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Abstract

The Surface Water and Ocean Topography (SWOT) satellite is expected to observe the sea surface height (SSH) down to scales

of 10-15 kilometers. While SWOT will reveal submesoscale SSH patterns that have never before been observed on global

scales, how to extract the corresponding velocity fields and underlying dynamics from this data presents a new challenge. At

these soon-to-be-observed scales, geostrophic balance is not sufficiently accurate, and the SSH will contain strong signals from

inertial gravity waves — two problems that make estimating surface velocities non-trivial. Here we show that a data-driven

approach can be used to estimate the surface flow, particularly the kinematic signatures of smaller scales flows, from SSH

observations, and that it performs significantly better than directly using the geostrophic relationship. We use a Convolution

Neural Network (CNN) trained on submesoscale-permitting high-resolution simulations to test the possibility of reconstructing

surface vorticity, strain, and divergence from snapshots of SSH. By evaluating success using pointwise accuracy and vorticity-

strain joint distributions, we show that the CNN works well when inertial gravity wave amplitudes are weak. When the wave

amplitudes are strong, the model may produce distorted results; however, an appropriate choice of loss function can help filter

waves from the divergence field, making divergence a surprisingly reliable field to reconstruct in this case. We also show that

when applying the CNN model to realistic simulations, pretraining a CNN model with simpler simulation data improves the

performance and convergence, indicating a possible path forward for estimating real flow statistics with limited observations.
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• Neural networks reasonably reconstruct surface vorticity, strain and divergence,10
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reasonably close simulations is available.15
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Abstract16

The Surface Water and Ocean Topography (SWOT) satellite is expected to observe the17

sea surface height (SSH) down to scales of ∼ 10−15 kilometers. While SWOT will re-18

veal submesoscale SSH patterns that have never before been observed on global scales,19

how to extract the corresponding velocity fields and underlying dynamics from this data20

presents a new challenge. At these soon-to-be-observed scales, geostrophic balance is not21

sufficiently accurate, and the SSH will contain strong signals from inertial gravity waves22

— two problems that make estimating surface velocities non-trivial. Here we show that23

a data-driven approach can be used to estimate the surface flow, particularly the kine-24

matic signatures of smaller scales flows, from SSH observations, and that it performs sig-25

nificantly better than directly using the geostrophic relationship. We use a Convolution26

Neural Network (CNN) trained on submesoscale-permitting high-resolution simulations27

to test the possibility of reconstructing surface vorticity, strain, and divergence from snap-28

shots of SSH. By evaluating success using pointwise accuracy and vorticity-strain joint29

distributions, we show that the CNN works well when inertial gravity wave amplitudes30

are weak. When the wave amplitudes are strong, the model may produce distorted re-31

sults; however, an appropriate choice of loss function can help filter waves from the di-32

vergence field, making divergence a surprisingly reliable field to reconstruct in this case.33

We also show that when applying the CNN model to realistic simulations, pretraining34

a CNN model with simpler simulation data improves the performance and convergence,35

indicating a possible path forward for estimating real flow statistics with limited obser-36

vations.37

Plain Language Summary38

Satellite measurements of SSH have for the past few decades provided weekly global39

estimates of upper ocean currents at scales larger than approximately 100 km. The new40

Surface Water and Ocean Topography satellite promises to improve the resolution of these41

SSH observations. However, these new observations will introduce a new challenge, since42

a simple physics-based diagnostic relationship does not exist between the SSH and up-43

per ocean currents for the finer scales (O(10) km) that will now be visible. Here we show44

that a neural network can be used to estimate the surface flow from SSH observations.45

In particular, our trained neural networks are able to use SSH to predict the surface kine-46

matic variables: vorticity, strain, and divergence, which are particularly sensitive to the47

smaller scale flows. We also find that appropriate choice of the loss function can help fil-48

ter unwanted waves signals from the divergence. Finally, we show that when applying49

the neural network to realistic simulations, pretraining a model with simpler simulation50

data improves the performance and convergence, indicating a possible path forward for51

estimating real flow statistics with limited observations.52

1 Introduction53

Since the mid-1990s oceanography has been revolutionized by the use of satellite54

nadir altimetry to provide global observations of sea surface height (SSH) (Munk, 2002).55

Products such as AVISO (Ducet et al., 2000) interpolate this one-dimensional track data56

to gridded form, with an effective lateral spatial resolution of order 100 km and a tem-57

poral resolution of a few weeks. At these scales, non-equatorial motions are accurately58

described by geostrophic balance, allowing for regular global estimates of upper ocean59

currents, from the basin scale down to larger mesoscale eddies and meanders, without60

the need for an assimilating model. The recently-launched Surface Water and Ocean To-61

pography (SWOT) satellite is expected to significantly improve the effective spatial res-62

olution to approximately 15 km (Fu et al., 2012; Chelton et al., 2019) through the use63

of radar interferometry to provide two-dimensional swaths of SSH measurements. The64

smaller scales that will be observed will likely include at least the larger end of the sub-65
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mesoscale regime, where geostrophy is not a good approximation, obviating its use as66

a diagnostic relationship for estimating currents at the new scales to be resolved by SWOT.67

The nongeostrophic nature of these “near-submesoscale” flows is due to the impact68

on SSH at these scales of both ageostrophic features, like fronts, and inertia-gravity waves69

(IGWs), including internal tides. The waves present an exceptionally vexing challenge,70

as SWOT’s 21-day repeat cycle during its main operational phase will prevent the use71

of averaging over inertial times to remove IGW signals. Yet, despite that IGWs comprise72

a significant fraction of vertical kinetic energy, they do not contribute much to tracer trans-73

port (e.g. Balwada et al., 2018; Uchida et al., 2019). By contrast, the remaining non-74

geostrophic near-submesoscale motions contribute significantly to the vertical transport75

of tracers between the ocean’s surface and interior, as seen in both observations (Omand76

et al., 2015; Siegelman et al., 2020; Balwada et al., 2016) and modeling studies (Balwada77

et al., 2021; Bachman & Klocker, 2020).78

Estimating this near-submesoscale transport-active velocity field is a major chal-79

lenge for the interpretation and use of SWOT data. To do so one must solve two diffi-80

cult problems. First, one must find a method to filter IGW signals from the data, and81

since the repeat cycle period is an order of magnitude longer than the inertial time of82

roughly one day, the method must work on individual snapshots of SSH. This unfortu-83

nately obviates the use of methods such as Eulerian spectral filtering (Torres et al., 2018,84

2022) and Lagrangian filtering (Jones et al., 2022), since each requires high temporal res-85

olution. Second, one needs a model through which to infer the nongeostrophic flow from86

the filtered SSH signal. While a number of papers have demonstrated success in recov-87

ering ageostrophic flows from submesoscale-permitting numerical simulations using the88

eSQG analytical model (e.g. J. Wang et al., 2013; Qiu et al., 2016, 2020, and others),89

the method still requires data to first be low-pass filtered to remove IGW signals.90

The present paper seeks to sidestep these issues, forgoing a full reconstruction of91

the velocity field in favor of an approach that reconstructs dynamically-relevant flow statis-92

tics. Balwada et al. (2021) found that the joint probability densities (JPDFs) of surface93

vorticity, strain magnitude (referred to henceforth simply as ‘strain’), and divergence are94

highly informative; these are given by95

ζ = vx − uy, σ =
√

(ux − vy)2 + (vx + uy)2, and δ = ux + vy, (1)96

where u and v are the zonal and meridional components of the surface velocity. As also97

noted by Shcherbina et al. (2013), the shapes and properties of these JPDFs are a sta-98

tistical way to characterize the presence, magnitude and spatial scale of front-like flow99

structures, which are associated with sub-surface vertical transport. JPDFs can easily100

be calculated from individual snapshots of the surface velocity field to infer the magni-101

tude and lateral scales of convergent frontal flows. We show here that IGWs have a dis-102

tinct signature on these JPDFs, and that it may be possible to remove the wave signal,103

even without temporal data.104

We wish to estimate the JPDFs from the sea surface height directly, and we choose105

a machine learning model for this task. By training the machine learning model on out-106

put from two different numerical simulations, we show that a neural network can be used107

to learn the surface vorticity, strain and divergence statistics directly from raw SSH. More-108

over, due to a surprising kinematical fact about IGWs discussed in section 5, the method109

is especially useful for reconstructing the wave-filtered divergence field.110

Specifically, we train a convolution neural network (CNN) to estimate the surface111

kinematics directly from simulated SSH data provided by two submesoscale-permitting112

general circulation models: the global LLC4320 simulation (Rocha et al., 2016) and a113

Southern-Ocean-like channel model (Balwada et al., 2018). The former, forced by 6-hourly114

winds and 16 tide modes, has a well-developed realistic wave field, providing a difficult115

but important challenge for the method. In addition, for some questions, we also con-116
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sider a synthetic wave model that approximates the SSH due to a linear superposition117

of intertia gravity waves.118

The paper is organized as follows. In section 2 we discuss the channel model and119

LLC4320 simulations, and the fields from each used as datasets in this study. Section120

3 introduces the neural network architecture used for the reconstruction problem. Sec-121

tion 4 introduces the use and significance of joint distributions of surface vorticity, strain122

and divergence, as a tool for revealing flow structure and tracer transport, and demon-123

strate their reconstruction from the neural network model. In section 5 we show that when124

internal waves are present in the surface fields, the neural network is unable to recon-125

struct the wave-divergence field. This surprising fact is discussed in detail, and specu-126

lative explanations are provided. Section 6 investigates how well neural networks trained127

on one model can be used to predict the surface kinematic fields for another. Finally,128

caveats, additional points, and implications, along with a concluding summary, are given129

in section 7.130

2 Simulation data and their statistics131

To train our machine learning models, we use output from two submesoscale-permitting132

general circulation model simulations: the idealized channel model used in Balwada et133

al. (2018), and a subset of the LLC4320 simulation (Rocha et al., 2016) located near the134

Agulhas in the Southern Ocean. The former has minimal wave activity, while the lat-135

ter has a well-developed wave field, driven by high-frequency winds and tidal forcing. For136

a part of the investigation, we also use output from a synthetic wave model.137

The key metrics through which we analyze the models and their reconstructed statis-138

tics are the joint probability density functions (JPDF) of surface vorticity, strain and di-139

vergence. The JPDFs of these kinematical quantities allow one to identify flow signa-140

tures of submesoscale vortices and fronts, as well as their lateral scales (Balwada et al.,141

2021). In addition, we show below that internal waves have a distinct signature, allow-142

ing them to be identified clearly in the JPDFs, even from single snapshots of the flow.143

2.1 Submesoscale-permitting channel simulation data144

The channel model output is taken from a submesoscale-permitting MITgcm sim-145

ulation, intended as an idealized analogue of the Southern Ocean, with a horizontal grid-146

spacing of 1 km and an internal deformation radius of around 40 km, set in a 2000 km147

× 2000 km domain with a topographic ridge in the center (see Balwada et al., 2018, for148

details). It is forced by time-independent surface wind and surface temperature relax-149

ation; consequently this simulation produces a strong eddy field, and a relatively weak150

field of inertia gravity waves. Figure 1 shows snapshots of the surface SSH and vortic-151

ity fields, and denotes the parts of the domain used for training and testing the CNN.152

The 1 km resolution simulation was the highest-resolution case in a set that included153

5 km and 20 km resolution simulations as well. As the lateral resolution increased, the154

vorticity-strain JPDFs of the surface flow share the same qualitative shape, but the ranges155

of vorticity and strain increase, and the JPDF becomes increasingly cyclonically skewed,156

with a clustering of points just above the line with slope 1 (Figure 2). The latter is in-157

dicative of convergent fronts, which have cyclonic vorticity, with |ζ| ≈ σ — this is es-158

pecially apparent in the 1 km simulation (lower-left JPDF in Figure 2). The ±1 slope159

lines moreover serve to distinguish between strain-dominated and cyclone-dominated points.160

The probability contours also serve as a proxy for spatial scale — lower probability points161

towards the high vorticity and strain parts of the JPDF tend to be smaller in scale, while162

points near the origin tend to represent the largest features in the flow.163
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Though not crucial to the present story, we note that Balwada et al. (2021) also164

demonstrated that the kinematic JPDFs of the surface flow reveal information about ver-165

tical transport. When conditioned on surface vorticity and strain, it was found that large166

negative values of the sub-surface divergence (i.e. convergent regions) are strongly cor-167

related with the frontal regions of the vorticity-strain JPDF noted above. Moreover, ver-168

tical transport by submesoscale fronts was found to increase by an order of magnitude169

as resolution was increased, and to extend below the mixed layer (see section 2.c of Balwada170

et al. (2021) for details). Because of this relationship, surface vorticity-strain JPDFs in-171

ferred from SSH may provide a means to estimate submesoscale transport between the172

ocean surface and interior directly from SWOT.173

To investigate the non-geostrophic nature of the submesoscale features in the high-174

resolution flows, we compare JPDFs of vorticity and strain computed from geostrophic175

estimates of the velocities for the same two simulations (right-most panels in bottom two176

rows of Figure 2). In the 5 km resolution simulation, where submesoscales are barely per-177

mitted, the geostrophic result looks qualitatively similar to the true JPDF, but under-178

estimates the extreme values and captures less of the cyclone-anticyclone asymmetry.179

For the submesoscale-rich 1 km simulation, the geostrophic estimate not only fails to cap-180

ture the asymmetry, it also overestimates anticyclonic strain and vorticity, and differs181

more qualitatively from the true JPDF, appearing somewhat diffused. This is a reflec-182

tion of the highly inaccurate finer-scale structure that emerges in from taking derivatives183

of the raw SSH field used in the geostrophic estimate. It also suggests that dynamics have184

become much more complicated at 1 km resolution, with non-geostrophic features like185

strong, fast fronts, submesoscale cyclones, and some wave activity more strongly affect-186

ing the SSH.187
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Figure 1. Snapshots of SSH (left) and normalized vorticity ζ/f (right) from a snapshot of the

channel simulation of Balwada et al. (2018). The training and testing regions are marked.

