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Abstract

Motivated by applications in unmanned aerial based ground penetrating radar for detecting buried landmines, we consider the

problem of imaging small point like scatterers situated in a lossy medium below a random rough surface. Both the random rough

surface and the absorption in the lossy medium significantly impede the target detection and imaging process. Using principal

component analysis we effectively remove the reflection from the air-soil interface. We then use a modification of the classical

synthetic aperture radar imaging functional to image the targets. This imaging method introduces a user-defined parameter,

δ, which scales the resolution by [?]δ allowing for target localization with sub wavelength accuracy. Numerical results in two

dimensions illustrateWe study imaging methods for identifying point targets in a lossy medium below a random rough surface.

the robustness of the approach for imaging multiple targets. However, the depth at which targets are detectable is limited due

to the absorption in the lossy medium.

1



manuscript submitted to Radio Science

Synthetic aperture radar imaging below a random1

rough surface2

Arnold D. Kim and Chrysoula Tsogka3

Department of Applied Mathematics, University of California, Merced, 5200 North Lake Road, Merced,4

CA 95343, USA5

Key Points:6

• We study imaging methods for identifying point targets in a lossy medium below7

a random rough surface.8

• We effectively remove ground bounce signals in measurements using principal com-9

ponent analysis, i.e., the singular value decomposition of the measurement data10

matrix.11

• The imaging method that follows ground bounce removal is based on the tradi-12

tional Kirchhoff migration method.13

• We apply a transformation to Kirchhoff migration to obtain tunably high-resolution14

images of small targets.15

• We show that this method effectively images multiple targets, but is depth-limited16

due to absorption in the medium.17
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Abstract18

Motivated by applications in unmanned aerial based ground penetrating radar for de-19

tecting buried landmines, we consider the problem of imaging small point like scatter-20

ers situated in a lossy medium below a random rough surface. Both the random rough21

surface and the absorption in the lossy medium significantly impede the target detec-22

tion and imaging process. Using principal component analysis we effectively remove the23

reflection from the air-soil interface. We then use a modification of the classical synthetic24

aperture radar imaging functional to image the targets. This imaging method introduces25

a user-defined parameter, δ, which scales the resolution by
√
δ allowing for target local-26

ization with sub wavelength accuracy. Numerical results in two dimensions illustrate the27

robustness of the approach for imaging multiple targets. However, the depth at which28

targets are detectable is limited due to the absorption in the lossy medium.29

1 Introduction30

Landmine detection using unmanned aerial based radar is gaining attention because31

it provides high resolution images while avoiding the interaction with the object and the32

surrounding medium (Fernández et al., 2018; Francke & Dobrovolskiy, 2021). Those imag-33

ing systems use synthetic aperture radar (SAR) processing to achieve high resolution imag-34

ing of both metallic and dielectric targets. In SAR, high resolution is achieved because35

the data are treated coherently along the flight path of a single transmitter/receiver mounted36

on an aircraft. For landmine detection, SAR image processing is used and the data are37

coherently processed along the synthetic aperture formed by an unmanned aerial vehi-38

cle flying above the ground over the area of interest. Other related remote sensing ap-39

plications include precision agriculture, forestry monitoring and glaciology.40

Landmine detection is a very important problem with both civilian and military41

applications. It has been a subject of extreme interest and several imaging methodolo-42

gies have been proposed in the literature. We refer to the review article (Daniels, 2006)43

for an overview on the subject and to (González-Huici et al., 2014) for a comparison be-44

tween different imaging techniques in the specific context of landmine detection. The method45

we employ here is a modification of the classical SAR processing technique. Specifically46

we apply to the classical imaging functional a Möbius transformation that depends on47

a user defined parameter, δ. Assuming a synthetic aperture of length a, and system band-48

width B, we have recently shown (Kim & Tsogka, 2023c) that the resolution of the imag-49

ing method in cross-range (the direction parallel to the synthetic aperture) is
√
δλL/a50

and the range (direction orthogonal to cross-range) resolution is
√
δc/B with c the speed51

of the waves, λ the central wavelength and L the distance of propagation. We have also52

carried out a resolution analysis of this method for imaging in a lossy medium (Kim &53

Tsogka, 2023a) where we have shown that one should not use the absorption in the medium54

even if it is known. Although, absorption does not affect significantly the resolution of55

the imaging method, it does affect the target detectability. Specifically, if z denotes the56

depth of the target below the air-soil interface, the product βz corresponds to the ab-57

sorption length scale of the problem with β denoting the loss tangent, that is the ratio58

of the imaginary part over the real part of the relative dielectric constant. For targets59

buried deep so that βz � 1 measurements become too small to detect targets, espe-60

cially if the data are corrupted by additive measurement noise as is often the case in prac-61

tical applications.62

For a sufficiently long flight path, the air-soil interface is most likely not uniformly63

flat. Moreover, height fluctuations in this interface cannot be known with certainty. For64

this reason we model this interface using a random rough surface. It then becomes cru-65

cially important for a subsurface imaging method to be robust to those uncertainties in66

the interface. Additionally, there may be multiple interactions between scattering by sub-67

surface targets and the random rough surface (Long et al., 2010). Here, we assume only68
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one interaction between the random rough surface and the subsurface target since that69

has been shown to be sufficiently accurate for targets buried in a lossy medium (El-Shenawee,70

2002).71

We model the height of the air-soil interface h(x) using a Gaussian-correlated ran-72

dom process that is characterized by the RMS height, hRMS and the correlation length,73

`. We consider here that the RMS height is small with respect to the correlation length74

which is of the order of the central wavelength while the aperture is large compared to75

both. In this regime, multiple-scattering effects are important and enhanced backscat-76

tering is observed. Enhanced backscattering is a multiple scattering phenomenon in which77

a well-defined peak in the retro-reflected direction is observed (Maradudin et al., 1991;78

Ishimaru, 1991; Maradudin & Méndez, 2007). Imaging in media with random rough sur-79

faces is a new paradigm for imaging in random media and requires different methods than80

the ones developed for volumetric scattering (Borcea et al., 2011) or imaging in random81

waveguides (Borcea et al., 2015). The key difference here is that randomness is isolated82

only at the interface separating the two media. Even though waves multiply scatter on83

the rough surface, they also scatter away from the rough surface. Consequently, there84

is no dominant cumulative diffusion phenomenon due to this kind of randomness.85

For the synthetic aperture setup the measurements are exactly in the retro-reflected86

direction so the data have uniform power at each spatial location along the flight path.87

To remove the strong reflection introduced by the ground-air interface we use PCA or88

more precisely the singular value decomposition (SVD) of the data matrix. Principal com-89

ponent analysis (PCA) has been proposed as a method for removing ground bounce sig-90

nals in (Tjora et al., 2004). For a flat surface the ground bounce can be removed from91

the data by taking out the contribution corresponding to the first singular value. Here92

we see that due to multiple scattering to remove the reflection from the random inter-93

face contributions corresponding to the first few singular values should be taken out from94

the data. This SVD based approach for ground bounce removal is advantageous because95

it does not require any a priori information about the media, including the exact loca-96

tion of the interface.97

Our imaging method requires computing Green’s function for a medium composed98

of adjacent half spaces. This Green’s function is represented as a Fourier integral of a99

highly oscillatory function. Accurately computing such integrals is quite challenging and100

several approaches have been proposed to this effect (Cai, 2002; ONeil et al., 2014; Bruno101

et al., 2016). The approach we follow here is similar to the method presented by Bar-102

nett and Greengard (Barnett & Greengard, 2011), where we integrate on a deformed con-103

tour in the complex plane to avoid branch points.104

The remainder of the paper is as follows. In Section 2 we present the synthetic aper-105

ture radar setup. In Section 3 our model for the rough surface is described as well as the106

integral equations formulation for computing the solution to the forward problem. The107

algorithm for computing the measurements is then explained in Section 4. The solution108

of the inverse scattering problem entails two steps. The first step that uses the singu-109

lar value decomposition of the data matrix to remove the ground bounce is presented110

in Section 5. The second step consists in reconstructing an image using the modified syn-111

thetic aperture imaging algorithm and is explained in Section 6. We present numerical112

results in two dimensions that illustrate the effectiveness of the imaging method in Sec-113

tion 7. We finish with our conclusions in Section 8.114

2 SAR imaging115

Here we describe the SAR imaging system for the problem to be studied. We limit116

our computations to the two-dimensional xz-plane to simplify the simulations. However,117

the imaging method we describe easily extends to three-dimensional problems.118
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Consider a platform moving along a prescribed flight path. At fixed locations along119

the flight path: xn = (xn, zn) for n = 1, . . . , N , the platform emits a multi-frequency120

signal that propagates down to an interface that separates the air where the platform121

is moving from a lossy medium below the interface. See Fig. 1 for a sketch of this imag-122

ing system. Let ωm for m = 1, . . . ,M denote the set of frequencies used for emitting123

and recording signals. We apply the start-stop approximation here in which we neglect124

the motion of the platform and targets in comparison to the emitting and recording of125

signals. The complete set of measurements corresponds to the suite of experiments con-126

ducted at each location on the path.127

flight path

air

lossy medium
targets

interface

Figure 1: A sketch of the subsurface synthetic aperture imaging system. A platform
moves along a prescribed flight path producing a synthetic aperture above an interface
separating air from a lossy medium. The platform emits a signal and records the echoes
including ground bounce signals due to reflections by the interface and scattered signals
by the targets. The objective for the imaging problem is to identify and locate the subsur-
face targets.

For this problem, the signal emitted from the platform propagates down to the in-128

terface. Part of the signal is reflected by the interface which is called the ground bounce129

signal. The portion of that ground bounce signal that reaches the platform is recorded.130

Another part of the signal is transmitted across the interface and is incident on the sub-131

surface targets which then scatter that signal. Since the medium below the interface is132

lossy, the power in the signals incident on and scattered by the targets is attenuated. A133

portion of that attenuated scattered signal is transmitted across the interface and prop-134

agates up to the platform where it is also recorded. Measurements are therefore com-135

prised of ground bounce and scattered signals reaching the platform.136

Using these measurements we seek to solve the inverse scattering problem that iden-137

tifies and locates targets in the lossy medium below the interface. The medium above138

the interface is uniform and lossless and we assume that it is known. The medium be-139

low is also uniform, but lossy, so it has a complex relative dielectric permittivity. We as-140

sume we know the real part of the relative dielectric permittivity, but not its imaginary141

part corresponding to the absorption in the medium. Finally, the interface between the142

two media is unknown, but we assume that we know its mean, which is constant.143

There are several key challenges to consider for this problem. Measurements in-144

clude ground bounce and scattered signals. The ground bounce signals have more power145

than the scattered signals, but do not contain information about the targets. Thus, one146

needs an effective method to remove the ground bounce from measurements. Because147

the interface is uncertain, it is important to remove these ground bounce signals with-148
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out requiring explicit knowledge of the interface location. Once that issue can be ade-149

quately addressed, we then require high-resolution images of the targets in an unknown,150

lossy medium obtained through solution of the inverse scattering problem. The absorp-151

tion in the medium will limit the depth at which one can reliably solve the inverse scat-152

tering problem. However, we are interested in identifying targets that are located super-153

ficially below the interface, so the penetration depths needed for this problem are not154

too prohibitive. In addition, measurements are corrupted by additive measurement noise.155

Another noteworthy issue is that removal of the ground bounce signal from measurements156

will effectively increase the relative amount of noise in what remains which will limit the157

values of the signal-to-noise ratio (SNR) for which imaging will be effective.158

3 Rough surface scattering159

We model uncertainty in the interface separating the two media using random rough160

surfaces. In particular, we consider Gaussian-correlated random surfaces that are char-161

acterized by the RMS height, hRMS and the correlation length, `. In what follows, we162

give the integral equation formulation for computing reflection and transmission of sig-163

nals across one realization of a random rough surface.164

Let z = h(x) for −∞ < x < ∞ denote one realization of the random rough sur-165

face separating two different media. The medium in z > h(x) is uniform and lossless.166

The medium in z < h(x) is also uniform, but lossy with relative dielectric constant εr(1+167

iβ) with εr denoting the real part of the relative dielectric constant and β ≥ 0 denot-168

ing the loss tangent (ratio of the imaginary part over the real part of the relative dielec-169

tric constant). We consider two problems in which a point source is either above or be-170

low the interface. In what follows we assume that the total field and its normal deriva-171

tive are continuous on z = h(x) and that those fields satisfy appropriate out-going con-172

ditions as z → ±∞.173

3.1 Integral equations formulation174

Suppose a point source is located at (x0, z0) with z0 > h(x0). Using Green’s sec-
ond identity, we write

u(x, z) = G0(x, z;x0, z0) + D0[U ](x, z)−S0[V ](x, z), z > h(x), (1)

with

D0[U ](x, z) =

∫ ∞
−∞

∂G0(x, z; ξ, h(ξ))

∂n

√
1 + (h′(ξ))2U(ξ)dξ,

and

S0[V ](x, z) =

∫ ∞
−∞

G0(x, z; ξ, h(ξ))V (ξ)dξ.

