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Highlights

Determining Mid-Ocean Ridge Geography from Upper Mantle

Temperature

Xiyuan Bao, Tushar Mittal, Carolina R. Lithgow-Bertelloni

• Mantle temperatures beneath global mid-ocean ridges exhibit inter-

basin differences

• We use machine learning to predict the geographic location of ridge

segments based on the sub-ridge upper mantle temperature

• The integrated history of convection and tectonics is recorded in the

large-scale patterns observed at mid-ocean ridges
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Abstract

In this study, we examine the influence of the mantle and large-scale tecton-

ics on the global mid-ocean ridge (MOR) system. Using solely seismically-

inferred upper mantle temperatures below the melting zone (260-600 km)

and an interpretable machine learning model (Random Forest and Principal

Component Analysis), we can predict a priori the location (ocean basin and

ridge system) of global MOR with up to 90% accuracy. Two features provide

>50% of the discriminative power: the temperature difference between the

mid-layer (340-500 km) and other depths, and the depth-averaged temper-

ature of the upper mantle. We suggest long-term (100s Myr) tectonic and

convective processes left ample, distinct but hidden fingerprints in the man-

tle that allow us to separate regions at ∼ 1000 km scale. Our result implies

that the large-scale geophysical and geochemical differences observed along

the MOR system are reflective, not primarily of shallow processes associated

with melting, but of the integrated long-term tectonic and convective history
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that determines the present-day upper mantle temperature structure.

Keywords: Mid-ocean Ridge, Potential Temperature, Mantle Convection,

Random Forest

2020 MSC: 86-00

1. Introduction

The 60,000 km-long chain of mid-ocean ridges (MOR) is the most visible

surface manifestation of plate tectonics and mantle flow. Deep (>250 km

depth) mantle material is fed to ridges by largely passive convective currents,

resulting in decompression melting at depths < 150 km, and the generation of

new oceanic lithospheric plates. The plate tectonic factory is hence directly

connected not only to the present-day structure of the mantle under ridges

but also to the integrated convective and tectonic history of each ocean basin.

For instance, since the breakup of Pangea, the circum-Pacific subduction

girdle has produced an influx of cold downwelling slabs towards the mantle

beneath the Atlantic and Indian Ocean basins and a relative absence in the

Pacific basin (Supplementary Movie S1, Richards and Engebretson, 1992;

Lithgow-Bertelloni and Richards, 1998; Mao and Zhong, 2018; Müller et al.,

2019; Doucet et al., 2020)., even when considering intra-oceanic subduction

in the Pacific basin (e.g., van de Lagemaat and van Hinsbergen, 2023). The

downgoing Pacific slabs cool the mantle, and the downwelling flow generates

a passive return upwelling flow at ridges.

The mantle convective and tectonic history, integrated over the last few

hundred million years, will determine the average temperature of the upper

mantle today (e.g., Conrad et al., 2013; Karlsen et al., 2021). Superposed on
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these average temperatures are additional dynamical processes. For instance,

upwelling flow in the lowermost mantle above the Pacific and African Large

Low Shear Velocity Provinces (LLSVPs) may contribute to the overall ther-

mal structure of the upper mantle in some regions (MacLeod et al., 2023).

More importantly, as LLSVPs are directly associated with most present-day

hotspots and mantle plumes, the interaction of mid-ocean ridges with nearby

(within a few 1000 km) mantle plumes can significantly affect the ridge ther-

mal structure, volatile content (CO2, H2O content), and basalt geochemistry

(especially radiogenic isotopes, e.g., Ito et al., 2003; Gibson and Richards,

2018).

We thus hypothesize that the tectonic and convective histories over the

past few 100 Myr are reflected in the geophysical and geochemical charac-

teristics of the ridge systems of individual ocean basins. For example, the

Pacific ridges have a systematically higher spreading rate and are shallower

(Fig. 1 a, b) than the mid-Atlantic ridge system, with the Indian Ocean

ridge segments having intermediate values (e.g., Gale et al., 2014). Similar

differences exist in the major element composition of mid-ocean ridge basalts

(MORBs, Gale et al., 2014). Previous work on the origin of these inter-

basin geochemical and geophysical differences has focused on the correlation

amongst spreading rate, ridge depth, and MORB major and trace element

chemistry (e.g., Klein and Langmuir, 1987; Sinton and Detrick, 1992; Brandl

et al., 2013;Gale et al., 2014; Niu, 2016), inferences on the mantle tempera-

ture (Klein and Langmuir, 1987; Brown Krein et al., 2021), composition of

the mantle source region (Niu and O’Hara, 2008), and melt-rock interaction

during magma transport (Kimura and Sano, 2012). The premise of these

3



studies is that the degree of partial melting and the nature of melt transport

in the melting column is the primary control of the observed variability.

Instead, taking a geodynamics perspective, we posit that the differences

in ridge characteristics at the ocean basin scale are a consequence not only

of shallow melting but of deep mantle structure integrating over the ocean

basin’s convective history. Focusing only on shallow processes obscures the

large-scale integrative role of mantle convection and tectonic history in shap-

ing the source of mantle melting at the ridge on multiple spatio-temporal

scales. However, it is very challenging to analyze the critical role of deep

processes from existing approaches since the inferences regarding MORB

geochemistry and mantle source potential temperature (TP) are strongly af-

fected by the poorly constrained details of the melting process at shallow

depths (Stracke, 2021), such as the extent of melt channelization (Spiegel-

man and Kelemen, 2003; Keller et al., 2017; Brown Krein et al., 2021). For

instance, current petrological estimates of the ridge potential temperature

(TP) disagree both in absolute value and inferred spatial patterns. Brandl

et al. (2013) and Dalton et al. (2014) see a hotter Pacific compared to the

Atlantic and Indian Ocean basins, while Brown Krein et al. (2021) see no

distinct hemispheric difference. In this study, we take an alternative, data-

driven approach to search for unique fingerprints of the mantle flow processes

in the deep upper mantle (260 - 600 km depth) temperature under MORs.

