
𝑡)]}  +

𝐺0

√𝜂
 215 

It is clear that if we select 𝐺0 = 𝐿𝜏𝑎√
𝜂

𝐸
  then this becomes 216 

(
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1

2
= 𝐿𝜏𝑎 {exp (−

1

2

𝐸

𝜂
𝑡) [(

𝐸

𝜂
𝑡 + 1) 𝐼0 (

1

2

𝐸

𝜂
𝑡) + (

𝐸

𝜂
𝑡) 𝐼1 (

1

2

𝐸

𝜂
𝑡)]} (11) 217 

which reduces to the elastic buckling condition (6) for t=0 as required.  Note that for the 218 

Maxwell model the elastic limit is also recovered for 𝜂 → ∞, so we consider (11) the viscoelastic 219 

generalization of (6) for the Maxwell model under steady wind forcing.  For finite values of η but 220 

on short timescales, series expansions of the exponential and modified Bessel functions suggest 221 

(
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1

2
≈ 𝐿𝜏𝑎 {1 +

1

2

𝐸

𝜂
𝑡};      

𝐸

𝜂
𝑡 ≪ 1   222 

Taking E = 9.0 GPa and η = 1011 kg m-1s-1 (e.g. Staroszczyk & Hedzielski, 2004) this 223 

approximation requires t << 22 s.  Thus for wind forcing on synoptic timescales this condition, 224 

which could be called nearly elastic bucking, does not seem relevant, though it may be 225 

appropriate for other types of linear viscoelastic problems (e.g. slowly colliding ice plates).  If 226 

we consider a steady wind stress (0.15 Pa) acting on the ice field for 6 hours, then the term in the 227 

curly brackets in (11) evaluates to 49.75.  This is represented by the green curve in Fig. 1 which 228 

fits the data much better than the other models.  Note we do not require a full 6 hours of steady 229 

wind to achieve buckling here.  The linear form of (10) indicates that a series of shorter but 230 

stronger wind gusts would achieve the same thing.  This is clear if F in (10) is replaced with a 231 
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series of pulses represented by positive and negative Heaviside step functions, perhaps of 232 

different amplitudes. 233 

Ice thickness data near the time of freeze-up are difficult to come by.  On the other hand, 234 

ice concentration data are much more readily available, which we can relate to ice failure 235 

through numerical simulation.  In the following section we discuss a series of simulations that 236 

parameterize ice mechanics based on (2) or (11) described above, as well as the absence of 237 

mechanics.  As will become clear, the impact of these schemes on fractional ice cover is 238 

dramatic.  We evaluate these simulations based on Canadian Ice Service observed ice 239 

concentration data from 115 lakes over North America in order to help select the optimal 240 

approach. 241 

 242 

3 Simulations 243 

Recently Garnaud et al. (2022) described simulations of Environment and Climate 244 

Change Canada’s Surface Prediction System (SPS), which had incorporated a one – dimensional 245 

thermodynamic lake scheme.  Ice mechanics was parameterized following (2) above, i.e. when 246 

𝒉 ≥ 𝑯 the ice cover was considered complete (fractional ice cover Fice = 1.0), and when 𝒉 < 𝑯 247 

the fractional ice cover was computed as Fice = h/H.  This simple linear approach has been used 248 

to parameterize, for example, fractional snow cover in the Canadian Land Surface Scheme 249 

(CLASS) for many years (e.g. Verseghy, 2017).  The compressive strength of ice P* was set to 250 

27.5 kPa, as in Leppäranta and Wang (2008). Simulations ran on a 2.5 km horizontal resolution 251 

grid covering most of Canada and the northern U.S.A. from 1 September 2015 – 31 December 252 

2018.  It was found that the new lake scheme improved ice phenology for the smallest lakes, 253 

compared with the existing approach (which was largely based on data assimilation), but that this 254 

improvement degraded as lake surface area increased.  In terms of ice mechanics this behavior 255 

could be anticipated from our Fig. 1 (upper blue curve) where it is clear that (2) will produce 256 

fractional ice cover for the largest lakes when observations suggest that ice cover is complete 257 

(see also below). 258 

Here we perform an identical simulation to that of Garnaud et al. (2022), except we drive 259 

SPS with a slightly improved atmospheric and precipitation forcing data set (Gasset et al., 2021).  260 
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In addition to parameterizing ice mechanics based on plastic failure (2), we also include 261 

simulations based on viscoelastic buckling failure (11), and by assuming no mechanics at all.  262 

This last criterion is achieved by setting ice concentration to 100% when ice thickness reaches 263 

1.0 cm (Fig. 1 black dotted curve), similar to the approach used in FLake as noted above.   264 

Ice concentration from all 3 simulations is evaluated against observations from the CIS, 265 

examples of which are illustrated in Fig. 2. Fig. 2a shows weekly results for Great Bear Lake, the 266 

largest lake in the data set at 31,153 km2.  For each of the 3 winter periods examined, ice-on is 267 

clearly too early in the simulation without mechanics (magenta crosses), and too late (or absent) 268 

in the simulation assuming plastic failure (blue circles), while the simulation assuming 269 

viscoelastic mechanics is better in this respect (green diamonds).  For La Grande Reservoir (Fig. 270 

2b – 2835 km2) ice – on is again several weeks too early in the simulation without mechanics, 271 

while the other simulations show nearly identical (and much better) results.  Finally, Fig. 2c 272 

shows results for a smaller lake – Leech Lake (417 km2).  Ice – on in the simulation without 273 

mechanics is still too early.  The other simulations are again similar, but examination of 274 

especially the 2017/18 winter reveals that ice – on is also too early in the simulation assuming 275 

plastic failure while it is better in the viscoelastic simulation.  All of these results could have 276 

been anticipated from Fig. 1: the viscoelastic ice is harder than the plastic ice for lakes larger 277 
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than about 2000 km2 (green curve lies below the upper blue curve), and softer for lakes smaller 278 