Here,

G0(x, z;x′, z′) =
i

4
H

(1)
0

(
k0

√
(x− x′)2 + (z − z′)2

)
,

with k0 = ω/c and

∂G0(x, z; ξ, ζ)

∂n

√
1 + (h′(ξ))2 = h′(ξ)

∂G0(x, z; ξ, ζ)

∂ξ
− ∂G0(x, z; ξ, ζ)

∂ζ
. (2)

In addition, we have

v(x, z) = −D1[U ](x, z) + S1[V ](x, z), z < h(x), (3)

with D1 and S1 defined the same as D0 and S0, but with G0 replaced with

G1(x, z;x′, z′) =
i

4
H

(1)
0

(
k1

√
(x− x′)2 + (z − z′)2

)
,
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and k1 = k0

√
εr(1 + iβ). Now, suppose a point source is located at (x1, z1) with z1 <

h(x1). For that case we have

u(x, z) = D0[U ](x, z)−S0[V ](x, z), z > h(x), (4)

and
v(x, z) = G1(x, z;x1, z1)−D1[U ](x, z) + S1[V ](x, z), z < h(x). (5)

The fields u defined by either (1) or (4), and v defined by either (3) or (5) are given
in terms of surface fields U(ξ) and V (ξ). Physically, U(ξ) = u(ξ, h(ξ)) is the evalua-
tion of the field on the interface point, (ξ, h(ξ)). The field V (ξ) is defined in terms of the
normal derivative of u according to

V (ξ) =
√

1 + (h′(ξ))2
∂u(ξ, h(ξ))

∂n
= h′(ξ)

∂u(ξ, ζ)

∂ξ
− ∂u(ξ, ζ)

∂ζ
.

These formulations given above make use of the aforementioned assumption that both175

u and ∂nu are continuous on the interface z = h(x).176

The surface fields U and V are not yet determined. To determine them we eval-
uate u and v in the limit as (x, z) → (ξ, h(ξ)) from above and below, respectively. In
that limit, the D0 and D1 operators produce a jump and the result is a system of bound-
ary integral equations. For the fields defined by (1) and (3), the resulting system is

1

2
U(ξ)−D0[U ](ξ) + S0[V ](ξ) = G0(ξ, h(ξ);x0, z0), (6a)

1

2
U(ξ) + D1[U ](ξ)−S1[V ](ξ) = 0, (6b)

and for the fields defined by (4) and (5), the resulting system is

1

2
U(ξ)−D0[U ](ξ) + S0[V ](ξ) = 0, (7a)

1

2
U(ξ) + D1[U ](ξ)−S1[V ](ξ) = G1(ξ, h(ξ);x1, z1). (7b)

The solution of each of these systems results in the determination of U and V for their177

respective problem. Once those are determined, the fields above and below the interface178

are computed through evaluation of (1) and (3) when the source is above the interface,179

or (4) and (5) when the source is below the interface. We give the numerical method we180

use to solve these systems in the Appendix.181

3.2 Enhanced backscattering182

The bistatic cross-section σ(θs, θi) is the fraction of power reflected in the far field183

by the rough surface in direction (sin θs, cos θs) with θs denoting the scattered angle made184

with respect to the z-axis due to a plane wave incident in direction (sin θi,− cos θi) with185

θi denoting the angle of incidence. Reflection by the random rough surface makes up an186

important component of measurements in this imaging problem. Here, we use the bistatic187

cross-section to characterize reflection by the rough surface over the range of frequen-188

cies: 3.1 GHz to 5.1 GHz. We use the method given in (Tsang et al., 2004, Chapter 4)189

to generate these rough surfaces and compute the corresponding bistatic cross-sections.190

We then average over several realizations of the rough surface to determine canonical fea-191

tures of these rough surfaces.192

In Fig. 2 we show the bistatic cross-section due to a plane wave with θi = 30 de-193

grees averaged over 100 realizations of a Gaussian-correlated rough surface with RMS194

height hRMS = 0.2 cm and correlation length ` = 8 cm. These results show a sharp195

angular cone about θs = θi as a consequence of enhanced backscattering. Enhanced196
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Figure 2: [Left] Average of the bistatic cross-section, 〈σ(θs, θi)〉, over 100 realizations of
a Gaussian-correlated random rough surface with hRMS = 0.2 cm and ` = 8 cm due to a
plane wave incident with θi = 30 degrees. [Right] A close-up of this result about θs = θi.

backscattering is a canonical multiple scattering phenomenon in which counter-propagating197

scattered waves add coherently in the retro-reflected direction, θs = θi.198

With these surface roughness parameters, we find that scattering by the random199

rough surface is significant and cannot be ignored. Because these rough surfaces exhibit200

enhanced backscattering, there is significant multiple scattering. Moreover, SAR mea-201

surements use a single emitter/receiver, so we measure the field exactly at the retro-reflected202

angle corresponding to the peak of the angular cone. However, we do not care to recon-203

struct this rough surface profile for this imaging problem. Rather, we seek a method that204

attempts to identify and locate targets without needing to consider this rough surface.205

Nonetheless, scattering by the rough surface will be an important factor in the measure-206

ments.207

4 Modeling measurements208

In this work we consider scattering by subsurface point targets. This assumption209

simplifies the modeling of measurements which, in turn, enables the determination of the210

effectiveness of a subsurface imaging method. We consider imaging point targets here211

as a necessary first problem for any effective imaging method to solve.212

To model measurements we must consider both the ground bounce signal that is213

the reflection by the rough surface, and the scattered signal by the targets. Assuming214

that scattering by each target is independent from any others, we give the procedure we215

use to model measurements for a single point target located at (x1, z1) below due to a216

point source located at (x0, z0).217

1. Compute one realization of the Gaussian-correlated rough surface, z = h(x), with218

RMS height hRMS and correlation length `.219

2. Solve the system (6). Let U0 and V0 denote the solution.220

3. Compute the ground-bounce signal, R, through evaluation of

R = D0[U0](x0, z0)−S0[V0](x0, z0).

This expression is the field reflected by the rough surface evaluated at the same221

location as the source.222

4. Solve the system (7). Let U1 and V1 denote the solution.223

5. Compute the field scattered by the point target, S, through evaluation of

S = (D0[U1](x0, z0)−S0[V1](x0, z0)) ρ (−D1[U0](x1, z1) + S1[V0](x1, z1)) .
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There are three factors in this expression written in right-to-left order just like ma-224

trix products. The third factor corresponds to the field emitted from the source225

that transmits across the interface and is incident on the target. The second fac-226

tor is the reflectivity of the target ρ. The first factor is the propagation of the sec-227

ond and third terms from the target location to the receiver location.228

Steps 2 through 5 of this procedure are repeated over each frequency ωm for m = 1, . . . ,M229

and each spatial location of the platform xn for n = 1, . . . , N . The results are M×N230

matrices R and S. When there are multiple targets, we repeat Steps 4 and 5 for each231

of the targets and S is the sum of those results.232

Using this procedure above, we model measurements according to

D = R+ S + η, (8)

with η denoting additive measurement noise which we model as Gaussian white noise.233

The inverse scattering problem is to identify targets and determine their locations from234

the data matrix D.235

5 Ground bounce signal removal236

According to measurement model (8), the ground bounce signal R is added to the237

scattered signal S. The ground bounce signal does not contain any information about238

the targets. Since we do not seek to reconstruct the interface for this imaging problem,239

R impedes the solution of the inverse scattering problem. Hence, we seek to remove it240

from measurements.241

The key assumption we make is that the relative amount of power in R is larger242

than that in S. This assumption opens the opportunity to use principal component anal-243

ysis to attempt to remove R from D. Let D = UΣV H denote the singular value de-244

composition of D where V H denotes the Hermitian or conjugate transpose of V . Because245

of uncertainty in the interface, we are not able to explicitly determine the structure of246

the singular values σj for j = 1, . . . ,min(M,N) in the M ×N diagonal matrix Σ. In-247

stead we seek to observe any changes in the spectrum of singular values that indicate248

a separation between contributions by R and S.249

Consider M = 25 frequencies uniformly sampling the bandwidth ranging from 3.1250

GHz to 5.1 GHz and N = 21 spatial locations of the platform uniformly sampling the251

aperture a = 1 m at 1 m above the mean interface height 〈h(x)〉 = 0. We set εr = 9252

and β = 0.1. Using one realization of a rough surface with hRMS = 0.2 cm and ` = 8253

cm, we compute R. Then we compute the SVD of R and examine the singular values.254

In Fig. 3 we show results for one realization of the Gaussian-correlated rough sur-255

face with hRMS = 0.2 cm and ` = 8 cm shown in the left plot and the corresponding256

singular values (normalized by the first singular value, σ1) for the resulting ground bounce257

signals in the right plot. Note that this realization of the rough surface is one among those258

used to study the bistatic cross-section in Fig. 2 which exhibited enhanced backscatter-259

ing. Consequently, we know that the ground bounce signals include strong multiple scat-260

tering by the rough surface.261

Looking at the singular values in Fig. 3 we identify a change in behavior in their262

decay. From j = 1 to j = 5, we find that σj decays rapidly over two orders of magni-263

tude. In contrast, from j = 6 to j ≈ 15, we find that the decay of σj is much slower264

and then decays thereafter. We have observed that this qualitative behavior of the sin-265

gular values persists over different realizations.266

Through these observations of the behavior of singular values for R, we now pro-267

pose a method to approximately remove R from D given as the following procedure.268
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Figure 3: [Left] One realization of the Gaussian-correlated random rough surface with
hRMS = 0.2 cm and ` = 8 cm with k0 denoting the wavenumber at the central frequency.
[Right] The singular values of the ground bounce signals by this rough surface normalized
by the first singular value σ1.

