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Abstract

Inflow anomalies at varying temporal scales, seasonally varying storage mandates, and multi-purpose allocation requirements

contribute to reservoir operational decisions. The difficulty of capturing these constraints across many basins in a generalized

framework has limited the accuracy of streamflow estimates in Land Surface Models for locations downstream of reservoirs.

We develop a Piece Wise Linear Regression Tree to learn generalized daily operating policies from 76 reservoirs from four

major basins across the coterminous US. Reservoir characteristics, such as residence time and maximum storage, and daily

state variables, such as storage and inflow, are used to group similar observations across all reservoirs. Linear regression

equations are then fit between daily state variables and release for each group. We recommend two models – Model 1 (M1)

that performs the best when simulating untrained records but is complex, and Model 2 (M2) that is nearly as performant as

M1 but more parsimonious. The simulated release median root mean squared error is 49.7% (53.2%) of mean daily release

with a median Nash-Sutcliffe Efficiency of 0.62 (0.52) for M1 (M2). Long-term residence time is shown to be useful in grouping

similar operating reservoirs. Release from low residence time reservoirs can be mostly described using inflow-based variables.

Operations at higher residence time reservoirs are more related to previous release variables or storage variables, depending on

the current inflow. The ability of the models presented to capture operational dynamics of many types of reservoirs indicates

their potential to be used for untrained and limited data reservoirs.
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Abstract: 11 
Inflow anomalies at varying temporal scales, seasonally varying storage mandates, and 12 

multi-purpose allocation requirements contribute to reservoir operational decisions. The 13 

difficulty of capturing these constraints across many basins in a generalized framework has 14 

limited the accuracy of streamflow estimates in Land Surface Models for locations downstream 15 

of reservoirs. We develop a Piece Wise Linear Regression Tree to learn generalized daily 16 

operating policies from 76 reservoirs from four major basins across the coterminous US. 17 

Reservoir characteristics, such as residence time and maximum storage, and daily state variables, 18 

such as storage and inflow, are used to group similar observations across all reservoirs. Linear 19 

regression equations are then fit between daily state variables and release for each group. We 20 

recommend two models – Model 1 (M1) that performs the best when simulating untrained 21 

records but is complex, and Model 2 (M2) that is nearly as performant as M1 but more 22 

parsimonious. The simulated release median root mean squared error is 49.7% (53.2%) of mean 23 

daily release with a median Nash-Sutcliffe Efficiency of 0.62 (0.52) for M1 (M2). Long-term 24 

residence time is shown to be useful in grouping similar operating reservoirs. Release from low 25 

residence time reservoirs can be mostly described using inflow-based variables. Operations at 26 

higher residence time reservoirs are more related to previous release variables or storage 27 

variables, depending on the current inflow. The ability of the models presented to capture 28 

operational dynamics of many types of reservoirs indicates their potential to be used for 29 

untrained and limited data reservoirs. 30 

Keywords: reservoir operation, generalized release policies, reservoir statistical modeling 31 

Index Terms: 1834 Human impacts, 1847 Modeling, 1857 Reservoirs, 1816 Estimation and 32 

forecasting, 1884 Water supply 33 
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1. Introduction 34 

More than half of the river systems across the globe are regulated by dams to provide 35 

water for human needs (Nilsson et al., 2005) and, globally, dams hold 1/6 of the global annual 36 

river discharge (Hanasaki et al., 2006). The role reservoirs and dams play in altering local and 37 

regional streamflow patterns cannot be understated, nor can their role in serving modern society 38 

for various purposes (Chalise et al., 2021). Despite the flow alteration induced by reservoirs, 39 

dams are essential to modern life and humans have been constructing dams to help ensure water 40 

availability for 5000 years (Tortajada et al., 2012). Today, dams help control floods, smooth 41 

natural variation in water supply by storing water for future use, generate carbon-neutral 42 

electricity by releasing water to turn turbines, create navigable waters for shipping, and provide 43 

recreation benefits to society (Binnie, 2004; Ford et al., 2022). 44 

While dams provide many benefits and are critical for socio-economic development, they 45 

can have a significant effect on impacting in-lake and downstream water quality due to reduced 46 

transport (Biemans et al., 2011; McCartney, 2009; Pokhrel et al., 2016). Even though dams 47 

typically do not create large reductions in mean annual streamflow, except for decreases due to 48 

increased evaporation, streamflow modulation due to reservoir operations tends to take place 49 

predominantly over sub-annual time periods such as seasonally, monthly, or daily (Haddeland et 50 

al., 2014). But, in arid regions that experience significant interannual variability in streamflow, 51 

reservoirs (e.g., Hoover Dam) and change in management practices combine to regulate 52 

streamflow over multiple years (Kumar et al., 2022). In addition to evaporative losses directly 53 

from reservoirs, consumptive use, which is mostly from irrigation, also decreases the total 54 

amount of streamflow that is eventually discharged into the oceans globally by more than 4% an 55 

average (Haddeland et al., 2006a). Further, in arid regions, consumptive use can decrease river 56 

discharge by as much as 30% per month in the arid western U.S (Haddeland et al., 2006b). 57 
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Additionally, reservoirs can influence their local climate via the changes in available water and 58 

energy that result from large volumes of impounded water. Highly regulated basins in 59 

Mediterranean and arid climates experience more intense storms than unregulated basins due to 60 

increased lake evaporation (Degu et al., 2011). Despite these impacts on local and basin-wide 61 

impacts on land-surface response, most land-surface models (LSMs) do not consider sub-grid-62 

scale reservoir storage and operational policies in estimating the streamflow and 63 

evapotranspiration from the LSMs.  64 

 Efforts to quantify reservoir influence on streamflow are traditionally based on basin-65 

level reservoir system models such as RiverWare (Zagona et al., 2001), Water Evaluation And 66 

Planning System (WEAP) (Yates et al., 2005), HEC-ResSim (Klipsch et al., 2021), MODSIM 67 

(Labadie, 2005), and Generalized Multi-Reservoir Analyses using Probabilistic Streamflow 68 

forecasts (GRAPS) (Xuan et al., 2020). Though the above simulation and optimization of 69 

reservoir systems can be very accurate for individual reservoirs/basins, they do not scale to 70 

continental-scale LSMs due to the computational complexity in running the simulation-71 

optimization models within the LSMs (Voisin et al., 2013). Recently, studies have focused on 72 

quantifying reservoir influence on local land-surface response – streamflow and 73 

evapotranspiration – in LSMs (Hanasaki et al., 2006). Efforts to improve the representation of 74 

reservoirs in LSMs can be broadly grouped into three categories: inflow-demand 75 

characterization, optimization-simulation modeling, and data-driven modeling. Due to the 76 

complexity of reservoir operations and lack of detailed release and inflow information and 77 

generalizable operating policies, initial efforts to capture reservoir operations accurately in LSMs 78 

have employed generic release policies largely based on inflow and demand (Hanasaki et al., 79 

2006) or optimization schemes (Haddeland et al., 2006a). Haddeland et al. (2006a) use a priority-80 

based optimization routine to estimate reservoir releases for modifying LSMs response. Recent 81 
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efforts have leveraged data-driven methods to learn reservoir releases policies from historical 82 

data (Chen et al., 2022; Coerver et al., 2018; Turner et al., 2020, 2021) or to derive generalized 83 

policies for reservoirs in a specific region (Yang et al., 2016, 2021; Zhao & Cai, 2020). 84 

The basis for inflow-demand characterization methods can be found in Hanasaki et al. 85 