These variations would serve as inputs for the shallow melting processes that

eventually give rise to the observed geochemical variations in MORB lavas.

Specifically, our work addresses the following question: Can the temper-

ature of the entire upper mantle below the melting zone accurately classify a
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priori the oceanic basin where ridge segments are found? Within the con-

text of this study, we will be using ocean basins interchangeably with ridge

systems in those basins since the ridges are representative of the integrated

convective history of the basin and are fed dominantly by passive mantle

flow. This is true even if some ridge segments have an active component as

suggested by Rowley et al., 2016. By focusing on ridges instead of geometric

centers of ocean basins, we avoid contamination from smearing near complex

features like subduction zones, which have very large velocity and thermal

anomalies. Finally, as we directly sample the passive upwelling part of the

mantle underneath the ridges, we avoid the potential effects of mixing at

varying length and time scales, that the geometric center of the ocean basin

may suffer from.

Given the significant overlap in mantle potential temperatures across

basins (Fig. 1c, using results from Bao et al., 2022, see section 2.2), the

answer to our primary question is not obvious. Furthermore, this question

may seem superfluous for the present day, given that we already have the

geographical data for each ridge segment. However, if we can identify unique

sub-ridge mantle temperature fingerprints associated with each basin and

even sub-basin-scale ridge systems, we can analyze them with respect to the

basin’s tectonic and convective history. This would, in turn, aid our un-

derstanding of how different mantle flow processes contribute to sub-ridge

thermal structure. Overall, our study helps in addressing a fundamental

geodynamics question: What is the dominant reason for the observed geo-

physical and geochemical differences in ridge systems - shallow melting or

deep mantle processes?
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To address our primary science question, we construct a model for predict-

ing the basin in which ridge segments are located, using only the temperature

of the upper mantle inferred from a full waveform seismic tomography model

and self-consistent thermodynamics (Bao et al., 2022), combined with the

power of an interpretable supervised classification method – the random for-

est (RF) algorithm (Breiman, 2001). Our end goal is not to develop a model

for extrapolation to other geographic locations or time periods. Instead, we

use the model to assess if the thermal structure beneath the ridges contains

enough information to distinguish among ocean basins (or at spatial scales

of at least ∼ 1000 km) without any prior geographic information. If we can

find a high accuracy and interpretable model, this would clearly indicate

that different ocean basins have unique upper mantle thermal fingerprints

associated with specific mantle dynamics processes.

Our work builds upon earlier attempts to understand the deep mantle

contribution to the global ridge system. Early studies, e.g., Ray and An-

derson (1994) explored the connection between mantle seismic velocity and

ridges, as shear wave speeds are particularly sensitive to temperature. How-

ever, Ray and Anderson (1994) were limited by the resolution of the global

tomography and sparse mineral physics data and thermodynamic modeling

available at the time. They could not infer temperatures directly from the

seismic velocities. Dalton et al. (2014) provided a big step forward by using

thermodynamic models of the physical properties of mantle rocks to infer

mantle temperature at 300 km depth below the ridges from global seismic

tomography. They found Pacific ridges to be hotter than those in the Indian

and Atlantic oceans. Rowley et al. (2016) also found a possible contribu-
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tion from active, hotter mantle upwellings to the faster-spreading rates at

the East Pacific Rise. While these studies provide important clues regard-

ing the role of convective and tectonic processes on seafloor spreading and

MORB geochemistry, they lack predictive power (uniqueness of the mantle

fingerprint) or a direct connection to convective and tectonic processes. Fur-

thermore, full waveform seismic tomography models (as used here) from the

past decade (e.g., French and Romanowicz, 2014) provide a more robust and

faithful estimate of the amplitude of seismic anomalies, which is crucial for

inferences of temperatures.

Thematically, our work is a counterpart to the recent study by Stracke

et al. (2022), who used non-linear dimension reduction and clustering analysis

on multiple isotopic data for global MORBs and Ocean Island Basalts. They

showed that ridges and hotspots potentially sample distinct sub-basin-scale

isotopic heterogeneities, thus highlighting the role of deep mantle processes

in controlling ridge composition. Section 2 describes the datasets and anal-

ysis methods we use in this study, followed by the results of the random

forest analysis in Section 3. Section 4 uses these results to discuss the main

implications of our results in the context of the importance of shallow vs.

deep mantle processes for ridges.

2. Materials and Methods

2.1. Ridge Database

To test our hypothesis that the unique sub-ridge temperature fingerprints

exist, we start by sampling mantle properties underlying MOR segments in

the three major ocean basins (Pacific, Atlantic, Indian). We use the segment
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definitions from Gale et al. (2014) database with some filtering (choosing 655

out of 711 mid-ocean ridge segments, 771 in total if ridges in back-arc basins

are included) to 1) avoid more complex tectonic settings (back-arc basins

and ultra-slow ridges) and 2) simplify classification. The Gale et al. (2014)

ridge segments are determined based on along-ridge axial depth variations,

ridge offsets, transform faults, and non-transform offsets. Thus, using these

segments is a reasonable choice for our question of interest rather than a

uniform sampling per km of the ridge since each segment would correspond

to a unique tectonic/convective regime. The average length of the mid-ocean

ridge segments is 78 km. However, our analysis is not focused on interpreting

the inferred temperature below any neighboring individual ridge segment at

this ∼ 100 km horizontal spacing. The inherent lateral averaging (smoothing

and smearing) and resolution of global seismic tomography inversions pre-

clude it and the results are only representative of the regional scale thermal

structure (>∼ 500 km). Instead, we focus on ridge temperature variation

with lateral scales of ∼ 1000 km and ∼ 100 km scale vertically (Fig. 2). We

also test the robustness of our conclusions by doing ridge-basin classification

for the entire mid-ocean ridge database with 711 segments (including smaller

basins in the Arctic, Caribbean, and Red Sea), as well as finer sub-basin

ridge system classification, but still at > 1000 km horizontal scale (discussed

in section 3.2).