 279 

Fig. 2  Observed (thin black curves) and simulated ice concentration (January 2016 – January 280 

(2019) for: (a) - Great Bear Lake (31153 km
2
); (b) - La Grande Reservoir (2835 km

2
); and (c) – 281 

Leech Lake (417 km
2
).  Simulated values assume plastic failure with P* = 27.5 kPa (blue circles); 282 

Viscoelastic buckling failure (green diamonds); and no mechanics (magenta crosses). 283 
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than 2000 km2 (green curve lies above the upper blue curve).  For lakes around 2000 km2 in area 284 

both mechanical models produce similar results. 285 

Fig. 3 summarizes ice phenology biases for all 115 lakes for which we have CIS data 286 

during this period.  Results are separated based on lake size, as suggested above, where “small” 287 

refers to areas less than 2000 km2 and “large” refers to lakes larger than this threshold.  Based on 288 

this partition, the CIS data set contains 96 small and 19 large lakes.  Because the CIS ice 289 

concentration observations are weekly and in units of tenths, ice – on (Fig. 3a) is defined as the 290 

first week of 90% ice cover, and ice cover duration (Fig. 3b) is defined as the number of weeks 291 

of ≥ 90% ice cover.  On average the viscoelastic model outperforms the other simulations in both 292 

metrics for both small and large lakes: ice-on bias is only -8 days (small) and 1 day (large), 293 

compared with -12 days, 14 days (plastic), and -21 days, -32 days (no mechanics).  Likewise, 294 

viscoelastic ice cover duration bias is only 3 days, -18 days (small, large) compared with 7 days, 295 

-34 days (plastic), and 22 days, 24 days (no mechanics).  Note that none of the models handles 296 

the ice – off process particularly well (not shown).  Differences due to the mechanics of melting, 297 

rotten, isothermal ice have not been considered here. 298 

 299 

Fig. 3  Simulated bias in: (a) –  ice-on; (b) –  ice cover duration, based on 2016 – 2018 weekly 300 

Canadian Ice Service data for 115 lakes.  Results are separated based on lake area where “small” 301 

(96 lakes) and “large” (19 lakes) refers to areas less than or greater than 2000 km
2
.  Results for 302 

no ice mechanics (magenta), plastic failure (P* = 27.5 kPa, blue), and viscoelastic buckling failure 303 

(green) are shown. 304 
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4 Discussion 305 

By employing the elastic – viscoelastic correspondence principle from the theory of 306 

continuum mechanics we have derived a general condition for the linear viscoelastic buckling of 307 

ice and applied it to the Maxwell rheological model – the simplest model that includes secondary 308 

creep.  There are of course many other models (infinitely many) to choose from. For example, 309 

the simplest model that includes primary creep (i.e. delayed elasticity) is the Kelvin (Voigt) 310 

model, given by 𝑷̂(𝒔) = 𝟏; 𝑸̂(𝒔) = 𝑬 + 𝜼𝒔.  Repeating the above analysis with this model 311 

yields an expression identical to (11) except the expression in the curly brackets becomes the 312 

error function 𝐞𝐫𝐟 (√
𝑬

𝜼
√𝒕) whose maximum value is 1.  Thus the impact of delayed elasticity is 313 

merely to delay the elastic buckling that would have taken place in the absence of viscosity, and 314 

is thus inappropriate for our purposes (though again may have other applications).  More 315 

complex models can be constructed from groups of Maxwell and Kelvin units connected in 316 

series and/or parallel should sufficient data exist to estimate the additional material constants; 317 

however, a simple Maxwell model seems sufficient to represent the limited data we have shown 318 

in Fig. 1, and to achieve improved results with respect to CIS observed ice phenology (Figs. 2, 319 

3). Also, an appealing feature of (11) is that it is analytic; more complex rheological models 320 

would almost certainly require numerical inverse Laplace transforms. 321 

In the above analysis we have neglected any temporal evolution in Poisson’s ratio ν, 322 

regarding it as a fixed parameter with a nominal value of 0.3.  Strictly speaking, both E and ν are 323 

represented by differential operators in viscoelastic analysis, frequently with different sets of 324 

operators (different rheological models) representing the dilatational and deviatoric components 325 

of the deformation (e.g. Findley et al., 1989).  The above analysis can be repeated for this more 326 

general case, but the physical meaning becomes somewhat obscured, and again we will almost 327 

certainly require numerical inverse Laplace transforms.   328 

Finally, we have pointed out that the Maxwell model reduces to the purely elastic case in 329 

the limit 𝜼 → ∞ in which case (11) reduces to (6).  At the other extreme, in the limit 𝑬 → ∞ the 330 

Maxwell model reduces to a purely viscous fluid.  The creep buckling of a viscous plate has been 331 

analyzed by Staroszczyk and Hedzielski (2004) and Sjolind (1985) and it is important to 332 

understand our results in the context of these earlier studies.  The analogue of elastic buckling for 333 
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a viscous plate can be analyzed exactly as above starting with (7) but taking as the rheological 334 

model  335 

𝑷̂(𝒔) = 𝟏; 𝑸̂(𝒔) = 𝜼𝒔 336 

which is a Maxwell fluid in the limit 𝑬 → ∞.  The final temporal dependence is different 337 