1. Compute the SVD of the measurement matrix D = UΣV H .269

2. Identify the index j∗ where the rapid decay of the singular values stops and the270

behavior changes.271

3. Compute

D̃ = D −
j∗∑
i=1

σiuiv
H
i , (9)

where ui and vi denote the i-th columns of U and V , respectively.272

It is likely that this procedure does not remove R from D exactly. However, we apply273

this procedure to obtain D̃ and test below if this procedure works well enough for iden-274

tifying and locating targets.275

Note that measurement noise is applied to D = R+ S. The corresponding SNR276

is defined according to SNR = 10 log10(‖R+S‖F /‖η‖F ) with ‖·‖F denoting the Frobe-277

nius norm. This SNR is dominated by R since ‖R‖F � ‖S‖F . When we remove R from278

D, there will be an effective SNR (eSNR = 10 log10(‖S‖2F /‖η‖2F )) based on S which279

will be much lower. For this reason, we see that this subsurface imaging problem is more280

sensitive to noise than other imaging problems where ground bounce signals are not present.281

6 Kirchhoff migration imaging282

Consider a sub-region of z < h(x) where we seek to form an image. We call this
sub-region the imaging window (IW). Let (x, z) ∈ IW denote a search point in the IW.
To form an image which identifies targets and gives estimates for their locations, we eval-
uate the KM imaging functional,

IKM(y) =

∣∣∣∣∣
M∑
m=1

N∑
n=1

d̃mna
∗
mn(x, z)

∣∣∣∣∣ , (10)

over a mesh of grid points sampling the IW. Here d̃mn is the (m,n) entry of the matrix283

D̃ and amn(x, z) are called the illuminations. The superscript ∗ denotes the complex con-284

jugate. The illuminations effectively back-propagate the data so that the resulting im-285

age formed shows peaks on the target locations.286
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6.1 Computing illuminations287

To compute the illuminations amn(x, z) we first note that we do not know the in-
terface z = h(x) nor do we seek to reconstruct it. However, we assume that 〈h(x)〉 =
0 is known, so we consider the interface z = 0 instead. Additionally, we do not know
the loss tangent β that dictates the absorption in the lower medium. In fact, we have
shown previously that making use of any knowledge of the absorption is not useful for
imaging to identify and locate targets (Kim & Tsogka, 2023a). However, we assume that
εr is known. With these assumptions, we write

amn(x, z) = φ(0)
mn(x, z)φ(1)

mn(x, z). (11)

Here, φ
(0)
mn(x, z) corresponds to the field on (x, z) due to a point source with frequency288

ωm located at xn whose amplitude is normalized to unity. The quantity φ
(1)
mn(x, z) is the289

field with frequency ωm evaluated on xn due to a point source at (x, z) whose amplitude290

is normalized to unity.291

Using Fourier transform methods, we find that the field u(0) evaluated on (x, z) due
to a point source with frequency ωm located at xn = (xn, zn) is

u(0) =
i

2π

∫
ei(q0zn−q1z)

q0 + q1
eiξ(x−xn)dξ, (12)

with q0 =
√
ω2
m/c

2 − ξ2 and q1 =
√
εrω2

m/c
2 − ξ2. Similarly, we find that the field

u(1) evaluated on (xn, zn) due to a ponit source with frequency ωm located at (x, z) is

u(1) =
i

2π

∫
ei(q0zn−q1z)

q0 + q1
eiξ(xn−x)dξ. (13)

Upon computing u(0) and u(1), we evaluate φ
(0)
mn = u(0)/|u(0)| and φ

(1)
mn = u(1)/|u(1)|.292

Both u(0) and u(1) are integrals of the form,

I =

∫ ∞
−∞

f(ξ)√
k2

0 − ξ2 +
√
k2

1 − ξ2
eiβ1

√
k20−ξ2+iβ2

√
k21−ξ2eiξγdξ, (14)

with k1 = k0
√
εr, and β1, β2, and γ denoting real parameters. The wavenumbers k0

and k1 are real, and we assume that |k0| < |k1|. This Fourier integral, which is one ex-
ample of a Sommerfeld integral, is notoriously difficult to compute due to the highly os-
cillatory behavior of the function inside the integral. There have been several approaches
to compute this Fourier integral accurately (Cai, 2002; ONeil et al., 2014; Bruno et al.,
2016). To compute (14), we follow (Barnett & Greengard, 2011) and integrate on a de-
formed contour in the complex plane to avoid branch points. Here, we use the deformed
contour

ξ(s) = s+ iA
[
e−w(s+k0)2 + e−w(s+k1)2 − e−w(s−k0)2 − e−w(s−k1)2

]
,

with −∞ < s <∞, and A and w denoting user-defined parameters. Integration is taken293

with respect to s over a truncated, finite interval chosen so that the truncation error is294

smaller than the finite precision arithmetic. In the simulations that follow, we have used295

500 quadrature points with A = 0.4 and w = 6. We also use the suggestion in (Barnett296

& Greengard, 2011) of applying the mapping s = sinh(β) with −∞ < β <∞ to clus-297

ter quadrature points in the interval (−k0, k0).298

6.2 Modified KM299

We have recently developed a modification to KM that allows for tunably high-resolution
images of individual targets (Kim & Tsogka, 2023c). Suppose that we have evaluated
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Figure 4: Singular values of the matrix D. These measurements include the ground
bounce signals by one realization of a Gaussian-correlated rough surface with hRMS = 0.2
cm and ` = 8 cm. Additionally, they include scattering by a point target located at
(2,−8) cm with ρ = 3.4i. Measurement noise has been added so that SNR = 24.2 dB.

(10) and identified a target. In a region about that target, we normalize IKM so that its
peak value is 1. Let ĪKM denote the normalization of IKM in this region. With this nor-
malized image, we compute the following Möbius transformation,

IKM
δ (y) =

δ

1− (1− δ)ĪKM(y)
, (15)

with δ > 0 denoting a user-defined tuning parameter. We call the resulting image formed300

with (15) the modified KM image. In the whole space, we have determined that this mod-301

ified KM method scales the resolution of KM by
√
δ. Because δ is a user-defined quan-302

tity, it can be set to be arbitrarily small. It is in this way that IKM
δ produces tunably303

high-resolution images of targets.304

7 Numerical results305

We now present numerical results where we have (i) simulated measurements us-306

ing the procedure given in Section 4, (ii) removed the ground bounce signal using the307

procedure given in Section 5, and then produced images through evaluation of the KM308

and modified KM imaging functions given in Section 6.309

Just as we have done for the results shown in Section 5, we have used M = 25310

frequencies uniformly sampling the bandwidth ranging from 3.1 GHz to 5.1 GHz and N =311

21 spatial locations of the platform uniformly sampling the aperture a = 1 m situated312

1 m above the average interface height 〈h(x)〉 = 0. We set εr = 9 and β = 0.1 as sug-313

gested by Daniels for modeling buried landmines (Daniels, 2006). We compute imaging314

results for one realization of a Gaussian-correlated rough surface that has hRMS = 0.2315

cm and ` = 8 cm.316

7.1 Single target317

Let the origin of a coordinate system correspond to the center of the flight path318

in the x-coordinate and the mean surface height 〈h(x)〉 = 0 in the z-coordinate as shown319

in Fig. 1. We compute images for a target located at (2,−8) cm with reflectivity ρ =320

3.4i. Measurement noise is added to the simulated measurements so that SNR = 24.2321

dB.322

Figure 4 shows the singular values for the data matrix D normalized by the first323

singular value. Similar to what we observed in Section 5 with the ground bounce signals,324
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Figure 6: Real part of the entries of (a) the data matrix D, (b) the ground bounce sig-
nals R, (c) the scattered signals S, and (d) the matrix D̃ with the contributions from the
first 5 singular values removed.

we find that the first 5 singular values decay rapidly. The singular values σj for j > 5325

show a different behavior. Thus, we apply the ground bounce removal procedure given326

in Section 5 using j∗ = 5.327

We show real part of the data matrix D in the top left plot of Fig. 6. In the top328

right plot of Fig. 6 we show the real part of the ground bounce signals in R. Note that329

the plots for D and R are nearly indistinguishable consistent with our assumption that330

the ground bounce signals dominate the measurements. In the bottom left plot of Fig. 6331

we show the real part of the scattered fields in S. Note that those values in S are nearly332

2 orders of magnitude smaller than those of R. The bottom right plot shows the real part333

of D̃ resulting from removing the contributions from the first j∗ = 5 singular values.334

While the magnitudes of the values in S and D̃ are comparable, they appear qualitatively335

different from one another. Thus, it is unclear from these results whether or not D̃ con-336

tains information regarding the target.337

In Fig. 7 we apply KM (center plot) and the modified KM with δ = 10−2 (right338

plot) to D̃. For reference, we have also included the result of applying KM to S in the339

left plot of Fig. 7. This ideal case represents exact ground bounce removal. Despite the340

fact that the results for S and D̃ in Fig. 6 were not qualitatively similar, the correspond-341

ing KM images in Fig. 7 are quite similar in the vicinity of the target and show peaks342

about the target location, (2,−8)cm. The peak of the KM image (center) is accompa-343

nied by several imaging artifacts away from the target location. In contrast, by apply-344

ing the modified KM method we eliminate those artifacts and obtain a high resolution345

image of the target. We note that the predicted location determined from where the KM346

and modified KM images attain their peak value on the meshed used to plot them is (1.5,−8.2)347

cm, which is slightly shifted from the true location. Nonetheless, this result is quite good348

given the uncertainty in the surface, the inexact method for ground bounce removal, un-349

known absorption, and substantial measurement noise in the system.350
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Figure 7: [Left] The ideal imaged formed through evaluation of the KM imaging function
(10) applied to the scattered signals contained in S. [Center] The image formed through
evaluation of (10) applied to D̃. [Right] The imaged formed through evaluation of the
modified KM imaging function (15) with δ = 10−2 applied to the KM image in the center.
In each of the plots, the exact target location is plotted as a red “�” symbol.

The unknown absorption puts a depth limitation on imaging targets. When the351

target depth is comparable to the absorption length, the imaging method is not able to352

distinguish between the true target and a weaker target less deep in the medium. We353

have observed this phenomenon with optical diffusion (González-Rodŕıguez et al., 2018).354

Here, uncertainty in the rough surface complicates this situation even further. In Fig. 9355

we show KM and modified KM (δ = 10−2) images for a target located at (2,−12) cm356

(top row) and for a target located at (2,−16) cm. As the target is placed deeper into357

the medium, we observe an increase in the KM imaging artifacts. For the target located358

12 cm below the surface, we find that these imaging artifacts contain the peak value of359

the function and the target is no longer identifiable in the image. The modified KM im-360

ages clearly show this behavior.361

The inability of the imaging method to identify targets deep in the medium is ei-362

ther due to the absorption, the uncertainty of the rough surface, some combination of363

these, or possibly other factors. In Fig. 10 we show the resulting image for a target lo-364

cated at (2,−16) cm with the reduced loss tangent, β = 0.05. All other parameters are365

the same as those used in the previous images. With this reduced loss tangent, we find366

that KM and the modified KM are clearly able to identify the target. From this result367

we conclude that the absorption is the main factor limiting the range of target depths368

for this imaging method.369

As we explained above, when we remove ground bounce signals, we introduce an370

effective SNR (eSNR) that is important for subsurface imaging. We expect that KM will371

be effective as long as eSNR > 0 dB. For the results shown in Fig. 7, SNR = 24.2 dB372

and eSNR = 3.0 dB. The resulting image clearly identifies the target and accurately373

predicts its location. In contrast, we show results for SNR = 14.2 dB and eSNR = −7.0374

dB in Fig. 11. This image has several artifacts that dominate over any peak formation375

about the target location. It is important to note that the eSNR that we use here can-376

not be estimated a priori. This result demonstrates that SNR demands on imaging sys-377

tems are higher for subsurface imaging problems than other imaging problems that do378

not involve ground bounce signals.379

7.2 Multiple targets380

We now consider imaging regions with 3 targets. Target 1 is located at (−9.0, 10.1)381

cm with reflectivity ρ1 = 3.6i, target 2 is located at (1.0,−9.4) cm with reflectivity ρ2 =382

3.4i and target 3 is located at (11.0,−9.8) cm with reflectivity ρ3 = 3.6i. The measure-383

ments were computed using the procedure given in Section 4. Measurement noise has384

been added so that SNR = 24.2 dB.385
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Figure 9: [Left] The imaged formed through evaluation of the KM imaging function (10).
The exact target location is plotted as a red “�” symbol. [Right] The imaged formed
through evaluation of the modified KM imaging function (15) with δ = 10−2. The top
row is for a target located at (2,−12) cm and the bottom row is for a target located at
(2,−16) cm.