2.2. Temperature Inference

Following Bao et al. (2022), we extract shear wave seismic velocity from

tomographic model SEMCUB-WM1 (French and Romanowicz, 2014) and

convert it to temperature. We validate our results with 4 additional global
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tomographic models (Ritsema et al., 2011; Simmons et al., 2010; Schaeffer

and Lebedev, 2013; Debayle et al., 2016). We extract velocity anomalies

directly beneath each ridge segment, without any lateral averaging, from 260

to 600 km depth in 20 km intervals. This depth interval allows us to capture

sufficient information given the radial spline basis functions used in recent

global tomography models (e.g., French and Romanowicz, 2014). We focus

on depths below 260 km to avoid the strongly reduced seismic velocities due

to seismic attenuation, potentially caused by partial melt. Dry melting starts

<∼ 100 km depth beneath the ridge and at <∼ 200 km in the presence of

volatiles (Keller et al., 2017 and references therein). A depth > 260 km is

sufficient to avoid even the melting-influenced regions of intraplate volcanism,

as seen seismically (Debayle et al., 2020) and geochemically (Ball et al.,

2021). Because the velocity to temperature conversion is non-linear (Bao

et al., 2022, Supplementary Fig. 1), we convert the shear-wave velocity

anomalies to temperature using HeFESTo (Stixrude and Lithgow-Bertelloni,

2005, 2011, 2022, 2024). HeFESTo is a self-consistent thermodynamic model

of the equilibrium phase assemblage of mantle minerals and their physical

properties at a given pressure, temperature, and fixed bulk composition.

An obvious question here is whether this velocity to temperature conver-

sion is necessary and if one could directly use the seismic velocity anomalies

for ridge-basin classification from mantle tomography. However, we posit

that analyzing the temperature structure is more physically informative be-

cause: (1) Seismic velocity of the sub-ridge mantle is dominantly thermal at

the global and inter-basin spatial scales of interest in this study (∼ 1000 km).

At individual ridge segment compositional heterogeneities are more likely to
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play a role (Dalton et al., 2014); (2) Conversion of seismic velocity to temper-

ature is not a constant or empirical relationship (Birch, 1969; Schubert et al.,

1976), but is instead non-linear (and depth dependent) in a self-consistent

thermodynamic model (Bao et al., 2022) (also see Supplement Figure), and;

(3) Variations in temperature anomalies are more physically meaningful and

interpretable in terms of mantle convective processes and tectonic histories

in contrast to seismic velocity anomalies.

Since our focus is on ocean basin scale features, we use the conservative

premise that the upper mantle is compositionally homogeneous to first order,

consisting of Depleted MORB Mantle (DMM, Workman and Hart, 2005).

Our final temperature data for the ridge segment catalog is high-dimensional

(18 uniformally spaced depth layers between 260 to 600 km depth per each

ridge segment, Fig. 2), which demands a strategy for dimensional reduction

as discussed below (section 2.3).

2.3. Data Processing and Classification

2.3.1. Linear Classifier

We first use a linear classifier, i.e., multinomial logistic regression, to pre-

dict the basin where each ridge segment is located based on the MOR mantle

temperature profiles . Specifically, we try to find curves in the space of each

input pair (e.g., between temperature at 2 depths) to separate out the differ-

ent basins. A softmax function (Bridle, 1989) is used to find the maximum

probability of the particular class and to give a prediction. However, this

yields low accuracy irrespective of whether we use dimensionality reduction

(60% accuracy) or not (65% accuracy). This suggests that there is no clear,

linear predictive separation between each ocean basin ridge segments (e.g.,
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Fig. 3). The high-dimensional nature of the raw data (i.e., 18 depth layers)

also makes the problem challenging. Thus, we need a higher-order machine

learning model that can handle both linear and highly nonlinear relationships

and remain interpretable. We further desire that the model features be phys-

ically meaningful quantities that can be related to dynamical processes, such

as the average temperature of the upper mantle (related to long-term plate

organization, e.g., Gurnis, 1988), and the difference in temperature between

layers which can be linked to various convective length scales.

Dimensional reduction using Principal Component Analysis (PCA, Jol-

liffe, 2002) satisfies the requirements set above for optimal, interpretable clas-

sification. PCA is a commonly used method for high-dimensional datasets

and calculates orthogonal principal components (PCs, Fig. 4). Each PC

is a linear combination and weighted sum of the normalized TP at the

18 distinct depths under each ridge segment. That is, PCi =
∑

W i
dT̂pd ,

T̂pd = (Tpd − µd)/σd, where W i
d is the weight for ith PC at depth d; T̂pd

and Tpd are the normalized and original potential temperature at depth d,

respectively; µd and σd are the average potential temperature and standard

deviation for all ridge segments at depth d, respectively. We normalize and

rescale the original temperatures (from Tpd to T̂pd) for each depth before

using it in the PCA calculation, to have zero mean and unit variance to

achieve better performance (Duda et al., 1973). PCs are sorted from large

to small values based on how much variance they can represent in the data.

PC1 covers the largest variance of the data, PC2 the second largest, and

so on for the remaining principal components. Mathematically, PCs are the

eigenvectors of the covariance matrix CX of the (normalized) original data
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matrix X (with dimensions of 18 × N for 18 depths and N = 655 ridge

segments accordingly). The eigenvectors are sorted by the absolute value of

the corresponding eigenvalues. That is, if an eigenvalue is near zero, the cor-

responding eigenvector is not important. Because we have 18 depths, there

will be 18 PCs in total. The covariance matrix CX is symmetric, therefore

PCs are mutually orthogonal. In other words, the PCs are just the result

of rotation of the original space (18 depths) into a space where correlated

depth slices are combined together into a new dimension. As a result, a

positive weight (within a given PC) means the temperature at that depth

contributes positively to that PC (or the rotation along that depth), and vice

versa for negative values. Analyzing the PCs that capture the main variance

(∼ 99%) equates to projecting the data to a reduced dimensional space. We

determine the optimal number of PCs to be used in our analysis based on

their final performance in the subsequent machine-learning model, instead of

just the variance of the data when projected to each PC. This ensures that

we keep adequate information of the mantle temperature structure for the

classification model to determine ridge location.