(proportional to √𝒕 ) but a similar curve to that shown in Fig. 1 for viscoelastic buckling is easily 338 

generated with judicious parameter selection.  However the instability described here is not the 339 

same as the amplification of finite amplitude disturbances discussed in these previous studies. 340 

Buckling represents a bifurcation in the solution to a governing linear differential equation.  At 341 

the point of bifurcation an infinitesimal perturbation will transition the system from an 342 

unbuckled to an infinitesimally close by buckled state, after a time delay between the application 343 

of stress and the initiation of buckling.  During this period, deformation occurs and the elastic 344 

constants evolve until the buckling condition is met. Post-buckling amplification and failure is 345 

not explicitly modeled but assumed to occur in short order.  In the creep buckling studies of 346 

Staroszczyk and Hedzielski (2004) and Sjolind (1985) small but finite initial disturbances grow 347 

to large amplitude after a few hours assuming the initial linear governing equation remains valid.  348 

Neither approach completely solves the problem; to do so requires a nonlinear, large amplitude 349 

theory. 350 

 351 

5 Conclusions 352 

In this study a simple lake ice concentration scaling law is proposed based on a linear 353 

viscoelastic stability analysis of thin ice sheets under low stress conditions at geophysical scales.  354 

The addition of viscosity to the constitutive equation has two important impacts relevant to our 355 

goal.  First, it introduces a time dependence to the deformation and failure of ice that is 356 

significant on synoptic timescales; in particular the apparent rigidity of the ice decreases 357 

sufficiently over a few hours so that much thicker ice cover can buckle compared with the purely 358 

elastic case.  In addition the time history of the wind forcing becomes relevant so that the impact 359 

of for example a series of wind events accumulates leading to failure that might not occur for the 360 

elastic case.  The viscoelastic analysis presented here includes both purely elastic and purely 361 
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viscous ice cover as special cases, though we have emphasized that the viscous creep buckles of 362 

some previous studies result from a different process. 363 

Based on multiannual simulations over Canada and the northern U.S. we find that ice 364 

phenology is generally improved with the proposed viscoelastic mechanism compared with 365 

plastic failure, and greatly improved compared with the case of no ice mechanics. 366 
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Abstract 15 

If lake ice is assumed to deform and fail as a linear viscoelastic material under the action of wind 16 

stress, then a simple ice concentration scaling law can be constructed suitable for one-17 

dimensional lake models embedded within environmental prediction systems.  Most 1-D lake 18 

models assume no ice mechanics at all, while others adapt the viscous-plastic rheology common 19 

in ice-ocean models for the purpose of estimating ice fraction.  Elastic buckling is generally 20 

disregarded as a significant failure mechanism in ice under low stress conditions at geophysical 21 

scales.  However, by adding viscosity to the constitutive equation, the conditions for viscoelastic 22 

buckling seem quite plausible over a wide range of lake size and ice thickness.  An ice 23 

concentration scaling law based on this process is evaluated here in multiannual simulations over 24 

North America and found to produce superior ice phenology statistics compared with simulations 25 

based on plastic failure or no ice mechanics.   26 

 27 

Plain Language Summary 28 

Most mid- and high- latitude lakes experience periods of partial ice cover (i.e. ice concentration 29 

< 100%) during early winter.  While very small lakes might freeze solid in a single night under 30 

calm conditions, larger lakes may take days or weeks to completely freeze because wind stress 31 

continually breaks the ice cover resulting in patches of open water.  The extent of wintertime 32 

open water is very important for both lake ecology and for regional weather conditions (e.g. 33 

lake-effect snowstorms).  Many weather and climate models employ one-dimensional lake 34 

models that do not represent fractional ice cover at all, or parameterize it based on mechanical 35 

ideas from sea ice models, resulting in poor timing and duration of simulated ice cover.  Here we 36 

propose a new scheme based on different mechanics that improves these simulated features. 37 

1 Introduction 38 

The interface between a lake and the overlying atmosphere regulates flux exchange 39 

between the two, and the state of ice at the lake surface – both in terms of thickness and 40 

concentration (i.e. fractional cover) – is the predominant governing factor for much of the year in 41 

high- and mid-latitude regions. Areas of thick ice, especially if snow covered, severely restrict 42 

the transmission of shortwave radiation and gas exchange with obvious impacts on lake ecology.  43 
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On the other hand many lakes experience only partial ice cover for much (if not all) of the 44 

winter, and patches of open water can lead to for example surface oxygen renewal and nutrient 45 

redistribution (through circulation) and increased primary production (through increased light 46 

penetration), not to mention major fluxes of heat and moisture into the generally cold, dry air 47 

above.  It is clear that climate and numerical weather prediction modelling systems that 48 

incorporate some representation of lakes need to consider the nature of lake ice carefully, 49 

especially under conditions of fractional cover.  For modelling systems that employ 3-50 

dimensional lake models with fully dynamic ice schemes (e.g. Durnford et al., 2018) this is 51 

generally not a problem.  However, many forecasting systems represent lakes with simple one-52 

dimensional thermodynamic models, for which ice mechanics must be parameterized in order to 53 

simulate the correct balance of ice cover and open water. 54 

One – dimensional lake schemes have been used in a number of short-range forecasting 55 

studies that examined ice conditions (eg. Rontu et al., 2019; Eerola et al., 2014; Balsamo et al., 56 