2.2 The Agulhas region of the LLC4320 simulation188

The second set of model output is taken from the high-resolution global LLC4320189

simulation. This is a latitude–longitude–polar cap MITgcm (Marshall et al., 1997) sim-190

ulation forced by surface fluxes from the European Centre for Medium-range Weather191

Forecasting (ECMWF) atmospheric operational model analysis for years 2011-2012. The192

simulation has a nominal lateral grid resolution of 1/48◦, and is forced by 6-hourly winds193

and the 16 most significant tidal components (Rocha et al., 2016). As a result, in ad-194

dition to resolving mesoscale and near-submesoscale currents, the model also exhibits195

strong internal tides and IGW signals that are not present in the channel simulation.196
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Figure 2. Top row: Normalized vorticity, ζ/f , from a 500 km square subregion of the 5 km

and 1 km simulations analyzed in Balwada et al. (2021) and Balwada et al. (2018), computed

directly from their velocity fields, as well as from geostrophic estimates of velocity (see panel ti-

tles for identification). Middle row: vorticity-strain JPDFs from the 5 km simulations, computed

from velocity field (left) and from geostrophic estimate (right). Bottom row: same as the middle

row, but for the 1 km simulation.

We focus on three local regions in the Agulhas region, with latitudes between 35◦197

and 47◦ south and longitudes 4−21◦ west, 12−28◦ east, 28−45◦ east, respectively, as198

marked in Figure 3. Out of the total simulation time spanning from September 2011 to199

October 2012, we focus on data from March 2012, when the mixed layers in the three200

regions are at their deepest, and September 2012, when the mixed layers are shallow-201

est; these two months are thus termed ‘summer’ and ‘winter’, respectively.202

Many of the same qualitative patterns seen in the surface vorticity-strain JPDFs203

for the channel simulation are found in observational data (Shcherbina et al., 2013; Berta204

et al., 2020) as well as in the winter-time data for the three target regions, and summer-205

time data for region 2, of the LLC4320 simulation (top row and middle column of Fig-206

ure 4; see also JPDFs computed by Rocha et al. (2016)). However, new features not seen207

in the channel simulation arise in regions 1 and 3 of the summer LLC4320 data (bottom208

two rows of Figure 4). These new features, characterized by clusters of points with high209

strain, high divergence and low vorticity, are consistent, we argue below, with the stronger210

surface IGW activity expected in the presence of shallow summertime mixed layers.211

2.3 Wave signatures in surface kinematic JPDFs212

These JPDF signatures for IGWs can be most easily understood by computing kine-213

matic fields for a single plane inertia-gravity wave in constant stratification. Writing the214

pressure field for wavenumber (k, l,m) as p = R p̂ exp [i(kx+ ly +mz − ωt)] and us-215
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row) and summer vorticity-divergence JPDFs (bottom row) for the three local regions of the

LLC4320 simulation marked in Figure 3.

ing the hydrostatic IGW dispersion relationship ω2 = f2 +N2(k2 + l2)/m2, the hori-216

zontal velocity amplitudes are217

û =
kω + ilf

ω2 − f2
p̂ and v̂ =

lω − ikf

ω2 − f2
p̂,218

where N is the buoyancy frequency, and f the Coriolis parameter. From the wave ve-219

locity, and taking p̂ to be real, the vorticity and divergence are220

ζ =
fm2

N2
p̂ cos (kx+ ly +mz − ωt) and δ = −ωm2

N2
p̂ sin (kx+ ly +mz − ωt) (2)221

and the strain turns out to be just222

σ =
√
ζ2 + δ2. (3)223
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The ratio of vorticity to divergence thus scales as O(|ζ/δ|) ∼ |f/ω|. Because ω grows224

large relative to f as the horizontal wavenumber increases, at smaller scales divergence225

increasingly dominates vorticity, and then strain is approximated by divergence instead226

of vorticity.227

We test this simple argument by computing the JPDFs for a synthetic internal wave228

model (Early et al., 2021). This Matlab-based package generates linear internal waves229

following the Garrett-Munk spectrum (Munk, 1981) by numerically solving the linearized230

Boussinesq equations for a user-defined domain, with a specified background stratifica-231

tion and resolution. Here we use the mean stratification and resolution from the chan-232

nel simulation to compute its kinematic surface fields, and vorticity-strain and divergence-233

vorticity JPDFs; snapshots of SSH, vorticity, and the JPDFs are shown in Figure 5. The234

resulting JPDFs behave as predicted, and moreover bear resemblance the summertime235

JPDFs for region 1 of the summer LLC4320 data (Figure 4). The JPDFs for region 3236

of the summer LLC4320 data seem to indicate a superposition of submesoscale and IGW237

structures, especially so in the vorticity-divergence JPDF (bottom row of Figure 4), where238

the wave-dominated and front-dominated signatures are almost orthogonal to each other.239

(a) (b)

(c)

(d)

Figure 5. Snapshots of (a) SSH and (b) vorticity normalized by f (strain and divergence

show similar structure, and so are not shown) from the synthetic internal wave model. Vorticity-

strain (c) and vorticity-divergence (d) JPDFs from the same data.

In summary, statistics of surface vorticity, divergence and strain are robust indi-240

cators of surface flow features, and geostrophy does a poor job at reconstructing these241

from SSH fields at higher resolution (or smaller spatial scales). In the next section, we242

–8–
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introduce the machine learning architecture used, and in the following sections show that243

this framework can be used to more accurately reconstruct these surface kinematic vari-244

ables.245

3 Deep Learning Model246

Neural networks, among other machine learning models, have gained a lot of at-247

tention in the atmosphere-ocean science community over the past few years and have shown248

better performance relative to traditional approaches for many tasks (Bolton & Zanna,249

2019; Manucharyan et al., 2021; Sinha & Abernathey, 2021; George et al., 2021). Briefly250

speaking, a neural network consists of several hidden layers that transform its input into251

the final output. Each hidden layer is a combination of multiple linear matrix multipli-252

cations or additions and a simple nonlinear element-wise function such as a sigmoid. The253

elements of these matrices are tuned during the training of the model using gradient de-254

scent. The number of operations in each layer (usually called the ‘width’ of a layer) and255

the number of layers in the whole network (usually called the ‘depth’ of a network) de-256

termine the capability or flexibility of a neural network.257

The theoretical basis for neural networks is the Universal Approximation Theorem258

(Hornik et al., 1989): given an arbitrarily wide or deep network, there exists a set of ma-259

trices, such that any continuous function can be approximated by the neural network260

as closely as desired. However, the Universal Approximation Theorem doesn’t provide261

a construction recipe for the target neural network. In practice, due to limitations on262

computing resources and the amount of data, the architecture of the neural network is263

no less critical than the width or depth for efficiently building a useful model.264

Here we use a Convolution Neural Network (CNN) (LeCun & Bengio, 1995), which265

is known for its ability to capture spatial patterns in 2D physical data. When passing266

the data within a layer, the CNN uses a set of ‘convolutional filters’ (a 3×3 matrix for267

example) to do convolution with each local patch of the input before feeding the result268

to a point-wise nonlinear function to generate the output. Abstractly, this can be rep-269

resented270

Y
(k)
j = γ(k)

βj +

c(k−1)∑
i=1

Fij ∗ Y (k−1)
i

 (4)271

where Y
(k)
j is the jth channel at layer k, and γ(k) is a nonlinear function that could be272

composite of activations, normalizations and poolings. The parameter βj is a scalar bias273

term, c(k−1) is the number of channels in layer (k − 1), and Fij is a filter matrix that274

transform Y
(k−1)
i to another feature space through the 2D cross-correlation ‘∗’. During275

training, these filter matrices from each layer are believed to converge to representations276

in abstract feature space that are crucial for generating predictions.277

In this work, we use a specific type of CNN called a ‘Unet’ (Ronneberger et al., 2015),278

the structure of which is shown schematically in Figure 6. The Unet has two parts: the279

‘encoder’ condenses the variable resolution and expands the number of feature maps to280

extract information from the input, while the ‘decoder’ does the opposite, using the in-281

formation extracted to construct the output. Unet tries to overcome the loss of infor-282

mation in previous CNN models by delivering input in the encoding layers not only through283

the feature mapping pathway but also directly to the decoding layers. Each layer has284

two sets of convolution filters of dimension 3×3 as well as batch normalization and Scaled285

Exponential Linear Units as activation functions.286

Throughout this work, we train Unets on simulated SSH data, and test their abil-287

ity to reconstruct surface vorticity, strain and divergence, given only SSH data under dif-288

ferent scenarios. Though a Unet is flexible in the dimensions of its input, we chop our289

training data into non-overlapping sections of 64 × 64 grid points each. This is a trade-290
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layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

layer 7

1x64x64

32x32x32

64x16x16

128x8x8

128x8x8

64x16x16

32x32x32

1x64x64

Figure 6. The structure of the Unet CNN used in this work. Blue boxes represent convolution

layers, and yellow boxes represent input, intermediate and final outputs. The sets of three num-

bers refer to channels, height, and width. Solid lines indicate delivery of data to the next layer.

Dashed lines indicate delivery to the layer not directly following.

off in the sense that while we use a smaller size of the input, we have a larger collection291

of samples. But at the same time, the model needs to be exposed to mesoscale features292

during training. We found a 64 × 64 box suitable for these purposes. On the other hand,293

when we test the performance of our model we take a slightly different approach. We294

still chop our target region into 64 × 64 local regions as input, but now these local re-295

gions overlap with each other, with a stride of 5. The reason for doing this is that when296

building the output using non-overlapping data, the points closer to the boundary of the297

input would get less information available for its reconstruction compared to points at298

the center, and this largely impairs the capability of the model. Samples of the train-299

ing set are randomly shuffled, preventing the neural net from learning temporal infor-300

mation.301

Note that we omit the difficulty of transforming swath data to grid data, assum-302

ing SSH is given naturally on the grid without loss of information. In theory, neural net-303

works applied here can be extended to use swath data as input (Manucharyan et al., 2021;304

Fablet & Chapron, 2022).305

For loss functions, we use mean squared error for most of the work and mean ab-306

solute error for models used in Figure A1. In the past few years, innovative loss func-307

tions such as adversarial loss (Ledig et al., 2017; Zhang et al., 2019) and perceptual loss308

(Johnson et al., 2016) have trended in the computer vision community and helped build309

state of art image processing models. However, the main focus of those studies is to im-310

prove model performance against the perceptual feeling of humans, and the mathemat-311

ical foundation of these new techniques is not fully explored. While we believe that the312

application of a task-specific loss function is important to the application of a machine313

learning model, the discussion of that is out of the scope of this work and awaits future314

investigation.315

Besides the configuration above, we use Adam (Kingma & Ba, 2014) as the opti-316

mizer with a learning rate 0.0001, a batch size of 32 and 100 epochs, unless specified oth-317

erwise. Additional details about can be found in the sample code provided in our Github318

repository.319
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4 Learning surface kinematics with a neural network model320

4.1 Channel simulation321

We train Unet CNNs with the output of the channel model SSH and velocity fields322

in the top grid cell (with z = −0.5 m) to construct surface vorticity, strain and diver-323

gence separately. We perform the training and testing on regions of the 1 km simulation324

(marked in Figure 1). Temporally, we use 80 days of 6-hourly snapshot data for train-325

ing, and the following 10 days are used for testing. After chopping, there are about 40,000326

samples of 64×64 tiles for training. In Figure 7 we show the true vorticity and strain327

and the reconstructed result in the downstream testing region, and also compare to the328

reconstruction using the geostrophic balance. The Unet has successfully captured most329

features on both large and small scales. In comparison, the vorticity and strain computed330

from geostrophic balance deviate much more from the truth. Visually this deviation is331

most severe in submesoscale vortices and filaments, though also visible in larger-scale fea-332

tures. This can be explained by the fact that small-scale features usually have larger Ro333

and under this scenario the geostrophic relation no longer dominates in the asymptotic334

expansion in orders of Ro, even given that this is a simulation with relatively weak waves.335

The discrepancy is even more obvious in the point-wise performance of the recon-
struction, measured by its prediction skill

skill = 1−

[
(truth− prediction)2

truth2

] 1
2

and correlation between the true target and the reconstructed result (Table 1). The Unet336

reconstruction yields high correlation as well as decent prediction skill, surpassing that337

of the geostrophic estimation.338

Table 1. Correlations and prediction skills of machine learning and geostrophic results against

the ‘truth’ from the channel simulation.