2.3.2. Non-Linear Classifier : Random Forest

Given the poor performance of a linear classifier even with PCs as inputs

(∼ 60%), we choose to use a nonlinear supervised classifier - Random Forest

(Breiman, 2001) for our primary analysis here. Using the PCs as inputs,

we train a Random Forest (RF) model to predict the ocean basin in which

ridge segments are located. RF is a robust classification algorithm (reduced

sensitivity to overfitting) and generates interpretable decision trees (Fig. 5a).

RF consists of a decision tree generation algorithm, which chooses only one
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feature (i.e., PC) at each node and divides the data into two branches based

on a cutoff value. To determine what PCs to use and their cutoff value for

each tree branch, the tree algorithm calculates the entropy or Gini impurity

G for each possible PC and cutoff combination. At each node, we have

G =
∑

k pk(1 − pk), where pk is the proportion of each class (i.e., ocean

basin) k. A low entropy or Gini impurity measure indicates that the sub-

node/branch would be dominated by one class and it is thus a good choice for

dividing the tree. This process is repeated until the whole dataset is classified

by a tree consisting of many branches. Overall, the algorithm optimizes

the PC selection and cutoffs at each branching point to match the input

classification labels (here the ridge basins of origin). For each input datapoint

consisting of a set of PC values, the final classification is the value of each

end node (leaf node) that the datapoint reaches after traversing the trained

tree model (e.g., Fig. 5b). A key feature of the tree-based classification

algorithms is that they make it easier to understand the classification and the

importance of each input feature in the final predictive classification model.

RF generates a series of decision trees (here N = 20) as a forest and takes

the predicted probability of the segment in a certain basin averaged from

each tree. There are two built-in levels of randomness to avoid overfitting:

1) Random resampling of the dataset via bootstrapping when training each

tree, and 2) PC selection from a randomly selected subset of PCs when

growing the tree.

The nonlinear nature of the algorithm and its randomness enable RF to

handle the complicated ridge database robustly. To further avoid overfitting

and improve the robustness of the prediction, we also randomly split the input
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PC data into training (80%) and testing (20%) sets. We repeat this 50 times

to calculate the average classification accuracy. The modeling pipeline is

constructed using Orange which enables visual programming for data mining

(Demšar et al., 2013). Note that with PC as input of Random Forest, our

model is similar to the Rotational Forest. In Rotational Forest, the raw

feature is split into subsets randomly, and then PCA is performed for each

subset. The result is then used as input for the RF algorithm (Rodriguez

et al., 2006).

When we visualize data in PC pair space (or input temperature variable

space) with scatter plots in Orange (Demšar et al., 2013), it can compute the

most informative projections (e.g., the 2D space that best separates different

classes). For each point, Orange finds 10 nearest neighbors in the projected

2-D space, e.g., two PCs. It then checks the number of points out of 10,

with the same ocean basin. The averaged number across the neighborhood

of all points gives the final score, and we consider the PC (or temperature)

pair with the highest score the most informative projection. In Figure 3,

we show the results of this analysis for a pair of input temperature data

variables. These results quantitatively illustrate that a 2D parameter space

is insufficient to distinguish the ocean basin of origin of each ridge segment.

2.3.3. Summary: Classification analysis

In conclusion, we need a combination of PCA and RF for our classifica-

tion analysis, since the separation of the ridge segments based on the depth-

dependent temperature is challenging with a linear classifier alone. Due to

inherent smoothing in seismic tomography and the effects of varying geody-

namic processes, the temperatures in neighboring depth bins can be strongly
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correlated. Hence, using temperatures at 18 depths obscures the length-scale

analysis and physical interpretation of the results. Instead, we use PCA to

effectively determine the primary, uncorrelated information in the data and

which length-scales are distinct.

We want to re-emphasize that the end goal of the analysis is not to just

find a predictive model with the highest accuracy. Instead, we want to test if

it is possible to find a model that accurately predicts the geographical loca-

tion of ridge systems (and the segments within them to at least at ∼ 1000

km scale) using only the sub-ridge structure. While the mid ocean ridges are

largely fed by passive mantle upwellings (c.f. section 1), our data-driven fea-

ture selection does not preclude the existence of temperature heterogeneities

in the upper mantle along the ridge at the ocean-basin scale (Cammarano

et al., 2003; Dalton et al., 2014). While our primary analysis is focused on

inferred temperatures, we repeat the analysis with velocity anomalies (using

the corresponding PCs and RF model) for completeness.

3. Results

3.1. Potential Temperature

Figure 2a shows the map of inferred TP averaged over 260-600 km depths.

The mean and median TP of the Pacific are the hottest overall, while those

of the Indian and Atlantic basins overlap (Fig. 1c), consistent with Dalton

et al. (2014). The modal TP for Pacific ridges is similar to that of Indian

ridges but slightly hotter than that of Atlantic ridges. Overall, Indian ridges

have TP distribution intermediate between Pacific and Atlantic ridges. We

see regional in-basin lateral temperature variations similar to Dalton et al.
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(2014) and Bao et al. (2022). While the map (Fig. 2a) and overall statistics

(Fig. 1c) already reveal some differences among basins, we observe additional

multi-scale vertical variations, which we discuss in section 4.3 (Fig. 2b).

3.2. Principal Components and Random Forest

We find that the first 5 PCs cover > 99% of the variance in the tem-

perature data (Fig. 6a). The proportion of variance explained by each PC

decreases dramatically from more than 75% for PC1 to less than 1% for PC5.