The result from evaluating the KM imaging function (10) for this problem is shown386

in the left figure of Fig. 12. The corresponding result from evaluating the modified KM387

imaging function (15) with δ = 10−2 is shown in the right plot of Fig. 12. These im-388

ages show that the method is capable of identifying the three targets and give good pre-389

dictions for their locations.390

The result from the modified KM method does not show the three targets equally391

clearly. In fact, the peak formed near target 2 is the strongest in the KM image, so the392

result for the modified KM image shows target 2 most clearly. This is because the nor-393

malization of the KM image required for evaluating the modified KM image is based on394

target 2. As an alternative, we consider 5 cm× 5 cm sub-regions about each of the peaks395

of the KM image. Within each of those sub-regions, we normalize the KM image and396

evaluate the modified KM image with δ = 10−2. Those results are shown in Fig. 13.397

Each of those sub-region images is centered about the corresponding exact target loca-398

tion and scaled by the central wavenumber k0. Even though the predicted target loca-399

tions are shifted from the exact target location, these results show that these shifts are400

small fractions of the central wavelength.401

These results show that this imaging method is capable of identifying multiple tar-402

gets. However, there are limitations. The targets cannot be too close to one another due403

to the finite resolution of KM imaging. Moreover, due to absorption in the medium, there404

are depth limitations to where targets can be identified. Additionally, when there are405
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Figure 10: The same as Fig. 9(b) except that the absorption is reduced from the previous
results with β = 0.05.
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Figure 11: [Left] KM image and [Right] modified KM image with δ = 10−2 for a target
located at (2,−8) cm with SNR = 14.2 dB and eSNR = −7.0 dB.

multiple targets at different depths, it is likely that those targets that are deeper than406

others may be not be identifiable in images.407

8 Conclusions408

We have discussed synthetic aperture subsurface imaging of point targets. Here,409

we have modeled uncertainty about the interface between the two media with Gaussian-410

correlated random rough surfaces characterized by a RMS height and correlation length.411

The medium above the interface is uniform and lossless. The medium below the inter-412

face is uniform and lossy. The loss tangent of the medium below the interface is not known413

when imaging.414

The imaging method involves two steps. First, we attempt to remove ground bounce415

signals using principal component analysis. This method does not require any explicit416

information about the interface other than the ground bounce signals is stronger than417

the scattered signals. There is no a priori method to choose the number of principal com-418

ponents to include in the ground bounce removal procedure. Instead, we have proposed419

to determine where the decay of the singular values changes behavior and use that for420

the grounce bounce removal procedure. Using the resulting matrix after removing the421

ground bounce signal, we apply Kirchhoff migration (KM) and our modification to it that422

allows for tunably high resolution images of targets. In our implementation of KM imag-423

ing, we compute so-called illuminations for the problem with a flat interface at the mean424

interface height using only the real part of the relative dielectric permittivity for the medium425

below that interface, so we completely neglect the unknown absorption in the medium.426

–15–



manuscript submitted to Radio Science

-10 0 10

-20

-15

-10

-5

0

0.5

1

-10 0 10

-20

-15

-10

-5

0

0.5

1

Figure 12: [Left] The imaged formed through evaluation of the KM imaging function
(10) for three targets. The exact target locations are plotted as a red “�” symbol. [Right]
The image formed through evaluation of the modified KM imaging function (15) with
δ = 10−2. Measurement noise is added so that SNR = 24.2 dB.
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Figure 13: Evaluation of the modified KM imaging function (15) with δ = 10−2 in sub-
regions centered about each target location.

Our numerical results show that despite uncertainty in the interface, the inexact-427

ness of the ground bounce removal procedure, unknown absorption, and measurement428

noise, this imaging method is able to identify and locate targets robustly and accurately.429

However, there are limitations to the capabilities of this imaging method. The main lim-430

itation for this imaging method is that targets cannot be too deep below the interface.431

Absorption attenuates the scattered power and depends on the path length of signals.432

When targets are deep below the interface, the path length of scattered signals are too433

large and attenuation renders those scattered signals undetectable within the dynamic434

range of measurements. Additionally, targets cannot be too closely situated to one an-435

other. The KM imaging method is limited in its resolution. If targets are situated closer436

than the resolution capabilities of KM, they cannot be distinguished.437

Despite the limitations of this imaging method, we find these results to be a promis-438

ing first step toward practical imaging problems. A key extension of this work will be439

to incorporate quantitative imaging methods that will open opportunities for target clas-440

sification in addition to identification and location. We have recently developed meth-441

ods for recovering the radar cross-section (RCS) for dispersive point targets when there442

is no ground bounce signal (Kim & Tsogka, 2023b). Recovering the RCS for individual443

targets can be used to classify targets by properties related to their size or material prop-444

erties when their shape or other geometrical features are not available for recovery. The445

challenge with quantitative imaging methods for this problem will be addressing both446

the unknown absorption and uncertain rough interface. As mentioned previously, absorp-447

tion will attenuate the power scattered by targets. Moreover, it will attenuate power non-448

uniformly over frequency which introduces new challenges. The uncertainty in the rough449

interface also affects our ability to recover quantitative information. Because our method450

–16–



manuscript submitted to Radio Science

for removing ground bounce signals from an unknown rough surface is approximate, it451

yields errors in the phase which impeded the recovery of quantitative information. De-452

veloping extensions that allow for quantitative subsurface imaging is the subject of our453

future work.454

Appendix: Numerical solution of the system of boundary integral equa-455

tions456

The method that we use to compute realizations of the Gaussian-correlated rough457

surface (Tsang et al., 2004) uses discrete Fourier transforms, which assumes periodic-458

ity over the interval [−L/2, L/2]. The truncated domain width L is chosen large enough459

so that edges do not strongly affect the results. In the simulations used here we set L =460

4 m compared to the 1 m aperture and 30 cm wide imaging window.461

To compute the numerical solution of (6) or (7), we first truncate the integrals to462

the interval −L/2 ≤ ξ ≤ L/2 and then replace those integrals with numerical quadra-463

ture rules. The result of this approximation is a finite dimensional linear system of equa-464

tions suitable for numerical computation. Because the rough surfaces are periodic, we465

use the periodic trapezoid rule (composite trapezoid rule for a periodic domain). How-466

ever, because the integral operators in (6) and (7) are weakly singular, we need to make467

modifications to the periodic trapezoid rule which we explain below.468

We discuss the modification to the periodic trapezoid rule we use for the integrals,

ID(s) =

∫ L/2

−L/2

∂G(s, h(s); t, h(t))

∂n

√
1 + (h′(t))2U(t)dt, (A1)

and

IS(s) =

∫ L/2

−L/2
G(s, h(s); t, h(t))V (t)dt, (A2)

with

G(s, h(s); t, h(t)) =
i

4
H

(1)
0

(
k
√

(s− t)2 + (h(s)− h(t))2
)
.

Let tj = −L/2 + (j − 1)∆t for j = 1, . . . ,M denote the M quadrature points with
∆t = L/M . By applying the periodic trapezoid rule to (A1) and (A2) and evaluating
that result on s = ti, we obtain

IMD (ti) = ∆t

M∑
j=1

∂G(ti, h(ti); tj , h(tj))

∂n

√
1 + (h′(tj))2U(tj),

and

IMS (ti) = ∆t

M∑
j=1

G(ti, h(ti); tj , h(tj))V (tj).

Let A be the M ×M matrix whose entries are

aij = ∆t
∂G(ti, h(ti); tj , h(tj))

∂n

√
1 + (h′(tj))2, (A3)

and let B be the M ×M matrix whose entries are

bij = ∆tG(ti, h(ti); tj , h(tj)). (A4)

With these matrices defined, the approximations for the integral operators given above469

are matrix-vector products. The problem with these results is that the kernels for IMD470

and IMS are singular on tj = ti, so the diagonal entries of A and B cannot be specified.471
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The modification to the periodic trapezoid rule we make is to replace the diago-
nal entries of A and B by

aii = U(ti)

∫ ti+∆t/2

ti−∆t/2

∂G(ti, h(ti); t, h(t))

∂n

√
1 + (h′(t))2dt,

and

bii = V (ti)

∫ ti+∆t/2

ti−∆t/2

G(ti, h(ti); t, h(t))dt.

Note that we have assumed that U(t) and V (t) are approximately constant over this in-
terval thereby allowing us to factor them out from the integral. Substituting t = ti +
τ and dt = dτ , we obtain

aii = U(ti)

∫ ∆t/2

−∆t/2

∂G(ti, h(ti); ti + τ, h(ti + τ))

∂n

√
1 + (h′(ti + τ))2dτ,

and

bii = V (ti)

∫ ∆t/2

−∆t/2

G(ti, h(ti); ti + τ, h(ti + τ))dτ.

Next, we evaluate the expressions involving G and find that

∂G(ti, h(ti); ti + τ, h(ti + τ))

∂n

√
1 + (h′(ti + τ))2

= − ik

4
[h′(ti)τ − h(ti) + h(ti + τ)]

H
(1)
1 (k

√
τ2 + (h(ti)− h(ti + τ))2)√

τ2 + (h(ti)− h(ti + τ))2
,

and

G(ti, h(ti); ti + τ, h(ti + τ)) =
i

4
H

(1)
0 (k

√
τ2 + (h(ti)− h(ti + τ))2)

Expanding about τ = 0, we find

∂G(ti, h(ti); ti + τ, h(ti + τ))

∂n

√
1 + (h′(ti + τ))2 =

h′′(ti)

4π(1 + (h′(ti))2)
+O(τ2),

and

G(ti, h(ti); ti + τ, h(ti + τ)) =
1

4π

[
−2γ + iπ − 2 log

(
1

2
k|τ |

√
1 + (h′(ti))2

)]
+O(τ2),

with γ = 0.5772 . . . denoting the Euler-Mascheroni constant. Integrating these expres-
sions over −∆t/2 ≤ τ ≤ ∆t/2, we set

aii =
∆t

4π

h′′(ti)

1 + (h′(ti))2
, (A5)

and

bii =
∆t

2π

[
1− γ + i

π

2
− log

(
1

4
k∆t

√
1 + (h′(ti))2

)]
. (A6)

Thus, to form the matrix A, we evaluate (A3) for all i 6= j and (A5) for i = j.
Similarly, to form the matrix B, we evaluate (A4) for all i 6= j and (A6) for i = j. With
these matrices, we seek the vectors of unknowns, u = (U(t1), . . . , U(tM )) and v = (V (t1), . . . , V (tM ))
through solution of the block system of equations,[

1
2I −A0 B0
1
2I +A1 −B1

] [
u
v

]
=

[
f0
f1

]
.

