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Highlights

Determining Mid-Ocean Ridge Geography from Upper Mantle Tem-

perature

Xiyuan Bao, Tushar Mittal, Carolina R. Lithgow-Bertelloni

• Mantle temperatures beneath global mid-ocean ridges exhibit basin-

wide differences

• We use machine learning to predict the geographic location of ridge

segments based on the sub-ridge upper mantle temperature

• The integrated history of convection and tectonics is recorded in the

large-scale patterns observed at mid-ocean ridges
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Abstract

In this study, we examine the influence of the mantle and large-scale tecton-

ics on the global mid-ocean ridge (MOR) system. Using solely seismically-

inferred upper mantle temperatures below the melting zone (260-600 km)

and an interpretable machine learning model (Random Forest and Principal

Component Analysis), we predict, with up to 90% accuracy, the ocean basin

of origin of all ridge segments without any prior geographic information.

Two features provide >50% of the discriminative power: the temperature

difference between the mid-layer (340-500 km) and other depths, and the

depth-averaged temperature of the upper mantle. Our result implies that the

large-scale geophysical and geochemical differences observed along the MOR

system are reflective, not primarily of shallow processes associated with melt-

ing, but of long-term tectonic and convective processes in the mantle that

determine the present-day upper mantle temperature structure.

Keywords: Mid-ocean Ridge, Potential Temperature, Mantle Convection,

Random Forest

∗Corresponding author
Email address: xiyuanbao@g.ucla.edu (Xiyuan Bao)

Preprint submitted to Earth and Planetary Science Letters August 28, 2023



2020 MSC: 86-00

1. Introduction1

The 60,000 km-long chain of mid-ocean ridges (MOR) is the most visi-2

ble surface manifestation of plate tectonics and mantle flow. Deep (>250 km3

depth) mantle material is fed to ridges by largely passive convective currents,4

resulting in decompression melting at depths < 150 km, and the generation of5

new oceanic lithospheric plates. The plate tectonic factory is hence directly6

connected not only to the present-day structure of the mantle under ridges7

but also to the integrated convective and tectonic history of each ocean basin.8

Consider that, since the breakup of Pangea, the circum-Pacific subduction9

girdle has produced an influx of cold downwelling slabs towards the man-10

tle beneath the Atlantic and Indian Ocean basins, and a relative absence in11

the Pacific basin (Supplementary Movie S1, Müller et al., 2019). The down-12

going slabs cool the mantle, and the downwelling flow generates a passive13

return upwelling flow at ridges. Thus, integrated over the last few hundred14

million years the convective and tectonic history will determine the average15

temperature of the upper mantle today (e.g., Conrad et al., 2013). We may16

hypothesize that these tectonic and convective histories may be reflected in17

the geophysical and geochemical characteristics of the ridge systems of indi-18

vidual ocean basins. For instance, the Pacific ridges have a systematically19

deeper depth and higher spreading rate (Fig. 1a, b) than the mid-Atlantic20

ridge system with the Indian Ocean ridge segments having intermediate val-21

ues (e.g., Gale et al., 2014). Similar differences exist in the major element22

composition of mid-ocean ridge basalts (MORBs, Gale et al. (2014)).23
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Previous work on the origin of these basin-scale geochemical and geo-24

physical differences has focused on the correlation amongst spreading rate,25

ridge depth, and MORB major and trace element chemistry (e.g. Klein and26

Langmuir, 1987; Brandl et al., 2013; Gale et al., 2014; Niu, 2016), inferences27

on the mantle temperature (Klein and Langmuir, 1987; Brown Krein et al.,28

2021), composition of the mantle source region (Niu and O’Hara, 2008), and29

melt-rock interaction during magma transport (Kimura and Sano, 2012). The30

premise of these studies is that the degree of partial melting and the nature of31

melt transport in the melting column is the primary control on the observed32

variability. However from a geodynamics perspective, we suggest that the dif-33

ferences in ridge characteristics at the ocean basin scale are a consequence not34

only of shallow melting but of deep mantle structure reflective of convective35

and tectonic history. Focusing only on shallow processes obscures the large-36

scale integrative role of mantle convection and tectonic history in shaping37

the source of mantle melting at the ridge on multiple spatio-temporal scales.38

However, it is very challenging to analyze the critical role of deep processes39

from existing studies since the inferences regarding MORB geochemistry and40

mantle source potential temperature (TP) are strongly affected by the poorly41

constrained details of the melting process at shallow depths (Stracke, 2021),42

such as the extent of melt channelization (Spiegelman and Kelemen, 2003;43

Keller et al., 2017; Brown Krein et al., 2021). For instance, current petro-44

logical estimates of the ridge potential temperature (TP) disagree both in45

absolute value and inferred spatial patterns. Brandl et al. (2013) and Dalton46

et al. (2014) see a hotter Pacific compared to the Atlantic and Indian Ocean47

basins, while Brown Krein et al. (2021) see no distinct hemispheric differ-48
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ence. In this study, we take an alternate, data-driven approach to search49

