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Abstract  13 

Carbon dioxide (CO2) quantification is critical for assessing city-level carbon emissions and 14 

sustainable urban development. While urban vegetation has the potential to provide 15 

environmental benefits, such as heat and carbon mitigation, the CO2 exchange from biogenic 16 

sectors and its impact from the environmental perturbations are often overlooked. It is also 17 

challenging to simulate the plant functions in the complex urban terrain. This study presents a 18 

processed-based modeling approach to assess the biogenic carbon fluxes from the vegetated 19 

areas over the Chicago Metropolitan Area (CMA) using the Weather Research and Forecast - 20 

Urban Biogenic Carbon exchange (WRF-UBC) model. We investigate the change of CO2 sink 21 

power in CMA under heatwaves and irrigation. The results indicate that the vegetation plays a 22 

significant role in the city’s carbon portfolio and the landscaping management has the potential 23 

to reduce carbon emissions significantly. Furthermore, based on the competing mechanisms in 24 

the biogenic carbon balance identified in this study, we develop a novel Environmental Benefit 25 

Score metrics framework to identify the vulnerability and mitigation measures associated with 26 

nature-based solutions (NbS) within CMA. By using the generalized portable framework and our 27 

science-policy confluence analysis presented in this study, global cities can maximize the 28 

effectiveness of NbS and accelerate carbon neutrality. 29 

 30 

Keywords: urban biogenic CO2 exchange, land use, urban heat, irrigation, mitigation and 31 

adaptation  32 

  33 
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Plain Language Summary 34 

Urban plants modify the built environment and can absorb carbon dioxide. But their behaviors 35 

have not been fully studied in the urban setting, nor have the impacts of the urban environment 36 

on the growth of plants. In this study, we use a numerical model to co-simulate the urban 37 

environment and the behaviors of urban green land to investigate their interactions in the 38 

Chicago Metropolitan Area. The results show that heatwave will decrease the overall carbon 39 

absorption; while proper irrigation can help capture more carbon dioxide from the air. Compared 40 

to the traffic emissions in the Chicago region, the variations of carbon absorption are over 35%, 41 

which is considered significant. Moreover, we investigate the underlying mechanisms that lead 42 

to the outcomes and point out the corresponding measures to reduce the negative impact. This 43 

study will potentially guide the cities to achieve better environmental benefits from urban green 44 

spaces and contribute to carbon reduction.  45 

  46 
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1. Introduction 47 

Globally, cities are now home to more than half of the population (UN-Habitat, 2020). 48 

Cities have experienced rapid expansion and densification, making them hotspots of 49 

anthropogenic heat and emissions, contributing to localized urban heat island (UHI) effects as 50 

well as global-scale climate change (Churkina, 2016; Oke et al., 2017). Dense urban population 51 

pockets with low resources and limited adaptive capacity, in turn, become particularly vulnerable 52 

to climate change impacts (Melillo et al., 2014). Many cities have implemented climate action 53 

plans (CAPs) to build preparedness and resilience and guide future planning and decision-54 

making (Castán Broto and Westman, 2020). Nature-based solutions (NbS), usually referred to as 55 

urban greening, are widely recommended in CAPs as their dual function in UHI mitigation and 56 

carbon reduction (Kabisch et al., 2017), and the environmental-friendly and cost-effective 57 

features (Frantzeskaki et al., 2019). The City of Chicago, for example, envisioned the human 58 

well-being and biodiversity benefits of NbS since its first CAP in 2008. In the 2022 update, 59 

Chicago centers on the role of NbS and continues to expand the installment of green 60 

infrastructures as one of many other specific actions (Chicago, 2022). The regional CAP for the 61 

Chicago Metropolitan Area (CMA), which covers the City of Chicago and its surrounding 62 

developed land, also encourages NbS wherever feasible to mitigate the consequences of climate 63 

change over the Great Lakes Region (Makra and Gardiner, 2021; Wuebbles et al., 2019, 64 