2012).  In all of these studies ice-on tended to occur too early, at least partially due to the fact 57 

that the lake scheme employed (FLake – Mironov et al., 2010) did not represent fractional ice 58 

cover.  In this scheme, once ice grows to a thickness of 1 mm it is assumed to cover the entire 59 

lake (or gridcell for large lakes).  In reality such ice is easily broken by wind or waves and rafted, 60 

resulting in both open water and ice-covered areas.  However, the period of partial ice cover may 61 

be short lived for small lakes and larger lakes could benefit from data assimilation – at least for 62 

short range forecasts.  63 

The situation is more problematic for long range forecasts and climate simulations.  In a 64 

climate modelling study over Northern Europe based on the Max Plank Institute’s REMO 65 

coupled with FLake, Pietikäinen et al. (2018) found ice-on dates were again too early: 2-3 weeks 66 

for moderately sized (100 – 1000 km2) Finnish lakes, but more than 1 month early for Lakes 67 

Vättern (1912 km2) and Onega (9700 km2) and more than 2 months early for Lake Ladoga 68 

(17,700 km2).  In Le Moigne et al. (2016), ice-on is not evaluated per se though the authors 69 

discuss the necessity of setting ice and snow albedos arbitrarily low in FLake in order to account 70 

for radiative impacts of fractional ice cover.  This issue was also noted by Subin et al. (2012) for 71 

the Lake, Ice, Snow, and Sediment Simulator (LISSS), a one – dimensional lake model that also 72 

neglects fractional ice cover.  In addition, while ice-on dates were not evaluated extensively, this 73 
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study did note that ice-on occurred several weeks too early for their simulation of Great Slave 74 

Lake.   75 

Below we propose a simple approach to represent ice concentration in any 1-dimensional 76 

lake model.  The key ingredient is the determination of a critical ice thickness above which ice 77 

concentration tends to remain stable at 100%.  Below this thickness ice is assumed to break and 78 

ridge or raft, resulting in the presence of some open water. 79 

 80 

2 A Universal Scaling Law for Critical Lake Ice Thickness? 81 

Open water leads in ice cover (for both lakes and oceans) are frequently generated under 82 

the action of wind stress that mechanically breaks sufficiently thin ice and forces the rubble into 83 

ridges (e.g. Hopkins, 1998) a process that has been successfully represented in a modelling study 84 

of Lake Peipsi by Leppäranta and Wang (2008).  Following Hibler (1979), Leppäranta and Wang 85 

view ice as a viscous-plastic medium with a yield strength given by 86 

𝑃 = 𝑃∗ℎ 𝑒𝑥𝑝{−𝐶(1 − 𝐴)}  (1), 87 

where h is the mean ice thickness, A is the ice compactness, C is a strength reduction factor, and 88 

P* is the compressive strength of compact ice (per unit thickness).  Leppäranta and Wang (2008) 89 

suggest these last two parameters be >>1 and 10-100 kPa respectively.  When fully compact (i.e. 90 

A=1) the ice will break due to wind stress τa when 91 

ℎ < 𝐻 =  (
𝜏𝑎

𝑃∗) 𝐿   (2), 92 

where L is taken as the fetch over the lake.  When ice thickness is greater than this critical 93 

threshold it is considered stable; when it is thinner it breaks and forms pressure ridges and open 94 

water leads.  An order of magnitude argument suggests that for wind stress ~ 0.15 Pa and P* = 95 

27.5 kPa (e.g. Hibler & Walsh, 1982) we get 𝐻 ≈ 5.4 𝑥10−6𝐿.  Thus for Lake Peipsi with a 96 

mean fetch of about 50 km, Leppäranta and Wang (2008) find that ice is “movable” (i.e. subject 97 

to mechanical breakup and ridging) when it is thinner than about 27 cm, and stable when it is 98 

thicker, in agreement with observations. 99 

At first glance this relationship between critical ice thickness H and fetch L may seem 100 

reasonable as larger ice fields would sustain more wind stress and thus require greater thickness 101 
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to be mechanically stable.  However (2) clearly fails for very large lakes.  Great Bear and Great 102 

Slave lakes in northern Canada have mean fetch on the order of 170 km, yet both lakes routinely 103 

freeze solid with ice thicknesses of only 55 – 65 cm, whereas (2) implies 93 cm.  Leppäranta and 104 

Wang (2008) (see also Kirillin et al., 2012) emphasized that P* could be tuned based on data.  105 

However, tuning (2) for Great Bear and Great Slave lakes degrades results for Lake Peipsi (see 106 

below). 107 

A scaling law based on (2), however, is not the only choice. For example, if elastic 108 

buckling was deemed important prior to ridging then the strength of ice (e.g.  Parmerter, 1974) is 109 

given by  110 

𝑃 = (
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

  (3), 111 

where E and ν are the Young’s modulus and Poisson’s ratio for ice, ρw is the density of water, 112 

and g is the acceleration due to gravity.  This follows from treating the ice cover as a thin plate 113 

floating on an elastic (i.e. Winkler) foundation (Hetenyi, 1946). Because this would lead to ice 114 

much stronger than (2), Rothrock (1975) appears to rule out elastic buckling as an important 115 

mechanism in ridging, a sentiment echoed in Schulson (2004). 116 

Other studies have retained the buckling process, though there has been considerable 117 

latitude with respect to the value of the Young’s modulus selected.  Parmerter (1974, 1975) 118 

found that 0.3 GPa gave good results in a study of sea ice rafting.  Hopkins (1998) chose E = 0.1 119 

GPa in order to achieve reasonable results in an ice ridging model.  On the other hand Parmerter 120 

and Coon (1972) found that E = 1 GPa worked well for their ridging model.   121 

Now from (3) we find that  122 

𝐿𝜏𝑎 = (
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1

2
   (4) 123 

becomes 124 

𝐻 = [
𝜏𝑎

𝛼𝐸1/2]
2/3

𝐿2/3  (5) 125 

where  126 
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𝛼 = [
𝜌𝑤𝑔

12(1 − 𝜈2)
]