To understand what each PC represents physically, in Fig. 4a, we show the

weighting coefficients of the linear combinations of PCs using the weight ma-

trix of the first 5 PCs. For PC1, the weights are ∼ 0.2 at all depths. Thus,

PC1 corresponds to the scaled average TP over all depths. Other PCs have

an average weighting of 0, meaning they emphasize the TP differences at

depth for length scales smaller than the whole upper mantle. For example,

the weighting coefficients for PC2 decrease from 0.3 to -0.3 from 260 km

to 600 km, essentially giving the difference in TP between the upper half of

the upper mantle (260-420 km) and the transition zone (440-600 km). The

coefficients for PC3 are positive around 400 km (340-500 km) and negative

at the top (260-320 km) and bottom (520-600 km); thus PC3 quantifies the

contrast between mid-upper mantle depths (340-500 km) and other depths

(especially <300 km, where the weight is the most negative at about -0.5).

Finally, PC4 and PC5 represent variations at smaller length scales (≤80 km).

The first 5 PC values for all ridge segments are shown in Fig. 2b.

Choice of PCs: PC1, or essentially the average upper mantle TP, shows

substantial overlap across basins around 1300-1500 ◦C (Fig. 1d), and it is

insufficient for accurate basin classification. As PC1 is only the bulk tem-
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perature of the upper mantle, information at smaller length scales (through

other PCs) is required to distinguish ridges from basins with similar bulk

temperature from each other. To have a parsimonious model, we first try to

predict the basin geography with just one other PC by finding the most infor-

mative 2-D projection, which gives the best classification accuracy among all

PC pairs. We find that this is the PC1 vs. PC3 projection shown in Fig. 4b.

The Pacific segments lie primarily on the right of the projection (PC1> −4),

while the Atlantic can have extreme PC3 values (> 2 or < −2). Although

one can approximately predict ocean basins based on this zoning, the PC1

and PC3 in each basin still overlap significantly. Thus, the predictive accu-

racy is less than 60% and we need more PCs and length scale information.

The zoning in Fig. 4b also reinforces the need for non-linear classifiers since

the boundary between different ocean basins is curved and complex.

To determine the best number of PCs in the RF model, we add one PC

at a time, in the order of descending variance covered (e.g., PC1, PC1+PC2,

PC1+PC2+PC3, and so forth), and calculate the classification accuracy as

a function of the number of PCs (Fig. 6b). Not surprisingly, classification

accuracy generally increases with more PCs. However, the increased accuracy

gain generally reduces as the PC index increases. Three PCs are enough to

achieve 70% classification accuracy. To reach 80% accuracy, we must include

PC1 to PC5 (accuracy = 82%). Since adding more PCs does not significantly

improve the accuracy, we will use the first 5 PCs for the subsequent analysis.

We get prediction accuracies from 75% (Pacific) to 90% (Atlantic), shown in

Table 1 as the confusion matrix.

Trained tree model : A typical example of how PCs work in RF is
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shown in Fig. 5b, which shows one decision tree of RF. At the root node

where we have all samples (a random subset of all ridge segments), RF finds

that PC1 can best split the data by bifurcating the samples at PC1 = 4.99 so

that the child node with PC1 > 4.99 (node A) is dominated by Pacific ridges.

The other child node (node B) with PC1 ≤ 4.99 has fewer Pacific samples.

In this way, the child nodes are more uniform and the entropy of the child

nodes is minimized. Next, a random subset of PC candidates is generated

at node A, and RF chooses to use PC4 = -0.22 to further bifurcate node A

to A1 and A2. Consequently, the child node A1 has an even higher portion

of Pacific segments than node A, while node A2 only has samples from the

Atlantic Ocean. Similarly, node B is bifurcated at PC3 = 0.25 to B1 and B2

such that B1 has very few Pacific samples. A similar procedure is applied

to A1, B1, and B2 with PC2, PC5, and PC1, respectively, and their child

nodes repeatedly until the child node has four samples (or less) or samples

in the child node are purely from one basin (like A2). We call these end

nodes leaf nodes. Overall, as the decision tree grows from the root node to

the leaf nodes, we gradually minimize the entropy at the next level and have

one basin dominate each leaf node.

Classification robustness : We change the training/testing splitting

over a wide range from 80%/20% to 50%/50% and even 25%/75%, and still

achieve high classification accuracy (82%, 77% and 70%, respectively). We

find that the classification accuracy is robust for all other tomographic mod-

els examined ranging from >83% (Debayle et al., 2016) to 90% (Ritsema

et al., 2011; Simmons et al., 2010; Schaeffer and Lebedev, 2013). This higher

accuracy may result from the global tomographic models explored here con-
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taining less heterogeneity at shorter wavelengths at depth (c.f., discussion in

Meschede and Romanowicz, 2015). Consequently, these models suppress in-

basin temperature variation and emphasize inter-basin differences. We also

notice the weight matrix is reasonably consistent across models, i.e., PC1 al-

ways gives the average while each of the other 4 PCs gives the differences of

the same layers. However, the sign of weights in certain PCs may flip (Fig. 7).

These results are not unexpected as global tomographic models are broadly

consistent with each other in the upper mantle. In addition, we can obtain

a slightly improved classification accuracy (from 82 to 86%) if we average

the inferred TP at every depth in a disc, with radius R = 500 km centered

at each ridge segment. The local average temperature beneath the ridge

segment incorporates additional environmental information (i.e., cold and

hot anomalies) and suppresses in-basin small-scale lateral variations. Using

the seismic velocity anomalies for classification directly (without a temper-

ature conversion), we obtain a similar accuracy - 86% instead of 82% - for

the 80/20 training and testing data split. This illustrates that the velocity-

temperature conversion does not, by itself, impart a bias in terms of our

results. The results based on temperature are easier to physically interpret

in terms of mantle dynamics.