Variable ζUnet σUnet δUnet ζgeo σgeo

Correlation 0.93 0.91 0.80 0.73 0.75

Skill 0.65 0.71 0.41 0.2 0.31

Greater insight into the performance of the reconstruction methods can be gauged339

by considering the true, reconstructed, and geostrophic vorticity-strain JPDFs for the340

channel model (Figure 8, top row). Overall it can be seen that the neural network re-341

sult captures the basic structure of the JPDF, especially the small scales asymmetric frontal342

part. By contrast, the geostrophic result shows excessive symmetry between cyclonic and343

anticyclonic features, and smaller extreme values, as also seen in the previous section.344

The neural network is also able to capture properties of the distribution of surface345

divergence conditioned on the vorticity and strain (Figure 8, bottom row). Here we can346

see that the Unet result reproduces the separation between downwelling and upwelling347

regions of the JPDF, as well as the magnitude of divergence. This holds promise for es-348

timating vertical transport from snapshots of SWOT-measured SSH.349

In conclusion, we see that while the machine learning solution captures the rela-350

tionship between the SSH and surface kinematic variables, while the geostrophic rela-351

tion provides an unsatisfactory reconstruction for the high-resolution simulation.352
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Figure 7. The SSH field in the test region of the channel simulation (left); true normalized

vorticity, predicted vorticity and vorticity from geostrophic relation (top right three panels); true

normalized strain, predicted strain and strain from geostrophic relation (bottom right three pan-

els).

4.2 LLC4320 simulation353

After finding success with the channel simulation, here we test the ability of a Unet354

neural network to reconstruct surface kinematic quantities for the more complex LLC4320355

simulation. As denoted in Figure 3, we train the Unet with data from Regions 1 and 2356

and test preditions in Region 3. Specifically, we use 30 days of 4-hourly snapshot data357

in either winter or summer for Regions 1 and 2 — giving a total of about 50,000 sam-358

ples for training — and test predictions for Region 3 in the same seasons. The vortic-359

ity field in Region 3 shows a combination of wavy and turbulent sub-regions that are roughly360

located in the southeast and northwest parts of the spatial domain (Figure 9). While the361

frontal features, at both meso- and submesoscale in either season, are captured well in362

the northwest part of the region, the properties in the wavy sub-region in the southeast363

are farther from the truth.364

From Table 2, we see that, compared to the channel simulation, the point-wise cor-365

relation and skill metrics have significantly dropped for the Unet reconstructions of the366

kinematic fields, especially for summer, when IGWs are stronger. We also experimented367

with using a neural network model trained with one season of the LLC4320 simulation368

to reconstruct vorticity in another season, and found that the result is indistinguishable369

from reconstruction when using a model that is trained with the same season as the test370

input (not shown).371
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(a)

(b)

Figure 8. Vorticity-strain JPDF for the channel model truth (upper left), Unet reconstruction

(upper middle), and geostrophic estimates (upper right); mean divergence conditioned on vortic-

ity and strain for the true channel simulation data (lower left) and for the Unet reconstruction

(lower right).

Table 2. Correlations and prediction skills for the kinematic fields reconstructed using the

Unet model against those computed from the true LLC4320 simulation.

Variable ζwinter σwinter δwinter ζsummer σsummer δsummer

Correlation 0.9 0.81 0.5 0.84 0.63 0.5

Skill 0.57 0.67 0.15 0.46 0.55 0.15

In Figure 10 we show the vorticity-strain JPDF for Region 3 in winter and sum-372

mer. Because of the extra complexity introduced by the strengthening of inertia grav-373

ity waves, in neither season could the machine learning model produce a result as good374

as that for the channel simulation. For winter, though suffering more from missing ex-375

treme values, the shape of the JPDF is still consistent with the truth.376

The JPDF for summer is more severely distorted. The predicted joint distribution377

doesn’t fall into either the wave-dominated or turbulence-dominated regime we have seen378

above. The marginal distribution of vorticity is roughly reproduced, but the distribu-379

tion of strain becomes more concentrated at small values. The small-scale large vortic-380

ity values (likely from the southeast part of the Region 3 domain) are replaced by smoothed381

small values, most obvious in the summer (the same is true for strain, not shown). This382

suggests that the Unet isn’t able to properly reconstruct IGW vorticity and strain. It383

remains a question if this is because the model wasn’t able to distinguish the wave sig-384

nal from the SSH, or because it couldn’t find a way to transform the wave signal it sees385

in SSH to vorticity and strain.386

The Unet’s reconstruction of divergence behaves particular poorly when measured387

in terms of correlation and skill. This is because, relative to strain and vorticity, diver-388

gence is dominated by wave signals. Despite this dramatic drop in both metrics, and a389

prediction skill as low as 0.15, Figure 11 suggests that the models give a prediction that390

preserves fronts and filaments in different scales, while much of IGW signal is reduced.391

The particularly poor ability of the neural net to capture IGW signals in divergence —392

and the potential advantages of this weakness — are discussed in the next section.393
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Figure 9. LLC4320 Region 3 true winter vorticity (a) and reconstructed winter vorticity

(b);Region 3 true summer vorticity (c) and reconstructed summer vorticity (d).

5 Neural networks may automatically filter IGW divergence394

Here we show that the divergence associated with IGW cannot be estimated us-395

ing only SSH. This is because the same SSH anomaly can produce equal and opposite396

signed IGW surface divergence depending on the sign of the frequency, thus the relation-397

ship between the surface divergence and SSH is not one-to-one and partly random.398

5.1 Expected values of wave and balanced divergence399

If we assume that the flow can be separated as a linear combination of a balanced400

part (denoted by subscript ‘bal’) and a wave part (denoted by subscript ‘wave’), then401

using a mean squared error as loss function results in a neural network that predicts,402

fθ(ηbal + ηwave) = E[δbal + δwave|ηbal + ηwave]403

= E[δbal|ηbal + ηwave] + E[δwave|ηbal + ηwave], (5)404
405

where fθ is the neural network function and E denotes the expectation of a distribution.406

Considering the plane-wave polarization relations discussed in section 2.3, we see407

that the surface pressure p (and thus ηwave through hydrostatic balance ηwave = pwave|z=0/ρ0g)408

and the surface divergence, are related through a ratio ωm2/N2. The frequency ω can409

take both positive and negative values, which impacts the direction of wave propagation.410

However, if no temporal information is available or incorporated into the loss function,411
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the conditional distribution of surface wave divergence is symmetric about zero and412

E[δwave|ηwave] = 0. (6)413

This suggests that given a divergence field with both wave and balanced parts, a neu-414

ral network will automatically filter out the wave divergence.415

When balanced flow ubal is taken into consideration, Doppler shifting can happen.416

Assuming ubal is relatively slowly varying in both space and time, then the intrinsic fre-417

quency ω is replaced by Ω = ω+ubal·k in the phase of wave divergence (2). However,418

the change in frequency due to Doppler shift doesn’t affect the intrinsic frequency ω in419

the factor ωm2

N2 . Thus following the same argument, if one is able to separate the sea sur-420

face height generated by waves from that due to the balanced flow, we find421

E[δwave|ηwave, ηbal] = 0. (7)422

[Here the comma between ηwave and ηbal means that we observe each of them at the same423

time but separately.]424

Through the law of total expectation, when observing the superposition of sea sur-425

face height from both IGW and balanced parts instead of these two separately, we still426

have427

E[δwave|ηwave + ηbal] = E[E[δwave|ηwave, ηbal]|ηbal + ηwave]]428

= E[0|ηbal + ηwave] = 0, (8)429
430

and thus431

fθ(ηbal + ηwave) = E[δbal + δwave|ηbal + ηwave]432

= E[δbal|ηbal + ηwave]. (9)433
434

The model converges to only output the divergence from the balanced part.435
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This argument is inspired by Lehtinen et al. (2018), where the authors creatively436

use only noisy images as both inputs and targets to train an image denoiser. The idea437

backing this method is that as long as the ‘corrupted’ data has the same conditional ex-438

pectation as the ‘clean’ data, the model will converge to the ideal set of configurations439

even just fed with corrupted data, at the cost of needing more training data and more440

iterations of training before convergence.441
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Figure 12. (a) Mean of absolute values of wave divergence prediction using different amount

of training iterations and training samples for the synthetic wave model. (b) Sample of target

wave divergence. (c) Unet predicted wave divergence after 20 iterations using 5,000 training sam-

ples. (d) Same as (c) except using 15,000 training samples.

5.2 Testing divergence reconstruction with synthetic wave data442

To empirically justify (6), we trained a neural network using the synthetic wave443

data to generate around 18,000 training samples, and then predict wave divergence from444

wave SSH (Figure 12). We can see, as expected, that as more training data and more445

training iterations are provided, the model converges towards a field of zeros (Figure 12a).446

We also see from the Unet predictions (Figure 12c,d) that no clear pattern is learned.447

[Note that filtering lower wavelength waves takes longer as the number of their relative448

samples per snapshot is lower].449

Unfortunately, this is not a property broadly shared by other kinematic quantities450

like vorticity and strain. For example, based on the polarization relationships (see sec-451

tion 2.3), the wave pressure and the wave vorticity are related by a factor of −fm2/N2
452

and a phase of π/2. Thus for a single-plane wave, the wave SSH can uniquely determine453

the wave vorticity. When multiple waves exist, the expectation of wave vorticity condi-454

tioned on wave sea surface height depends on the distribution of vertical wavenumber455

m from the training data and thus the GM spectra (Munk, 1981; Levine, 2002).456

When trained with more data and more iterations, the IGW vorticity converges457

to a limit that is neither zero nor the true target value (Figure 13). When waves are weak,458

this will add a small distortion to the reconstruction of the balanced vorticity. For a strong459

wave scenario, we may need to develop more advanced loss functions to either better re-460

construct the wave vorticity or remove it more precisely.461
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Figure 13. Same as Figure 12 but for synthetic wave model vorticity.

5.3 Testing divergence reconstruction using Lagrangian filtered veloc-462

ities463

Filtering inertia-gravity waves from the simulated flow is a key aim of this paper.464

Implicit in that goal is the idea of a well-defined balanced flow that can be cleaved away465

from the wave part. In fact, this is a notoriously difficult and unsolved problem, though466

progress has been made on practical methods to do so. Here we use the Lagrangian-filtered467

flow computed in Jones et al. (2022) as an approximation of the balanced flow, and train468

the CNN to extract it from the raw LLC data. The Lagrangian filtered data available469

to us includes daily snapshots within the region bounded by longitudes 15◦ west − 29◦470

east and latitudes 26−52◦ south, spanning from September to October 2011, which pro-471

vides about 35,000 samples for training in total. Unfortunately this excludes the sum-472

mer month that exhibits the strongest wave activity.473

We train two neural network models using raw LLC4320 SSH fields to predict ei-474

ther the raw divergence or the Lagrangian filtered divergence. The divergence in the for-475

mer should converge to E[δbal + δwave|ηbal + ηwave] and the latter should converge to476

E[δbal|ηbal + ηwave], but the two should be similar based on the discussion above.477

Figure 14 suggests that at least visually the predictions from the two models are478

quite similar. It should be remarked that the Lagrangian filtering does a good job at re-479

moving IGWs, as can be seen by comparing true Lagrangian filtered divergence to true480

raw divergence, but still preserves many small-scale features. In contrast, we see that481

the predictions from both the neural networks result in divergence fields that have di-482

minished smaller-scale structure than even the Lagrangian filtered divergence field. This483

aspect will be investigated more in future studies, but might indicate that smaller scale484

features have less of a unique connection to the SSH field.485

It is worth mentioning that this conditional expectation that the model converges486

to doesn’t really rely on the strength of the wave part, but rather on the interaction be-487

tween the wave and balanced parts. This could be seen in the convergence of the model488

trained on the raw data towards the model trained on Lagrangian data (Figure 14). How-489

ever, the amount of training data needed for the model to converge is dependent on the490

strength of wave-like motions in the chosen region. As the signal-to-noise ratio gets smaller,491

we require more data to recover the signal.492
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To conclude, if we only want to extract information about the balanced flow from493

a SSH input that contains both balanced and wave signatures, using a neural network494

and reconstructing the divergence may be a reliable option. This is because the neural495

network using conventional loss functions will converge towards giving wave-free output496

due to the isotropic-in-time behavior of the wave divergence.497
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Figure 14. (a) True raw divergence from the region of the LLC4320 simulation analyzed by

Jones et al. (2022), and (b) the Lagrangian filtered divergence from the same region. (c) Unet

predicted divergence trained on true divergence, and (d) Unet predicted divergence trained on

the Lagrangian filtered divergence.