1/2

= 29.96 [Pa1/2𝑚−1/2] 127 

assuming ν = 0.3 (Gammon et al., 1983). 128 

There are scant relevant observed data to verify these scaling laws for a critical ice 129 

thickness over lakes, primarily because of the difficulty in safely measuring ice thickness under 130 

conditions of incomplete or marginally complete ice cover. Somewhat fortuitously, the Canadian 131 

Ice Service (CIS), has observed weekly ice concentration data from over 100 North American 132 

lakes since about 1995, and weekly ice thickness data from two measurement programs (1947-133 

2002; 2002-2020) over a few lake and ocean locations.  All three programs are independent and 134 

served different objectives, though there is some overlap for three important lakes – Great Bear 135 

Lake (31,153 km2), Great Slave Lake (27,200 km2) and Baker Lake (1887 km2), which we have 136 

plotted in Fig. 1.  137 

 138 

Fig. 1  Critical ice thickness as a function of lake area. Black vertical lines and symbols represent 139 

observed estimates.  Blue curves represent plastic failure (2) with P* = 27.5 kPa (upper curve) 140 

and P* = 45 kPa (lower curve).  Red curve represents elastic buckling failure (5) with E = 1 GPa.  141 

Green curve represents viscoelastic buckling failure (11) with E = 9.0 GPa, η = 10
11

 kg m
-1

s
-1

, and 142 

assuming steady wind forcing for 6 hours.  All solid curves assume wind stress ~ 0.15 Pa.  Fetch 143 

is estimated as the square root of lake area.  The dotted horizontal black line represents a 144 

threshold of 1.0 cm for complete ice cover (i.e. no ice mechanics).  See text for details. 145 
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 146 

In this figure, solid vertical black lines ending with filled triangles represent the interquartile 147 

range of ice thickness when ice concentration was first recorded as 100% (Great Bear Lake: n=4; 148 

Great Slave Lake: n=14; Baker Lake: n=16).  The vertical black dashed lines ending with 149 

unfilled triangles represent the interquartile range of ice thickness when ice concentration was 150 

last recorded as 90% (Great Bear Lake: n=4; Great Slave Lake: n=12; Baker Lake: n=15).  Thus 151 

we estimate that the average critical ice thickness when these lakes first reached 100% ice cover 152 

is approximately midway between these solid and dashed segments.  Lake Peipsi (2611 km2) is 153 

also indicated in Fig. 1 (open circle) near the point of marginally complete ice cover.  Note that 154 

in this figure mean lake fetch L is estimated as the square root of lake area, with the exception of 155 

Baker lake which is highly elongated in the east-west direction, roughly 100 km in extent. 156 

Fig. 1 also shows the scaling models described above.  The blue curves show (2) with: P* 157 

= 27.5 kPa (upper curve), and P* = 45 kPa (lower curve).   Neither curve is consistent with all of 158 

the observed data presented.  Elastic buckling failure (5) is represented by the red curve.  Even 159 

assuming the Young’s modulus as low as E = 1 GPa, the ice is still much stronger than the 160 

observed data suggest. 161 

 162 

2.1 The Viscoelastic Buckling of Lake Ice 163 

The condition for classical elastic buckling of a floating thin plate (3) due to some axial 164 

force F can be written 165 

 (
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

𝐸1/2 = 𝐹.  (6) 166 

Classical buckling is generally understood as a bifurcation in the equilibrium condition of the 167 

structure in question, where the buckled solution is infinitesimally close to the unbuckled 168 

solution (e.g. Flügge, 1962, ch. 44).  Buckling in and of itself does not necessarily imply failure 169 

– in our context the actual breakage and ridging or rafting of ice – though this is generally tacitly 170 

assumed for thin sheets of ice.  A rigorous post-bucking analysis would require a nonlinear finite 171 

amplitude theory (e.g. Biot, 1965), beyond the scope of this study.  As a first step here we extend 172 
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the linearized, small amplitude stability analysis of thin elastic (floating) sheets of ice into the 173 

viscoelastic realm and assume failure to occur shortly after the conditions for buckling are met. 174 

The generalization of elasticity theory to viscoelastic materials can be achieved for a 175 

large class of problems by way of a correspondence principle, first elucidated by Alfrey (1944), 176 

Biot (1954), and Lee (1955).  In viscoelasticity, the constitutive equations are generalized based 177 

on linear differential operators (P(t), Q(t)) of the rheological model selected, introducing a time 178 

dependence to the governing equations.  It has long been recognized that taking the Laplace 179 

transform of the viscoelastic equations renders a set of equations in transform space formally 180 

identical to a corresponding elastic problem if E in the elastic system is replaced by  𝑄̂(𝑠)/𝑃̂(𝑠) 181 

in the transformed problem where  𝑄̂, 𝑃̂ are the Laplace transforms of Q, P respectively.  To 182 

solve the viscoelastic problem one simply needs to compute the inverse Laplace transform once 183 

this substitution is made. 184 

Thus in Laplace transform space, the condition for viscoelastic instability corresponding 185 

to (6) becomes 186 

 (
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

(
𝑄̂(𝑠)

𝑃̂(𝑠)
)

1/2

= 𝐹̂(𝑠)   (7) 187 

where 𝐹̂(𝑠) is the Laplace transform of the wind forcing F(t), now in general a function of time. 188 