Here I is the identity matrix, A0 and B0 correspond to evaluation of the A and B ma-472

trices with wavenumber k0 and A1 and B1 correspond to evaluation of the A and B ma-473

trices with wavenumber k1 = k0

√
εr(1 + iβ). The right-hand side block vectors con-474

tain the evaluation of the source above the interface f0 and below the interface f1 on the475

set of interface points (tj , h(tj)) for j = 1, . . . ,M .476
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Key Points:6

• We study imaging methods for identifying point targets in a lossy medium below7

a random rough surface.8

• We effectively remove ground bounce signals in measurements using principal com-9

ponent analysis, i.e., the singular value decomposition of the measurement data10

matrix.11

• The imaging method that follows ground bounce removal is based on the tradi-12

tional Kirchhoff migration method.13

• We apply a transformation to Kirchhoff migration to obtain tunably high-resolution14

images of small targets.15

• We show that this method effectively images multiple targets, but is depth-limited16

due to absorption in the medium.17
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Abstract18

Motivated by applications in unmanned aerial based ground penetrating radar for de-19

tecting buried landmines, we consider the problem of imaging small point like scatter-20

ers situated in a lossy medium below a random rough surface. Both the random rough21

surface and the absorption in the lossy medium significantly impede the target detec-22

tion and imaging process. Using principal component analysis we effectively remove the23

reflection from the air-soil interface. We then use a modification of the classical synthetic24

aperture radar imaging functional to image the targets. This imaging method introduces25

a user-defined parameter, δ, which scales the resolution by
√
δ allowing for target local-26

ization with sub wavelength accuracy. Numerical results in two dimensions illustrate the27

robustness of the approach for imaging multiple targets. However, the depth at which28

targets are detectable is limited due to the absorption in the lossy medium.29

1 Introduction30

Landmine detection using unmanned aerial based radar is gaining attention because31

it provides high resolution images while avoiding the interaction with the object and the32

surrounding medium (Fernández et al., 2018; Francke & Dobrovolskiy, 2021). Those imag-33

ing systems use synthetic aperture radar (SAR) processing to achieve high resolution imag-34

ing of both metallic and dielectric targets. In SAR, high resolution is achieved because35

the data are treated coherently along the flight path of a single transmitter/receiver mounted36

on an aircraft. For landmine detection, SAR image processing is used and the data are37

coherently processed along the synthetic aperture formed by an unmanned aerial vehi-38

cle flying above the ground over the area of interest. Other related remote sensing ap-39

plications include precision agriculture, forestry monitoring and glaciology.40

Landmine detection is a very important problem with both civilian and military41

applications. It has been a subject of extreme interest and several imaging methodolo-42

gies have been proposed in the literature. We refer to the review article (Daniels, 2006)43

for an overview on the subject and to (González-Huici et al., 2014) for a comparison be-44

tween different imaging techniques in the specific context of landmine detection. The method45

we employ here is a modification of the classical SAR processing technique. Specifically46

we apply to the classical imaging functional a Möbius transformation that depends on47

a user defined parameter, δ. Assuming a synthetic aperture of length a, and system band-48

width B, we have recently shown (Kim & Tsogka, 2023c) that the resolution of the imag-49

ing method in cross-range (the direction parallel to the synthetic aperture) is
√
δλL/a50

and the range (direction orthogonal to cross-range) resolution is
√
δc/B with c the speed51

of the waves, λ the central wavelength and L the distance of propagation. We have also52

carried out a resolution analysis of this method for imaging in a lossy medium (Kim &53

Tsogka, 2023a) where we have shown that one should not use the absorption in the medium54

even if it is known. Although, absorption does not affect significantly the resolution of55

the imaging method, it does affect the target detectability. Specifically, if z denotes the56

depth of the target below the air-soil interface, the product βz corresponds to the ab-57

sorption length scale of the problem with β denoting the loss tangent, that is the ratio58

of the imaginary part over the real part of the relative dielectric constant. For targets59

buried deep so that βz � 1 measurements become too small to detect targets, espe-60

cially if the data are corrupted by additive measurement noise as is often the case in prac-61

tical applications.62

For a sufficiently long flight path, the air-soil interface is most likely not uniformly63

flat. Moreover, height fluctuations in this interface cannot be known with certainty. For64

this reason we model this interface using a random rough surface. It then becomes cru-65

cially important for a subsurface imaging method to be robust to those uncertainties in66

the interface. Additionally, there may be multiple interactions between scattering by sub-67

surface targets and the random rough surface (Long et al., 2010). Here, we assume only68
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one interaction between the random rough surface and the subsurface target since that69

has been shown to be sufficiently accurate for targets buried in a lossy medium (El-Shenawee,70

2002).71

We model the height of the air-soil interface h(x) using a Gaussian-correlated ran-72

dom process that is characterized by the RMS height, hRMS and the correlation length,73

`. We consider here that the RMS height is small with respect to the correlation length74

which is of the order of the central wavelength while the aperture is large compared to75

both. In this regime, multiple-scattering effects are important and enhanced backscat-76

tering is observed. Enhanced backscattering is a multiple scattering phenomenon in which77

a well-defined peak in the retro-reflected direction is observed (Maradudin et al., 1991;78

Ishimaru, 1991; Maradudin & Méndez, 2007). Imaging in media with random rough sur-79

faces is a new paradigm for imaging in random media and requires different methods than80

the ones developed for volumetric scattering (Borcea et al., 2011) or imaging in random81

waveguides (Borcea et al., 2015). The key difference here is that randomness is isolated82

only at the interface separating the two media. Even though waves multiply scatter on83

the rough surface, they also scatter away from the rough surface. Consequently, there84

is no dominant cumulative diffusion phenomenon due to this kind of randomness.85

For the synthetic aperture setup the measurements are exactly in the retro-reflected86

direction so the data have uniform power at each spatial location along the flight path.87

To remove the strong reflection introduced by the ground-air interface we use PCA or88

more precisely the singular value decomposition (SVD) of the data matrix. Principal com-89

ponent analysis (PCA) has been proposed as a method for removing ground bounce sig-90

nals in (Tjora et al., 2004). For a flat surface the ground bounce can be removed from91

the data by taking out the contribution corresponding to the first singular value. Here92

we see that due to multiple scattering to remove the reflection from the random inter-93

face contributions corresponding to the first few singular values should be taken out from94

the data. This SVD based approach for ground bounce removal is advantageous because95

it does not require any a priori information about the media, including the exact loca-96

tion of the interface.97

Our imaging method requires computing Green’s function for a medium composed98

of adjacent half spaces. This Green’s function is represented as a Fourier integral of a99

highly oscillatory function. Accurately computing such integrals is quite challenging and100

several approaches have been proposed to this effect (Cai, 2002; ONeil et al., 2014; Bruno101

et al., 2016). The approach we follow here is similar to the method presented by Bar-102

nett and Greengard (Barnett & Greengard, 2011), where we integrate on a deformed con-103

tour in the complex plane to avoid branch points.104

The remainder of the paper is as follows. In Section 2 we present the synthetic aper-105

ture radar setup. In Section 3 our model for the rough surface is described as well as the106

integral equations formulation for computing the solution to the forward problem. The107

algorithm for computing the measurements is then explained in Section 4. The solution108

of the inverse scattering problem entails two steps. The first step that uses the singu-109

lar value decomposition of the data matrix to remove the ground bounce is presented110

in Section 5. The second step consists in reconstructing an image using the modified syn-111

thetic aperture imaging algorithm and is explained in Section 6. We present numerical112

results in two dimensions that illustrate the effectiveness of the imaging method in Sec-113

tion 7. We finish with our conclusions in Section 8.114

2 SAR imaging115

Here we describe the SAR imaging system for the problem to be studied. We limit116

our computations to the two-dimensional xz-plane to simplify the simulations. However,117

the imaging method we describe easily extends to three-dimensional problems.118
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Consider a platform moving along a prescribed flight path. At fixed locations along119

the flight path: xn = (xn, zn) for n = 1, . . . , N , the platform emits a multi-frequency120

signal that propagates down to an interface that separates the air where the platform121

is moving from a lossy medium below the interface. See Fig. 1 for a sketch of this imag-122

ing system. Let ωm for m = 1, . . . ,M denote the set of frequencies used for emitting123

and recording signals. We apply the start-stop approximation here in which we neglect124

the motion of the platform and targets in comparison to the emitting and recording of125

signals. The complete set of measurements corresponds to the suite of experiments con-126

ducted at each location on the path.127

flight path

air

lossy medium
targets

interface

Figure 1: A sketch of the subsurface synthetic aperture imaging system. A platform
moves along a prescribed flight path producing a synthetic aperture above an interface
separating air from a lossy medium. The platform emits a signal and records the echoes
including ground bounce signals due to reflections by the interface and scattered signals
by the targets. The objective for the imaging problem is to identify and locate the subsur-
face targets.

For this problem, the signal emitted from the platform propagates down to the in-128

terface. Part of the signal is reflected by the interface which is called the ground bounce129

signal. The portion of that ground bounce signal that reaches the platform is recorded.130

Another part of the signal is transmitted across the interface and is incident on the sub-131

surface targets which then scatter that signal. Since the medium below the interface is132

lossy, the power in the signals incident on and scattered by the targets is attenuated. A133

portion of that attenuated scattered signal is transmitted across the interface and prop-134

agates up to the platform where it is also recorded. Measurements are therefore com-135

prised of ground bounce and scattered signals reaching the platform.136

Using these measurements we seek to solve the inverse scattering problem that iden-137

tifies and locates targets in the lossy medium below the interface. The medium above138

the interface is uniform and lossless and we assume that it is known. The medium be-139

low is also uniform, but lossy, so it has a complex relative dielectric permittivity. We as-140

sume we know the real part of the relative dielectric permittivity, but not its imaginary141

part corresponding to the absorption in the medium. Finally, the interface between the142

two media is unknown, but we assume that we know its mean, which is constant.143

There are several key challenges to consider for this problem. Measurements in-144

clude ground bounce and scattered signals. The ground bounce signals have more power145

than the scattered signals, but do not contain information about the targets. Thus, one146

needs an effective method to remove the ground bounce from measurements. Because147

the interface is uncertain, it is important to remove these ground bounce signals with-148
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out requiring explicit knowledge of the interface location. Once that issue can be ade-149

quately addressed, we then require high-resolution images of the targets in an unknown,150

lossy medium obtained through solution of the inverse scattering problem. The absorp-151

tion in the medium will limit the depth at which one can reliably solve the inverse scat-152

tering problem. However, we are interested in identifying targets that are located super-153

ficially below the interface, so the penetration depths needed for this problem are not154

too prohibitive. In addition, measurements are corrupted by additive measurement noise.155

Another noteworthy issue is that removal of the ground bounce signal from measurements156

will effectively increase the relative amount of noise in what remains which will limit the157

values of the signal-to-noise ratio (SNR) for which imaging will be effective.158

3 Rough surface scattering159

We model uncertainty in the interface separating the two media using random rough160

surfaces. In particular, we consider Gaussian-correlated random surfaces that are char-161

acterized by the RMS height, hRMS and the correlation length, `. In what follows, we162

give the integral equation formulation for computing reflection and transmission of sig-163

nals across one realization of a random rough surface.164

Let z = h(x) for −∞ < x < ∞ denote one realization of the random rough sur-165

face separating two different media. The medium in z > h(x) is uniform and lossless.166

The medium in z < h(x) is also uniform, but lossy with relative dielectric constant εr(1+167

iβ) with εr denoting the real part of the relative dielectric constant and β ≥ 0 denot-168

ing the loss tangent (ratio of the imaginary part over the real part of the relative dielec-169

tric constant). We consider two problems in which a point source is either above or be-170

low the interface. In what follows we assume that the total field and its normal deriva-171

tive are continuous on z = h(x) and that those fields satisfy appropriate out-going con-172

ditions as z → ±∞.173

3.1 Integral equations formulation174

Suppose a point source is located at (x0, z0) with z0 > h(x0). Using Green’s sec-
ond identity, we write

u(x, z) = G0(x, z;x0, z0) + D0[U ](x, z)−S0[V ](x, z), z > h(x), (1)

with

D0[U ](x, z) =

∫ ∞
−∞

∂G0(x, z; ξ, h(ξ))

∂n

√
1 + (h′(ξ))2U(ξ)dξ,

and

S0[V ](x, z) =

∫ ∞
−∞

G0(x, z; ξ, h(ξ))V (ξ)dξ.