(2006) where reservoirs’ monthly release is estimated using only information regarding storage 86 

capacity, purpose, inflow, and downstream demand. With respect to reservoir purpose, only two 87 

categories are considered (irrigation and non-irrigation), each of which being parameterized in 88 

slightly different ways. Though this parameterization is simple and requires little data, it reduces 89 

the error in streamflow simulation downstream of reservoirs when compared to simulations that 90 

do not consider reservoir operations. Voisin et al. (2013) modified the Hanasaki et al. (2006) 91 

model by including flood control and irrigation purposes for multipurpose reservoirs and using 92 

natural flow to derive releases rather than impounded flow. Voisin et al. (2013) also represent 93 

demand using a crop model instead of observed withdrawals and include reservoir storage targets 94 

to help estimate release. While these methods improve on conventional reservoir representations, 95 

which in many cases can be as simple as treating reservoirs as weirs (e.g., National Water Model, 96 

Barlage et al., 2018), they rely on accurate downstream demand estimates to accurately 97 

characterize release patterns. Additionally, they do not leverage the potential benefits of 98 

optimization-simulation or data-driven modeling to learn release patterns from historical data. 99 

Haddeland et al. (2006a) implement an optimization-simulation model that determines the 100 

optimal daily release from a single reservoir given information regarding storage, inflow, and 101 

downstream demand. Each reservoir is optimized with respect to an objective function that is 102 

designed for its specific purpose. For example, release from an irrigation reservoir is set to 103 

minimize the difference between irrigation demand and reservoir release in each time step while 104 

constraining release to be less than the demand. For reservoirs with multiple purposes, 105 
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Haddeland et al. (2006a)  meet irrigation demands first, then optimize for flood control, and then, 106 

when applicable, maximize hydropower generation. While this approach provides good 107 

agreement between observed and simulated streamflow, it is reliant on a modified Metropolis 108 

Markov Chain Monte Carlo optimization scheme (SCEM-UA, Vrugt et al., 2003) which adds 109 

additional computational costs (Voisin et al., 2013). The generalized and simplistic nature of 110 

inflow-demand characterization methods make them easier to integrate into LSMs and thus are 111 

more commonly used than optimization-simulation methods. 112 

 Data-driven approaches have recently become a popular tool for more accurate 113 

prediction of reservoir releases due to their ability to learn relationships between various 114 

reservoir variables and release from historical data. Machine learning methods such as neural-115 

networks (Coerver et al., 2018) and hidden-Markov decision trees (Chen et al., 2022) have been 116 

successfully used to estimate historical release patterns for specific reservoirs; however, variants 117 

of neural-network models are often criticized for their “black-box” nature that prohibits 118 

interpretation of the drivers influencing reservoir operations. Further, this opaqueness limits the 119 

generalization of these methods to reservoirs outside the training set since there is no functional 120 

relationship to extend the knowledge based on a specific basin reservoir to other reservoirs in the 121 

region (Yassin et al., 2019). Several transparent data-driven methods have also been employed to 122 

learn release patterns for specific reservoirs. Yang et al. (2016) simulate reservoir operations for 123 

nine major reservoirs in California by fitting a Classification and Regression Tree (CART) 124 

model to each reservoir separately. As CART models must be grown fairly large to fully capture 125 

complex relationships (Loh, 2011), separate CART models for every reservoir could result in 126 

unwieldy and significant complexity while representing in LSMs. Turner et al. (2021) fit 127 

harmonic functions to define the normal storage levels of reservoirs and then parameterize 128 

release policies for when storage is above, below, and within the normal operating range. These 129 
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parameterizations are based on a combination of harmonic and linear functions and can easily be 130 

interpreted to understand the important variables and parameters that drive seasonal variations in 131 

releases for a given reservoir. Each of the data-driven methods discussed so far fit specific 132 

models for each individual reservoir considered for that study. Thus, even if the model form is 133 

generalized, the actual parameterizations and their estimates are only applicable to individual 134 

reservoirs. While this approach can result in accurate predictions for the reservoirs included in 135 

each study, the inability to apply those methods to reservoirs not in the training set limits their 136 

practical application in LSMs.  137 

Turner et al. (2021) propose a solution to this limitation that relies on extrapolating 138 

parameterizations from “data-rich” reservoirs, those that have parameterizations fit to their data, 139 

to “data-scarce” reservoirs, those that do not have parameterizations fit to them. The underlying 140 

assumption of this extrapolation method is that reservoirs that are close in proximity, ideally 141 

within the same HUC4, and have similar operating purposes will be operated similarly. This 142 

extrapolation method is shown to be effective in many cases, but it does not perform well in 143 

regions where there are few “data-rich” reservoirs as the extrapolation procedure relies on having 144 

similar reservoirs close to the one being extrapolated for. Further, because there can be reservoirs 145 

that have different operating purposes and exist in different basins that still operate very 146 

similarly, the spatial proximity and similarity in operations assumptions made for this method 147 

may limit its effectiveness. 148 

Zhao and Cai (2020) fit a Hidden-Markov decision tree model (HMM) to a subset of 149 

reservoirs in the Upper Colorado River basin, and then test the fitted model on a different subset 150 

of reservoirs also in the Upper Colorado River basin. This spatial-split-sample validation 151 

procedure ensures the common model is generalized to all reservoirs in the Upper Colorado, 152 

rather than relying on specific models for every reservoir in the basin. However, the exclusion of 153 
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reservoirs from other basins limits the model’s applicability for CONUS scale studies or models 154 

as reservoirs in various regions can have different operating characteristics (Turner et al., 2021). 155 

Zhao and Cai (2020) also do not consider any reservoir characteristics, such as storage capacity, 156 

for fitting the HMM. In addition to being easy to calculate or find for many reservoirs, these 157 

characteristic variables could help identify similar operating reservoirs across and within basins.  158 

To summarize, the generalized methods of Biemans et al. (2011), Haddeland et al. 159 

(2006), Hanasaki et al. (2006), Voisin et al. (2013), and Yassin et al. (2019) rely on optimization 160 

or downstream demand estimates rather than incorporating historical data to determine optimal 161 

parameterizations. Chen et al. (2022), Coerver et al. (2018), Turner et al. (2021), and Yang et al. 162 

(2016, 2021) use data-driven methods to learn the operation policies for specific reservoirs. 163 

While these methods provide an improvement in model accuracy, they require different 164 

parameter sets for every reservoir in the study area and thus cannot generalize to other reservoirs, 165 

with the exception of Turner et al. (2021).  Zhao & Cai (2020) develop a common release model 166 

for reservoirs in the Upper Colorado River basin, but the exclusion of other basins prevents this 167 

method from being widely applicable. Though these are recent significant advances in 168 

parametrizing reservoir operation, no work to date has provided a generalized parameterization 169 

that captures reservoir operation based on historical storage and release patterns and has potential 170 

to be applied to reservoirs regardless of basin and type.  171 

To address these limitations, we propose a generalized release framework that leverages 172 

data-driven methods with an emphasis on providing interpretable parameterizations based on 173 

publicly available time series associated with reservoir operation for four major basins with 174 

contrasting reservoir characteristics and operational patterns. Towards this, we propose a 175 

Piecewise Linear Regression Tree (PLRT) that provides both a classification tree, which is 176 

similar to reservoir rule curves, and also a piecewise regression that estimates the release with 177 



Page 9 of 44 
 

relevant predictors within the tree. The proposed PLRT is based on the model presented by 178 