for unique fingerprints of the ridge system’s deep upper mantle (260 - 60050

km depth) temperature structure. These variations would serve as inputs51

for the shallow melting processes that eventually give rise to the observed52

geochemical variations in MORB lavas.53

Our work builds upon earlier attempts to understand the deep mantle54

contribution to the global ridge system. Early studies, e.g., Ray and An-55

derson (1994) explored the connection between mantle seismic velocity and56

ridges, as shear wave speeds are particularly sensitive to temperature. How-57

ever, Ray and Anderson (1994) were limited by the resolution of the global58

tomography and sparse mineral physics data and thermodynamic modeling59

available at the time. They could not infer temperatures directly from the60

seismic velocities. Dalton et al. (2014) provided a big step forward by using61

thermodynamic models of the physical properties of mantle rocks to infer62

mantle temperature at 300 km depth below the ridges from global seismic63

tomography. They found Pacific ridges to be hotter than those in the Indian64

and Atlantic oceans. Rowley et al. (2016) also found a possible contribu-65

tion from active, hotter mantle upwellings to the faster-spreading rates at66

the East Pacific Rise. While these studies provide important clues regard-67

ing the role of convective and tectonic processes on seafloor spreading and68

MORB geochemistry, they lack predictive power (uniqueness of the mantle69

fingerprint) or a direct connection to convective and tectonic processes.70

In this study, we construct such a predictive model for the basin in which71

ridge segments are located, starting from the temperature of the upper mantle72

inferred from a full waveform seismic tomography model and self-consistent73
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thermodynamics (Bao et al., 2022), combined with the power of an inter-74

pretable model of classification – the random forest (RF) algorithm (Breiman,75

2001). Full waveform seismic tomography models from the past decade (e.g.,76

French and Romanowicz, 2014) provide a more robust and faithful estimate77

of the amplitude of seismic anomalies, which is crucial for inferences of tem-78

peratures. Our work focuses on addressing the following question: Is it79

possible to use the temperature of the entire upper mantle below the melting80

zone to classify a priori and accurately the oceanic basin ridge segments are81

located? When we ignore the depth-dependent information, the significant82

overlap in mantle potential temperatures across basins despite the higher83

average Pacific temperature (Fig. 1c, using results from Bao et al. (2022),84

see section 2.2 ) suggests that the answer to our primary question is not85

immediately obvious. We answer this question by using the predictive model86

to test whether the ocean basin individual MOR segments are located can be87

predicted using only the seismically inferred upper mantle TP without any88

prior geographical information. While this question may seem superfluous89

for the present-day, given that we already have the geographical data for90

each ridge segment, it helps us identify unique sub-ridge mantle temperature91

patterns associated with each basin and even sub-basin-scale ridge systems.92

These patterns may be further analyzed with respect to the tectonic and con-93

vective history and aid our understanding of whether the variations in the94

ridge system originate primarily from the deep mantle or shallow processes.95

In addition, they might provide a framework with which to understand and96

infer the past temperature of the mantle, enriching tectonic reconstructions.97

Overall, our ‘predictive’ evaluation helps towards addressing a fundamental98
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geodynamics question: What is the dominant reason for the differences in99

ridge properties at the ocean basin scale - shallow melting or deep mantle100

processes?101

Thematically, our work is a counterpart to the recent study by Stracke102

et al. (2022), who used non-linear dimension reduction and clustering analysis103

on multiple isotopic data for global MORBs and Ocean Island Basalts. They104

showed that ridges and hotspots potentially sample distinct sub-basin-scale105

isotopic heterogeneities, thus highlighting the role of deep mantle processes106

in controlling ridge composition. Section 2 describes the datasets and anal-107

ysis methods we use in this study, followed by the results of the random108

forest analysis in Section 3. Section 4 uses these results to discuss the main109

implications of our results in the context of the importance of shallow vs.110

deep mantle processes for ridges.111

2. Materials and Methods112

2.1. Ridge Database113

To test our hypothesis that the unique sub-ridge temperature features114

exist, we start by sampling mantle properties underlying MOR segments in115

the three major ocean basins (Pacific, Atlantic, Indian). We use the segment116

definitions from Gale et al. (2014) database with some filtering (choosing117

655 out of 711 segments) to a) avoid more complex tectonic settings (back-118

arc basins and ultra-slow ridges) and b) simplify classification. The Gale119

et al. (2014) ridge segments are determined based on along-ridge axial depth120

variations, ridge offsets, transform faults, and non-transform offsets. Using121

these segments is a reasonable choice for our question of interest rather than122
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a uniform sampling per km of the ridge since each segment would correspond123

to a unique tectonic/convective regime. Although our primary focus is on124

inter-basin variations, we also test the robustness of our conclusions by doing125

ridge-basin classification for the entire database (including smaller basins in126