Here,

G0(x, z;x′, z′) =
i

4
H

(1)
0

(
k0

√
(x− x′)2 + (z − z′)2

)
,

with k0 = ω/c and

∂G0(x, z; ξ, ζ)

∂n

√
1 + (h′(ξ))2 = h′(ξ)

∂G0(x, z; ξ, ζ)

∂ξ
− ∂G0(x, z; ξ, ζ)

∂ζ
. (2)

In addition, we have

v(x, z) = −D1[U ](x, z) + S1[V ](x, z), z < h(x), (3)

with D1 and S1 defined the same as D0 and S0, but with G0 replaced with

G1(x, z;x′, z′) =
i

4
H

(1)
0

(
k1

√
(x− x′)2 + (z − z′)2

)
,

–5–
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and k1 = k0

√
εr(1 + iβ). Now, suppose a point source is located at (x1, z1) with z1 <

h(x1). For that case we have

u(x, z) = D0[U ](x, z)−S0[V ](x, z), z > h(x), (4)

and
v(x, z) = G1(x, z;x1, z1)−D1[U ](x, z) + S1[V ](x, z), z < h(x). (5)

The fields u defined by either (1) or (4), and v defined by either (3) or (5) are given
in terms of surface fields U(ξ) and V (ξ). Physically, U(ξ) = u(ξ, h(ξ)) is the evalua-
tion of the field on the interface point, (ξ, h(ξ)). The field V (ξ) is defined in terms of the
normal derivative of u according to

V (ξ) =
√

1 + (h′(ξ))2
∂u(ξ, h(ξ))

∂n
= h′(ξ)

∂u(ξ, ζ)

∂ξ
− ∂u(ξ, ζ)

∂ζ
.

These formulations given above make use of the aforementioned assumption that both175

u and ∂nu are continuous on the interface z = h(x).176

The surface fields U and V are not yet determined. To determine them we eval-
uate u and v in the limit as (x, z) → (ξ, h(ξ)) from above and below, respectively. In
that limit, the D0 and D1 operators produce a jump and the result is a system of bound-
ary integral equations. For the fields defined by (1) and (3), the resulting system is

1

2
U(ξ)−D0[U ](ξ) + S0[V ](ξ) = G0(ξ, h(ξ);x0, z0), (6a)

1

2
U(ξ) + D1[U ](ξ)−S1[V ](ξ) = 0, (6b)

and for the fields defined by (4) and (5), the resulting system is

1

2
U(ξ)−D0[U ](ξ) + S0[V ](ξ) = 0, (7a)

1

2
U(ξ) + D1[U ](ξ)−S1[V ](ξ) = G1(ξ, h(ξ);x1, z1). (7b)

The solution of each of these systems results in the determination of U and V for their177

respective problem. Once those are determined, the fields above and below the interface178

are computed through evaluation of (1) and (3) when the source is above the interface,179

or (4) and (5) when the source is below the interface. We give the numerical method we180

use to solve these systems in the Appendix.181

3.2 Enhanced backscattering182

The bistatic cross-section σ(θs, θi) is the fraction of power reflected in the far field183

by the rough surface in direction (sin θs, cos θs) with θs denoting the scattered angle made184

with respect to the z-axis due to a plane wave incident in direction (sin θi,− cos θi) with185

θi denoting the angle of incidence. Reflection by the random rough surface makes up an186

important component of measurements in this imaging problem. Here, we use the bistatic187

cross-section to characterize reflection by the rough surface over the range of frequen-188

cies: 3.1 GHz to 5.1 GHz. We use the method given in (Tsang et al., 2004, Chapter 4)189

to generate these rough surfaces and compute the corresponding bistatic cross-sections.190

We then average over several realizations of the rough surface to determine canonical fea-191

tures of these rough surfaces.192

In Fig. 2 we show the bistatic cross-section due to a plane wave with θi = 30 de-193

grees averaged over 100 realizations of a Gaussian-correlated rough surface with RMS194

height hRMS = 0.2 cm and correlation length ` = 8 cm. These results show a sharp195

angular cone about θs = θi as a consequence of enhanced backscattering. Enhanced196
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Figure 2: [Left] Average of the bistatic cross-section, 〈σ(θs, θi)〉, over 100 realizations of
a Gaussian-correlated random rough surface with hRMS = 0.2 cm and ` = 8 cm due to a
plane wave incident with θi = 30 degrees. [Right] A close-up of this result about θs = θi.

backscattering is a canonical multiple scattering phenomenon in which counter-propagating197

scattered waves add coherently in the retro-reflected direction, θs = θi.198

With these surface roughness parameters, we find that scattering by the random199

rough surface is significant and cannot be ignored. Because these rough surfaces exhibit200

enhanced backscattering, there is significant multiple scattering. Moreover, SAR mea-201

surements use a single emitter/receiver, so we measure the field exactly at the retro-reflected202

angle corresponding to the peak of the angular cone. However, we do not care to recon-203

struct this rough surface profile for this imaging problem. Rather, we seek a method that204

attempts to identify and locate targets without needing to consider this rough surface.205

Nonetheless, scattering by the rough surface will be an important factor in the measure-206

ments.207

4 Modeling measurements208

In this work we consider scattering by subsurface point targets. This assumption209

simplifies the modeling of measurements which, in turn, enables the determination of the210

effectiveness of a subsurface imaging method. We consider imaging point targets here211

as a necessary first problem for any effective imaging method to solve.212

To model measurements we must consider both the ground bounce signal that is213

the reflection by the rough surface, and the scattered signal by the targets. Assuming214

that scattering by each target is independent from any others, we give the procedure we215

use to model measurements for a single point target located at (x1, z1) below due to a216

point source located at (x0, z0).217

1. Compute one realization of the Gaussian-correlated rough surface, z = h(x), with218

RMS height hRMS and correlation length `.219

2. Solve the system (6). Let U0 and V0 denote the solution.220

3. Compute the ground-bounce signal, R, through evaluation of

R = D0[U0](x0, z0)−S0[V0](x0, z0).

This expression is the field reflected by the rough surface evaluated at the same221

location as the source.222

4. Solve the system (7). Let U1 and V1 denote the solution.223

5. Compute the field scattered by the point target, S, through evaluation of

S = (D0[U1](x0, z0)−S0[V1](x0, z0)) ρ (−D1[U0](x1, z1) + S1[V0](x1, z1)) .

–7–
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There are three factors in this expression written in right-to-left order just like ma-224

trix products. The third factor corresponds to the field emitted from the source225

that transmits across the interface and is incident on the target. The second fac-226

tor is the reflectivity of the target ρ. The first factor is the propagation of the sec-227

ond and third terms from the target location to the receiver location.228

Steps 2 through 5 of this procedure are repeated over each frequency ωm for m = 1, . . . ,M229

and each spatial location of the platform xn for n = 1, . . . , N . The results are M×N230

matrices R and S. When there are multiple targets, we repeat Steps 4 and 5 for each231

of the targets and S is the sum of those results.232

Using this procedure above, we model measurements according to

D = R+ S + η, (8)

with η denoting additive measurement noise which we model as Gaussian white noise.233

The inverse scattering problem is to identify targets and determine their locations from234

the data matrix D.235

5 Ground bounce signal removal236

According to measurement model (8), the ground bounce signal R is added to the237

scattered signal S. The ground bounce signal does not contain any information about238

the targets. Since we do not seek to reconstruct the interface for this imaging problem,239

R impedes the solution of the inverse scattering problem. Hence, we seek to remove it240

from measurements.241

The key assumption we make is that the relative amount of power in R is larger242

than that in S. This assumption opens the opportunity to use principal component anal-243

ysis to attempt to remove R from D. Let D = UΣV H denote the singular value de-244

composition of D where V H denotes the Hermitian or conjugate transpose of V . Because245

of uncertainty in the interface, we are not able to explicitly determine the structure of246

the singular values σj for j = 1, . . . ,min(M,N) in the M ×N diagonal matrix Σ. In-247

stead we seek to observe any changes in the spectrum of singular values that indicate248

a separation between contributions by R and S.249

Consider M = 25 frequencies uniformly sampling the bandwidth ranging from 3.1250

GHz to 5.1 GHz and N = 21 spatial locations of the platform uniformly sampling the251

aperture a = 1 m at 1 m above the mean interface height 〈h(x)〉 = 0. We set εr = 9252

and β = 0.1. Using one realization of a rough surface with hRMS = 0.2 cm and ` = 8253

cm, we compute R. Then we compute the SVD of R and examine the singular values.254

In Fig. 3 we show results for one realization of the Gaussian-correlated rough sur-255

face with hRMS = 0.2 cm and ` = 8 cm shown in the left plot and the corresponding256

singular values (normalized by the first singular value, σ1) for the resulting ground bounce257

signals in the right plot. Note that this realization of the rough surface is one among those258

used to study the bistatic cross-section in Fig. 2 which exhibited enhanced backscatter-259

ing. Consequently, we know that the ground bounce signals include strong multiple scat-260

tering by the rough surface.261

Looking at the singular values in Fig. 3 we identify a change in behavior in their262

decay. From j = 1 to j = 5, we find that σj decays rapidly over two orders of magni-263

tude. In contrast, from j = 6 to j ≈ 15, we find that the decay of σj is much slower264

and then decays thereafter. We have observed that this qualitative behavior of the sin-265

gular values persists over different realizations.266

Through these observations of the behavior of singular values for R, we now pro-267

pose a method to approximately remove R from D given as the following procedure.268
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Figure 3: [Left] One realization of the Gaussian-correlated random rough surface with
hRMS = 0.2 cm and ` = 8 cm with k0 denoting the wavenumber at the central frequency.
[Right] The singular values of the ground bounce signals by this rough surface normalized
by the first singular value σ1.