6 Learning from limited data: Transfer Learning498

While training with simulation data, we can in theory continuously boost the per-499

formance by adding more complexity to the machine learning model and supplement-500

ing extra simulation data during training, if computing resources are not a limitation.501

However when working with real world observations, reliable observational data for train-502

ing is always scarce and likely never enough to train a model from scratch. One paradigm503

to overcome this challenge is to train a model with some closely linked dataset for which504

large-amount of data is available, and then fine-tune the model with task-specific data.505

This procedure is referred to as “transfer learning,” and the expectation is that the ‘knowl-506

edge’ learned previously could be transferred and thus compensate for the missing task-507

specific data. The intuition behind this is that universal representations could be learned508

even when a model is trained with non-task-related data. The first few layers of the model509

often learn to recognize lines and shapes in the input regardless of the task, and these510

features can be reused when we try to apply the model to more specific datasets. Though511

the theoretical understanding of transfer learning is still a topic of ongoing research, the512

adoption of this methodology has led to prominent results in practice (Y. Wang et al.,513

2020).514

With SWOT-derived SSH data, we won’t have simultaneous high-resolution in-situ515

observations of the corresponding velocity field, and thus no “truth” with which to train516

a neural network model. In analogy to this problem, in this section we test whether trans-517

fer learning from the channel model could help a neural network reconstruct the surface518

kinematic variables from SWOT-like SSH data from the LLC4320 simulation.519

Specifically, here we pretrain a Unet with channel model simulation data using 40,000520

samples. During the training stage using the LLC4320 simulation data (which, again,521

consists of 30 days of 4-hourly snapshot data from Regions 1 and 2, for either summer522

or winter), all the weights from the pretrained model are allowed to be tuned. For com-523
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parison, we also train a second model with randomly initialized weights using the LLC4320524

simulation dataset, with the same randomly chosen subsets from the LLC4320 winter525

dataset. We denote these neural network models as either ‘CS’ for channel simulation526

pretrained, or ‘scratch’ for the model with randomly initialized weights, appended by the527

number of LLC4320 winter samples used to tune or train the model. For example, ‘scratch-528

20000’ means the model is initialized from scratch (randomly initialized) and trained with529

20,000 samples from the LLC4320 dataset.530

First, we test the performance of these models when the number of training sam-531

ples is cut to 10,000 or 20,000 from the total 53,000 samples used in earlier sections. Fig-532

ure 15 shows a subregion of LLC4320 Region 3 winter vorticity, along with reconstructed533

vorticity fields from the randomly initialized model (scratch-10000), and from the chan-534

nel simulation pretrained model (CS-10000). Both models were trained for the same num-535

ber of iterations. We can see that though the two show similar structure, the latter per-536

forms better in recovering the details and amplitude of the structures. A more compre-537

hensive comparison of prediction skills from models with different setups is summarized538

in Figure 16 (correlations share the same trend). We can see that when less data is avail-539

able, the model pretrained with channel simulation data can offer both better perfor-540

mance and faster convergence. This suggests that the model can reuse some of the fea-541

tures learned from channel simulation data to help reconstruct LLC simulation surface542

dynamics.543

Note also that while the channel simulation pretrained model consistently performs544

better than the randomly initialized model, the gap is narrowing when more training sam-545

ples are provided. In Figure 16 we show how many extra training samples are needed546

to supply to the randomly initialized model to make its performance match the channel-547

simulation pretrained model. We see that as more training samples are used, the supe-548

riority of the pretrained model (measured in the number of extra samples supplied to549

the scratch model to gain equal performance) fades out, and finally the difference be-550

tween these models is negligible.551

Figure 15. (a) The true normalized vorticity, ζ/f , from a subregion of LLC4320 Region 3 in

winter; (b) Unet-predicted normalized vorticity from the scratch model using 10,000 samples and

60 iterations of training; (c) Same as (b) but with the channel simulation pretrained model.

These results raise the questions: what has been transferred or reused from the pre-552

trained model? When training samples are plentiful, do pretrained weights in the model553

make any difference from the randomly initialized ones? To address these, we use the554

centered kernel alignment (CKA) (Kornblith et al., 2019; Nguyen et al., 2020) to mea-555

sure the similarity between layers from different models. This empirical metric first com-556

putes the principal components of the correlation matrix between the outputs from a lay-557

ers of a model when given a large amount of inputs, and then compare the similarity be-558
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Figure 16. (a) Prediction skill measured for pretrained models and model trained from

scratch, using either 10,000 or 20,000 samples of LLC4320 data. (b) Extra training examples

needed to boost the performance of scratch model to match channel simulation pretrained model

when they are given different number of LLC4320 training samples.

tween principal components from layers of two different models when given the same in-559

puts. The values 1 suggests identical and 0 means orthogonal.560

In the upper panel of Figure 17 we show the CKA between the pretrained mod-561

els with and without tuning using the LLC4320 data. We can see high similarity along562

the diagonal regardless of the amount of LLC4320 data used, indicating the changes that563

happen during tuning are mostly small modifications of the original feature space. In564

the lower panel of Figure 17 we show the CKA between pretrained models and randomly565

initialized models. The high similarity along the diagonal of the first three layers sug-566

gests that similar features are learned by the first few layers, regardless of the starting567

state of the model. But this similarity doesn’t last through the full model, in particu-568

lar the last two layers. This suggests that even though both models extract information569

from the input in similar ways, they are taking different approaches in utilizing it to re-570

construct the output; even though when measured in correlation and prediction skill, their571

results show negligible differences.572

Results from the CKA analysis in Figure 17 have two important implications. First,573

it suggests that feature-reuse does happen and is most significant in the first few layers.574

On the other hand, the pretrained weights set the basis for modification during tuning575

and this could be a restriction when the training data is largely available and the data576

for pretraining is very different from the data for training.577

When applied to real observation data, the pretrained simulation data should fol-578

low similar dynamics and boundary conditions as closely as possible, and it may be worth579

adding extra layers at the end or just randomly initializing the last few layers of the model.580

Another implication is the fact that while giving a similar performance, two neural net-581

works with different initial weights have vastly different intermediate results. This poses582

the difficulty of trying to extract the physical knowledge learned by the machine learn-583

ing model, if there is any. While the physical law governing the data should be unique,584

the approximations derived by machine learning models are not and may be very dif-585

ferent from one trained model to another.586

7 Discussion and Conclusion587

In this study, we explored the possibility of using a neural network to reconstruct588

surface kinematic variables — vorticity, strain and divergence — from snapshots of SSH.589
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Figure 17. (a) CKA between the channel simulation pretrained models with and without

tuned with 10,000 samples of LLC data; (b) same as left but with 50,000 samples of LLC data;

(d) CKA between the channel simulation pretrained model and randomly initialized model, with

10,000 samples of LLC data; (d) same as left but with 50,000 samples.

This work was motivated by the anticipated challenges that will emerge once the data590

from the SWOT satellite becomes available. SWOT will present an unprecedented 2D591

view of SSH at scales smaller than ever seen before, but this will also raise a number of592

questions about how to best utilize and interpret these observations (Chelton et al., 2019).593

These include questions about how to reconstruct surface flows at scales where geostro-594

phy may not be appropriate, and when the SSH perturbations may be strongly influenced595

by the presence of IGWs. We use neural networks because we currently lack dynamics-596

based methods like geostrophy. The neural network model works more like traditional597

analog forecasting methods based on pattern recognition (Balaji, 2021). They unfortu-598

nately come with the cost of being less interpretable.599

Here we used a particular type of convolution neural network called Unet, which600

has previously shown to be very successful at different 2D prediction tasks. However, we601

believe that the success of applying neural networks to our task is not limited to this model.602

Other CNN-based models should have similar capabilities, and there may be other neu-603

ral networks with architectures more suited to this task. Also, we used pointwise mean604

squared error and mean absolute error as loss functions during training, as they are sim-605

ple to understand conceptually and their properties are well-known. In the future, more606

complex and task specific loss functions can be devised (Ebert-Uphoff et al., 2021). Since607

a neural network may never be able to converge to a zero error, due to incomplete knowl-608

edge of the hidden states, we also focus on the overall pattern reconstruction rather than609

only on point-wise errors to evaluate the success and predictions properties of our model.610
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To do this, we used vorticity-strain JPDFs (Balwada et al., 2021), which help us assess611

statistically if the predictions appropriately capture the structures present in the flow.612

For training our models, we used data from three sources, an idealized channel model613

with weak IGWs, a region of a realistic high-resolution global simulation (LLC4320) with614

seasonally varying IGW amplitudes, and a synthetically generated field of IGWs. We615

are interested in how neural network performs in situations with different strengths of616

IGWs, since though both the IGW and balanced part get enhanced with finer resolu-617

tion and expected to be part of the SSH observations gathered by SWOT, their kine-618

matic properties are very different. The IGWs don’t contribute much to the passive tracer619

transport, and may be less relevant for research applications corresponding to transport.620

It is thus important to understand if the neural network can preserve and predict both621

signals, or whether it imposes different distortions to them.622

When the Unet is trained on the channel simulation, in which IGWs are weak, we623

find that the reconstruction of surface kinematics is superior to a naive application of624

geostrophic balance. Not only are point-wise correlation and prediction skills high, but625

both vorticity-strain joint distributions and conditional divergence distributions, are close626

to the truth. A similar result is found for the LLC4320 during the winter, when IGWs627

are relatively weak. However, when training is done on LLC4320 summer, when IGWs628

are strong, the quality of prediction is decreased.629

The quality of these predictions can be understood by considering the loss func-630

tions we use. When optimization is done using the mean squared error or mean abso-631

lute error, the neural network should converge to the conditional expectation or the con-632

ditional median conditioned to the input, respectively. At least for the waves, it can be633

shown that these conditional metrics for the vorticity and strain conditioned on the SSH634

snapshots are not necessarily equal to the true target values, but depend on the wavenum-635

ber distribution embedded in the training data. For the balanced or frontal part of the636

flow, no such simple reasoning can be done, but empirically, given the success of the pre-637

diction when the waves are weak, it seems that the conditional metrics do converge to-638

wards the true surface kinematic variables.639

The situation for prediction of the wave divergence is particularly interesting since640

its conditional expectation and median converge to 0. This implies a neural network pre-641

dicting the conditional expectation of divergence associated with waves will have a nat-642

ural tendency to filter them out. We confirmed this result by not only using an ideal-643

ized synthetic field of IGWs, but also by comparing a model trained on LLC4320 raw644

data against a version where the waves were greatly filtered out before training. It re-645

mains to be examined whether this insight can be leveraged to filter waves from other646

kinematic variables by using specialized loss functions. This is a promising area for fu-647

ture study.648

Overall, in future exploration, we should pay more attention to choosing a more649

task-specific loss function before turning to more complicated neural networks. While650

the latter decides how well the final model will be able to generalize, the former deter-651

mines what the model converges to and is closely related to the underlying physical prop-652

erties of the problem.653

Finally, we also showed that a model pretrained on a simpler simulation can be tuned654

to work for a more complex model with a smaller amount of data, with the hope that655

a similar technique can be used to pretrain a model with realistic simulation data and656

tuned with observational data. This technique is referred to as transfer learning. How-657

ever, more work needs to be done determine the minimal number of observational data658

that will be needed to carry out this procedure, and what realistic models will be most659

suited to perform the pretraining to work with actual SSH observations. It would be ideal660

if the in-situ data collected at the SWOT ”adopt a crossover” sites, which are regions661
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that will be heavily monitored during the first 3 months of the SWOT mission, could662

be used train machine learning models to recover the flow properties from SSH.663

In summary, we show that a neural network can serve as a potential tool to recon-664

struct surface dynamics from snapshot SSH data. This study was a proof of concept, reval-665

ing a few different avenues that should be further investigated before such work can be666

used for operational purposes.667

Appendix A Comparison between mean squared error and mean ab-668

solute error as loss functions669

When considering the vorticity-strain JPDFs, we noticed that the JPDF of the pre-670

dicted results is usually less spread out than the true JPDF (e.g. Figure 8 or Figure 10).671

This happens because at smaller scales, which are usually associated with the outer con-672

tours of the JPDF, the flow deviates more strongly from geostrophy. Thus, it is less likely673

that a one-to-one relationship exists between the SSH and the surface flow; many dif-674

ferent flow structures are possible for the same SSH structure. In this case, the machine675

learning model offers a statistical estimate of the surface kinematic variable conditioned676

on the SSH, and this statistical estimate depends on the loss function we use. In section677

5, we used this property to our advantage, and filtered out the IGW divergence. Here678

we show that changing the the loss function from mean squared error (MSE) to mean679

absolute error (MAE) changes the details of the predicted kinematic variables, and thus680

impacts the JPDF of the predicted variables. In particular, when using the mean abso-681

lute error a clear cut off in ζ/f0 = −1 appears (Figure A1), which is absent when us-682

ing mean squared error.683

We speculate that this sharp cut-off, when using MAE, may be associated with the684

fact that ζ/f0 ≤ −1 is also the criterion for barotropic, centrifugal and inertial insta-685

bilities (Hoskins, 1974; Thomas et al., 2013). The relatively larger scale flow tries to push686

the ζ/f0 ≤ −1, and the instability mechanism tries to restore the value to be ζ/f0 ≥687

−1, potentially resulting in a significant amount of variability centered near this thresh-688

old. Since ζ/f0 ≤ −1 is likely to happen at small scales, it has a less deterministic de-689

pendence on SSH. So, for a similar SSH structure, the flow can form a wide range of ζ/f0690

values, and this distribution is likely a long tail distribution, peaking around -1 and ex-691

tending to smaller negative values (≤ −1) that appear intermittently and are wiped out692

by the instabilities. When we use MSE, the machine learning model converges to the con-693

ditional expectation of vorticitygiven a SSH pattern. For long tail distributions, the ex-694

pectations can be diverse and distinct from the peak value. However, when we use MAE,695

the model converges towards the conditional median instead. In this case, the results be-696

come less variant and cluster around the peak value of -1. This likely leads to the sharper697

cut-off in the vorticity prediction.698

Thus, we conclude that predictions of surface kinematic variables from the model699

trained using the MSE looked more natural than ones from MAE, which is why we use700

MSE is this study. However, even the MSE based estimates are just statistical estimates701

from the training data and can be far from the truth. Since part of the variability is due702

to the missing information in the input to the model trained only using SSG, this cut-703

off disappears when we have more variables such as surface temperature in the model704

input (not shown).705

Appendix B Data and Code Availability Statement706

The Python notebooks and code samples required to train the models and recre-707

ate the figures can be found at https://github.com/qyxiao/CNN-for-SSH-reconstruction.708