Alexander and Grimshaw (1996), with modifications in finding the predictors subspace for 179 

classification, ensuring minimum sample size within the tree for developing the piecewise 180 

regression, and allowing different sets of classification and regression variables.  We intend to 181 

leverage this PLRT framework to classify/group daily reservoir operations. The proposed PLRT 182 

captures the non-linear relationship between the current states of a reservoir and reservoir 183 

characteristics to estimate the release patterns using the time series of storage, inflow, and release 184 

records. Our PLRT model provides reservoir-operating policies in the form of simple conditional 185 

statements and linear equations that can be applied generally to any reservoir. The PLRT models 186 

are trained on a wide variety of reservoirs from four major basins that vary in hydroclimatology 187 

and operational characteristics over the CONUS to provide release parameterizations and 188 

equations which are reservoir-agnostic and robust. 189 

The rest of this paper is organized as follows. The study areas and methods (Section 2) 190 

are presented along with a discussion regarding variable selection. Next, the performance of the 191 

PLRT model is summarized (Section 3) along with the interpretation of the regression tree splits 192 

and parameters. Finally, we discuss the strengths and weaknesses of our approach along with 193 

potential improvements and future work. 194 

2. Methods and Data 195 

2.1 Study Area and Data 196 

Daily storage and release records are obtained for 76 reservoirs from the Colorado (19 197 

reservoirs), Columbia (11 reservoirs), Missouri (19 reservoirs), and Tennessee (27 reservoirs) 198 

river basins (Figure 1). Operating data for the Colorado and Columbia River basins is obtained 199 

from the HydroData and Hydromet data portals from the U.S. Bureau of Reclamation (USBR), 200 

respectively. Data for the Missouri River reservoirs is collected from the USBRs Hydromet data 201 
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Table 1. Minimum, mean, and maximum values for storage capacity (S ), residence time (𝑅𝑇), mean 
net inflow (𝑁𝐼), average storage fraction (𝑆̅ 𝑆⁄ ), and Pearson correlation (𝑟(𝑅, 𝐼)) between daily 
release and inflow for all four basins  

Metric Colorado Missouri Columbia Tennessee 𝑆  [1000 acre-ft] 
Minimum 14 1.9 12 0.7 
Mean 3,447 4,368 839 879 
Maximum 25,695 29,269 5,186 5,649 𝑅𝑇 [days] 
Minimum 11 1.2 0.1 0.2 
Mean 470 475 13 42 
Maximum 1,408 1,576 72 192 𝑁𝐼 [1000 acre-ft / day] 
Minimum 0.1 0.0 8.4 0.7 
Mean 1.5 3.8 51 30 
Maximum 7.0 14 95 119 𝑆̅ 𝑆⁄  
Minimum 0.0 0.4 0.7 0.5 
Mean 0.7 0.7 0.9 0.7 
Maximum 0.9 0.9 1.0 1.0 𝑟(𝑅, 𝑁𝐼) 
Minimum 0.0 0.2 0.8 0.1 
Mean 0.7 0.7 1.0 0.7 
Maximum 1.0 1.0 1.0 1.0 

 213 

 𝑅𝑇 = 𝑆̅ 𝑅⁄  1

The data collected for each reservoir does not span the same temporal extents. Only 214 

reservoirs with at least 5 years of continuous daily records are included in the study and the 215 

longest continuous record is more than 58 years (Glen Canyon Dam). Across all basins, the 216 

average length of record is approximately 25 years. More than 83% of all daily records across all 217 

basins and reservoirs occur during or after 1990. 218 

Many reservoir data sources report storage and release while not reporting total inflow or 219 

evaporation. To encompass as many reservoirs as possible, net inflow (𝑁𝐼 , ) is calculated for 220 

each reservoir by rearranging the mass balance equation for a reservoir (Equation 2). This is 221 

done for all reservoirs to ensure consistency in the variables. Using net inflow also removes the 222 

need to calculate evaporation when simulating reservoirs. From here onwards, the term “inflow” 223 

implies “net inflow” from equation (2).   224 
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 𝑁𝐼 , = 𝑆 , − 𝑆 , + 𝐷 , ∀ 𝑟 ∈ 𝑅 𝑡 ∈ 𝑇  2

 225 

2.2 Predictors Selection for PLRT 226 

Initial predictors’ selection to estimate the release is driven by both a rearrangement of 227 

the mass balance equation for reservoirs, where discharge (𝐷 , ) is a function of current and past 228 

storage (𝑆 , ) and inflow, and variables used in past studies. Several studies (Chen et al., 2022; 229 

Coerver et al., 2018; Yang et al., 2016, 2021; Zhao & Cai, 2020) use past (end of time step for 230 

previous day) storage and current inflow as predictors and (Coerver et al., 2018; Yang et al., 231 

2021) also use lagged storage and inflow. Yang et al. (2016) also include variables like dry/wet 232 

year indicators, runoff indicators, snow depth in upstream mountains, precipitation, and 233 

downstream river stage but find that the importance of each variable varies greatly across the set 234 

of reservoirs in their study. As we aim to develop the model mimicking the operational model as 235 

opposed to inflow prediction, we limit the input variables to storage, inflow, past release, and 236 

quantities derived from these (e.g., lagged storage, interaction terms, rolling means).  237 

Daily Variables 238 

Since estimating downstream demand projection (Biemans et al., 2011; Haddeland et al., 239 

2006; Hanasaki et al., 2006; Voisin et al., 2013), or downstream river stage (Yang et al. 2016) is 240 

difficult over multiple locations for large basins, we leverage the strong autocorrelation patterns 241 

of release to attempt to capture the same information but without requiring another variable to be 242 

collected. Across the 76 reservoirs included in this study, the mean lag-1 correlation for release 243 

is 0.932 and the minimum is 0.770. When accounting for this relationship, there still exists a 244 

weekly seasonal relationship (Figure S1, Partial Autocorrelation Function (PACF)); however, the 245 

release relationship with rolling weekly mean release (0.878 average Pearson’s 𝑟) provides more 246 

explanatory power than with weekly lagged release (0.604 average Pearson’s 𝑟). 247 
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Further defining the state of the reservoir, the relationships between release and lagged 248 

inflow is calculated for each reservoir and their spatial variation under each basin is summarized 249 

for different lags (Figure 2a). There are distinct differences in the inflow-release relationship 250 

between basins with release from reservoirs in the Missouri and Colorado River basins generally 251 

being less related to inflow, or in some cases inversely related to inflow, than reservoirs in the 252 

Columbia and Tennessee River basins. This is partially because arid river basins (Missouri and 253 

Colorado) have higher inflow variability and have larger reservoirs compared to humid river 254 

basins  (Columbia and Tennessee) which experience lesser inflow variability and have relatively 255 

smaller systems.  This trend also holds true for the 14 lags considered. Additionally, the data 256 

show that even within a basin there is a range of release-inflow relationships. This clearly 257 

indicates that reservoir operators can respond to inflow in vastly different ways both in different 258 

basins and within the same basin.  259 
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Figure 2 – Release and inflow correlations for lag 0 to 14 for each reservoir, colored by basin (a). 
Correlations between release and storage-based variables for each reservoir, colored by basin (b). Box 
plot whiskers represent the 5th and 95th percentiles, as noted by the example boxplot on the right. The 
dashed black line in each plot indicates the zero line. 