1. Compute the SVD of the measurement matrix D = UΣV H .269

2. Identify the index j∗ where the rapid decay of the singular values stops and the270

behavior changes.271

3. Compute

D̃ = D −
j∗∑
i=1

σiuiv
H
i , (9)

where ui and vi denote the i-th columns of U and V , respectively.272

It is likely that this procedure does not remove R from D exactly. However, we apply273

this procedure to obtain D̃ and test below if this procedure works well enough for iden-274

tifying and locating targets.275

Note that measurement noise is applied to D = R+ S. The corresponding SNR276

is defined according to SNR = 10 log10(‖R+S‖F /‖η‖F ) with ‖·‖F denoting the Frobe-277

nius norm. This SNR is dominated by R since ‖R‖F � ‖S‖F . When we remove R from278

D, there will be an effective SNR (eSNR = 10 log10(‖S‖2F /‖η‖2F )) based on S which279

will be much lower. For this reason, we see that this subsurface imaging problem is more280

sensitive to noise than other imaging problems where ground bounce signals are not present.281

6 Kirchhoff migration imaging282

Consider a sub-region of z < h(x) where we seek to form an image. We call this
sub-region the imaging window (IW). Let (x, z) ∈ IW denote a search point in the IW.
To form an image which identifies targets and gives estimates for their locations, we eval-
uate the KM imaging functional,

IKM(y) =

∣∣∣∣∣
M∑
m=1

N∑
n=1

d̃mna
∗
mn(x, z)

∣∣∣∣∣ , (10)

over a mesh of grid points sampling the IW. Here d̃mn is the (m,n) entry of the matrix283

D̃ and amn(x, z) are called the illuminations. The superscript ∗ denotes the complex con-284

jugate. The illuminations effectively back-propagate the data so that the resulting im-285

age formed shows peaks on the target locations.286
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6.1 Computing illuminations287

To compute the illuminations amn(x, z) we first note that we do not know the in-
terface z = h(x) nor do we seek to reconstruct it. However, we assume that 〈h(x)〉 =
0 is known, so we consider the interface z = 0 instead. Additionally, we do not know
the loss tangent β that dictates the absorption in the lower medium. In fact, we have
shown previously that making use of any knowledge of the absorption is not useful for
imaging to identify and locate targets (Kim & Tsogka, 2023a). However, we assume that
εr is known. With these assumptions, we write

amn(x, z) = φ(0)
mn(x, z)φ(1)

mn(x, z). (11)

Here, φ
(0)
mn(x, z) corresponds to the field on (x, z) due to a point source with frequency288

ωm located at xn whose amplitude is normalized to unity. The quantity φ
(1)
mn(x, z) is the289

field with frequency ωm evaluated on xn due to a point source at (x, z) whose amplitude290

is normalized to unity.291

Using Fourier transform methods, we find that the field u(0) evaluated on (x, z) due
to a point source with frequency ωm located at xn = (xn, zn) is

u(0) =
i

2π

∫
ei(q0zn−q1z)

q0 + q1
eiξ(x−xn)dξ, (12)

with q0 =
√
ω2
m/c

2 − ξ2 and q1 =
√
εrω2

m/c
2 − ξ2. Similarly, we find that the field

u(1) evaluated on (xn, zn) due to a ponit source with frequency ωm located at (x, z) is

u(1) =
i

2π

∫
ei(q0zn−q1z)

q0 + q1
eiξ(xn−x)dξ. (13)

Upon computing u(0) and u(1), we evaluate φ
(0)
mn = u(0)/|u(0)| and φ

(1)
mn = u(1)/|u(1)|.292

Both u(0) and u(1) are integrals of the form,

I =

∫ ∞
−∞

f(ξ)√
k2

0 − ξ2 +
√
k2

1 − ξ2
eiβ1

√
k20−ξ2+iβ2

√
k21−ξ2eiξγdξ, (14)

with k1 = k0
√
εr, and β1, β2, and γ denoting real parameters. The wavenumbers k0

and k1 are real, and we assume that |k0| < |k1|. This Fourier integral, which is one ex-
ample of a Sommerfeld integral, is notoriously difficult to compute due to the highly os-
cillatory behavior of the function inside the integral. There have been several approaches
to compute this Fourier integral accurately (Cai, 2002; ONeil et al., 2014; Bruno et al.,
2016). To compute (14), we follow (Barnett & Greengard, 2011) and integrate on a de-
formed contour in the complex plane to avoid branch points. Here, we use the deformed
contour

ξ(s) = s+ iA
[
e−w(s+k0)2 + e−w(s+k1)2 − e−w(s−k0)2 − e−w(s−k1)2

]
,

with −∞ < s <∞, and A and w denoting user-defined parameters. Integration is taken293

with respect to s over a truncated, finite interval chosen so that the truncation error is294

smaller than the finite precision arithmetic. In the simulations that follow, we have used295

500 quadrature points with A = 0.4 and w = 6. We also use the suggestion in (Barnett296

& Greengard, 2011) of applying the mapping s = sinh(β) with −∞ < β <∞ to clus-297

ter quadrature points in the interval (−k0, k0).298

6.2 Modified KM299

We have recently developed a modification to KM that allows for tunably high-resolution
images of individual targets (Kim & Tsogka, 2023c). Suppose that we have evaluated
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Figure 4: Singular values of the matrix D. These measurements include the ground
bounce signals by one realization of a Gaussian-correlated rough surface with hRMS = 0.2
cm and ` = 8 cm. Additionally, they include scattering by a point target located at
(2,−8) cm with ρ = 3.4i. Measurement noise has been added so that SNR = 24.2 dB.

(10) and identified a target. In a region about that target, we normalize IKM so that its
peak value is 1. Let ĪKM denote the normalization of IKM in this region. With this nor-
malized image, we compute the following Möbius transformation,

IKM
δ (y) =

δ

1− (1− δ)ĪKM(y)
, (15)

with δ > 0 denoting a user-defined tuning parameter. We call the resulting image formed300

with (15) the modified KM image. In the whole space, we have determined that this mod-301

ified KM method scales the resolution of KM by
√
δ. Because δ is a user-defined quan-302

tity, it can be set to be arbitrarily small. It is in this way that IKM
δ produces tunably303

high-resolution images of targets.304

7 Numerical results305

We now present numerical results where we have (i) simulated measurements us-306

ing the procedure given in Section 4, (ii) removed the ground bounce signal using the307

procedure given in Section 5, and then produced images through evaluation of the KM308

and modified KM imaging functions given in Section 6.309

Just as we have done for the results shown in Section 5, we have used M = 25310

frequencies uniformly sampling the bandwidth ranging from 3.1 GHz to 5.1 GHz and N =311

21 spatial locations of the platform uniformly sampling the aperture a = 1 m situated312

1 m above the average interface height 〈h(x)〉 = 0. We set εr = 9 and β = 0.1 as sug-313

gested by Daniels for modeling buried landmines (Daniels, 2006). We compute imaging314

results for one realization of a Gaussian-correlated rough surface that has hRMS = 0.2315

cm and ` = 8 cm.316

7.1 Single target317

Let the origin of a coordinate system correspond to the center of the flight path318

in the x-coordinate and the mean surface height 〈h(x)〉 = 0 in the z-coordinate as shown319

in Fig. 1. We compute images for a target located at (2,−8) cm with reflectivity ρ =320

3.4i. Measurement noise is added to the simulated measurements so that SNR = 24.2321

dB.322

Figure 4 shows the singular values for the data matrix D normalized by the first323

singular value. Similar to what we observed in Section 5 with the ground bounce signals,324
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Figure 6: Real part of the entries of (a) the data matrix D, (b) the ground bounce sig-
nals R, (c) the scattered signals S, and (d) the matrix D̃ with the contributions from the
first 5 singular values removed.

we find that the first 5 singular values decay rapidly. The singular values σj for j > 5325

show a different behavior. Thus, we apply the ground bounce removal procedure given326

in Section 5 using j∗ = 5.327

We show real part of the data matrix D in the top left plot of Fig. 6. In the top328

right plot of Fig. 6 we show the real part of the ground bounce signals in R. Note that329

the plots for D and R are nearly indistinguishable consistent with our assumption that330

the ground bounce signals dominate the measurements. In the bottom left plot of Fig. 6331

we show the real part of the scattered fields in S. Note that those values in S are nearly332

2 orders of magnitude smaller than those of R. The bottom right plot shows the real part333

of D̃ resulting from removing the contributions from the first j∗ = 5 singular values.334

While the magnitudes of the values in S and D̃ are comparable, they appear qualitatively335

different from one another. Thus, it is unclear from these results whether or not D̃ con-336

tains information regarding the target.337

In Fig. 7 we apply KM (center plot) and the modified KM with δ = 10−2 (right338

plot) to D̃. For reference, we have also included the result of applying KM to S in the339

left plot of Fig. 7. This ideal case represents exact ground bounce removal. Despite the340

fact that the results for S and D̃ in Fig. 6 were not qualitatively similar, the correspond-341

ing KM images in Fig. 7 are quite similar in the vicinity of the target and show peaks342

about the target location, (2,−8)cm. The peak of the KM image (center) is accompa-343

nied by several imaging artifacts away from the target location. In contrast, by apply-344

ing the modified KM method we eliminate those artifacts and obtain a high resolution345

image of the target. We note that the predicted location determined from where the KM346

and modified KM images attain their peak value on the meshed used to plot them is (1.5,−8.2)347

cm, which is slightly shifted from the true location. Nonetheless, this result is quite good348

given the uncertainty in the surface, the inexact method for ground bounce removal, un-349

known absorption, and substantial measurement noise in the system.350
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Figure 7: [Left] The ideal imaged formed through evaluation of the KM imaging function
(10) applied to the scattered signals contained in S. [Center] The image formed through
evaluation of (10) applied to D̃. [Right] The imaged formed through evaluation of the
modified KM imaging function (15) with δ = 10−2 applied to the KM image in the center.
In each of the plots, the exact target location is plotted as a red “�” symbol.

The unknown absorption puts a depth limitation on imaging targets. When the351

target depth is comparable to the absorption length, the imaging method is not able to352

distinguish between the true target and a weaker target less deep in the medium. We353

have observed this phenomenon with optical diffusion (González-Rodŕıguez et al., 2018).354

Here, uncertainty in the rough surface complicates this situation even further. In Fig. 9355

we show KM and modified KM (δ = 10−2) images for a target located at (2,−12) cm356

(top row) and for a target located at (2,−16) cm. As the target is placed deeper into357

the medium, we observe an increase in the KM imaging artifacts. For the target located358

12 cm below the surface, we find that these imaging artifacts contain the peak value of359

the function and the target is no longer identifiable in the image. The modified KM im-360

ages clearly show this behavior.361

The inability of the imaging method to identify targets deep in the medium is ei-362

ther due to the absorption, the uncertainty of the rough surface, some combination of363

these, or possibly other factors. In Fig. 10 we show the resulting image for a target lo-364

cated at (2,−16) cm with the reduced loss tangent, β = 0.05. All other parameters are365

the same as those used in the previous images. With this reduced loss tangent, we find366

that KM and the modified KM are clearly able to identify the target. From this result367

we conclude that the absorption is the main factor limiting the range of target depths368

for this imaging method.369

As we explained above, when we remove ground bounce signals, we introduce an370

effective SNR (eSNR) that is important for subsurface imaging. We expect that KM will371

be effective as long as eSNR > 0 dB. For the results shown in Fig. 7, SNR = 24.2 dB372

and eSNR = 3.0 dB. The resulting image clearly identifies the target and accurately373

predicts its location. In contrast, we show results for SNR = 14.2 dB and eSNR = −7.0374

dB in Fig. 11. This image has several artifacts that dominate over any peak formation375

about the target location. It is important to note that the eSNR that we use here can-376

not be estimated a priori. This result demonstrates that SNR demands on imaging sys-377

tems are higher for subsurface imaging problems than other imaging problems that do378

not involve ground bounce signals.379

7.2 Multiple targets380

We now consider imaging regions with 3 targets. Target 1 is located at (−9.0, 10.1)381

cm with reflectivity ρ1 = 3.6i, target 2 is located at (1.0,−9.4) cm with reflectivity ρ2 =382

3.4i and target 3 is located at (11.0,−9.8) cm with reflectivity ρ3 = 3.6i. The measure-383

ments were computed using the procedure given in Section 4. Measurement noise has384

been added so that SNR = 24.2 dB.385
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Figure 9: [Left] The imaged formed through evaluation of the KM imaging function (10).
The exact target location is plotted as a red “�” symbol. [Right] The imaged formed
through evaluation of the modified KM imaging function (15) with δ = 10−2. The top
row is for a target located at (2,−12) cm and the bottom row is for a target located at
(2,−16) cm.