the Arctic, Caribbean, and Red Sea), as well as finer sub-basin ridge system127

classification (discussed in section 3.2).128

2.2. Temperature Inference129

Following Bao et al. (2022), we extract shear wave seismic velocity from130

tomographic model SEMCUB-WM1 (French and Romanowicz, 2014) and131

convert it to temperature. We validate our results with 4 additional global132

tomographic models (Ritsema et al., 2011; Simmons et al., 2010; Schaeffer133

and Lebedev, 2013; Debayle et al., 2016). We extract velocity anomalies di-134

rectly beneath each ridge segment, without any lateral averaging, from 260135

to 600 km depth in 20 km intervals. This depth interval allows us to capture136

sufficient information given the radial spline basis functions used in recent137

global tomography models (e.g., French and Romanowicz, 2014). We focus138

on depths below 260 km to avoid the strongly attenuated seismic velocities,139

potentially caused by partial melt. Dry melting starts <∼ 100 km depth140

beneath the ridge and at <∼ 200 km in the presence of volatiles (Keller141

et al., 2017 and references therein). A depth > 260 km is sufficient to avoid142

even the melting-influenced regions of intraplate volcanism, as seen seismi-143

cally (Debayle et al., 2020) and geochemically (Ball et al., 2021). Because144

the velocity to temperature conversion is non-linear (Bao et al., 2022), we145

convert the shear-wave velocity anomalies to temperature using HeFESTo146

(Stixrude and Lithgow-Bertelloni, 2005, 2011). HeFESTo is a self-consistent147
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thermodynamic model of the equilibrium phase assemblage of mantle miner-148

als and their physical properties at a given pressure, temperature, and fixed149

bulk composition. We use the conservative premise that the upper man-150

tle is compositionally homogeneous, consisting of Depleted MORB Mantle151

(DMM, Workman and Hart, 2005) and any differences in seismic properties152

are thermal in nature (Dalton et al., 2014). Because the mantle is thermally153

heterogeneous due to multi-scale flow, potential temperature is expected to154

be depth-dependent, consistent with our estimates. Our final temperature155

data for the ridge segment catalog is high-dimensional (18 depth layers per156

ridge segment, Fig. 2), which demands a strategy for dimensional reduction157

discussed below (section 2.3).158

2.3. Data Processing and Classification159

We first use a linear classifier, i.e., multinomial logistic regression, to160

predict the basin where each ridge segment is located based on the MOR161

mantle temperature profiles (260 to 600 km depth, one per ridge segment).162

Specifically, we try to find lines in the space of each input pair (e.g., between163

temperature at 2 depths) to separate out the different basins. A softmax164

function (Bridle, 1989) is used to find the maximum probability of the par-165

ticular class and to give a prediction. However, this yields low accuracy166

irrespective of whether we use dimensionality reduction (60% accuracy) or167

not (65% accuracy). This suggests that there is no clear, linear predictive168

separation between each ocean basin ridge segments (e.g., Fig. 3). The169

high-dimensional nature of the raw data (i.e., 18 depth layers) also makes170

the problem challenging. Thus, we need a higher-order machine learning171

model that can handle both linear and highly nonlinear relationships and172
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remain interpretable. We further desire that the model features be physi-173

cally meaningful quantities that can be related to dynamical processes, such174

as the average temperature of the upper mantle (related to long-term plate175

organization, e.g., Gurnis, 1988), and the difference in temperature between176

layers which can be linked to various convective length scales.177

Dimensional reduction using Principal Component Analysis (PCA, Jol-178

liffe, 2002) satisfies the requirements set above for optimal, interpretable clas-179

sification. PCA is a commonly used method for high-dimensional datasets180

and calculates orthogonal principal components (PCs, Fig. 4). Each PC181

is a linear combination and weighted sum of the normalized TP at the 18182

distinct depths under each ridge segment. That is, PCi =
∑

W i
dT̂pd , T̂pd =183

(Tpd −µd)/σd, where W
i
d is the weight for ith PC at depth d; T̂pd and Tpd are184

the normalized and original potential temperature at depth d, respectively;185

µd and σd are the average potential temperature and standard deviation for186

all ridge segments at depth d, respectively. We normalize and rescale the187

original temperatures (from Tpd to T̂pd ) for each depth before using it in188

the PCA calculation, to have zero mean and unit variance to achieve better189

performance (Duda et al., 1973). PCs are sorted from large to small values190

based on how much variance they can represent in the data. PC1 covers191

the largest variance of the data, PC2 the second largest, and so on for the192

remaining principal components. Mathematically, PCs are obtained using193

the eigenvector of the co-variance matrix of the normalized original data,194

and sorted by the corresponding eigenvalues. Because we have 18 depths,195

there will be 18 PCs in total. Analyzing the PCs that capture the main vari-196

ance (∼ 99%) equates to projecting the data to a reduced dimensional space.197
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Instead of using a covered variance-based cutoff, We determine the optimal198

number of PCs to be used in our analysis based on their final performance199

in the subsequent machine-learning model.200

Given the poor performance of a linear classifier even with PCs as inputs201

(∼ 60%), we choose to use a nonlinear supervised classifier like Random202

Forest (Breiman, 2001) for our primary analysis here. Using the PCs as203

inputs, we train a Random Forest (RF) model to predict the ocean basin204

in which ridge segments are located. RF is a robust classification algorithm205

(reduced sensitivity to overfitting) and generates interpretable decision trees206