The channel simulation and LLC4320 data can be accessed using the Pangeo (https://709

pangeo.io/) data catalog at https://catalog.pangeo.io/browse/master/ocean/channel/710
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Figure A1. Vorticity-strain joint distributions of (left) reconstructed channel simulation vor-

ticity and (right) reconstructed LLC4320 winter vorticity when using mean absolute error as a

loss function to train the Unet. The dashed vertical line corresponds to ζ/f0 = −1, which seems

to emerge as a hard cutoff when using the mean absolute errors as the loss function.

channel ridge resolutions 01km/ and https://catalog.pangeo.io/browse/master/711

ocean/LLC4320/ respectively. The Lagrangian filtered LLC4320 data can be accessed712

from https://doi.org/10.5281/zenodo.6561068. The synthetic IGW is generated with713

Matlab package GLOceanKit (https://github.com/Energy-Pathways-Group/GLOceanKit).714
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Abstract16

The Surface Water and Ocean Topography (SWOT) satellite is expected to observe the17

sea surface height (SSH) down to scales of ∼ 10−15 kilometers. While SWOT will re-18

veal submesoscale SSH patterns that have never before been observed on global scales,19

how to extract the corresponding velocity fields and underlying dynamics from this data20

presents a new challenge. At these soon-to-be-observed scales, geostrophic balance is not21

sufficiently accurate, and the SSH will contain strong signals from inertial gravity waves22

— two problems that make estimating surface velocities non-trivial. Here we show that23

a data-driven approach can be used to estimate the surface flow, particularly the kine-24

matic signatures of smaller scales flows, from SSH observations, and that it performs sig-25

nificantly better than directly using the geostrophic relationship. We use a Convolution26

Neural Network (CNN) trained on submesoscale-permitting high-resolution simulations27

to test the possibility of reconstructing surface vorticity, strain, and divergence from snap-28

shots of SSH. By evaluating success using pointwise accuracy and vorticity-strain joint29

distributions, we show that the CNN works well when inertial gravity wave amplitudes30

are weak. When the wave amplitudes are strong, the model may produce distorted re-31

sults; however, an appropriate choice of loss function can help filter waves from the di-32

vergence field, making divergence a surprisingly reliable field to reconstruct in this case.33

We also show that when applying the CNN model to realistic simulations, pretraining34

a CNN model with simpler simulation data improves the performance and convergence,35

indicating a possible path forward for estimating real flow statistics with limited obser-36

vations.37

Plain Language Summary38

Satellite measurements of SSH have for the past few decades provided weekly global39

estimates of upper ocean currents at scales larger than approximately 100 km. The new40

Surface Water and Ocean Topography satellite promises to improve the resolution of these41

SSH observations. However, these new observations will introduce a new challenge, since42

a simple physics-based diagnostic relationship does not exist between the SSH and up-43

per ocean currents for the finer scales (O(10) km) that will now be visible. Here we show44

that a neural network can be used to estimate the surface flow from SSH observations.45

In particular, our trained neural networks are able to use SSH to predict the surface kine-46

matic variables: vorticity, strain, and divergence, which are particularly sensitive to the47

smaller scale flows. We also find that appropriate choice of the loss function can help fil-48

ter unwanted waves signals from the divergence. Finally, we show that when applying49

the neural network to realistic simulations, pretraining a model with simpler simulation50

data improves the performance and convergence, indicating a possible path forward for51

estimating real flow statistics with limited observations.52

1 Introduction53

Since the mid-1990s oceanography has been revolutionized by the use of satellite54

nadir altimetry to provide global observations of sea surface height (SSH) (Munk, 2002).55

Products such as AVISO (Ducet et al., 2000) interpolate this one-dimensional track data56

to gridded form, with an effective lateral spatial resolution of order 100 km and a tem-57

poral resolution of a few weeks. At these scales, non-equatorial motions are accurately58

described by geostrophic balance, allowing for regular global estimates of upper ocean59

currents, from the basin scale down to larger mesoscale eddies and meanders, without60

the need for an assimilating model. The recently-launched Surface Water and Ocean To-61

pography (SWOT) satellite is expected to significantly improve the effective spatial res-62

olution to approximately 15 km (Fu et al., 2012; Chelton et al., 2019) through the use63

of radar interferometry to provide two-dimensional swaths of SSH measurements. The64

smaller scales that will be observed will likely include at least the larger end of the sub-65

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

mesoscale regime, where geostrophy is not a good approximation, obviating its use as66

a diagnostic relationship for estimating currents at the new scales to be resolved by SWOT.67

The nongeostrophic nature of these “near-submesoscale” flows is due to the impact68

on SSH at these scales of both ageostrophic features, like fronts, and inertia-gravity waves69

(IGWs), including internal tides. The waves present an exceptionally vexing challenge,70

as SWOT’s 21-day repeat cycle during its main operational phase will prevent the use71

of averaging over inertial times to remove IGW signals. Yet, despite that IGWs comprise72

a significant fraction of vertical kinetic energy, they do not contribute much to tracer trans-73

port (e.g. Balwada et al., 2018; Uchida et al., 2019). By contrast, the remaining non-74

geostrophic near-submesoscale motions contribute significantly to the vertical transport75

of tracers between the ocean’s surface and interior, as seen in both observations (Omand76

et al., 2015; Siegelman et al., 2020; Balwada et al., 2016) and modeling studies (Balwada77

et al., 2021; Bachman & Klocker, 2020).78

Estimating this near-submesoscale transport-active velocity field is a major chal-79

lenge for the interpretation and use of SWOT data. To do so one must solve two diffi-80

cult problems. First, one must find a method to filter IGW signals from the data, and81

since the repeat cycle period is an order of magnitude longer than the inertial time of82

roughly one day, the method must work on individual snapshots of SSH. This unfortu-83

nately obviates the use of methods such as Eulerian spectral filtering (Torres et al., 2018,84

2022) and Lagrangian filtering (Jones et al., 2022), since each requires high temporal res-85

olution. Second, one needs a model through which to infer the nongeostrophic flow from86

the filtered SSH signal. While a number of papers have demonstrated success in recov-87

ering ageostrophic flows from submesoscale-permitting numerical simulations using the88

eSQG analytical model (e.g. J. Wang et al., 2013; Qiu et al., 2016, 2020, and others),89

the method still requires data to first be low-pass filtered to remove IGW signals.90

The present paper seeks to sidestep these issues, forgoing a full reconstruction of91

the velocity field in favor of an approach that reconstructs dynamically-relevant flow statis-92

tics. Balwada et al. (2021) found that the joint probability densities (JPDFs) of surface93

vorticity, strain magnitude (referred to henceforth simply as ‘strain’), and divergence are94

highly informative; these are given by95

ζ = vx − uy, σ =
√

(ux − vy)2 + (vx + uy)2, and δ = ux + vy, (1)96

where u and v are the zonal and meridional components of the surface velocity. As also97

noted by Shcherbina et al. (2013), the shapes and properties of these JPDFs are a sta-98

tistical way to characterize the presence, magnitude and spatial scale of front-like flow99

structures, which are associated with sub-surface vertical transport. JPDFs can easily100

be calculated from individual snapshots of the surface velocity field to infer the magni-101

tude and lateral scales of convergent frontal flows. We show here that IGWs have a dis-102

tinct signature on these JPDFs, and that it may be possible to remove the wave signal,103

even without temporal data.104

We wish to estimate the JPDFs from the sea surface height directly, and we choose105

a machine learning model for this task. By training the machine learning model on out-106

put from two different numerical simulations, we show that a neural network can be used107

to learn the surface vorticity, strain and divergence statistics directly from raw SSH. More-108

over, due to a surprising kinematical fact about IGWs discussed in section 5, the method109

is especially useful for reconstructing the wave-filtered divergence field.110

Specifically, we train a convolution neural network (CNN) to estimate the surface111

kinematics directly from simulated SSH data provided by two submesoscale-permitting112

general circulation models: the global LLC4320 simulation (Rocha et al., 2016) and a113

Southern-Ocean-like channel model (Balwada et al., 2018). The former, forced by 6-hourly114

winds and 16 tide modes, has a well-developed realistic wave field, providing a difficult115

but important challenge for the method. In addition, for some questions, we also con-116
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sider a synthetic wave model that approximates the SSH due to a linear superposition117

of intertia gravity waves.118

The paper is organized as follows. In section 2 we discuss the channel model and119

LLC4320 simulations, and the fields from each used as datasets in this study. Section120

3 introduces the neural network architecture used for the reconstruction problem. Sec-121

tion 4 introduces the use and significance of joint distributions of surface vorticity, strain122

and divergence, as a tool for revealing flow structure and tracer transport, and demon-123

strate their reconstruction from the neural network model. In section 5 we show that when124

internal waves are present in the surface fields, the neural network is unable to recon-125

struct the wave-divergence field. This surprising fact is discussed in detail, and specu-126

lative explanations are provided. Section 6 investigates how well neural networks trained127

on one model can be used to predict the surface kinematic fields for another. Finally,128

caveats, additional points, and implications, along with a concluding summary, are given129

in section 7.130

2 Simulation data and their statistics131

To train our machine learning models, we use output from two submesoscale-permitting132

general circulation model simulations: the idealized channel model used in Balwada et133

al. (2018), and a subset of the LLC4320 simulation (Rocha et al., 2016) located near the134

Agulhas in the Southern Ocean. The former has minimal wave activity, while the lat-135

ter has a well-developed wave field, driven by high-frequency winds and tidal forcing. For136

a part of the investigation, we also use output from a synthetic wave model.137

The key metrics through which we analyze the models and their reconstructed statis-138

tics are the joint probability density functions (JPDF) of surface vorticity, strain and di-139

vergence. The JPDFs of these kinematical quantities allow one to identify flow signa-140

tures of submesoscale vortices and fronts, as well as their lateral scales (Balwada et al.,141

2021). In addition, we show below that internal waves have a distinct signature, allow-142

ing them to be identified clearly in the JPDFs, even from single snapshots of the flow.143

2.1 Submesoscale-permitting channel simulation data144

The channel model output is taken from a submesoscale-permitting MITgcm sim-145

ulation, intended as an idealized analogue of the Southern Ocean, with a horizontal grid-146

spacing of 1 km and an internal deformation radius of around 40 km, set in a 2000 km147

× 2000 km domain with a topographic ridge in the center (see Balwada et al., 2018, for148

details). It is forced by time-independent surface wind and surface temperature relax-149

ation; consequently this simulation produces a strong eddy field, and a relatively weak150

field of inertia gravity waves. Figure 1 shows snapshots of the surface SSH and vortic-151

ity fields, and denotes the parts of the domain used for training and testing the CNN.152

The 1 km resolution simulation was the highest-resolution case in a set that included153

5 km and 20 km resolution simulations as well. As the lateral resolution increased, the154

vorticity-strain JPDFs of the surface flow share the same qualitative shape, but the ranges155

of vorticity and strain increase, and the JPDF becomes increasingly cyclonically skewed,156

with a clustering of points just above the line with slope 1 (Figure 2). The latter is in-157

dicative of convergent fronts, which have cyclonic vorticity, with |ζ| ≈ σ — this is es-158

pecially apparent in the 1 km simulation (lower-left JPDF in Figure 2). The ±1 slope159

lines moreover serve to distinguish between strain-dominated and cyclone-dominated points.160

The probability contours also serve as a proxy for spatial scale — lower probability points161

towards the high vorticity and strain parts of the JPDF tend to be smaller in scale, while162

points near the origin tend to represent the largest features in the flow.163
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Though not crucial to the present story, we note that Balwada et al. (2021) also164

demonstrated that the kinematic JPDFs of the surface flow reveal information about ver-165

tical transport. When conditioned on surface vorticity and strain, it was found that large166

negative values of the sub-surface divergence (i.e. convergent regions) are strongly cor-167

related with the frontal regions of the vorticity-strain JPDF noted above. Moreover, ver-168

tical transport by submesoscale fronts was found to increase by an order of magnitude169

as resolution was increased, and to extend below the mixed layer (see section 2.c of Balwada170

et al. (2021) for details). Because of this relationship, surface vorticity-strain JPDFs in-171

ferred from SSH may provide a means to estimate submesoscale transport between the172

ocean surface and interior directly from SWOT.173

To investigate the non-geostrophic nature of the submesoscale features in the high-174

resolution flows, we compare JPDFs of vorticity and strain computed from geostrophic175

estimates of the velocities for the same two simulations (right-most panels in bottom two176

rows of Figure 2). In the 5 km resolution simulation, where submesoscales are barely per-177

mitted, the geostrophic result looks qualitatively similar to the true JPDF, but under-178

estimates the extreme values and captures less of the cyclone-anticyclone asymmetry.179

For the submesoscale-rich 1 km simulation, the geostrophic estimate not only fails to cap-180

ture the asymmetry, it also overestimates anticyclonic strain and vorticity, and differs181

more qualitatively from the true JPDF, appearing somewhat diffused. This is a reflec-182

tion of the highly inaccurate finer-scale structure that emerges in from taking derivatives183

of the raw SSH field used in the geostrophic estimate. It also suggests that dynamics have184

become much more complicated at 1 km resolution, with non-geostrophic features like185

strong, fast fronts, submesoscale cyclones, and some wave activity more strongly affect-186

ing the SSH.187
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Figure 1. Snapshots of SSH (left) and normalized vorticity ζ/f (right) from a snapshot of the

channel simulation of Balwada et al. (2018). The training and testing regions are marked.