To quantify the reservoir dynamics between storage, net-inflow and release under each 260 

basin, Figure 2b presents the Pearson correlation between release and several storage-based 261 

variables: end of time step storage for previous day 𝑆 , storage and inflow interaction 𝑆 ×262 𝑁𝐼 , and the difference between previous storage and weekly mean storage 𝑆 −  𝑆̅   (i.e., 263 

weekly storage differential). In addition to previous studies indicating the usefulness of storage-264 

based variables in modeling reservoir operations (Yang et al., 2016, 2021; Zhao & Cai, 2020), 265 

these variables are included because their relationships with release can vary greatly within 266 

basins but can be similar for reservoirs that otherwise are not similar. Similar to the inflow 267 

relationships in Figure 2a, there are clear inter- and intra-basin differences between the release 268 

response to current and past week storage levels with Colorado and Missouri River basins having 269 

mostly positive responses (release increases when storage increases) while release at Tennessee 270 

reservoirs has very little dependence on release and some Columbia River reservoirs show strong 271 

negative relationships with storage. Regardless of the basin, the relationships between release 272 
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and storage are nearly identical to those between release and weekly mean storage, thus weekly 273 

mean storage is not included in Figure 2b. This similarity indicates they are redundant variables 274 

for statistical learning models; therefore, only previous storage will be included as a predictor.  275 

Interactions between storage and inflow (𝑆 × 𝑁𝐼 ) have the potential to explain 276 

interesting operational scenarios. As shown in Figure 2b, most of the reservoirs have a positive 277 

correlation between the storage and inflow interaction and release. This indicates that for 278 

situations of high inflow and high storage, which are potential flooding scenarios, release would 279 

be higher, and the opposite holds true for low inflow and low storage scenarios. There are some 280 

reservoirs in the Colorado and Missouri basins that exhibit relationships opposite of those just 281 

described (i.e., release decreases when inflow and storage is high). While these account for only 282 

five reservoirs, it highlights the operational differences that exist between reservoirs and 283 

emphasizes the need to include this variable as a predictor. 284 

Additionally, the difference between the previous storage and the weekly mean storage 285 

may provide insight into reservoir storage trends. When this difference is positive, the reservoir 286 

could be building up storage for the summer season or receiving spring flows from snowmelt and 287 

when it is negative, the reservoir may be drawing down in anticipation of high flows. Regardless 288 

of the basin, when the correlation between weekly storage differential term (𝑆 − 𝑆̅ ) and 289 

release is substantial, it is generally negative. This aligns well with the above-discussed 290 

dynamics – storage building up and drawing down – indicating the release would decrease when 291 

storage is increasing and vice versa. Including this variable as a predictor for release could help 292 

partially capture operational patterns that take place over weekly cycles.  293 

In summary, the models developed here will use previous release (𝐷 , ), previous 294 

storage (𝑆 , ), and current net inflow (𝑁𝐼 , ) as independent variables in trying to predict 295 

current release (𝐷 , ). Also included as independent variables are the past week rolling means of 296 
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release (𝐷 , ) and inflow (𝑁𝐼 , ) to capture the weekly variability in release and inflow. 297 

Interaction between storage and net inflow (𝑆 , × 𝑁𝐼 , ) and the difference between previous 298 

storage and weekly mean storage (𝑆 , − 𝑆̅ , ) are also included as predictors. 299 

Reservoir Characteristic Variables 300 

While daily varying values of storage, release, inflow, and their interaction terms explain 301 

the variability in reservoir release patterns, using physical or categorical variables can help group 302 

reservoirs into clusters with similar operating characteristics. In this study, we attempt to use 303 

reservoir primary purpose (categorical), multipurpose nature (binary), maximum storage (𝑆 , ) 304 

(positive, continuous), and residence time (𝑅𝑇 ) (positive, continuous) (Equation 1) as reservoir 305 

characteristics to combine reservoirs into similar groups for modeling purpose. 306 

2.3 Variable Standardization 307 

As our goal is to fit a single, generalized model to all reservoirs, we standardize the 308 

release and independent variables to ensure that reservoirs with large release values are not 309 

implicitly given more weight during fitting. Three common standardization or normalization 310 

methods are considered: 0 to 1 normalization, -1 to 1 normalization, and standardizing to a zero 311 

mean, unit standard deviation distribution. Since the response generating functions in PLRTs are 312 

multiple linear regression models, standardizing to a zero mean, unit standard deviation 313 

distribution will match the assumptions of those models better than the other normalization 314 

techniques. This is done for all daily varying variables, but not for any of the reservoir 315 

characteristic variables, using Equation 3. 316 

 𝑥 , =  𝑋 , − 𝑋 𝑠⁄ ∀ 𝑟 ∈ 𝑅 𝑡 ∈ 𝑇  3

 317 
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2.4 Piecewise Linear Regression Tree (PLRT) 318 

When exploring model formulations, interpretability and parsimony were major 319 

considerations. The interpretability provides information on converting the release estimates into 320 

relevant operational rules/policies. Model parsimony ensures a simpler model form with no 321 

overfitting, facilitating application even for basins with limited data. Given the reservoir mass 322 

balance in Equation 2, a choice for a parsimonious model that can still provide satisfactory levels 323 

of accuracy and reliability is the multiple linear regression. This formulation is shown in 324 

Equation 4, where 𝒀 and 𝑿 are the response vector and predictor matrix, respectively. 𝜷 is the 325 

coefficient vector and 𝝐 is the error vector. The length of 𝒀 and 𝝐 is equal to the number of 326 

observations in the data set 𝑁 and the length of 𝜷 is equal to the number of predictors in the 327 

model 𝑃, plus 1 if an intercept is included. Therefore, the dimensions of 𝑿 are 𝑁 rows by 𝑃 + 1 328 

columns.  329 

 𝒀 = 𝑿𝜷 + 𝝐 4

While this multiple linear regression exhibits many desirable qualities, studies show that 330 

a more complex and flexible model is better suited to capture the dynamics of reservoir 331 

operations (Yang et al., 2021) even for deriving operational policies for a single reservoir. 332 

According to Yang et al. (2021), regression tree-based models such as CART, Random Forest, or 333 

XGBoost can efficiently and accurately capture reservoir release policies. Regression trees are 334 

comprised of nodes and directed edges that connect those nodes (Loh, 2011). There are two 335 

types of nodes. The first type is splitting nodes, where the data set is split by grouping the 336 

records where a particular independent variable is less than or equal to some threshold value (𝜏) 337 

into one subset and the records where said independent variable is greater than the same 338 

threshold value (𝜏). The second type of node is leaf nodes, which occur at the end of a branch of 339 

the tree and are where the dependent variable is estimated. Each node begins as a splitting node 340 
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and only becomes a leaf node if the data cannot be split further, which can be due to limitations 341 

on tree depth, minimum samples required in each node, or error reduction requirements.   342 

In traditional regression trees, like those used in CART, Random Forest, and XGBoost, 343 

the average of the dependent variable from the subset of the training set that is each leaf node 344 

becomes the response estimate (equation 5, where 𝐾  is the set of all observations in leaf node l) 345 

(Yang et al., 2021). Due to this behavior, traditional regression trees can be called piecewise 346 

constant regression trees (PCRTs). Though regression trees provide more flexibility to capture 347 

complex relationships, to achieve accurate predictions these methods must grow very large trees 348 

or, in the case of XGBoost, add many additional weak trees, which significantly limits their 349 

interpretability (Loh, 2011). 350 

 𝑦 = 1𝑁 𝑦∈  5

To bridge this accuracy/interpretability gap between multiple linear regression and 351 

regression trees, we implement a Piecewise Linear Regression Tree (PLRT) that is built on the 352 

work from Alexander and Grimshaw (1996). Piecewise linear regression helps to estimate the 353 

non-linear relationship between release and the predictors through localized linear regression 354 

between release and the predictors within each leaf node. Similar to hidden states in Zhao and 355 

Cai (2020), the tree groups reservoirs that operate similarly under given conditions without being 356 

limited to specific basins or purposes. PLRT replaces the mean estimator in each leaf node in 357 

PCRTs with a linear regression (equation 4). An illustrative example of the developed PLRTs is 358 

provided in Figure 3 along with PCRTs.  359 



Page 19 of 44 
 

 

Figure 3 – Illustrative example of the difference between PCRT, PLRT, and Linear Regression (LR). X 
is representative of an independent variable and Y is a dependent variable. Though PCRT could 
approach the accuracy of PLRT as the tree is grown larger, PLRT can provide a high level of accuracy 
with a very shallow tree. 