(Fig. 5a). RF consists of a decision tree generation algorithm, which chooses207

only one feature (i.e., PC) at each node and divides the data into two branches208

based on a cutoff value. To determine what PCs to use and their cutoff209

value for each tree branch, the tree algorithm calculates the entropy or Gini210

impurity G for each possible PC & cutoff combination. At each node, we211

have G =
∑

k pk(1− pk), where pk is the proportion of each class (i.e., ocean212

basin) k. A low entropy or Gini impurity measure indicates that the sub-213

node/branch would be dominated by one class and it is thus a good choice for214

dividing the tree. This process is repeated until the whole dataset is classified215

by a tree consisting of many branches. Overall, the algorithm optimizes216

the PC selection and cutoffs at each branching point to match the input217

classification labels (here the ridge basins of origin). For each input datapoint218

consisting of a set of PC values, the final classification is the value of each219

end node (leaf node) that the datapoint reaches after traversing the trained220

tree model (e.g., Fig. 5b). A key feature of the tree-based classification221

algorithms is that they make it easier to understand the classification and the222
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importance of each input feature in the final predictive classification model.223

RF generates a series of decision trees (here N = 20) as a forest and takes224

the predicted probability of the segment in a certain basin averaged from225

each tree. There are two built-in levels of randomness to avoid overfitting:226

1) Random resampling of the dataset via bootstrapping when training each227

tree, and 2) PC selection from a randomly selected subset of PCs when228

growing the tree.229

The nonlinear nature of the algorithm and its randomness enable RF to230

handle the complicated ridge database robustly. To further avoid overfitting231

and improve the robustness of the prediction, we also randomly split the input232

PC data into training (80%) and testing (20%) sets. We repeat this 50 times233

to calculate the average classification accuracy. The modeling pipeline is234

constructed using Orange which enables visual programming for data mining235

(Demšar et al., 2013). Note that with PC as input of Random Forest, our236

model is similar to the Rotational Forest. In Rotational Forest, the raw237

feature is split into subsets randomly, and then PCA is performed for each238

subset. The result is then used as input for the RF algorithm (Rodriguez239

et al., 2006).240

When we visualize data in PC pair space (or input temperature variable241

space) with scatter plots in Orange (Demšar et al., 2013), it can compute242

the most informative projections. For each point, Orange finds 10 nearest243

neighbors in the projected 2-D space, e.g., two PCs. It then checks the244

number of points out of 10, with the same ocean basin. The averaged number245

across the neighborhood of all points gives the final score, and we consider246

the PC (or temperature) pair with the highest score the most informative247
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projection. In Figure 3, we show the results of this analysis for a pair of248

input temperature data variables.249

3. Results250

3.1. Potential Temperature251

Figure 2a shows the map of inferred TP averaged over 260-600 km depths.252

The mean and median TP of the Pacific are the hottest overall, while those253

of the Indian and Atlantic basins overlap (Fig. 1c), consistent with Dalton254

et al. (2014). The modal TP for Pacific ridges is similar to that of Indian255

ridges but slightly hotter than that of Atlantic ridges. Overall, Indian ridges256

have TP distribution intermediate between Pacific and Atlantic ridges. We257

see regional in-basin lateral temperature variations similar to Dalton et al.258

(2014) and Bao et al. (2022). While the map (Fig. 2a) and overall statistics259

(Fig. 1c) already reveal some differences among basins, we observe additional260

multi-scale vertical variations, which we discuss in section 4.2 (Fig. 2b).261

3.2. Principal Components and Random Forest262

We find that the first 5 PCs cover > 99% of the variance in the tem-263

perature data (Fig. 6a). The proportion of variance explained by each PC264

decreases dramatically from more than 75% for PC1 to less than 1% for PC5.265

To understand what each PC represents physically, in Fig. 4a, we show the266

weighting coefficients of the linear combinations of PCs using the weight ma-267

trix of the first 5 PCs. For PC1, the weights are ∼ 0.2 at all depths. Thus,268

PC1 corresponds to the scaled average TP over all depths. Other PCs have269

an average weighting of 0, meaning they emphasize the TP differences at270
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depth for length scales smaller than the whole upper mantle. For example,271