2.2 The Agulhas region of the LLC4320 simulation188

The second set of model output is taken from the high-resolution global LLC4320189

simulation. This is a latitude–longitude–polar cap MITgcm (Marshall et al., 1997) sim-190

ulation forced by surface fluxes from the European Centre for Medium-range Weather191

Forecasting (ECMWF) atmospheric operational model analysis for years 2011-2012. The192

simulation has a nominal lateral grid resolution of 1/48◦, and is forced by 6-hourly winds193

and the 16 most significant tidal components (Rocha et al., 2016). As a result, in ad-194

dition to resolving mesoscale and near-submesoscale currents, the model also exhibits195

strong internal tides and IGW signals that are not present in the channel simulation.196
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Figure 2. Top row: Normalized vorticity, ζ/f , from a 500 km square subregion of the 5 km

and 1 km simulations analyzed in Balwada et al. (2021) and Balwada et al. (2018), computed

directly from their velocity fields, as well as from geostrophic estimates of velocity (see panel ti-

tles for identification). Middle row: vorticity-strain JPDFs from the 5 km simulations, computed

from velocity field (left) and from geostrophic estimate (right). Bottom row: same as the middle

row, but for the 1 km simulation.

We focus on three local regions in the Agulhas region, with latitudes between 35◦197

and 47◦ south and longitudes 4−21◦ west, 12−28◦ east, 28−45◦ east, respectively, as198

marked in Figure 3. Out of the total simulation time spanning from September 2011 to199

October 2012, we focus on data from March 2012, when the mixed layers in the three200

regions are at their deepest, and September 2012, when the mixed layers are shallow-201

est; these two months are thus termed ‘summer’ and ‘winter’, respectively.202

Many of the same qualitative patterns seen in the surface vorticity-strain JPDFs203

for the channel simulation are found in observational data (Shcherbina et al., 2013; Berta204

et al., 2020) as well as in the winter-time data for the three target regions, and summer-205

time data for region 2, of the LLC4320 simulation (top row and middle column of Fig-206

ure 4; see also JPDFs computed by Rocha et al. (2016)). However, new features not seen207

in the channel simulation arise in regions 1 and 3 of the summer LLC4320 data (bottom208

two rows of Figure 4). These new features, characterized by clusters of points with high209

strain, high divergence and low vorticity, are consistent, we argue below, with the stronger210

surface IGW activity expected in the presence of shallow summertime mixed layers.211

2.3 Wave signatures in surface kinematic JPDFs212

These JPDF signatures for IGWs can be most easily understood by computing kine-213

matic fields for a single plane inertia-gravity wave in constant stratification. Writing the214

pressure field for wavenumber (k, l,m) as p = R p̂ exp [i(kx+ ly +mz − ωt)] and us-215
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Figure 3. A snapshot of normalized summer vorticity ζ/f in the target regions of the

LLC4320 simulation, with training and testing regions as marked.
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row) and summer vorticity-divergence JPDFs (bottom row) for the three local regions of the

LLC4320 simulation marked in Figure 3.

ing the hydrostatic IGW dispersion relationship ω2 = f2 +N2(k2 + l2)/m2, the hori-216

zontal velocity amplitudes are217

û =
kω + ilf

ω2 − f2
p̂ and v̂ =

lω − ikf

ω2 − f2
p̂,218

where N is the buoyancy frequency, and f the Coriolis parameter. From the wave ve-219

locity, and taking p̂ to be real, the vorticity and divergence are220

ζ =
fm2

N2
p̂ cos (kx+ ly +mz − ωt) and δ = −ωm2

N2
p̂ sin (kx+ ly +mz − ωt) (2)221

and the strain turns out to be just222

σ =
√
ζ2 + δ2. (3)223
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The ratio of vorticity to divergence thus scales as O(|ζ/δ|) ∼ |f/ω|. Because ω grows224

large relative to f as the horizontal wavenumber increases, at smaller scales divergence225

increasingly dominates vorticity, and then strain is approximated by divergence instead226

of vorticity.227

We test this simple argument by computing the JPDFs for a synthetic internal wave228

model (Early et al., 2021). This Matlab-based package generates linear internal waves229

following the Garrett-Munk spectrum (Munk, 1981) by numerically solving the linearized230

Boussinesq equations for a user-defined domain, with a specified background stratifica-231

tion and resolution. Here we use the mean stratification and resolution from the chan-232

nel simulation to compute its kinematic surface fields, and vorticity-strain and divergence-233

vorticity JPDFs; snapshots of SSH, vorticity, and the JPDFs are shown in Figure 5. The234

resulting JPDFs behave as predicted, and moreover bear resemblance the summertime235

JPDFs for region 1 of the summer LLC4320 data (Figure 4). The JPDFs for region 3236

of the summer LLC4320 data seem to indicate a superposition of submesoscale and IGW237

structures, especially so in the vorticity-divergence JPDF (bottom row of Figure 4), where238

the wave-dominated and front-dominated signatures are almost orthogonal to each other.239

(a) (b)

(c)

(d)

Figure 5. Snapshots of (a) SSH and (b) vorticity normalized by f (strain and divergence

show similar structure, and so are not shown) from the synthetic internal wave model. Vorticity-

strain (c) and vorticity-divergence (d) JPDFs from the same data.

In summary, statistics of surface vorticity, divergence and strain are robust indi-240

cators of surface flow features, and geostrophy does a poor job at reconstructing these241

from SSH fields at higher resolution (or smaller spatial scales). In the next section, we242
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introduce the machine learning architecture used, and in the following sections show that243

this framework can be used to more accurately reconstruct these surface kinematic vari-244

ables.245

3 Deep Learning Model246

Neural networks, among other machine learning models, have gained a lot of at-247

tention in the atmosphere-ocean science community over the past few years and have shown248

better performance relative to traditional approaches for many tasks (Bolton & Zanna,249

2019; Manucharyan et al., 2021; Sinha & Abernathey, 2021; George et al., 2021). Briefly250

speaking, a neural network consists of several hidden layers that transform its input into251

the final output. Each hidden layer is a combination of multiple linear matrix multipli-252

cations or additions and a simple nonlinear element-wise function such as a sigmoid. The253

elements of these matrices are tuned during the training of the model using gradient de-254

scent. The number of operations in each layer (usually called the ‘width’ of a layer) and255

the number of layers in the whole network (usually called the ‘depth’ of a network) de-256

termine the capability or flexibility of a neural network.257

The theoretical basis for neural networks is the Universal Approximation Theorem258

(Hornik et al., 1989): given an arbitrarily wide or deep network, there exists a set of ma-259

trices, such that any continuous function can be approximated by the neural network260

as closely as desired. However, the Universal Approximation Theorem doesn’t provide261

a construction recipe for the target neural network. In practice, due to limitations on262

computing resources and the amount of data, the architecture of the neural network is263

no less critical than the width or depth for efficiently building a useful model.264

Here we use a Convolution Neural Network (CNN) (LeCun & Bengio, 1995), which265

is known for its ability to capture spatial patterns in 2D physical data. When passing266

the data within a layer, the CNN uses a set of ‘convolutional filters’ (a 3×3 matrix for267

example) to do convolution with each local patch of the input before feeding the result268

to a point-wise nonlinear function to generate the output. Abstractly, this can be rep-269

resented270

Y
(k)
j = γ(k)

βj +

c(k−1)∑
i=1

Fij ∗ Y (k−1)
i

 (4)271

where Y
(k)
j is the jth channel at layer k, and γ(k) is a nonlinear function that could be272

composite of activations, normalizations and poolings. The parameter βj is a scalar bias273

term, c(k−1) is the number of channels in layer (k − 1), and Fij is a filter matrix that274

transform Y
(k−1)
i to another feature space through the 2D cross-correlation ‘∗’. During275

training, these filter matrices from each layer are believed to converge to representations276

in abstract feature space that are crucial for generating predictions.277

In this work, we use a specific type of CNN called a ‘Unet’ (Ronneberger et al., 2015),278

the structure of which is shown schematically in Figure 6. The Unet has two parts: the279

‘encoder’ condenses the variable resolution and expands the number of feature maps to280

extract information from the input, while the ‘decoder’ does the opposite, using the in-281

formation extracted to construct the output. Unet tries to overcome the loss of infor-282

mation in previous CNN models by delivering input in the encoding layers not only through283

the feature mapping pathway but also directly to the decoding layers. Each layer has284

two sets of convolution filters of dimension 3×3 as well as batch normalization and Scaled285

Exponential Linear Units as activation functions.286

Throughout this work, we train Unets on simulated SSH data, and test their abil-287

ity to reconstruct surface vorticity, strain and divergence, given only SSH data under dif-288

ferent scenarios. Though a Unet is flexible in the dimensions of its input, we chop our289

training data into non-overlapping sections of 64 × 64 grid points each. This is a trade-290
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Figure 6. The structure of the Unet CNN used in this work. Blue boxes represent convolution

layers, and yellow boxes represent input, intermediate and final outputs. The sets of three num-

bers refer to channels, height, and width. Solid lines indicate delivery of data to the next layer.

Dashed lines indicate delivery to the layer not directly following.

off in the sense that while we use a smaller size of the input, we have a larger collection291

of samples. But at the same time, the model needs to be exposed to mesoscale features292

during training. We found a 64 × 64 box suitable for these purposes. On the other hand,293

when we test the performance of our model we take a slightly different approach. We294

still chop our target region into 64 × 64 local regions as input, but now these local re-295

gions overlap with each other, with a stride of 5. The reason for doing this is that when296

building the output using non-overlapping data, the points closer to the boundary of the297

input would get less information available for its reconstruction compared to points at298

the center, and this largely impairs the capability of the model. Samples of the train-299

ing set are randomly shuffled, preventing the neural net from learning temporal infor-300

mation.301

Note that we omit the difficulty of transforming swath data to grid data, assum-302

ing SSH is given naturally on the grid without loss of information. In theory, neural net-303

works applied here can be extended to use swath data as input (Manucharyan et al., 2021;304

Fablet & Chapron, 2022).305

For loss functions, we use mean squared error for most of the work and mean ab-306

solute error for models used in Figure A1. In the past few years, innovative loss func-307

tions such as adversarial loss (Ledig et al., 2017; Zhang et al., 2019) and perceptual loss308

(Johnson et al., 2016) have trended in the computer vision community and helped build309

state of art image processing models. However, the main focus of those studies is to im-310

prove model performance against the perceptual feeling of humans, and the mathemat-311

ical foundation of these new techniques is not fully explored. While we believe that the312

application of a task-specific loss function is important to the application of a machine313

learning model, the discussion of that is out of the scope of this work and awaits future314

investigation.315

Besides the configuration above, we use Adam (Kingma & Ba, 2014) as the opti-316

mizer with a learning rate 0.0001, a batch size of 32 and 100 epochs, unless specified oth-317

erwise. Additional details about can be found in the sample code provided in our Github318

repository.319
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4 Learning surface kinematics with a neural network model320

4.1 Channel simulation321

We train Unet CNNs with the output of the channel model SSH and velocity fields322

in the top grid cell (with z = −0.5 m) to construct surface vorticity, strain and diver-323

gence separately. We perform the training and testing on regions of the 1 km simulation324

(marked in Figure 1). Temporally, we use 80 days of 6-hourly snapshot data for train-325

ing, and the following 10 days are used for testing. After chopping, there are about 40,000326

samples of 64×64 tiles for training. In Figure 7 we show the true vorticity and strain327

and the reconstructed result in the downstream testing region, and also compare to the328

reconstruction using the geostrophic balance. The Unet has successfully captured most329

features on both large and small scales. In comparison, the vorticity and strain computed330

from geostrophic balance deviate much more from the truth. Visually this deviation is331

most severe in submesoscale vortices and filaments, though also visible in larger-scale fea-332

tures. This can be explained by the fact that small-scale features usually have larger Ro333

and under this scenario the geostrophic relation no longer dominates in the asymptotic334

expansion in orders of Ro, even given that this is a simulation with relatively weak waves.335

The discrepancy is even more obvious in the point-wise performance of the recon-
struction, measured by its prediction skill

skill = 1−

[
(truth− prediction)2

truth2

] 1
2

and correlation between the true target and the reconstructed result (Table 1). The Unet336

reconstruction yields high correlation as well as decent prediction skill, surpassing that337

of the geostrophic estimation.338

Table 1. Correlations and prediction skills of machine learning and geostrophic results against

the ‘truth’ from the channel simulation.

Variable ζUnet σUnet δUnet ζgeo σgeo

Correlation 0.93 0.91 0.80 0.73 0.75

Skill 0.65 0.71 0.41 0.2 0.31

Greater insight into the performance of the reconstruction methods can be gauged339

by considering the true, reconstructed, and geostrophic vorticity-strain JPDFs for the340

channel model (Figure 8, top row). Overall it can be seen that the neural network re-341

sult captures the basic structure of the JPDF, especially the small scales asymmetric frontal342

part. By contrast, the geostrophic result shows excessive symmetry between cyclonic and343

anticyclonic features, and smaller extreme values, as also seen in the previous section.344

The neural network is also able to capture properties of the distribution of surface345

divergence conditioned on the vorticity and strain (Figure 8, bottom row). Here we can346

see that the Unet result reproduces the separation between downwelling and upwelling347

regions of the JPDF, as well as the magnitude of divergence. This holds promise for es-348

timating vertical transport from snapshots of SWOT-measured SSH.349

In conclusion, we see that while the machine learning solution captures the rela-350

tionship between the SSH and surface kinematic variables, while the geostrophic rela-351

tion provides an unsatisfactory reconstruction for the high-resolution simulation.352
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Figure 7. The SSH field in the test region of the channel simulation (left); true normalized

vorticity, predicted vorticity and vorticity from geostrophic relation (top right three panels); true

normalized strain, predicted strain and strain from geostrophic relation (bottom right three pan-

els).