The result from evaluating the KM imaging function (10) for this problem is shown386

in the left figure of Fig. 12. The corresponding result from evaluating the modified KM387

imaging function (15) with δ = 10−2 is shown in the right plot of Fig. 12. These im-388

ages show that the method is capable of identifying the three targets and give good pre-389

dictions for their locations.390

The result from the modified KM method does not show the three targets equally391

clearly. In fact, the peak formed near target 2 is the strongest in the KM image, so the392

result for the modified KM image shows target 2 most clearly. This is because the nor-393

malization of the KM image required for evaluating the modified KM image is based on394

target 2. As an alternative, we consider 5 cm× 5 cm sub-regions about each of the peaks395

of the KM image. Within each of those sub-regions, we normalize the KM image and396

evaluate the modified KM image with δ = 10−2. Those results are shown in Fig. 13.397

Each of those sub-region images is centered about the corresponding exact target loca-398

tion and scaled by the central wavenumber k0. Even though the predicted target loca-399

tions are shifted from the exact target location, these results show that these shifts are400

small fractions of the central wavelength.401

These results show that this imaging method is capable of identifying multiple tar-402

gets. However, there are limitations. The targets cannot be too close to one another due403

to the finite resolution of KM imaging. Moreover, due to absorption in the medium, there404

are depth limitations to where targets can be identified. Additionally, when there are405
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Figure 10: The same as Fig. 9(b) except that the absorption is reduced from the previous
results with β = 0.05.
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Figure 11: [Left] KM image and [Right] modified KM image with δ = 10−2 for a target
located at (2,−8) cm with SNR = 14.2 dB and eSNR = −7.0 dB.

multiple targets at different depths, it is likely that those targets that are deeper than406

others may be not be identifiable in images.407

8 Conclusions408

We have discussed synthetic aperture subsurface imaging of point targets. Here,409

we have modeled uncertainty about the interface between the two media with Gaussian-410

correlated random rough surfaces characterized by a RMS height and correlation length.411

The medium above the interface is uniform and lossless. The medium below the inter-412

face is uniform and lossy. The loss tangent of the medium below the interface is not known413

when imaging.414

The imaging method involves two steps. First, we attempt to remove ground bounce415

signals using principal component analysis. This method does not require any explicit416

information about the interface other than the ground bounce signals is stronger than417

the scattered signals. There is no a priori method to choose the number of principal com-418

ponents to include in the ground bounce removal procedure. Instead, we have proposed419

to determine where the decay of the singular values changes behavior and use that for420

the grounce bounce removal procedure. Using the resulting matrix after removing the421

ground bounce signal, we apply Kirchhoff migration (KM) and our modification to it that422

allows for tunably high resolution images of targets. In our implementation of KM imag-423

ing, we compute so-called illuminations for the problem with a flat interface at the mean424

interface height using only the real part of the relative dielectric permittivity for the medium425

below that interface, so we completely neglect the unknown absorption in the medium.426

–15–



manuscript submitted to Radio Science

-10 0 10

-20

-15

-10

-5

0

0.5

1

-10 0 10

-20

-15

-10

-5

0

0.5

1

Figure 12: [Left] The imaged formed through evaluation of the KM imaging function
(10) for three targets. The exact target locations are plotted as a red “�” symbol. [Right]
The image formed through evaluation of the modified KM imaging function (15) with
δ = 10−2. Measurement noise is added so that SNR = 24.2 dB.
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Figure 13: Evaluation of the modified KM imaging function (15) with δ = 10−2 in sub-
regions centered about each target location.

Our numerical results show that despite uncertainty in the interface, the inexact-427

ness of the ground bounce removal procedure, unknown absorption, and measurement428

noise, this imaging method is able to identify and locate targets robustly and accurately.429

However, there are limitations to the capabilities of this imaging method. The main lim-430

itation for this imaging method is that targets cannot be too deep below the interface.431

Absorption attenuates the scattered power and depends on the path length of signals.432

When targets are deep below the interface, the path length of scattered signals are too433

large and attenuation renders those scattered signals undetectable within the dynamic434

range of measurements. Additionally, targets cannot be too closely situated to one an-435

other. The KM imaging method is limited in its resolution. If targets are situated closer436

than the resolution capabilities of KM, they cannot be distinguished.437

Despite the limitations of this imaging method, we find these results to be a promis-438

ing first step toward practical imaging problems. A key extension of this work will be439

to incorporate quantitative imaging methods that will open opportunities for target clas-440

sification in addition to identification and location. We have recently developed meth-441

ods for recovering the radar cross-section (RCS) for dispersive point targets when there442

is no ground bounce signal (Kim & Tsogka, 2023b). Recovering the RCS for individual443

targets can be used to classify targets by properties related to their size or material prop-444

erties when their shape or other geometrical features are not available for recovery. The445

challenge with quantitative imaging methods for this problem will be addressing both446

the unknown absorption and uncertain rough interface. As mentioned previously, absorp-447

tion will attenuate the power scattered by targets. Moreover, it will attenuate power non-448

uniformly over frequency which introduces new challenges. The uncertainty in the rough449

interface also affects our ability to recover quantitative information. Because our method450

–16–



manuscript submitted to Radio Science

for removing ground bounce signals from an unknown rough surface is approximate, it451

yields errors in the phase which impeded the recovery of quantitative information. De-452

veloping extensions that allow for quantitative subsurface imaging is the subject of our453

future work.454

Appendix: Numerical solution of the system of boundary integral equa-455

tions456

The method that we use to compute realizations of the Gaussian-correlated rough457

surface (Tsang et al., 2004) uses discrete Fourier transforms, which assumes periodic-458

ity over the interval [−L/2, L/2]. The truncated domain width L is chosen large enough459

so that edges do not strongly affect the results. In the simulations used here we set L =460

4 m compared to the 1 m aperture and 30 cm wide imaging window.461

To compute the numerical solution of (6) or (7), we first truncate the integrals to462

the interval −L/2 ≤ ξ ≤ L/2 and then replace those integrals with numerical quadra-463

ture rules. The result of this approximation is a finite dimensional linear system of equa-464

tions suitable for numerical computation. Because the rough surfaces are periodic, we465

use the periodic trapezoid rule (composite trapezoid rule for a periodic domain). How-466

ever, because the integral operators in (6) and (7) are weakly singular, we need to make467

modifications to the periodic trapezoid rule which we explain below.468

We discuss the modification to the periodic trapezoid rule we use for the integrals,

ID(s) =

∫ L/2

−L/2

∂G(s, h(s); t, h(t))

∂n

√
1 + (h′(t))2U(t)dt, (A1)

and

IS(s) =

∫ L/2

−L/2
G(s, h(s); t, h(t))V (t)dt, (A2)

with

G(s, h(s); t, h(t)) =
i

4
H

(1)
0

(
k
√

(s− t)2 + (h(s)− h(t))2
)
.

Let tj = −L/2 + (j − 1)∆t for j = 1, . . . ,M denote the M quadrature points with
∆t = L/M . By applying the periodic trapezoid rule to (A1) and (A2) and evaluating
that result on s = ti, we obtain

IMD (ti) = ∆t

M∑
j=1

∂G(ti, h(ti); tj , h(tj))

∂n

√
1 + (h′(tj))2U(tj),

and

IMS (ti) = ∆t

M∑
j=1

G(ti, h(ti); tj , h(tj))V (tj).

Let A be the M ×M matrix whose entries are

aij = ∆t
∂G(ti, h(ti); tj , h(tj))

∂n

√
1 + (h′(tj))2, (A3)

and let B be the M ×M matrix whose entries are

bij = ∆tG(ti, h(ti); tj , h(tj)). (A4)

With these matrices defined, the approximations for the integral operators given above469

are matrix-vector products. The problem with these results is that the kernels for IMD470

and IMS are singular on tj = ti, so the diagonal entries of A and B cannot be specified.471
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The modification to the periodic trapezoid rule we make is to replace the diago-
nal entries of A and B by

aii = U(ti)

∫ ti+∆t/2

ti−∆t/2

∂G(ti, h(ti); t, h(t))

∂n

√
1 + (h′(t))2dt,

and

bii = V (ti)

∫ ti+∆t/2

ti−∆t/2

G(ti, h(ti); t, h(t))dt.

Note that we have assumed that U(t) and V (t) are approximately constant over this in-
terval thereby allowing us to factor them out from the integral. Substituting t = ti +
τ and dt = dτ , we obtain

aii = U(ti)

∫ ∆t/2

−∆t/2

∂G(ti, h(ti); ti + τ, h(ti + τ))

∂n

√
1 + (h′(ti + τ))2dτ,

and

bii = V (ti)

∫ ∆t/2

−∆t/2

G(ti, h(ti); ti + τ, h(ti + τ))dτ.

Next, we evaluate the expressions involving G and find that

∂G(ti, h(ti); ti + τ, h(ti + τ))

∂n

√
1 + (h′(ti + τ))2

= − ik

4
[h′(ti)τ − h(ti) + h(ti + τ)]

H
(1)
1 (k

√
τ2 + (h(ti)− h(ti + τ))2)√

τ2 + (h(ti)− h(ti + τ))2
,

and

G(ti, h(ti); ti + τ, h(ti + τ)) =
i

4
H

(1)
0 (k

√
τ2 + (h(ti)− h(ti + τ))2)

Expanding about τ = 0, we find

∂G(ti, h(ti); ti + τ, h(ti + τ))

∂n

√
1 + (h′(ti + τ))2 =

h′′(ti)

4π(1 + (h′(ti))2)
+O(τ2),

and

G(ti, h(ti); ti + τ, h(ti + τ)) =
1

4π

[
−2γ + iπ − 2 log

(
1

2
k|τ |

√
1 + (h′(ti))2

)]
+O(τ2),

with γ = 0.5772 . . . denoting the Euler-Mascheroni constant. Integrating these expres-
sions over −∆t/2 ≤ τ ≤ ∆t/2, we set

aii =
∆t

4π

h′′(ti)

1 + (h′(ti))2
, (A5)

and

bii =
∆t

2π

[
1− γ + i

π

2
− log

(
1

4
k∆t

√
1 + (h′(ti))2

)]
. (A6)

Thus, to form the matrix A, we evaluate (A3) for all i 6= j and (A5) for i = j.
Similarly, to form the matrix B, we evaluate (A4) for all i 6= j and (A6) for i = j. With
these matrices, we seek the vectors of unknowns, u = (U(t1), . . . , U(tM )) and v = (V (t1), . . . , V (tM ))
through solution of the block system of equations,[

1
2I −A0 B0
1
2I +A1 −B1

] [
u
v

]
=

[
f0
f1

]
.

Here I is the identity matrix, A0 and B0 correspond to evaluation of the A and B ma-472

trices with wavenumber k0 and A1 and B1 correspond to evaluation of the A and B ma-473

trices with wavenumber k1 = k0

√
εr(1 + iβ). The right-hand side block vectors con-474

tain the evaluation of the source above the interface f0 and below the interface f1 on the475

set of interface points (tj , h(tj)) for j = 1, . . . ,M .476
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