the weighting coefficients for PC2 decrease from 0.3 to -0.3 from 260 km272

to 600 km, essentially giving the difference in TP between the upper half of273

the upper mantle (260-420 km) and the transition zone (440-600 km). The274

coefficients for PC3 are positive around 400 km (340-500 km) and negative275

at the top (260-320 km) and bottom (520-600 km); thus PC3 quantifies the276

contrast between mid-upper mantle depths (340-500 km) and other depths277

(especially <300 km, where the weight is the most negative at about -0.5).278

Finally, PC4 and PC5 represent variations at smaller length scales (≤80 km).279

The first 5 PC values for all ridge segments are shown in Fig. 2b.280

Choice of PCs: PC1, or essentially the average upper mantle TP, shows281

substantial overlap across basins around 1300-1500 ◦C (Fig. 1d), and it is282

insufficient for accurate basin classification. As PC1 is only the bulk tem-283

perature of the upper mantle, information at smaller length scales (through284

other PCs) is required to distinguish ridges from basins with similar bulk285

temperature from each other. To have a parsimonious model, we first try to286

predict the basin geography with just one other PC by finding the most infor-287

mative 2-D projection, which gives the best classification accuracy among all288

PC pairs. We find that this is the PC1 vs. PC3 projection shown in Fig. 4b.289

The Pacific segments lie primarily on the right of the projection (PC1> −4),290

while the Atlantic can have extreme PC3 values (> 2 or < −2). Although291

one can approximately predict ocean basins based on this zoning, the PC1292

and PC3 in each basin still overlap significantly. Thus, the predictive accu-293

racy is less than 60% and we need more PCs and length scale information.294

The zoning in Fig. 4b also reinforces the need for non-linear classifiers since295
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the boundary between different ocean basins is curved and complex.296

To determine the best number of PCs in the RF model, we add one PC297

at a time, in the order of descending variance covered (e.g., PC1, PC1+PC2,298

PC1+PC2+PC3, and so forth), and calculate the classification accuracy as299

a function of the number of PCs (Fig. 6b). Not surprisingly, classification300

accuracy generally increases with more PCs. However, the increased accuracy301

gain generally reduces as the PC index increases. Three PCs are enough to302

achieve 70% classification accuracy. To reach 80% accuracy, we must include303

PC1 to PC5 (accuracy = 82%). Since adding more PCs does not significantly304

improve the accuracy, we will use the first 5 PCs for the subsequent analysis.305

We get prediction accuracies from 75% (Pacific) to 90% (Atlantic), shown in306

Table 1 as the confusion matrix.307

Trained tree model : A typical example of how PCs work in RF is308

shown in Fig. 5b, which shows one decision tree of RF. At the root node309

where we have all samples (a random subset of all ridge segments), RF finds310

that PC1 can best split the data by bifurcating the samples at PC1 = 4.99 so311

that the child node with PC1 > 4.99 (node A) is dominated by Pacific ridges.312

The other child node (node B) with PC1 ≤ 4.99 has fewer Pacific samples.313

In this way, the child nodes are more uniform and the entropy of the child314

nodes is minimized. Next, a random subset of PC candidates is generated315

at node A, and RF chooses to use PC4 = -0.22 to further bifurcate node A316

to A1 and A2. Consequently, the child node A1 has an even higher portion317

of Pacific segments than node A, while node A2 only has samples from the318

Atlantic Ocean. Similarly, node B is bifurcated at PC3 = 0.25 to B1 and B2319

such that B1 has very few Pacific samples. A similar procedure is applied320
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to A1, B1, and B2 with PC2, PC5, and PC1, respectively, and their child321

nodes repeatedly until the child node has four samples (or less) or samples322

in the child node are purely from one basin (like A2). We call these end323

nodes leaf nodes. Overall, as the decision tree grows from the root node to324

the leaf nodes, we gradually minimize the entropy at the next level and have325

one basin dominate each leaf node.326

Classification robustness : We find that the classification accuracy is327

robust for all other tomographic models examined and ranges from >83%328

(Debayle et al., 2016) to 90% (Ritsema et al., 2011; Simmons et al., 2010;329

Schaeffer and Lebedev, 2013). This higher accuracy may be because other330

global tomographic models explored here contain less heterogeneity at shorter331

wavelengths at depth (e.g., discussion in Meschede and Romanowicz, 2015).332

Consequently, these models suppress in-basin temperature variation and em-333

phasize inter-basin differences. We also notice the weight matrix is reasonably334

consistent across models, i.e., PC1 always gives the average while each of the335

other 4 PCs gives the differences of the same layers. However, the sign of336

weights in certain PCs may flip (Fig. 7). These results are not unexpected337

as global tomographic models are broadly consistent with each other in the338

upper mantle. In addition, we can obtain a slightly improved classification339

accuracy (from 82 to 86%) if we average the inferred TP in a disc, with ra-340

dius R = 500 km centered at each ridge segment, at each depth. The local341

average temperature beneath the ridge segment incorporates additional envi-342

ronmental information (i.e., cold and hot anomalies) and suppresses in-basin343

small-scale lateral variations.344

Results with sub-basins : While we focus on the classification of three345
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large main basins, the inclusion of the other small regions like the Arctic, Red346