This can be solved by inverse Laplace transform once a suitable rheological model is selected.  A 189 
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simple choice that includes both elastic and creep deformation is the Maxwell fluid, represented 190 

by 191 

 𝑃̂(𝑠) = 1 +
𝜂

𝐸
𝑠;       𝑄̂(𝑠) = 𝜂𝑠, 192 

where η is a viscosity.  Now (7) becomes 193 

 (
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

=
1

√𝜂
𝐹̂(𝑠)𝐺̂(𝑠) ,  (8) 194 

where 195 

 𝐺̂(𝑠) = (
1+

𝜂

𝐸
𝑠

𝑠
)

1/2

  196 

has the inverse Laplace transform 197 

𝐺(𝑡) =
1

2
(

𝐸

𝜂
)

1/2

exp (−
1

2

𝐸

𝜂
𝑡) [𝐼0 (

1

2

𝐸

𝜂
𝑡) + 𝐼1 (

1

2

𝐸

𝜂
𝑡)] ; t>0. (9) 198 

where I0 and I1 are modified Bessel functions of the first kind.  It is important to notice that (9) is 199 

valid only for t>0; the case for t=0 must be handled separately and added.  It is clear on physical 200 

grounds that for t=0 we expect to recover the purely elastic case.  For now we must add an 201 

unknown function G0 to the RHS of (9), evaluated below, to solve over the full time domain. 202 

By the convolution theorem of Laplace transforms, (8) with (9) becomes after inversion  203 

(
𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1/2

=
1

√𝜂
{∫ 𝐹(𝑡 − 𝜏)𝐺(𝜏)

𝑡

0+ 𝑑𝜏 + 𝐺0}   204 

                   =
√𝐸

2𝜂
∫ 𝐹(𝑡 − 𝜏)

𝑡

0+ exp (−
1

2

𝐸

𝜂
𝜏) [𝐼0 (

1

2

𝐸

𝜂
𝜏) + 𝐼1 (

1

2

𝐸

𝜂
𝜏)] 𝑑𝜏 +

𝐺0

√𝜂
 .  (10) 205 

This represents the general condition for linear viscoelastic buckling of a Maxwell material 206 

under some time dependent wind forcing F(t). Notice that both the material constants E, η, as 207 

well as the time history of the forcing are relevant to the buckling criterion.  This distinguishes it 208 
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from the purely elastic case which is instantaneous - it either buckles or it doesn’t – depending 209 

on E, and the instantaneous magnitude (not the time history) of the applied force.  210 

Consider now the case of a steady wind stress applied at t=0, so that 211 

𝐹(𝑡) = 𝐿𝜏𝑎ℋ(𝑡) 212 

where ℌ(t) is the unit Heaviside function.  For this case (10) becomes 213 

(
𝜌𝑤𝑔𝐻3

12(1 − 𝜐2)
)

1
2

= 𝐿𝜏𝑎

√𝐸

2𝜂
∫ exp (−

1

2

𝐸

𝜂
𝜏) [𝐼0 (

1

2

𝐸

𝜂
𝜏) + 𝐼1 (

1

2

𝐸

𝜂
𝜏)]

𝑡

0

𝑑𝜏 +
𝐺0

√𝜂
 214 

                     =
𝐿𝜏𝑎

√𝐸
{−1 + exp (−

1

2

𝐸

𝜂
𝑡) [(

𝐸

𝜂
𝑡 + 1) 𝐼0 (

1

2

𝐸

𝜂
𝑡) + (

𝐸

𝜂
𝑡) 𝐼1 (

1

2

𝐸

𝜂
𝑡)]}  +

𝐺0

√𝜂
 215 

It is clear that if we select 𝐺0 = 𝐿𝜏𝑎√
𝜂

𝐸
  then this becomes 216 

(
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1

2
= 𝐿𝜏𝑎 {exp (−

1

2

𝐸

𝜂
𝑡) [(

𝐸

𝜂
𝑡 + 1) 𝐼0 (

1

2

𝐸

𝜂
𝑡) + (

𝐸

𝜂
𝑡) 𝐼1 (

1

2

𝐸

𝜂
𝑡)]} (11) 217 

which reduces to the elastic buckling condition (6) for t=0 as required.  Note that for the 218 

Maxwell model the elastic limit is also recovered for 𝜂 → ∞, so we consider (11) the viscoelastic 219 

generalization of (6) for the Maxwell model under steady wind forcing.  For finite values of η but 220 

on short timescales, series expansions of the exponential and modified Bessel functions suggest 221 

(
𝐸𝜌𝑤𝑔𝐻3

12(1−𝜐2)
)

1

2
≈ 𝐿𝜏𝑎 {1 +

1

2

𝐸

𝜂
𝑡};      

𝐸

𝜂
𝑡 ≪ 1   222 

Taking E = 9.0 GPa and η = 1011 kg m-1s-1 (e.g. Staroszczyk & Hedzielski, 2004) this 223 

approximation requires t << 22 s.  Thus for wind forcing on synoptic timescales this condition, 224 

which could be called nearly elastic bucking, does not seem relevant, though it may be 225 

appropriate for other types of linear viscoelastic problems (e.g. slowly colliding ice plates).  If 226 

we consider a steady wind stress (0.15 Pa) acting on the ice field for 6 hours, then the term in the 227 

curly brackets in (11) evaluates to 49.75.  This is represented by the green curve in Fig. 1 which 228 

fits the data much better than the other models.  Note we do not require a full 6 hours of steady 229 

wind to achieve buckling here.  The linear form of (10) indicates that a series of shorter but 230 

stronger wind gusts would achieve the same thing.  This is clear if F in (10) is replaced with a 231 
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series of pulses represented by positive and negative Heaviside step functions, perhaps of 232 

different amplitudes. 233 

Ice thickness data near the time of freeze-up are difficult to come by.  On the other hand, 234 

ice concentration data are much more readily available, which we can relate to ice failure 235 

through numerical simulation.  In the following section we discuss a series of simulations that 236 

parameterize ice mechanics based on (2) or (11) described above, as well as the absence of 237 

mechanics.  As will become clear, the impact of these schemes on fractional ice cover is 238 

dramatic.  We evaluate these simulations based on Canadian Ice Service observed ice 239 

concentration data from 115 lakes over North America in order to help select the optimal 240 

approach. 241 

 242 

3 Simulations 243 

Recently Garnaud et al. (2022) described simulations of Environment and Climate 244 