Results with sub-basins : In our main results, we focus on the clas-

sification of three large main basins and exclude other small regions such as

the Arctic, Red Sea, and Caribbean ridge systems. However, including them

as additional ocean basins in our classification model only leads to negligible

decrease (1%) in classification accuracy. Therefore, our primary conclusions

do not change with the full mid-ocean ridge database of 711 segments. We

19



further test our ability to predict smaller tectonic units within ocean basins

(sub-basin ridge systems, e.g., East Pacific Rise). To do this, we slightly

simplify the groups in the ridge database by merging the Chile Ridge with

the Pacific-Antarctic Ridge and the Atlantic-Antarctic Ridge with the Mid-

Atlantic Ridge given their spatial proximity and the small number of ridge

segments in these ridge regions. We then obtain a sub-basin ridge system

map as shown in Fig. 8. Using this for classification analysis (80/20 train-

ing and testing split), we obtain a good accuracy of 74%. Using the local

temperature averaged inside a 500 km-radius disc surrounding each ridge

segment, we get 80% accuracy because lateral variations within each ridge

system are suppressed. These results suggest that the ocean-basin structure

is distinct not only between Pacific, Atlantic, and Indian ocean, but also on

the sub-basin scale.

4. Discussion

4.1. Robustness of our results and overall interpretation

Our results show that we can determine the ocean basin of origin with 80

to 90% accuracy. Note that with 25% of data for training and the rest for

testing, we have an effective ridge segment scale closer to 500 km (instead of

∼ 100 km of the original data), so neighboring ridge segments should contain

much more independent information. Nonetheless, we are still able to ob-

tain 70% accuracy. The robustness of our results suggests that the sub-ridge

mantle temperature is distinct across basins and could be an excellent indica-

tor of large-scale convective contributions to surface differences in the MOR

system. This directly addresses the primary motivating science question for
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our study affirmatively.

Conceptually, our classification model can be regarded as a non-linear

function that takes the present sub-ridge mantle structure as input, decodes

the hidden fingerprint of the integrated records of past tectonic and convec-

tive history, and converts this fingerprint into location information of the

ridges in terms of the basin of origin or smaller tectonic units, such as sub-

basin ridge systems. The hidden fingerprint from the deep mantle is sufficient

to provide robust long-wavelength spatial information without the need for any

shallow mantle or surface observations such as MORB chemistry, spreading

rate, and ridge depth. In the mantle tomography models, we are averaging

laterally at at least the ∼ 500 km scale given the inherent smoothing and

smearing in seismic inversion methods. Consequently, the sub-ridge mantle is

representative of a large section of the ocean basin where the ridge segments

reside.

4.2. Random Forest Feature importance

In our analysis, each principal component represents the sub-ridge tem-

perature heterogeneity at different length scales, ranging from the entire up-

per mantle (PC1) to half (PC2) to 1/3 (PC3) of the upper mantle, and even

smaller depth intervals (PC4 and PC5). Our results thus reveal the length-

scale of thermal heterogeneity subsisting in the mantle and contributing to

the integrated convective record. To assess which features (i.e. PCs) con-

tribute to classification accuracy the most, we use feature importance analysis

methods. For non-linear classifiers such as RF, we can use the permutation

feature importance method (Breiman, 2001) to compute feature importance.

This approach randomly permutates the data of a given PC and computes
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the corresponding decrease in classification accuracy with respect to the de-

fault case (Fig. 5a). We find that PC3 is the most critical feature with

>30% importance, while PC1 is the second most important (>20%). Thus,

PC3 and PC1 together provide more than half of the discriminative power

of the 5 PCs. The fact that feature importance of one PC can be as high as

30% suggests a random dataset (like the original data after the permutation)

would not provide enough information for classification.

The fact that PC1, which represents average mantle temperature (see

discussion below), is a key feature is not surprising given previous work.

Multiple studies have suggested that hemispherical temperature differences

in the upper mantle may result from past subduction zone locations (i.e., the

Indo-Atlantic box and Pacific box, Masters et al., 1982; Richards and En-

gebretson, 1992;Ricard et al., 1993; Lithgow-Bertelloni and Richards, 1998;

Davaille et al., 2005). The key novelty of in our study is three fold: 1)

Using a purely data-driven approach, we see such hemispherical differences

from the global sub-ridge temperatures inferred from modern seismic tomog-

raphy in the absence of any a priori geographical or surface morphological

information. We can therefore avoid the limited and sampling bias affected

petrological data (e.g., Brandl et al., 2013), while still being able to com-

pare our inferred ridge temperature to global petrological data (Bao et al.,

2022); 2) By using the temperature as a function of depth, rather than only

the average temperature over the upper mantle or selected at a particular

depth (e.g., Dalton et al., 2014; Bao et al., 2022), we can analyze the overall

large-scale thermal structure below the melting depth. Even sophisticated

ML models would fail if we used only the depth-averaged sub-ridge temper-
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atures, because the values in each basin overlap significantly (Fig. 1c); 3) by

adopting the state-of-the-art RF model combined with PCA, we can perform

multi-scale analysis not just laterally (inter-basin versus each ridge system),

but vertically, using the reduced dimensionality provided by PCA.

4.3. Physical interpretation of PCs

4.3.1. Principal Component 1

PC1, the average TP over all depths and the second most important fea-

ture, broadly represents the current convective vigor of the upper mantle

column. The distinct hemispherical pattern (higher PC1 in the Pacific, Fig.

2, 1c) is consistent with previous studies (Brandl et al., 2013; Dalton et al.,

2014) and can be linked to the history of subduction for the past 200 Myr

(c.f. Supplementary Fig. 2).