4.2 LLC4320 simulation353

After finding success with the channel simulation, here we test the ability of a Unet354

neural network to reconstruct surface kinematic quantities for the more complex LLC4320355

simulation. As denoted in Figure 3, we train the Unet with data from Regions 1 and 2356

and test preditions in Region 3. Specifically, we use 30 days of 4-hourly snapshot data357

in either winter or summer for Regions 1 and 2 — giving a total of about 50,000 sam-358

ples for training — and test predictions for Region 3 in the same seasons. The vortic-359

ity field in Region 3 shows a combination of wavy and turbulent sub-regions that are roughly360

located in the southeast and northwest parts of the spatial domain (Figure 9). While the361

frontal features, at both meso- and submesoscale in either season, are captured well in362

the northwest part of the region, the properties in the wavy sub-region in the southeast363

are farther from the truth.364

From Table 2, we see that, compared to the channel simulation, the point-wise cor-365

relation and skill metrics have significantly dropped for the Unet reconstructions of the366

kinematic fields, especially for summer, when IGWs are stronger. We also experimented367

with using a neural network model trained with one season of the LLC4320 simulation368

to reconstruct vorticity in another season, and found that the result is indistinguishable369

from reconstruction when using a model that is trained with the same season as the test370

input (not shown).371
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(a)

(b)

Figure 8. Vorticity-strain JPDF for the channel model truth (upper left), Unet reconstruction

(upper middle), and geostrophic estimates (upper right); mean divergence conditioned on vortic-

ity and strain for the true channel simulation data (lower left) and for the Unet reconstruction

(lower right).

Table 2. Correlations and prediction skills for the kinematic fields reconstructed using the

Unet model against those computed from the true LLC4320 simulation.

Variable ζwinter σwinter δwinter ζsummer σsummer δsummer

Correlation 0.9 0.81 0.5 0.84 0.63 0.5

Skill 0.57 0.67 0.15 0.46 0.55 0.15

In Figure 10 we show the vorticity-strain JPDF for Region 3 in winter and sum-372

mer. Because of the extra complexity introduced by the strengthening of inertia grav-373

ity waves, in neither season could the machine learning model produce a result as good374

as that for the channel simulation. For winter, though suffering more from missing ex-375

treme values, the shape of the JPDF is still consistent with the truth.376

The JPDF for summer is more severely distorted. The predicted joint distribution377

doesn’t fall into either the wave-dominated or turbulence-dominated regime we have seen378

above. The marginal distribution of vorticity is roughly reproduced, but the distribu-379

tion of strain becomes more concentrated at small values. The small-scale large vortic-380

ity values (likely from the southeast part of the Region 3 domain) are replaced by smoothed381

small values, most obvious in the summer (the same is true for strain, not shown). This382

suggests that the Unet isn’t able to properly reconstruct IGW vorticity and strain. It383

remains a question if this is because the model wasn’t able to distinguish the wave sig-384

nal from the SSH, or because it couldn’t find a way to transform the wave signal it sees385

in SSH to vorticity and strain.386

The Unet’s reconstruction of divergence behaves particular poorly when measured387

in terms of correlation and skill. This is because, relative to strain and vorticity, diver-388

gence is dominated by wave signals. Despite this dramatic drop in both metrics, and a389

prediction skill as low as 0.15, Figure 11 suggests that the models give a prediction that390

preserves fronts and filaments in different scales, while much of IGW signal is reduced.391

The particularly poor ability of the neural net to capture IGW signals in divergence —392

and the potential advantages of this weakness — are discussed in the next section.393
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Figure 9. LLC4320 Region 3 true winter vorticity (a) and reconstructed winter vorticity

(b);Region 3 true summer vorticity (c) and reconstructed summer vorticity (d).

5 Neural networks may automatically filter IGW divergence394

Here we show that the divergence associated with IGW cannot be estimated us-395

ing only SSH. This is because the same SSH anomaly can produce equal and opposite396

signed IGW surface divergence depending on the sign of the frequency, thus the relation-397

ship between the surface divergence and SSH is not one-to-one and partly random.398

5.1 Expected values of wave and balanced divergence399

If we assume that the flow can be separated as a linear combination of a balanced400

part (denoted by subscript ‘bal’) and a wave part (denoted by subscript ‘wave’), then401

using a mean squared error as loss function results in a neural network that predicts,402

fθ(ηbal + ηwave) = E[δbal + δwave|ηbal + ηwave]403

= E[δbal|ηbal + ηwave] + E[δwave|ηbal + ηwave], (5)404
405

where fθ is the neural network function and E denotes the expectation of a distribution.406

Considering the plane-wave polarization relations discussed in section 2.3, we see407

that the surface pressure p (and thus ηwave through hydrostatic balance ηwave = pwave|z=0/ρ0g)408

and the surface divergence, are related through a ratio ωm2/N2. The frequency ω can409

take both positive and negative values, which impacts the direction of wave propagation.410

However, if no temporal information is available or incorporated into the loss function,411
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the conditional distribution of surface wave divergence is symmetric about zero and412

E[δwave|ηwave] = 0. (6)413

This suggests that given a divergence field with both wave and balanced parts, a neu-414

ral network will automatically filter out the wave divergence.415

When balanced flow ubal is taken into consideration, Doppler shifting can happen.416

Assuming ubal is relatively slowly varying in both space and time, then the intrinsic fre-417

quency ω is replaced by Ω = ω+ubal·k in the phase of wave divergence (2). However,418

the change in frequency due to Doppler shift doesn’t affect the intrinsic frequency ω in419

the factor ωm2

N2 . Thus following the same argument, if one is able to separate the sea sur-420

face height generated by waves from that due to the balanced flow, we find421

E[δwave|ηwave, ηbal] = 0. (7)422

[Here the comma between ηwave and ηbal means that we observe each of them at the same423

time but separately.]424

Through the law of total expectation, when observing the superposition of sea sur-425

face height from both IGW and balanced parts instead of these two separately, we still426

have427

E[δwave|ηwave + ηbal] = E[E[δwave|ηwave, ηbal]|ηbal + ηwave]]428

= E[0|ηbal + ηwave] = 0, (8)429
430

and thus431

fθ(ηbal + ηwave) = E[δbal + δwave|ηbal + ηwave]432

= E[δbal|ηbal + ηwave]. (9)433
434

The model converges to only output the divergence from the balanced part.435
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This argument is inspired by Lehtinen et al. (2018), where the authors creatively436

use only noisy images as both inputs and targets to train an image denoiser. The idea437

backing this method is that as long as the ‘corrupted’ data has the same conditional ex-438

pectation as the ‘clean’ data, the model will converge to the ideal set of configurations439

even just fed with corrupted data, at the cost of needing more training data and more440

iterations of training before convergence.441
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Figure 12. (a) Mean of absolute values of wave divergence prediction using different amount

of training iterations and training samples for the synthetic wave model. (b) Sample of target

wave divergence. (c) Unet predicted wave divergence after 20 iterations using 5,000 training sam-

ples. (d) Same as (c) except using 15,000 training samples.

5.2 Testing divergence reconstruction with synthetic wave data442

To empirically justify (6), we trained a neural network using the synthetic wave443

data to generate around 18,000 training samples, and then predict wave divergence from444

wave SSH (Figure 12). We can see, as expected, that as more training data and more445

training iterations are provided, the model converges towards a field of zeros (Figure 12a).446

We also see from the Unet predictions (Figure 12c,d) that no clear pattern is learned.447

[Note that filtering lower wavelength waves takes longer as the number of their relative448

samples per snapshot is lower].449

Unfortunately, this is not a property broadly shared by other kinematic quantities450

like vorticity and strain. For example, based on the polarization relationships (see sec-451

tion 2.3), the wave pressure and the wave vorticity are related by a factor of −fm2/N2
452

and a phase of π/2. Thus for a single-plane wave, the wave SSH can uniquely determine453

the wave vorticity. When multiple waves exist, the expectation of wave vorticity condi-454

tioned on wave sea surface height depends on the distribution of vertical wavenumber455

m from the training data and thus the GM spectra (Munk, 1981; Levine, 2002).456

When trained with more data and more iterations, the IGW vorticity converges457

to a limit that is neither zero nor the true target value (Figure 13). When waves are weak,458

this will add a small distortion to the reconstruction of the balanced vorticity. For a strong459

wave scenario, we may need to develop more advanced loss functions to either better re-460

construct the wave vorticity or remove it more precisely.461
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Figure 13. Same as Figure 12 but for synthetic wave model vorticity.

5.3 Testing divergence reconstruction using Lagrangian filtered veloc-462

ities463

Filtering inertia-gravity waves from the simulated flow is a key aim of this paper.464

Implicit in that goal is the idea of a well-defined balanced flow that can be cleaved away465

from the wave part. In fact, this is a notoriously difficult and unsolved problem, though466

progress has been made on practical methods to do so. Here we use the Lagrangian-filtered467

flow computed in Jones et al. (2022) as an approximation of the balanced flow, and train468

the CNN to extract it from the raw LLC data. The Lagrangian filtered data available469

to us includes daily snapshots within the region bounded by longitudes 15◦ west − 29◦470

east and latitudes 26−52◦ south, spanning from September to October 2011, which pro-471

vides about 35,000 samples for training in total. Unfortunately this excludes the sum-472

mer month that exhibits the strongest wave activity.473

We train two neural network models using raw LLC4320 SSH fields to predict ei-474

ther the raw divergence or the Lagrangian filtered divergence. The divergence in the for-475

mer should converge to E[δbal + δwave|ηbal + ηwave] and the latter should converge to476

E[δbal|ηbal + ηwave], but the two should be similar based on the discussion above.477

Figure 14 suggests that at least visually the predictions from the two models are478

quite similar. It should be remarked that the Lagrangian filtering does a good job at re-479

moving IGWs, as can be seen by comparing true Lagrangian filtered divergence to true480

raw divergence, but still preserves many small-scale features. In contrast, we see that481

the predictions from both the neural networks result in divergence fields that have di-482

minished smaller-scale structure than even the Lagrangian filtered divergence field. This483

aspect will be investigated more in future studies, but might indicate that smaller scale484

features have less of a unique connection to the SSH field.485

It is worth mentioning that this conditional expectation that the model converges486

to doesn’t really rely on the strength of the wave part, but rather on the interaction be-487

tween the wave and balanced parts. This could be seen in the convergence of the model488

trained on the raw data towards the model trained on Lagrangian data (Figure 14). How-489

ever, the amount of training data needed for the model to converge is dependent on the490

strength of wave-like motions in the chosen region. As the signal-to-noise ratio gets smaller,491

we require more data to recover the signal.492
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To conclude, if we only want to extract information about the balanced flow from493

a SSH input that contains both balanced and wave signatures, using a neural network494

and reconstructing the divergence may be a reliable option. This is because the neural495

network using conventional loss functions will converge towards giving wave-free output496

due to the isotropic-in-time behavior of the wave divergence.497
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Figure 14. (a) True raw divergence from the region of the LLC4320 simulation analyzed by

Jones et al. (2022), and (b) the Lagrangian filtered divergence from the same region. (c) Unet

predicted divergence trained on true divergence, and (d) Unet predicted divergence trained on

the Lagrangian filtered divergence.

6 Learning from limited data: Transfer Learning498

While training with simulation data, we can in theory continuously boost the per-499

formance by adding more complexity to the machine learning model and supplement-500

ing extra simulation data during training, if computing resources are not a limitation.501

However when working with real world observations, reliable observational data for train-502

ing is always scarce and likely never enough to train a model from scratch. One paradigm503

to overcome this challenge is to train a model with some closely linked dataset for which504

large-amount of data is available, and then fine-tune the model with task-specific data.505

This procedure is referred to as “transfer learning,” and the expectation is that the ‘knowl-506

edge’ learned previously could be transferred and thus compensate for the missing task-507

specific data. The intuition behind this is that universal representations could be learned508

even when a model is trained with non-task-related data. The first few layers of the model509

often learn to recognize lines and shapes in the input regardless of the task, and these510

features can be reused when we try to apply the model to more specific datasets. Though511

the theoretical understanding of transfer learning is still a topic of ongoing research, the512

adoption of this methodology has led to prominent results in practice (Y. Wang et al.,513

2020).514

With SWOT-derived SSH data, we won’t have simultaneous high-resolution in-situ515

observations of the corresponding velocity field, and thus no “truth” with which to train516

a neural network model. In analogy to this problem, in this section we test whether trans-517

fer learning from the channel model could help a neural network reconstruct the surface518

kinematic variables from SWOT-like SSH data from the LLC4320 simulation.519

Specifically, here we pretrain a Unet with channel model simulation data using 40,000520

samples. During the training stage using the LLC4320 simulation data (which, again,521

consists of 30 days of 4-hourly snapshot data from Regions 1 and 2, for either summer522

or winter), all the weights from the pretrained model are allowed to be tuned. For com-523
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parison, we also train a second model with randomly initialized weights using the LLC4320524

simulation dataset, with the same randomly chosen subsets from the LLC4320 winter525

dataset. We denote these neural network models as either ‘CS’ for channel simulation526

pretrained, or ‘scratch’ for the model with randomly initialized weights, appended by the527

number of LLC4320 winter samples used to tune or train the model. For example, ‘scratch-528

20000’ means the model is initialized from scratch (randomly initialized) and trained with529

20,000 samples from the LLC4320 dataset.530

First, we test the performance of these models when the number of training sam-531

ples is cut to 10,000 or 20,000 from the total 53,000 samples used in earlier sections. Fig-532

ure 15 shows a subregion of LLC4320 Region 3 winter vorticity, along with reconstructed533

vorticity fields from the randomly initialized model (scratch-10000), and from the chan-534

nel simulation pretrained model (CS-10000). Both models were trained for the same num-535

ber of iterations. We can see that though the two show similar structure, the latter per-536

forms better in recovering the details and amplitude of the structures. A more compre-537

hensive comparison of prediction skills from models with different setups is summarized538

in Figure 16 (correlations share the same trend). We can see that when less data is avail-539

able, the model pretrained with channel simulation data can offer both better perfor-540

mance and faster convergence. This suggests that the model can reuse some of the fea-541

tures learned from channel simulation data to help reconstruct LLC simulation surface542

dynamics.543

Note also that while the channel simulation pretrained model consistently performs544

better than the randomly initialized model, the gap is narrowing when more training sam-545

ples are provided. In Figure 16 we show how many extra training samples are needed546

to supply to the randomly initialized model to make its performance match the channel-547

simulation pretrained model. We see that as more training samples are used, the supe-548

riority of the pretrained model (measured in the number of extra samples supplied to549

the scratch model to gain equal performance) fades out, and finally the difference be-550

tween these models is negligible.551

Figure 15. (a) The true normalized vorticity, ζ/f , from a subregion of LLC4320 Region 3 in

winter; (b) Unet-predicted normalized vorticity from the scratch model using 10,000 samples and

60 iterations of training; (c) Same as (b) but with the channel simulation pretrained model.