Change Canada’s Surface Prediction System (SPS), which had incorporated a one – dimensional 245 

thermodynamic lake scheme.  Ice mechanics was parameterized following (2) above, i.e. when 246 

𝒉 ≥ 𝑯 the ice cover was considered complete (fractional ice cover Fice = 1.0), and when 𝒉 < 𝑯 247 

the fractional ice cover was computed as Fice = h/H.  This simple linear approach has been used 248 

to parameterize, for example, fractional snow cover in the Canadian Land Surface Scheme 249 

(CLASS) for many years (e.g. Verseghy, 2017).  The compressive strength of ice P* was set to 250 

27.5 kPa, as in Leppäranta and Wang (2008). Simulations ran on a 2.5 km horizontal resolution 251 

grid covering most of Canada and the northern U.S.A. from 1 September 2015 – 31 December 252 

2018.  It was found that the new lake scheme improved ice phenology for the smallest lakes, 253 

compared with the existing approach (which was largely based on data assimilation), but that this 254 

improvement degraded as lake surface area increased.  In terms of ice mechanics this behavior 255 

could be anticipated from our Fig. 1 (upper blue curve) where it is clear that (2) will produce 256 

fractional ice cover for the largest lakes when observations suggest that ice cover is complete 257 

(see also below). 258 

Here we perform an identical simulation to that of Garnaud et al. (2022), except we drive 259 

SPS with a slightly improved atmospheric and precipitation forcing data set (Gasset et al., 2021).  260 
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In addition to parameterizing ice mechanics based on plastic failure (2), we also include 261 

simulations based on viscoelastic buckling failure (11), and by assuming no mechanics at all.  262 

This last criterion is achieved by setting ice concentration to 100% when ice thickness reaches 263 

1.0 cm (Fig. 1 black dotted curve), similar to the approach used in FLake as noted above.   264 

Ice concentration from all 3 simulations is evaluated against observations from the CIS, 265 

examples of which are illustrated in Fig. 2. Fig. 2a shows weekly results for Great Bear Lake, the 266 

largest lake in the data set at 31,153 km2.  For each of the 3 winter periods examined, ice-on is 267 

clearly too early in the simulation without mechanics (magenta crosses), and too late (or absent) 268 

in the simulation assuming plastic failure (blue circles), while the simulation assuming 269 

viscoelastic mechanics is better in this respect (green diamonds).  For La Grande Reservoir (Fig. 270 

2b – 2835 km2) ice – on is again several weeks too early in the simulation without mechanics, 271 

while the other simulations show nearly identical (and much better) results.  Finally, Fig. 2c 272 

shows results for a smaller lake – Leech Lake (417 km2).  Ice – on in the simulation without 273 

mechanics is still too early.  The other simulations are again similar, but examination of 274 

especially the 2017/18 winter reveals that ice – on is also too early in the simulation assuming 275 

plastic failure while it is better in the viscoelastic simulation.  All of these results could have 276 

been anticipated from Fig. 1: the viscoelastic ice is harder than the plastic ice for lakes larger 277 
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than about 2000 km2 (green curve lies below the upper blue curve), and softer for lakes smaller 278 

 279 

Fig. 2  Observed (thin black curves) and simulated ice concentration (January 2016 – January 280 

(2019) for: (a) - Great Bear Lake (31153 km
2
); (b) - La Grande Reservoir (2835 km

2
); and (c) – 281 

Leech Lake (417 km
2
).  Simulated values assume plastic failure with P* = 27.5 kPa (blue circles); 282 

Viscoelastic buckling failure (green diamonds); and no mechanics (magenta crosses). 283 
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than 2000 km2 (green curve lies above the upper blue curve).  For lakes around 2000 km2 in area 284 

both mechanical models produce similar results. 285 

Fig. 3 summarizes ice phenology biases for all 115 lakes for which we have CIS data 286 

during this period.  Results are separated based on lake size, as suggested above, where “small” 287 

refers to areas less than 2000 km2 and “large” refers to lakes larger than this threshold.  Based on 288 

this partition, the CIS data set contains 96 small and 19 large lakes.  Because the CIS ice 289 

concentration observations are weekly and in units of tenths, ice – on (Fig. 3a) is defined as the 290 

first week of 90% ice cover, and ice cover duration (Fig. 3b) is defined as the number of weeks 291 

of ≥ 90% ice cover.  On average the viscoelastic model outperforms the other simulations in both 292 

metrics for both small and large lakes: ice-on bias is only -8 days (small) and 1 day (large), 293 

compared with -12 days, 14 days (plastic), and -21 days, -32 days (no mechanics).  Likewise, 294 

viscoelastic ice cover duration bias is only 3 days, -18 days (small, large) compared with 7 days, 295 

-34 days (plastic), and 22 days, 24 days (no mechanics).  Note that none of the models handles 296 

the ice – off process particularly well (not shown).  Differences due to the mechanics of melting, 297 

rotten, isothermal ice have not been considered here. 298 

 299 

Fig. 3  Simulated bias in: (a) –  ice-on; (b) –  ice cover duration, based on 2016 – 2018 weekly 300 