As noted by Alexander and Grimshaw (1996) and Loh (2014), limited computational 360 

power has prevented widespread usage of PLRTs despite their ability to accurately model 361 

systems with much shallower trees than other methods. However, as access to computational 362 

resources has become more ubiquitous (Thompson et al., 2020), the practical limits of such 363 

algorithms have been overcome to a reasonable extent.  364 

 Similar to Alexander and Grimshaw (1996), our PLRT definition uses multiple linear 365 

regression developing a local regression between the predictands and predictors within that tree 366 

node. These parameters for these regressions are fit using the matrix form of the least squares 367 

estimator (Equation 6).  368 

 𝜷 = (𝑿 𝑿) 𝑿 𝒀 6

 369 

PLRT – Classification and Parameter Estimation Algorithm 370 

  Since there are no readily available software packages to fit PLRT models, we developed 371 

a PLRT model in Python to develop reservoir operating policies based on the collected data from 372 
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the four major basins. Our PLRT software implementation can be found on GitHub 373 

(https://github.com/lcford2/py-plrt) or PyPI (https://pypi.org/project/py-plrt/).  The developed 374 

methodology in the package is based on PLRT formulation from Alexander and Grimshaw 375 

(1996) but customized for the reservoir operation generalization. In this section, we provide the 376 

algorithmic details on developing classification and estimation of regression parameters along 377 

with the details on how our approach is different from the PLRT formulation of Alexander and 378 

Grimshaw (1996).   379 

 The parameter estimation for PLRT is implemented as a recursive depth-first growing of 380 

a binary tree where each splitting node stores information about the optimal splitting variable and 381 

threshold as well as the resulting child nodes and each leaf node stores the optimal parameters of 382 

the linear regression for the data in that node. Figure 4 provides the flowchart detailing the steps 383 

involved in the general parameter estimation of PLRT. The first step of fitting a PLRT is to fit a 384 

linear regression to the entire data set and calculate the MSE. This MSE is used to ensure that the 385 

regressions resulting from the next steps improve the model performance enough to be valid. For 386 

each candidate split, which consists of a splitting variable (𝑥) and a threshold (𝜏), the data is split 387 

into two subgroups and regressions are fit for each. The candidate split resulting the largest 388 

reduction in MSE is chosen as optimal, and the process repeats for each of the data subgroups 389 

until termination conditions are met. 390 

 To implement a computationally efficient PLRT formulation, finding the optimal 391 

splitting threshold (𝜏) for each independent variable is a critical step. The method proposed by 392 

Alexander and Grimshaw (1996) enumerates all possible thresholds for a splitting variable (𝑥), 393 

splits the data set for each threshold, then fits models for the resulting subsets and then selects 394 

the threshold that results in the lowest error. Rather than enumerating all possible thresholds, we 395 

discretize the space between the minimum and maximum 𝑥 values into 1000 possible values and 396 
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then follow remaining steps of the procedure as outlined below using Mean Squared Error 397 

(MSE) (equation 7) as the error metric. This approximation limits the computational complexity 398 

of the model, especially for many observations, while still providing a value that is near-optimal 399 

or optimal. 400 

 𝑀𝑆𝐸 = 1𝑁 (𝑦 − 𝑦 )  7

Further modifying the original PLRT formulation by Alexander and Grimshaw (1996), 401 

we allow the model to use different types of independent variables, both continuous and 402 

categorical, for splitting the dataset for fitting the regression in each leaf node. In practice, this 403 

means that daily variables can be used in the regression equations while splitting variables can be 404 

those daily variables or reservoir characteristic variables. This allows categorical variables that 405 

are constant in time to be included in the model without the need to encode it for the regression 406 

equations. 407 

In addition to the above-mentioned deviations from Alexander and Grimshaw (1996), our 408 

formulation facilitates considering multiple criteria for determining valid splits. In our model, a 409 

minimum sample size (𝑚𝑠𝑠) can be defined as a fraction of the number of observations in the 410 

full data set. This is enforced when evaluating potential splitting candidates to ensure that splits 411 

are not being made to fit small fractions of the original data set. Further, to encourage a more 412 

parsimonious model if one is available, each node can use the persistence model (Equation 8) 413 

instead of the multiple linear regression if its performance is near or better than that of the 414 

multiple linear regression. 415 

 𝑦 = 𝑦  8
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 As with many data-driven statistical models, the fitting procedure of PLRTs can be tuned 416 

by changing a set of parameters. The two most important parameters for PLRTs are the 417 

minimum sample size (𝑚𝑠𝑠), as defined above, and maximum tree depth (𝑑 ). Increasing 𝑚𝑠𝑠 418 

results in less leaves by ensuring that each leaf is fit to a larger proportion of the data. 𝑑  419 

limits how many splits are allowed down any single branch of the PLRT. A low 𝑑  combined 420 

with a high 𝑚𝑠𝑠 limits the flexibility of the model thus gives fewer total regression equations. 421 

Increasing 𝑑   and decreasing 𝑚𝑠𝑠 too much can result in a tree that is overfit to the training 422 

data. We perform a grid search over many combinations of these two parameters to determine 423 

the optimal tree.  424 

2.5 Model Training and Evaluation Procedure 425 
Since our interest is a simpler formulation that can be represented in a LHM for 426 

simulating release over a period of time given only initial conditions and inflow, we evaluate the 427 

performance of PLRT by maintaining the temporal relativity of records. As the training and 428 

testing set for our generalization model should include samples from every reservoir, we 429 

construct these sets by selecting the first 80% of each reservoir’s records for training and use the 430 

remaining to validate the model. 431 

To test the model performance similar to how it may be used in an LHM, we simulate 432 

release over the testing set. Reservoirs are initialized with a week of storage, inflow, and release 433 

values and release is then predicted from the PLRT model. Based on the estimated release, end-434 

of-the-day storage (Sr,t) calculated using the mass balance equation 2. The next time step uses 435 

these calculated quantities along with observed inflow to generate the predictor variables values 436 

for the next time step and the process repeats. Though in an LSM the observed inflow would not 437 

be known, the focus of this work is to model the release patterns of reservoirs under perfect 438 
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information on streamflow; therefore, this simulation scheme can be treated as a best-case 439 

scenario in terms of the model’s ability to simulate release.  440 

2.6 Model Selection 441 

To determine what combination of parameters generate the best performing PLRT model, 442 

we fit the model with maximum depths (𝑑 ) from 1 to 8 and minimum sample sizes (𝑚𝑠𝑠) 443 

from 0.01 to 0.1, as well as 0.15 and 0.2. The chosen limits for these parameters are chosen 444 

because higher values result in identical or worse performing models. To compare the simulation 445 

performance across reservoirs, the nRMSE is calculated by normalizing the RMSE by the daily 446 

mean release for each reservoir (Equation 9). The results from this parameter sweep are shown in 447 

Figure SI-1 and the mean, median, minimum, and maximum nRMSE values for the best 10 448 

unique trees are shown in Table 2. 449 

 𝑛𝑅𝑀𝑆𝐸 = 1𝐷 1𝑁 𝐷 , − 𝐷 ,  9

Regardless of the MSS, models with a maximum 𝑑  of 1, indicating there are only two 450 

groups that have a regression fit for them, are the worst performing. As the 𝑚𝑠𝑠 decreases, the 451 

variation in models for different 𝑑  values increase. Often, if a model improves the median 452 

performance it comes at the cost of the worst performing reservoirs performing more poorly. An 453 

ideal model would result in min, mean, median, and maximum nRMSE values that are nearest to 454 

zero. Additionally, as our goal is to generalize reservoir operations, a more parsimonious model 455 

is preferred if the performances are comparable. With these considerations, a maximum 𝑑  of 456 