Sea, and Caribbean ridge systems only leads to negligible decreases (1%) in347

classification accuracy. Therefore, our primary conclusions do not change348

with the full mid-ocean ridge database of 771 segments. We further test our349

ability to predict smaller tectonic units within ocean basins (sub-basin ridge350

systems, e.g. East Pacific Rise). To do this, we slightly simplify the groups351

in the ridge database by merging the Chile Ridge with the Pacific-Antarctic352

Ridge and the Atlantic-Antarctic Ridge with the Mid-Atlantic Ridge. We353

then obtain a sub-basin ridge system map based on our classification (Fig. 8)354

with an acceptable accuracy of 74%. Using the local temperature averaged355

inside a 500 km-radius disc surrounding each ridge segment, we get 80%356

accuracy because lateral variations within each ridge system are suppressed.357

4. Discussion358

Our results show that we can determine the ocean basin of origin with359

80 to 90% accuracy. The robustness of our results suggests that the sub-360

ridge mantle temperature is distinct across basins and could be an excellent361

indicator of large-scale convective contributions to surface differences in the362

MOR system. Conceptually, our classification model can be regarded as363

a non-linear function that takes the present sub-ridge mantle structure as364

input, decodes the hidden signature of the integrated records of past tectonic365

and convective history, and converts the signature into location information366

of the ridges in terms of the basin of origin or smaller tectonic units, such367

as sub-basin ridge systems. The hidden signature from the deep mantle is368

sufficient to provide robust long-wavelength information without introducing369
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any shallow or surface observations such as MORB chemistry or spreading370

rate and ridge depth.371

4.1. Feature importance372

The high classification accuracy suggests that the deep thermal structure373

beneath MOR is distinct enough to discriminate between ocean basins. Each374

principal component represents the sub-ridge temperature heterogeneity at375

different length scales, ranging from the entire upper mantle (PC1) to half376

(PC2) to 1/3 (PC3) of the upper mantle, and even smaller depth intervals377

(PC4 and PC5). Our results thus reveal the length-scale of thermal and378

chemical heterogeneity subsisting in the mantle and contributing to the in-379

tegrated convective record. To assess which features (i.e. PCs) contribute to380

classification accuracy the most, we use feature importance analysis meth-381

ods. For non-linear classifiers such as RF, we can use the permutation feature382

importance method (Breiman, 2001) to compute feature importance. This383

approach randomly permutates the data of a given PC and computes the384

corresponding decrease in classification accuracy with respect to the default385

case (Fig. 5a). We find that PC3 is the most critical feature with >30%386

importance, while PC1 is the second most important (>20%). Thus, PC3387

and PC1 together provide more than half of the discriminative power of the388

5 PCs.389

4.2. Physical interpretation390

4.2.1. PC1391

PC1, the average TP over all depths and the second most important fea-392

ture, broadly represents the current convective vigor of the upper mantle393
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column. The distinct hemispherical pattern (higher PC1 in the Pacific, Fig.394

2, 1c) is consistent with previous studies (Brandl et al., 2013; Dalton et al.,395

2014) and can be linked to past subduction history.396

For instance, the Pacific ocean evolved from the Panthalassic ocean. It397

was filled with in-basin spreading ridges and was also surrounded by an out-398

ward subduction girdle predating the formation of Pangea (∼300 Ma). Over399

that period there was also significant intraplate hotspot volcanism resulting400

in large oceanic plateaus potentially reflective of the higher basin tempera-401

ture. In contrast, the Atlantic region developed from the rifting of Pangea402

∼180 Ma and the formation of the mid-Atlantic ridge system. The Indian403

Ocean has a more complex tectonic history – it has undergone in-basin sub-404

duction, ridge spreading, and the closure of the Tethys (Müller et al., 2019).405

These different tectonic histories, in particular, the presence or absence of406

in-basin subduction and the subduction of slabs away from one basin and407

towards another, can change the first-order thermal structure of the mantle408

under each basin and is reflected in the MOR temperature today (Fig. 1c).409

The observed hemispherical mantle temperature difference between ocean410

basins may reflect a degree-1 difference from the surface to the core-mantle411

boundary. It has been suggested that the residual topography and litho-412

spheric thickness seem to also present a similar hemispherical pattern (Stew-413

art et al., 2023), which might be linked to the differences between the corre-414

sponding mantle domains (the dashed line in Fig. 9). Such degree-1 differ-415

ence may be sustained over the last 200 Mys - while subduction was directed416

away from the Pacific towards the African (Atlantic and Indian) domain, the417

corresponding mantle domains persistently had a degree-2 convection regime418
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(Conrad et al., 2013, black arrows in Fig. 9). The persistence of the degree-1419

structure as well as the degree-2 flow may be also supported by the possi-420

ble anchoring of the Large Low Shear Velocity Provinces (LLSVPs) above421

the core-mantle boundary located under the Pacific and African plates (e.g.,422

Torsvik et al., 2010). Although the origin and specific nature of the LLSVPs423

are beyond the scope of this discussion, their presence and relation to past424

subduction likely influenced the thermal structure of the mantle under each425

ocean basin.426

Beyond recent (< 200 My) subduction history, the long-term convective427

and tectonic history, such as the presence of supercontinents, may also alter428

the thermal structure of the mantle under each basin (Gurnis, 1988; Jellinek429

and Lenardic, 2009; O’Neill et al., 2009; Lenardic et al., 2011). Karlsen et al.430