These results raise the questions: what has been transferred or reused from the pre-552

trained model? When training samples are plentiful, do pretrained weights in the model553

make any difference from the randomly initialized ones? To address these, we use the554

centered kernel alignment (CKA) (Kornblith et al., 2019; Nguyen et al., 2020) to mea-555

sure the similarity between layers from different models. This empirical metric first com-556

putes the principal components of the correlation matrix between the outputs from a lay-557

ers of a model when given a large amount of inputs, and then compare the similarity be-558
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Figure 16. (a) Prediction skill measured for pretrained models and model trained from

scratch, using either 10,000 or 20,000 samples of LLC4320 data. (b) Extra training examples

needed to boost the performance of scratch model to match channel simulation pretrained model

when they are given different number of LLC4320 training samples.

tween principal components from layers of two different models when given the same in-559

puts. The values 1 suggests identical and 0 means orthogonal.560

In the upper panel of Figure 17 we show the CKA between the pretrained mod-561

els with and without tuning using the LLC4320 data. We can see high similarity along562

the diagonal regardless of the amount of LLC4320 data used, indicating the changes that563

happen during tuning are mostly small modifications of the original feature space. In564

the lower panel of Figure 17 we show the CKA between pretrained models and randomly565

initialized models. The high similarity along the diagonal of the first three layers sug-566

gests that similar features are learned by the first few layers, regardless of the starting567

state of the model. But this similarity doesn’t last through the full model, in particu-568

lar the last two layers. This suggests that even though both models extract information569

from the input in similar ways, they are taking different approaches in utilizing it to re-570

construct the output; even though when measured in correlation and prediction skill, their571

results show negligible differences.572

Results from the CKA analysis in Figure 17 have two important implications. First,573

it suggests that feature-reuse does happen and is most significant in the first few layers.574

On the other hand, the pretrained weights set the basis for modification during tuning575

and this could be a restriction when the training data is largely available and the data576

for pretraining is very different from the data for training.577

When applied to real observation data, the pretrained simulation data should fol-578

low similar dynamics and boundary conditions as closely as possible, and it may be worth579

adding extra layers at the end or just randomly initializing the last few layers of the model.580

Another implication is the fact that while giving a similar performance, two neural net-581

works with different initial weights have vastly different intermediate results. This poses582

the difficulty of trying to extract the physical knowledge learned by the machine learn-583

ing model, if there is any. While the physical law governing the data should be unique,584

the approximations derived by machine learning models are not and may be very dif-585

ferent from one trained model to another.586

7 Discussion and Conclusion587

In this study, we explored the possibility of using a neural network to reconstruct588

surface kinematic variables — vorticity, strain and divergence — from snapshots of SSH.589
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Figure 17. (a) CKA between the channel simulation pretrained models with and without

tuned with 10,000 samples of LLC data; (b) same as left but with 50,000 samples of LLC data;

(d) CKA between the channel simulation pretrained model and randomly initialized model, with

10,000 samples of LLC data; (d) same as left but with 50,000 samples.

This work was motivated by the anticipated challenges that will emerge once the data590

from the SWOT satellite becomes available. SWOT will present an unprecedented 2D591

view of SSH at scales smaller than ever seen before, but this will also raise a number of592

questions about how to best utilize and interpret these observations (Chelton et al., 2019).593

These include questions about how to reconstruct surface flows at scales where geostro-594

phy may not be appropriate, and when the SSH perturbations may be strongly influenced595

by the presence of IGWs. We use neural networks because we currently lack dynamics-596

based methods like geostrophy. The neural network model works more like traditional597

analog forecasting methods based on pattern recognition (Balaji, 2021). They unfortu-598

nately come with the cost of being less interpretable.599

Here we used a particular type of convolution neural network called Unet, which600

has previously shown to be very successful at different 2D prediction tasks. However, we601

believe that the success of applying neural networks to our task is not limited to this model.602

Other CNN-based models should have similar capabilities, and there may be other neu-603

ral networks with architectures more suited to this task. Also, we used pointwise mean604

squared error and mean absolute error as loss functions during training, as they are sim-605

ple to understand conceptually and their properties are well-known. In the future, more606

complex and task specific loss functions can be devised (Ebert-Uphoff et al., 2021). Since607

a neural network may never be able to converge to a zero error, due to incomplete knowl-608

edge of the hidden states, we also focus on the overall pattern reconstruction rather than609

only on point-wise errors to evaluate the success and predictions properties of our model.610
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To do this, we used vorticity-strain JPDFs (Balwada et al., 2021), which help us assess611

statistically if the predictions appropriately capture the structures present in the flow.612

For training our models, we used data from three sources, an idealized channel model613

with weak IGWs, a region of a realistic high-resolution global simulation (LLC4320) with614

seasonally varying IGW amplitudes, and a synthetically generated field of IGWs. We615

are interested in how neural network performs in situations with different strengths of616

IGWs, since though both the IGW and balanced part get enhanced with finer resolu-617

tion and expected to be part of the SSH observations gathered by SWOT, their kine-618

matic properties are very different. The IGWs don’t contribute much to the passive tracer619

transport, and may be less relevant for research applications corresponding to transport.620

It is thus important to understand if the neural network can preserve and predict both621

signals, or whether it imposes different distortions to them.622

When the Unet is trained on the channel simulation, in which IGWs are weak, we623

find that the reconstruction of surface kinematics is superior to a naive application of624

geostrophic balance. Not only are point-wise correlation and prediction skills high, but625

both vorticity-strain joint distributions and conditional divergence distributions, are close626

to the truth. A similar result is found for the LLC4320 during the winter, when IGWs627

are relatively weak. However, when training is done on LLC4320 summer, when IGWs628

are strong, the quality of prediction is decreased.629

The quality of these predictions can be understood by considering the loss func-630

tions we use. When optimization is done using the mean squared error or mean abso-631

lute error, the neural network should converge to the conditional expectation or the con-632

ditional median conditioned to the input, respectively. At least for the waves, it can be633

shown that these conditional metrics for the vorticity and strain conditioned on the SSH634

snapshots are not necessarily equal to the true target values, but depend on the wavenum-635

ber distribution embedded in the training data. For the balanced or frontal part of the636

flow, no such simple reasoning can be done, but empirically, given the success of the pre-637

diction when the waves are weak, it seems that the conditional metrics do converge to-638

wards the true surface kinematic variables.639

The situation for prediction of the wave divergence is particularly interesting since640

its conditional expectation and median converge to 0. This implies a neural network pre-641

dicting the conditional expectation of divergence associated with waves will have a nat-642

ural tendency to filter them out. We confirmed this result by not only using an ideal-643

ized synthetic field of IGWs, but also by comparing a model trained on LLC4320 raw644

data against a version where the waves were greatly filtered out before training. It re-645

mains to be examined whether this insight can be leveraged to filter waves from other646

kinematic variables by using specialized loss functions. This is a promising area for fu-647

ture study.648

Overall, in future exploration, we should pay more attention to choosing a more649

task-specific loss function before turning to more complicated neural networks. While650

the latter decides how well the final model will be able to generalize, the former deter-651

mines what the model converges to and is closely related to the underlying physical prop-652

erties of the problem.653

Finally, we also showed that a model pretrained on a simpler simulation can be tuned654

to work for a more complex model with a smaller amount of data, with the hope that655

a similar technique can be used to pretrain a model with realistic simulation data and656

tuned with observational data. This technique is referred to as transfer learning. How-657

ever, more work needs to be done determine the minimal number of observational data658

that will be needed to carry out this procedure, and what realistic models will be most659

suited to perform the pretraining to work with actual SSH observations. It would be ideal660

if the in-situ data collected at the SWOT ”adopt a crossover” sites, which are regions661
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that will be heavily monitored during the first 3 months of the SWOT mission, could662

be used train machine learning models to recover the flow properties from SSH.663

In summary, we show that a neural network can serve as a potential tool to recon-664

struct surface dynamics from snapshot SSH data. This study was a proof of concept, reval-665

ing a few different avenues that should be further investigated before such work can be666

used for operational purposes.667

Appendix A Comparison between mean squared error and mean ab-668

solute error as loss functions669

When considering the vorticity-strain JPDFs, we noticed that the JPDF of the pre-670

dicted results is usually less spread out than the true JPDF (e.g. Figure 8 or Figure 10).671

This happens because at smaller scales, which are usually associated with the outer con-672

tours of the JPDF, the flow deviates more strongly from geostrophy. Thus, it is less likely673

that a one-to-one relationship exists between the SSH and the surface flow; many dif-674

ferent flow structures are possible for the same SSH structure. In this case, the machine675

learning model offers a statistical estimate of the surface kinematic variable conditioned676

on the SSH, and this statistical estimate depends on the loss function we use. In section677

5, we used this property to our advantage, and filtered out the IGW divergence. Here678

we show that changing the the loss function from mean squared error (MSE) to mean679

absolute error (MAE) changes the details of the predicted kinematic variables, and thus680

impacts the JPDF of the predicted variables. In particular, when using the mean abso-681

lute error a clear cut off in ζ/f0 = −1 appears (Figure A1), which is absent when us-682

ing mean squared error.683

We speculate that this sharp cut-off, when using MAE, may be associated with the684

fact that ζ/f0 ≤ −1 is also the criterion for barotropic, centrifugal and inertial insta-685

bilities (Hoskins, 1974; Thomas et al., 2013). The relatively larger scale flow tries to push686

the ζ/f0 ≤ −1, and the instability mechanism tries to restore the value to be ζ/f0 ≥687

−1, potentially resulting in a significant amount of variability centered near this thresh-688

old. Since ζ/f0 ≤ −1 is likely to happen at small scales, it has a less deterministic de-689

pendence on SSH. So, for a similar SSH structure, the flow can form a wide range of ζ/f0690

values, and this distribution is likely a long tail distribution, peaking around -1 and ex-691

tending to smaller negative values (≤ −1) that appear intermittently and are wiped out692

by the instabilities. When we use MSE, the machine learning model converges to the con-693

ditional expectation of vorticitygiven a SSH pattern. For long tail distributions, the ex-694

pectations can be diverse and distinct from the peak value. However, when we use MAE,695

the model converges towards the conditional median instead. In this case, the results be-696

come less variant and cluster around the peak value of -1. This likely leads to the sharper697

cut-off in the vorticity prediction.698

Thus, we conclude that predictions of surface kinematic variables from the model699

trained using the MSE looked more natural than ones from MAE, which is why we use700

MSE is this study. However, even the MSE based estimates are just statistical estimates701

from the training data and can be far from the truth. Since part of the variability is due702

to the missing information in the input to the model trained only using SSG, this cut-703

off disappears when we have more variables such as surface temperature in the model704

input (not shown).705

Appendix B Data and Code Availability Statement706

The Python notebooks and code samples required to train the models and recre-707

ate the figures can be found at https://github.com/qyxiao/CNN-for-SSH-reconstruction.708

The channel simulation and LLC4320 data can be accessed using the Pangeo (https://709

pangeo.io/) data catalog at https://catalog.pangeo.io/browse/master/ocean/channel/710
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Figure A1. Vorticity-strain joint distributions of (left) reconstructed channel simulation vor-

ticity and (right) reconstructed LLC4320 winter vorticity when using mean absolute error as a

loss function to train the Unet. The dashed vertical line corresponds to ζ/f0 = −1, which seems

to emerge as a hard cutoff when using the mean absolute errors as the loss function.

channel ridge resolutions 01km/ and https://catalog.pangeo.io/browse/master/711

ocean/LLC4320/ respectively. The Lagrangian filtered LLC4320 data can be accessed712

from https://doi.org/10.5281/zenodo.6561068. The synthetic IGW is generated with713

Matlab package GLOceanKit (https://github.com/Energy-Pathways-Group/GLOceanKit).714
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