5 with an 𝑚𝑠𝑠 of 0.01 results in the most performant model (M1); however, these parameters 457 

result in 25 different regression equations, many of which are very similar. A slightly less 458 

performant parameter combination that results in a much more parsimonious model (M2), only 7 459 
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regression equations, is 𝑑  of 4 and an 𝑚𝑠𝑠 of 0.10. The choice of M1 and M2 over the other 460 

models in Table 2 is driven by the relative performance to model complexity tradeoff. 461 

The main difference between M1 and M2 is the maximum error is larger for M2 than M1; 462 

however, both maximum errors are greater than 250% of the daily mean release for that reservoir 463 

thus determining which one is best based on this difference is not an effective strategy. 464 

Therefore, the remainder of our analysis will present results from both models to determine if 465 

there are any differences in performance between the two models based on various criteria such 466 

as reservoir storage, seasonality, and other attributes. 467 

Table 2. nRMSE performance metrics for model 1 (M1) and model 2 (M2).

Model # Leaf Nodes Mean Median Minimum Maximum 

M1 (𝑑  = 5, 𝑚𝑠𝑠 = 0.01) 25 0.512 0.498 0.014 2.725 

M2 (𝑑  = 4, 𝑚𝑠𝑠 = 0.10) 7 0.518 0.509 0.034 3.011 𝑑  = 5, 𝑚𝑠𝑠 = 0.10 8 0.514 0.493 0.034 3.092 𝑑  = 5, 𝑚𝑠𝑠 = 0.15 5 0.533 0.518 0.035 3.012 𝑑   = 5, 𝑚𝑠𝑠 = 0.08 9 0.528 0.528 0.035 3.027 𝑑  = 6, 𝑚𝑠𝑠 = 0.04 17 0.527 0.512 0.036 2.718 𝑑   = 5, 𝑚𝑠𝑠 = 0.04 15 0.520 0.498 0.036 2.804 𝑑   = 5, 𝑚𝑠𝑠 = 0.05 13 0.528 0.510 0.036 2.796 𝑑   = 7, 𝑚𝑠𝑠 = 0.04 18 0.523 0.524 0.036 2.718 𝑑   = 8, 𝑚𝑠𝑠 = 0.04 19 0.525 0.522 0.036 2.718 

 468 

To illustrate the trees generated by these two PLRT models, the optimal tree for the M2 469 

parameters is presented in Figure 5. As the optimal tree for the M1 parameters is substantially 470 

larger than the M1 parameters (25 final groups rather than 7), that tree is not shown here but can 471 

be found in the supplementary information (SI) (Figure SI-2). Any variable in Figure 5 that is 472 

lowercased indicates that it has been standardized using Equation 3. Each table presents the 473 

optimal parameters for their corresponding independent variables for the regression equation 474 
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there are different operating modes that are defined by current inflow and previous release. 483 

When current inflow is in the upper 25% of the distribution (Node 3), these reservoirs’ release is 484 

characterized largely by previous release and the difference in current and past week mean 485 

storage.  486 

When inflow is in the lower 75% of the distribution, there seems to be an operational 487 

distinction that can be made between situations when the previous release is the lower third of 488 

the distribution and when it is in the upper two thirds. For these records, when the previous 489 

release is lower the dependence on previous release is also lower but the dependence on past 490 

week mean release is larger. The storage and inflow interaction term positively affects release for 491 

large reservoirs when the previous release is low, but the storage and inflow interaction term 492 

tends to depress current release. When the previous release is higher, the parameters are similar 493 

for smaller and larger reservoirs with the major difference being that smaller reservoirs are more 494 

dependent on the difference between current and past week mean storage than larger reservoirs. 495 

Smaller reservoirs are also more dependent on release. 496 

3. Results 497 

3.1 Model Performance Across Reservoir Attributes 498 

To determine under which circumstances, if any, M1 and M2 perform differently, we 499 

characterize their performance across six reservoir attributes in Figure 6.  These attributes are 500 

release and storage seasonality, calculated following the procedure described by Markham 501 

(1970), maximum storage, mean daily release, daily release coefficient of variation (standard 502 

deviation divided by mean), and reservoir residence time. For each attribute, the reservoirs are 503 

divided into five groups based for each 20th percentile of the attribute then the nRMSEs are 504 

averaged over those reservoirs. The values that define these percentile groups are presented in 505 
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reservoirs with a seasonality index greater than 0.396 is approximately twice as large as those 513 

with low seasonality. Though the error is larger or reservoirs with high seasonality, the NSE’s 514 

between high and low seasonality reservoirs is similar. This indicates that accounting for 515 

seasonal biases in release could be enough to improve the error in highly seasonal reservoirs. The 516 

storage seasonality displays similar trends to the release seasonality but with the upper 40% 517 

having slightly worse performance.  518 

There is no trend in performance observed for reservoirs with different maximum 519 

storages; however, there is a distinct trend with mean release. Reservoirs with a high mean 520 

release perform substantially better than those with lower mean release. This occurs despite 521 

standardizing all the variables for the fitting and simulation process. However, as nRMSE is 522 

normalized with the mean release, this trend could simply be due to a smaller divisor for those 523 

reservoirs with a low mean release. The NSEs for this characteristic exhibit a slightly different 524 

pattern but with higher release reservoirs still performing the best. The difference is that the 525 

model captures the variability of the reservoirs with the lowest release almost as good as those 526 

with the highest release, but those in the middle are not as well captured. From Table 3, we can 527 

see that those in the lowest 20th percentile release less than 176 acre-feet per day, thus leading to 528 

an nRMSE average close to 100% but an average NSE near 0.6. So, while the highest release 529 

reservoirs are modeled the best for both metrics, there is less to differentiate the reservoirs in the 530 

lower 80th percentile groups.  531 

Regarding the coefficient of variation (CV), the lower 80% of reservoirs, which 532 

encompass those that have a release standard deviation up to 96% of the release mean, all 533 

perform similarly with a mean nRMSE near 50%. When the release standard deviation is greater 534 

than the mean (upper 20%), the average nRMSE is double that for reservoirs where it is less than 535 

the mean. Similar to release CV, reservoirs with low residence time have lower nRMSE than high 536 
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residence time reservoirs. The nRMSE for reservoirs with a residence time greater than 34 days, 537 

or approximately a month, is very similar and is approximately 75%.  538 

This relationship between performance and residence time is likely driven by the 539 

variation in the relationships between inflow and release. Since water is stored for a short period 540 

of time in low residence time reservoirs, the inflow and release can be highly correlated. An 541 

extreme example would be run-of-river reservoirs, where there is very little storage and thus 542 

little operational flexibility to hold water for future uses. For high residence times, especially 543 

those which hold water for more than a year on average, the relationship between inflow and 544 

release can be nearly zero. This can be seen by looking the regression parameters for high 545 

residence time reservoirs in Figure 5 that are essentially zero. After a week of simulation, the 546 

only observed information being fed to the model is the inflow and if there is no distinct 547 

relationship between inflow and release then the performance will deteriorate.  548 

To summarize, there is very little to distinguish each model by examining these 549 

attributes. There are, however, several attributes that provide insight into how the models 550 

presented here can simulate reservoir releases. In general, attributes that are related to release 551 

(seasonality, daily mean, CV, and residence time) exhibit more relationships with performance 552 

than storage-based attributes. Very high seasonality, CV, and residence time are all indicators of 553 

poorer performance than their counterparts while reservoirs with high daily mean releases tend to 554 

have better performance. 555 

In addition to the overall trends between reservoir attributes and model performance, the 556 

spatial variation in these attributes provides insight into where these models perform best. Figure 557 

7 displays the locations of the reservoirs modeled in this work where the markers are colored 558 

according to the 20th percentile groups their attributes fall in. The attribute maps in Figure 7 are 559 
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Figure 7 – Reservoir attributes 20th percentile group for each basin (1 – Columbia, 2 – Missouri, 3 – 
Colorado, 4 – Tennessee) (a) Release Seasonality, (b) Storage Seasonality, (c) Maximum Storage, (d) 
Mean Release, (e) Release CV, (f) Residence Time. 