(2021) argue that Rodinia, a longer-lived ( 1.1-0.7 Ga) supercontinent, might431

have allowed more heat to accumulate under the Pacific mantle domain in432

contrast to the impact of the shorter-lived Pangea ( 300-180 Ma) on the433

African domain. The additional supercontinent insulation may be partially434

responsible for the present-day hemispherical temperature difference TP at435

depth (Fig.2a), despite faster cooling in the Pacific due to higher spreading436

rates after the breakup of Pangea (Karlsen et al., 2021).437

Besides the impact on basin-wide average temperature and PC1, past438

subduction may also explain regional low PC1 values. For instance, a co-439

herent slab-like structure has been observed beneath the Southeast Indian440

Ridge in seismic tomography models (Simmons et al., 2015) with a part of441

this potential slab remnant still trapped in the transition zone (Gurnis et al.,442

1998). This subduction event dates back to the Mesozoic and terminated443
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near the edge of East Gondwana ∼ 140Ma. The presence of a trapped slab444

in the transition zone may explain the low temperatures and PC1 value of445

the associated nearby ridge (TP ∼ 1250 ◦C, PC1∼ -10, green box in Fig. 2)446

and contribute to the Indian basin’s ridge system intermediate nature. These447

observations suggest a potentially persistent effect of subduction on upper448

mantle structure and temperature for over 100 Myr.449

4.2.2. PC3450

Interpreting PC3 – the difference in temperature between the middle of451

the mantle (340-500 km) and other depths – is more challenging. PC3 is452

more distinct basin-wide (Fig. 1f), and consequently, PC3 dominates the453

classification as indicated by the feature importance. The confusion matrix454

of our model (Table 1) shows that the smallest portion of mislabeled samples455

is between the Atlantic and the Indian region (around 8%) which is less than456

those related to the Pacific (usually >10%). This result illustrates that the457

hemispherical, first-order differences from PC1 are insufficient to determine458

whether a ridge segment is inside the Pacific Ocean (Fig. 1d). The modal459

PC3 value is highest in the Atlantic, then the Indian, and lowest in the Pacific460

(Fig. 1f). What controls the different temperatures at the length scale of 1/3461

of the upper mantle across ocean basins? We posit that PC3 variations are462

potentially related to mantle flow associated with plume-ridge interaction as463

well as the interaction of the ridge with large-scale mantle upwellings (e.g.,464

Ribe et al., 1995; Sleep, 2002; Gassmöller et al., 2016; Gibson and Richards,465

2018). A detailed analysis of the physical interpretation of PC3 will be466

discussed in a future companion paper.467
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4.2.3. PC2, PC4, PC5468

PC2, the difference between the transition zone and mantle above the469

transition zone, is a feature that describes a larger length scale than PC3,470

and far larger than PC4/PC5. However, its importance is less than 20%,471

only about half and 80% of that of PC3 and PC1, respectively (Fig. 6c).472

Interestingly, we find that while PC2 covers ∼15% variance in contrast to473

1% or less for PC4 and PC5 (Fig. 6a), the three PCs have similar feature474

importance (Fig. 6c). We attribute this to the fact that no single dynamical475

process dominates the difference at the three scales globally. Consequently,476

we observe no obvious modal/median difference among basins for PC4 and477

PC5 and PC2. But there are still differences between basins in terms of the478

shape of the density distribution, especially the distribution edges (Fig. 1e,479

g, h), so that each of PC2, PC4, and PC5 provides around 15% classification480

accuracy. A deeper physical understanding of the origin of these variations,481

such as the potential role of transition zone phase transitions and discon-482

tinuity topography, will be the subject of future work. We note it is hard483

to further improve classification accuracy to near 100% even when includ-484

ing more PCs. This may indicate the role of neglected dynamics such as485

those related to the melting process or heterogeneities shallower than 260486

km depth.487

5. Conclusions488

With thermodynamically inferred upper mantle temperature and a robust489

machine learning model, we show that we can predict the ocean basin where490

ridge segments are located with at least >80% accuracy (Fig. 6b) using only491
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temperature information from the mantle column beneath the ridge below492

the melting zone. Unlike surface ridge characteristics (depth, geochemical493

signals, etc.) which can be altered by complex shallow melting processes,494

upper mantle temperature is a proxy that records 100s Myr of history of495

plate tectonics and mantle convection (Fig. 9). Our results help reveal the496

significant contribution of the deep mantle to large-scale MOR geophysical497

signals and suggest distinct inter-basin and even sub-basin deep mantle vari-498

ations. The cluster analysis of ridge isotope geochemistry in Stracke et al.499

(2022) highlighted similar spatial mantle compositional variations. These two500

results together reinforce the idea that the mantle is recording the integrated501