Canadian Ice Service data for 115 lakes.  Results are separated based on lake area where “small” 301 

(96 lakes) and “large” (19 lakes) refers to areas less than or greater than 2000 km
2
.  Results for 302 

no ice mechanics (magenta), plastic failure (P* = 27.5 kPa, blue), and viscoelastic buckling failure 303 

(green) are shown. 304 
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4 Discussion 305 

By employing the elastic – viscoelastic correspondence principle from the theory of 306 

continuum mechanics we have derived a general condition for the linear viscoelastic buckling of 307 

ice and applied it to the Maxwell rheological model – the simplest model that includes secondary 308 

creep.  There are of course many other models (infinitely many) to choose from. For example, 309 

the simplest model that includes primary creep (i.e. delayed elasticity) is the Kelvin (Voigt) 310 

model, given by 𝑷̂(𝒔) = 𝟏; 𝑸̂(𝒔) = 𝑬 + 𝜼𝒔.  Repeating the above analysis with this model 311 

yields an expression identical to (11) except the expression in the curly brackets becomes the 312 

error function 𝐞𝐫𝐟 (√
𝑬

𝜼
√𝒕) whose maximum value is 1.  Thus the impact of delayed elasticity is 313 

merely to delay the elastic buckling that would have taken place in the absence of viscosity, and 314 

is thus inappropriate for our purposes (though again may have other applications).  More 315 

complex models can be constructed from groups of Maxwell and Kelvin units connected in 316 

series and/or parallel should sufficient data exist to estimate the additional material constants; 317 

however, a simple Maxwell model seems sufficient to represent the limited data we have shown 318 

in Fig. 1, and to achieve improved results with respect to CIS observed ice phenology (Figs. 2, 319 

3). Also, an appealing feature of (11) is that it is analytic; more complex rheological models 320 

would almost certainly require numerical inverse Laplace transforms. 321 

In the above analysis we have neglected any temporal evolution in Poisson’s ratio ν, 322 

regarding it as a fixed parameter with a nominal value of 0.3.  Strictly speaking, both E and ν are 323 

represented by differential operators in viscoelastic analysis, frequently with different sets of 324 

operators (different rheological models) representing the dilatational and deviatoric components 325 

of the deformation (e.g. Findley et al., 1989).  The above analysis can be repeated for this more 326 

general case, but the physical meaning becomes somewhat obscured, and again we will almost 327 

certainly require numerical inverse Laplace transforms.   328 

Finally, we have pointed out that the Maxwell model reduces to the purely elastic case in 329 

the limit 𝜼 → ∞ in which case (11) reduces to (6).  At the other extreme, in the limit 𝑬 → ∞ the 330 

Maxwell model reduces to a purely viscous fluid.  The creep buckling of a viscous plate has been 331 

analyzed by Staroszczyk and Hedzielski (2004) and Sjolind (1985) and it is important to 332 

understand our results in the context of these earlier studies.  The analogue of elastic buckling for 333 
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a viscous plate can be analyzed exactly as above starting with (7) but taking as the rheological 334 

model  335 

𝑷̂(𝒔) = 𝟏; 𝑸̂(𝒔) = 𝜼𝒔 336 

which is a Maxwell fluid in the limit 𝑬 → ∞.  The final temporal dependence is different 337 

(proportional to √𝒕 ) but a similar curve to that shown in Fig. 1 for viscoelastic buckling is easily 338 

generated with judicious parameter selection.  However the instability described here is not the 339 

same as the amplification of finite amplitude disturbances discussed in these previous studies. 340 

Buckling represents a bifurcation in the solution to a governing linear differential equation.  At 341 

the point of bifurcation an infinitesimal perturbation will transition the system from an 342 

unbuckled to an infinitesimally close by buckled state, after a time delay between the application 343 

of stress and the initiation of buckling.  During this period, deformation occurs and the elastic 344 

constants evolve until the buckling condition is met. Post-buckling amplification and failure is 345 

not explicitly modeled but assumed to occur in short order.  In the creep buckling studies of 346 

Staroszczyk and Hedzielski (2004) and Sjolind (1985) small but finite initial disturbances grow 347 

to large amplitude after a few hours assuming the initial linear governing equation remains valid.  348 

Neither approach completely solves the problem; to do so requires a nonlinear, large amplitude 349 

theory. 350 

 351 

5 Conclusions 352 

In this study a simple lake ice concentration scaling law is proposed based on a linear 353 

viscoelastic stability analysis of thin ice sheets under low stress conditions at geophysical scales.  354 

The addition of viscosity to the constitutive equation has two important impacts relevant to our 355 

goal.  First, it introduces a time dependence to the deformation and failure of ice that is 356 

significant on synoptic timescales; in particular the apparent rigidity of the ice decreases 357 

sufficiently over a few hours so that much thicker ice cover can buckle compared with the purely 358 

elastic case.  In addition the time history of the wind forcing becomes relevant so that the impact 359 

of for example a series of wind events accumulates leading to failure that might not occur for the 360 

elastic case.  The viscoelastic analysis presented here includes both purely elastic and purely 361 
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viscous ice cover as special cases, though we have emphasized that the viscous creep buckles of 362 

some previous studies result from a different process. 363 

Based on multiannual simulations over Canada and the northern U.S. we find that ice 364 

phenology is generally improved with the proposed viscoelastic mechanism compared with 365 

plastic failure, and greatly improved compared with the case of no ice mechanics. 366 
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