 As depicted in Figure 7(a), the reservoirs with the highest release seasonality, and thus 563 

the worst performing, are mostly upstream tributary reservoirs in the Missouri and Colorado 564 

river basins. This indicates that though the error for these reservoirs can be relatively large, it 565 

likely does not contribute significantly to the total error in their respective basins. This contrasts 566 

with the Tennessee River basin, where the downstream reservoirs have more seasonality than 567 

upstream reservoirs. In this case, not accounting for the seasonal operational differences could 568 

contribute significantly to the total streamflow prediction error in the basin; however, since these 569 

reservoirs are only slightly seasonal as compared to those in the Missouri or Colorado River 570 

basins their performance is much better (Figure 6). Interestingly, there is very little overlap 571 

between reservoirs with high storage and release seasonality as only 20 of the 76 reservoirs are in 572 

the same 20th percentile group. 573 

The distribution of maximum reservoir storages is well dispersed across four basins. The 574 

four to six largest reservoirs in the Missouri, Colorado, and Tennessee river basins are all 575 

modeled and make up most of the reservoirs in the top 20th percentile group. Similar to the 576 

seasonalities discussed in the previous paragraph, only 18 reservoirs fall in the same percentile 577 

group between maximum storage and mean release. This dispersion contrasts with the dispersion 578 

found for the mean release, where all 15 of the reservoirs in the top 20th percentile group are in 579 

the Tennessee of Columbia River basins. Since reservoirs with higher mean daily release are 580 

modeled better, this indicates that these basins are better modeled than the Missouri and 581 

Colorado River basins.  582 

In the Columbia, Colorado, and Missouri basins, the coefficient of variation of release 583 

generally decreases as you move from upstream reservoirs to downstream reservoirs. In the 584 

Tennessee River basin, however, the release CV is much better distributed throughout the basin 585 
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with a slight trend towards increasing CV as you move downstream. As those with larger CVs are 586 

generally modeled worse than those with smaller CV’s, these trends indicate that our models 587 

predict release better for downstream reservoirs in the western basins than for the upstream 588 

reservoirs. It also indicates that performance across the Tennessee River basin is relatively 589 

consistent. 590 

As shown in Figure 6, there is a distinct relationship between residence time and model 591 

performance with lower residence time reservoirs performing better than those that hold water 592 

for longer periods. The reservoirs in the top 20th percentile in terms of residence time (greater 593 

than 436 days) all fall in either the Colorado or Missouri river basin.  In fact, 28 of the 30 594 

reservoirs in this study with a residence time greater than 127 days (approximately one third of a 595 

year) are in the Colorado and Missouri River basins with the other two in the Tennessee River 596 

basin. As these basins are largely arid (Colorado) or semi-arid (Missouri) (Zomer & Trabucco, 597 

2022), many of the reservoirs are designed to manage interannual variability in water supply thus 598 

their operational policies are less affected by their current state.  599 

The reservoirs in the Columbia River basin occupy the other side of the residence time 600 

distribution with 9 of 11 reservoirs holding water for less than 34.1 days, on average. The 601 

operations at these reservoirs are heavily dependent on the current and recent past state of the 602 

reservoir and thus the variables included in this study provide enough information to accurately 603 

characterize the release patterns. Similarly, most reservoirs in the Tennessee River basin have a 604 

residence time less than 127 days, indicating their operations are also more dependent on current 605 

and recent past data rather than over-year predictors.  606 

3.2 Model Accuracy for Varying Simulation Time Horizons 607 

The results thus far have been with respect to simulation over the testing set where only 608 

the initial state of the reservoir and the inflow time series is given, the state of the reservoir for 609 
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each subsequent time step is calculated from the previous storage and the predicted release. As 610 

the minimum length of the time series for any given reservoir is 5 years, and 20% of the data is 611 

set aside for testing, the minimum length of the time series used for simulation is 1 year. Though 612 

the minimum is 1 year, more than 50% of the reservoirs tested are simulated for more than 5 613 

years, since they have an overall time series of 25 years or more. The release parameterizations 614 

in the leaves of the models are dependent on past storage and release; therefore, there are two 615 

sources for error accumulation that, over long periods of time, can prevent the model from 616 

accurately predicting future releases. Further, in many cases it is not practical nor desirable to 617 

simulate at a daily level for periods over a year.  618 

To understand how the model performs under varying time-horizons, we reinitialize the 619 

model with observed storage and release values at daily, weekly, monthly (30 days), seasonally 620 

(90 days), and semi-annual (180 days) frequencies. Reinitialization at these frequencies allows 621 

the simulation period to be split into several smaller periods, each of which represents a time 622 

horizon of interest, while still evaluating over the entire testing period. To reinitialize, the 623 

observed storage, release, and inflow over the past week are used to calculate independent 624 

variables, rather than using the calculated storage and release from previous time steps. The past 625 

week must be used as there are independent variables that rely on seven days of data. For each 626 

subsequent time step, the remaining observed values are used until a week of releases have been 627 

predicted. For example, the seven day mean release will be for the second time step after 628 

reinitialization will be calculated using the predicted release from the previous time step and 629 

observed releases for the six days before that. For each reservoir, the percent improvement in 630 

RMSE relative to simulation with no reinitialization is calculated for these reinitialization 631 

frequencies and depicted with boxplots in Figure 8. The box and whisker plots in Figure 8 are 632 

configured in the same manner as those in Figure 2.  633 
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using data that comes from at most the previous week, a weekly reinitialization results in some 650 

observed information being present for each simulation time step. 651 

4. Discussion 652 

We propose a Piece-wise Linear Regression Tree (PLRT) for generalizing reservoir 653 

operations across four major basins and for providing an interpretable, parsimonious, and 654 

accurate model that has potential of incorporating the developed tree-based regression equations 655 

in an LSM.  The proposed PLRT is flexible in quantifying the non-linear relationship between 656 

the selected predictors and the release by assuming a local-linear form within the tree. Our 657 

approach here is to combine the available storage, release, and inflow data across all the 658 

reservoirs from the four basins and develop a tree model that learns from the similarity in 659 

operations across them. Given that the relationship is represented in a regression form within the 660 

tree, this has potential for implementation within the LSM in a simplified parameterized form 661 

that can improve streamflow estimation from LSMs for controlled basins. With trees smaller 662 

than 8 groups and regression equations built only on time-varying physical state variables, these 663 

models can simulate reservoir releases over long periods of times (mean of 5.5 years; longest 664 

simulation period is 16.7 years) with a median RMSE of approximately 51% of a reservoirs daily 665 

release values and a median NSE of 0.56. Further, as there is not a specific model for each 666 

individual reservoir, this approach can be applied to reservoirs untrained reservoirs with no 667 

modifications thus widely increasing their applicability. 668 

An additional benefit of using PLRTs is the ability to extract general lessons from the 669 