tectonic and convective history of the last few hundred million years, leading502

to inter-basin and sub-basin temperature and isotopic variations. We antici-503

pate that future studies may be able to predict the long-wavelength features504

of MORs using the mantle temperature alone and analyze the disentangled505

effect of shallow melting processes on various geophysical, geochemical, and506

petrological observations at MORs. Such analysis could also be extended in507

space (other isochrons in the ocean basins) and time (past MOR features)508

and help understand the fingerprints of past mantle convection processes509

in present-day mantle temperature heterogeneity or conversely temperature510

heterogeneity in the past.511

6. Data Availability512

The machine learning pipeline was constructed using Orange Demšar513

et al. (2013), available at https://orangedatamining.com/ licensed un-514

der GNU version 3.0 or later. The compiled ridge database, including the515
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seismic velocity and inferred temperature, along with the Orange work-516

flow file, are available at https://figshare.com/s/1cc8a5bc0d6faa469fe1517

(DOI:10.6084/m9.figshare.22256035). The thermodynamic package HeFESTo518

Stixrude and Lithgow-Bertelloni (2005, 2011) is available at https://github.519

com/stixrude/HeFESToRepository, and the parameter set is available at520

https://github.com/stixrude/HeFESTo_Parameters_310516. The Movie521

S1 was created with Gplates portal at http://portal.gplates.org/Müller522

et al. (2016).523
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Figure 1: Violin plot of number density distribution of geophysical characteristics of each

ocean basin. a) Ridge Depth. b) Spreading rate. c) Potential temperature stacked over

all depths. d-h) PC1 to PC5. For each column, the horizontal bars are max, average, and

min from top to bottom. The end points of vertical black and white bars are central 99,

95, 68 percentile from the median (white point). PC1 (d) and PC3 (f) have modal value

position (dashed line) more distinct in the three basins, while PC2 (e), PC4 (g) and PC5

(h) have indistinguishable modal value positions in the three basins.

24



260km
280km
300km
320km
340km
360km
380km
400km
420km
440km
460km
480km
500km
520km
540km
560km
580km
600km

Ocean

90°S

60°S

30°S

0°

30°N

60°N

180° 180°150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E180° 180°

1250

1300

1350

1400

1450

1500

1550

P
o

te
n

ti
a

l 
T
e

m
p

e
ra

tu
re

 (
ºC

) 

P
ri
n

c
ip

a
l

C
o

m
p

o
n

e
n

ts

a)

b)

PC1
12.2

-10.1

PC2
5.3

-4.7

PC3
2.5

-2.3

PC4
1.7

-0.9

PC5
1.1

-1.0

max

min

Figure 2: The inferred temperature TP for MOR segments in the major ocean basins: the

Pacific, the Atlantic, and the Indian. a) Map view of TP averaged over all depths. White

lines are ocean basin boundaries. b) TP at depth. The order of ridge segments is shown

with arrows in both panels. The ridge in the green box in both panels are possibly related

to an ancient slab (Simmons et al., 2015). The bars on the bottom show the corresponding

principal components for each segment.
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the tree chooses a best PC from a random subset of PCs. Compared with the parent node,
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on its basin fraction. The ensemble of trees then vote for the classification. b) The top 3

levels of one decision tree in the RF (dashed box in panel a). Each node bifurcates based
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when all the points belong to one basin only, or with no more than 4 data points.
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Figure 6: Effect of the first few PCs. a) The proportion of variance covered by each
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Figure 7: The PCA weight matrix of potential temperature at depth inferred from all

tomographic models considered in this study.
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Figure 8: Sub-basin ridge systems as classified by our model. MARR: Mid-Atlantic Rise

Ridge. CAYM: Cayman Ridge. JUAN: Juan De Fuca Ridge. EPRR: East Pacific Rise

Ridge. PARR: Pacific-Antarctic Rise Ridge. GALA: Galapagos Ridge. AFAR: Red Sea

Rift. CIRR: Central Indian Rise Ridge. SWIR: Southwest Indian Ridge. SEIR: Southeast

Indian Ridge. GAKK: Gakkel Ridge.
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Table 1: The confusion matrix from our classification models.

Predicted

Atlantic Indian Pacific Σsamples
b

A
ct
u
al

Atlantic 88.0%a 6.8% 5.1% 2650

Indian 8.7% 79.6% 11.7% 2050

Pacific 10.5% 14.3% 75.1% 1850

Σsamples
b 2707 2078 1765 6550

aEach row with percentages shows the fraction of all segments

actually from a basin predicted to be in a different basin.

The diagonal parts are the correct predicted fractions.

bThe last row and last column show the numbers of bootstrapped test

samples summed over all 50 trained random forest models.
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