For instance, the Pacific ocean evolved from the Panthalassic ocean. It

was filled with in-basin spreading ridges and was also surrounded by an

outward subduction girdle predating the formation of Pangea (∼300 Ma,

Doucet et al., 2020, c.f. Supplementary Text S1 for more information). Intra-

oceanic subduction, if present, was not extensive and confined to the edges

of the basin (e.g., van de Lagemaat and van Hinsbergen, 2023). Thus, the

hemisphere dominated by the Pacific plate and its mid-ocean ridges and has

not been cooled significantly by past subduction (Pacific domain). Since that

period there was also significant intraplate hotspot volcanism in the Pacific

resulting in large oceanic plateaus also potentially reflective of the higher

basin temperature (Bryan and Ferrari, 2013).

In contrast, the Atlantic region developed from the rifting of Pangea ∼180

Ma and the formation of the mid-Atlantic ridge system. The Indian Ocean
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has a more complex tectonic history – it has undergone in-basin subduction,

ridge spreading, and the closure of the Tethys (Müller et al., 2019). Thus,

the Indian and Atlantic oceans and associated continental plates define the

other hemisphere (African domain) where we instead expect the mantle to

have been cooled by Tethyan and Pacific basin slabs. It has been suggested

that the residual topography and lithospheric thickness potentially present

a similar hemispherical pattern (Stewart et al., 2023), which might be linked

to the differences between the corresponding mantle domains (separated by

the dashed line in Supplementary Fig. 2). Overall, the different tectonic

histories, in particular, the presence or absence of in-basin subduction and the

subduction of slabs away from one basin and towards another, can change the

first-order thermal structure of the mantle under each basin and is reflected

in the MOR temperature today (Fig. 1c).

This tectonic history forming a subduction girdle, gives rise to a degree-

2 convection regime with limited material transfer between the Pacific and

African mantle domains (Conrad et al., 2013). This degree-2 pattern is also

reflected in the presence of the antipodal Pacific and African Large Low Shear

Velocity Provinces (LLSVPs) above the core-mantle boundary (Supplemen-

tary Fig. 2). The origin and specific nature of the LLSVPs are beyond the

scope of this discussion. We speculate that their presence and differences be-

tween the LLSVPs may have influenced the thermal structure of their mantle

domains, especially given their association with plumes (Koppers et al., 2021;

Weis et al., 2023; MacLeod et al., 2023).

Beyond recent (< 200 My) subduction history, the long-term convective

and tectonic history, such as the presence of supercontinents, may also alter

24



the thermal structure of the mantle under each basin (Gurnis, 1988; Jellinek

and Lenardic, 2009; O’Neill et al., 2009; Lenardic et al., 2011). Karlsen et al.

(2021) argue that Rodinia, a longer-lived ( 1.1-0.7 Ga) supercontinent, might

have allowed more heat to accumulate under the Pacific mantle domain in

contrast to the impact of the shorter-lived Pangea ( 300-180 Ma) on the

African domain. The additional supercontinent insulation may be partially

responsible for the present-day hemispherical temperature difference TP at

depth (Fig.2a), despite faster cooling in the Pacific due to higher spreading

rates after the breakup of Pangea (Karlsen et al., 2021).

Besides the impact on basin-wide average temperature and PC1, past

subduction may also explain regional low PC1 values. For instance, a co-

herent slab-like structure has been observed beneath the Southeast Indian

Ridge in seismic tomography models (Simmons et al., 2015) with a part of

this potential slab remnant still trapped in the transition zone (Gurnis et al.,

1998). This subduction event dates back to the Mesozoic and terminated

near the edge of East Gondwana ∼ 140Ma. The presence of a trapped slab

in the transition zone may explain the low temperatures and PC1 value of

the associated nearby ridge (TP ∼ 1250 ◦C, PC1∼ -10, green box in Fig. 2)

and contribute to the Indian basin’s ridge system intermediate nature. These

observations suggest a potentially persistent effect of subduction on upper

mantle structure and temperature for over 100 Myr.

4.3.2. Principal Component 3

Interpreting PC3 – the difference in temperature between the middle of

the mantle (340-500 km) and other depths – is more challenging. PC3 is

more distinct among basins (Fig. 1f), and consequently, PC3 dominates the
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classification as indicated by the feature importance. The confusion matrix

of our model (Table 1) shows that the smallest portion of mislabeled samples

is between the Atlantic and the Indian region (around 8%) which is less than

those related to the Pacific (usually >10%). This result illustrates that the

hemispherical, first-order differences from PC1 are insufficient to determine

whether a ridge segment is inside the Pacific Ocean (Fig. 1d). The modal

PC3 value is highest in the Atlantic, then the Indian, and lowest in the Pacific

(Fig. 1f). What controls the different temperatures at the length scale of 1/3

of the upper mantle across ocean basins? We posit that PC3 variations are

potentially related to mantle flow associated with plume-ridge interaction as

well as the interaction of the ridge with large-scale mantle upwellings (e.g.,

Ribe et al., 1995; Sleep, 2002; Gassmöller et al., 2016; Gibson and Richards,

2018). The nature and style of plume ridge interaction is distinct across

different ocean basins and it can also affect regional scale mantle flow (e.g.,

Reunion mantle plume and Indian ocean ridge system, Barruol et al., 2019).

A detailed analysis of the physical interpretation of PC3 will be discussed in

a future companion paper.

4.3.3. PC2, PC4, PC5

PC2, the difference between the transition zone and mantle above the

transition zone, is a feature that describes a larger length scale than PC3,

and far larger than PC4/PC5. However, its importance is less than 20%,

only about half and 80% of that of PC3 and PC1, respectively (Fig. 6c).