regression equations in the leaves of the tree and the splits that generate those leaves. For 670 

example, release at reservoirs with residence times less than approximately 10 days are very 671 

strongly related to the current inflow whereas most higher residence time reservoirs do not 672 

operate based on current inflow and, when they do, release decreases with increased inflow 673 
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rather than increasing. Release at these higher residence time reservoirs is also better estimated 674 

using the previous days release than lower residence time reservoirs. For reservoirs with 675 

residence times greater than 10 days, the current storage minus the past week mean storage term 676 

plays a significant role in explaining release patterns for high inflow periods. In this case, since 677 

the coefficient is positive, this term works to bring the current storage back towards the past 678 

weeks mean storage. When storage has been building up over the past week (𝑠 − �̅� > 0), 679 

this term will increase release to attempt to level off this storage increase. The opposite is true 680 

when storage has been declining over the past week. 681 

One of the limitations of this approach is the inability to encode seasonal information into 682 

the model without reducing its ability to be applied broadly to reservoirs in many different 683 

basins. This harms performance for reservoirs with highly seasonal release patterns but could 684 

largely be mitigated by post processing the model results for reservoirs with large swings in 685 

seasonal operational patterns using the monthly/seasonal mean as the model captures the daily 686 

variations well, just not the magnitude differences between seasons. Our approach seems to favor 687 

reservoirs with large mean releases even though all values are standardized to mean zero before 688 

fitting the models as both the nRMSE and NSE are significantly better for high release reservoirs 689 

than low release reservoirs. This could be due to the relative amount of variation in release 690 

patterns tends to decrease as mean release increases thus making these reservoirs slightly easier 691 

to model. This is supported by the poor performance for reservoirs with high release CV. High 692 

release reservoirs tend to be along the main stem of a river basin, thus modeling them well 693 

indicates that the overall basin discharge can be significantly improved. 694 

Finally, though the models developed here perform adequately when simulating over 695 

long periods of time, there is much that can be gained by reinitializing at the highest frequency 696 

possible or shortening the time horizon. For short term forecasts our approach with a daily data 697 
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reinitialization can model reservoirs with a median nRMSE less than 15% of a reservoirs mean 698 

release and a median NSE of 0.963. For medium range there is a slight drop off in performance 699 

to a median nRMSE of 27.4% of daily mean release and a median NSE of 0.871 when using a 700 

weekly reinitialization. There is little difference in model performance for sub-seasonal to 701 

seasonal forecasts, such as monthly and beyond.  This results primarily from the error in release 702 

estimation leading towards initial storage. In reality, for long-range forecasts, given initial 703 

storage conditions are known (Li et al., 2014), one can estimate the releases with reduced error, 704 

which could be inferred from the assimilation frequency (Figure 8).  Furthermore, in many cases 705 

the representation of reservoirs in hydrologic models results in release patterns that match reality 706 

substantially worse than the models developed here so it is possible that this generalized method 707 

is still an improvement. 708 

Though many approaches to generalized reservoir operation models require more 709 

variables than this study, including those that are difficult to find or derive such as downstream 710 

demand, upstream snow depth, or climatological variables, it is important to discuss the main 711 

data requirements as a possible limitation. To accurately determine the residence time of a 712 

reservoir, good estimates of long term mean inflow or release and long term mean storage must 713 

be available. Additionally, as a zero-mean and unit-standard deviation standardization is used for 714 

all independent and dependent variables used in the regressions, reasonable estimates of the long 715 

term means and standard deviations must be calculated, usually requiring an observed time series 716 

of at least a year. For data-scarce reservoirs, it is possible to use time-series data at coarser time 717 

scales such as monthly or yearly and downscale the mean and standard deviation to daily levels. 718 

Another way to address this would be to normalize data between 0 and 1. This could be done by 719 

only knowing the maximum values of variables and assuming the minimum is zero. However, 720 
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this would require replacing the linear regression equations with generalized linear models which 721 

could significantly increase the computational costs of fitting the model.  722 

Further, a recently published data set, ResOpsUS (Steyaert et al., 2022), could be used to 723 

increase the number of reservoirs used in the fitting process. This data set contains more than 724 

600 reservoirs with nearly 500 of them having the required time series to be used by our 725 

approach (daily time series of storage and outflow). Incorporating the reservoirs from this data 726 

set could make this model significantly more robust as the model would be able to learn from the 727 

similarities and differences in the operational patterns from a wider array of reservoirs. It would 728 

also be possible to conduct a spatial evaluation of the model, in addition to a temporal evaluation 729 

as we have done here, by leaving out a percentage of reservoirs from each basin when fitting and 730 

then testing on those left out.  We did not pursue the spatial validation in this study, as our goal is 731 

to develop a data-driven, interpretable, and parsimonious modeling approach that can facilitate 732 

developing a generalized set of reservoir release equations, which can be used in LHM for 733 

estimating the reservoir release in controlled basins. 734 

5. Summary and Conclusions 735 

We develop a Piece Wise Linear Regression Trees to learn generalized operating policies 736 

for daily release from 76 reservoirs from four major basins – Missouri, Colorado, Columbia, and 737 

Tennessee – across the coterminous US. Reservoir characteristics and daily state variables are 738 

used to group similar observations across all reservoirs, and then linear regression equations are 739 

fit to daily state variables by classifying the independent variables into different groups. Two 740 

models are identified: Model 1 (M1) that performs the best when simulating untrained records 741 

but is complex, and Model 2 (M2) that is nearly as performant as the more complex model but 742 

more parsimonious. Of the reservoir characteristics considered, long-term residence time is 743 

shown to be the most useful in grouping similar operating reservoirs, followed by reservoir 744 
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storage capacity. Release from low residence time reservoirs (less than 10 days) can be mostly 745 

described using inflow-based variables. Operations at higher residence time reservoirs are more 746 

related to previous release variables or storage variables, depending on the current inflow and 747 

storage capacity.  748 

The generalized reservoir operation model developed here represents a deviation from the 749 

current body of literature by leveraging data-driven methods to develop a single model that can 750 

predict release from many reservoirs. Fitting on many reservoirs increases the robustness of this 751 

model by learning from the wide array of operational characteristics that the reservoirs in this 752 

study represent. The models accurately and reliably predict daily reservoir operations by 753 

grouping similar reservoirs and observations and then fitting linear regression equations between 754 

reservoir state and release. Overall, the best performing reservoirs are those with lower residence 755 

times or high daily mean release. A particular benefit of this approach is having the potential to 756 

apply the model to reservoirs not in the training set. The ability of these models to extract general 757 

operational characteristics from similar reservoirs and reservoir states should allow the models to 758 

accurately predict release from untrained reservoirs.  759 

As the models developed here can be decomposed into a set of Boolean decisions and 760 

regression equations, it is possible to extract information from the trees that can be used to 761 

further improve this, or other, reservoir modeling method(s). General lessons from the optimal 762 

models can be applied without the need to use the full PLRT models developed here. Similarly, 763 

comparing the operational policies learned here with water supply manuals for certain reservoirs 764 

could provide insight on how to further develop generalized reservoir operation models and 765 

should be considered in future studies.  766 
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6. Availability Statement 767 

The Piecewise Linear Regression Tree (PLRT) source code can be found on Zenodo at 768 

https://zenodo.org/record/7650071 or on GitHub at https://github.com/lcford2/py-plrt. 769 

Additionally, it can be installed using the Python package manager “pip” using the package 770 

name “py-plrt”. The code used to perform all analysis, the data used, and the model results can 771 

be found on GitHub at https://github.com/lcford2/predict-release.  772 
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