Interestingly, we find that while PC2 covers ∼15% variance in contrast to

1% or less for PC4 and PC5 (Fig. 6a), the three PCs have similar feature

importance (Fig. 6c). We attribute this to the fact that no single dynamical
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process dominates the difference at the three scales globally. Consequently,

we observe no obvious modal/median difference among basins for PC4 and

PC5 and PC2. But there are still differences between basins in terms of the

shape of the density distribution, especially the distribution edges (Fig. 1e,

g, h), so that each of PC2, PC4, and PC5 provides around 15% classification

accuracy. A deeper physical understanding of the origin of these variations,

such as the potential role of transition zone phase transitions and discon-

tinuity topography, will be the subject of future work. We note it is hard

to further improve classification accuracy to near 100% even when includ-

ing more PCs. This may indicate the role of neglected dynamics such as

those related to the melting process or heterogeneities shallower than 260

km depth.

5. Conclusions

With thermodynamically inferred upper mantle temperature and a ro-

bust machine learning model, we show that we can predict the ocean basin

where modern ridge segments are located with at least >80% accuracy (Fig.

6b) using only temperature information from the mantle column beneath the

ridge below the melting zone and no geographic information. Unlike surface

ridge characteristics (depth, geochemical signals, etc.) which can be altered

by complex shallow melting processes, modern upper mantle temperature

is a proxy that records 100s Myr of history of plate tectonics and mantle

convection (Supplementary Fig. 2). Our results help reveal the significant

contribution of the deep mantle to large-scale MOR geophysical signals and

suggest distinct inter-basin and even sub-basin deep mantle variations. The
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cluster analysis of ridge isotope geochemistry in Stracke et al. (2022) high-

lighted similar spatial mantle compositional variations. These two results

together reinforce the idea that the mantle is recording the integrated tec-

tonic and convective history of the last few hundred million years, leading

to inter-basin and sub-basin temperature and isotopic variations. We an-

ticipate that future studies may be able to utilize our results and analyze

the disentangled effect of shallow melting processes on various geophysical,

geochemical, and petrological observations at MORs.

6. Data Availability

The machine learning pipeline was constructed using Orange Demšar

et al. (2013), available at https://orangedatamining.com/ licensed un-

der GNU version 3.0 or later. The compiled ridge database, in-

cluding the seismic velocity and inferred temperature, along with

the Orange workflow file, are available at https://figshare.com/s/

1cc8a5bc0d6faa469fe1 (DOI:10.6084/m9.figshare.22256035). The thermo-

dynamic package HeFESTo Stixrude and Lithgow-Bertelloni (2005, 2011)

is available at https://github.com/stixrude/HeFESToRepository, and

the parameter set is available at https://github.com/stixrude/HeFESTo_

Parameters_310516. The Movie S1 was created with Gplates portal at

http://portal.gplates.org/ (Müller et al., 2016).
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Figure 1: Violin plot of number density distribution of geophysical characteristics of each

ocean basin. a) Spreading rate. b) Ridge Depth. c) Potential temperature stacked over

all depths. d-h) PC1 to PC5. For each column, the horizontal bars are max, average, and

min from top to bottom. The end points of vertical black and white bars are central 99,

95, 68 percentile from the median (white point). PC1 (d) and PC3 (f) have modal value

position (dashed line) more distinct in the three basins, while PC2 (e), PC4 (g) and PC5

(h) have indistinguishable modal value positions in the three basins.
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Figure 2: The inferred temperature TP for MOR segments in the major ocean basins:

the Pacific, the Atlantic, and the Indian. a) Map view of TP averaged over all depths.

White lines are ocean basin boundaries. b) TP at depth. The order of ridge segments is

shown with arrows in both panels. The ridge segments in the green box in both panels

are possibly related to an ancient slab (Simmons et al., 2015). The bars on the bottom

show the corresponding principal components for each segment.
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Figure 5: The Random Forest (RF) model. a) Schematic of RF. Data are randomly
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decision tree. In each tree the data are bifurcated multiple times. For every bifurcation,

the tree chooses a best PC from a random subset of PCs. Compared with the parent node,

the child nodes are purified, i.e., they are gradually dominated by an ocean basin after

bifurcation. The end node (leaf node) can predict probability of the ocean basin based

on its basin fraction. The ensemble of trees then vote for the classification. b) The top 3

levels of one decision tree in the RF (dashed box in panel a). Each node bifurcates based

on the PC shown (x axis) at the point indicated by the red triange. The y axis is the

number of data points. The upper child node has data no larger than the point indicated
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when all the points belong to one basin only, or with no more than 4 data points.
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Figure 6: Effect of the first few PCs. a) The proportion of variance covered by each

PC (red) and cumulative proportion (dark olive green). b)The cumulative Classification

Accuracy with PC1 to PC8. The star denotes our final choice: PC1 to PC5, when we

reach 82% accuracy. The baseline is to predict all ridge segments to be in the Atlantic

basin, which has the most data. c) Feature importance is calculated from the decrease

in classification accuracy by permuting data in each PC. Black bars show the standard

deviation among all trees.
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Figure 7: The PCA weight matrix of potential temperature at depth inferred from all

tomographic models considered in this study.
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Figure 8: Sub-basin ridge systems as classified by our model. MARR: Mid-Atlantic Rise

Ridge. CAYM: Cayman Ridge. JUAN: Juan De Fuca Ridge. EPRR: East Pacific Rise

Ridge. PARR: Pacific-Antarctic Rise Ridge. GALA: Galapagos Ridge. AFAR: Red Sea

Rift. CIRR: Central Indian Rise Ridge. SWIR: Southwest Indian Ridge. SEIR: Southeast

Indian Ridge. GAKK: Gakkel Ridge.
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Table 1: The confusion matrix from our classification models.

Predicted

Atlantic Indian Pacific Σsamples
b

A
ct
u
al

Atlantic 88.0%a 6.8% 5.1% 2650

Indian 8.7% 79.6% 11.7% 2050

Pacific 10.5% 14.3% 75.1% 1850

Σsamples
b 2707 2078 1765 6550

aEach row with percentages shows the fraction of all segments

actually from a basin predicted to be in a different basin.

The diagonal parts are the correct predicted fractions.

bThe last row and last column show the numbers of bootstrapped test

samples summed over all 50 trained random forest models.
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