Wuebbles et al., 2021). 65 

Despite the high expectation of NbS, their function was rarely assessed quantitatively, 66 

especially in the urban environment and under meteorological and anthropogenic perturbations. 67 

In past decades, most efforts to quantify CO2 emissions from cities have been focused on 68 

anthropogenic sources (e.g., buildings and transportation), as these sources typically dominate 69 

urban emissions (Seto et al., 2012). The CO2 exchange from the biogenic sectors varies 70 

significantly in different climate regions (Yi et al., 2010), weather events (Lei and Han, 2020; Xu 71 

et al., 2020), land use types (McHale et al., 2017), and landscaping practices (Crum et al., 2016). 72 

Its proportionality in a city’s carbon portfolio can be surprisingly high under specific conditions. 73 

Prior studies reported that the behavior of urban plants tends to have greater uncertainties under 74 

the warming from UHI and CO2 fertilization effect (i.e., vegetation growth benefited from high 75 

CO2 concentration) from anthropogenic emissions (Zhao et al., 2016; Zhou et al., 2016; Wang et 76 

al., 2019b) (Fig. 1a), altering the carbon balance (Fig. 1b). These impacts from urbanization on 77 
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plant function can be intensified by sudden increases of temperature (e.g., during heatwaves or 78 

high heat days, Fig. 1d&e), which is yet underexplored and worth thorough investigations.  79 

Additionally, human management of urban green spaces affects CO2 exchange as well. 80 

For example, irrigation, which helps urban plants growth and serves as a mitigation measure for 81 

extreme urban heat (Livesley et al., 2021), can lead to the environmental co-benefits in cooling 82 

and carbon reduction (Li and Wang, 2021) (Fig. 1f). Conversely, over-irrigation may cause 83 

unintended CO2 release from soil respiration (Decina et al., 2016; Hundertmark et al., 2021; 84 

Kindler et al., 2022), offsetting CO2 absorption from photosynthesis (Fig. 1g). The lack of 85 

consensus indicates the large spatial variation of biogenic CO2 efflux that different mechanisms 86 

could govern. It also implies the potential to enhance carbon reduction from urban greenery by 87 

avoiding unintended CO2 release and/or increasing CO2 sequestration. Therefore, for cities that 88 

consider NbS for carbon reduction, it is critical to understand the interplays in the heat-water-89 

carbon nexus in urban environments and the underlying mechanisms corresponding to the 90 

geographical and meteorological characteristics of the highly heterogeneous urban land use. 91 

Current approaches for estimating urban biogenic CO2 exchange primarily rely on the 92 

data collected from urban eddy covariance (EC) systems (Crawford et al., 2011; Velasco and 93 

Roth, 2010; Velasco et al., 2013; Ng et al., 2015) and remote sensing (RS) imagery (McPherson 94 

et al., 2013; Hardiman et al., 2017; Miller et al., 2018). The EC system measures total CO2 flux 95 

as well as other meteorological variables at a high temporal resolution and can relate CO2 96 

emissions to local land use features and weather events (Järvi et al., 2019; Liu et al., 2012). 97 

However, its applications are limited to neighborhood scale due to its small footprint (~1 km2). 98 

Multisite studies are usually required to account for urban heterogeneity (Bergeron and Strachan, 99 

2011; Park et al., 2022). Additional efforts for flux decomposition are also required to 100 

distinguish biogenic signals from their anthropogenic counterparts (Menzer and McFadden, 2017; 101 

Salgueiro et al., 2020; Stagakis et al., 2019). RS-based algorithms can examine spatial patterns 102 

over a large area and quantify biogenic CO2 exchange by employing statistical and machine 103 

learning methods over the remotely sensed variables such as land surface temperature, land use 104 

types, vegetation indices, etc. (Zhao and Running, 2010; Rossini et al., 2012). Nonetheless, the 105 

relatively long overpass period of the satellites makes the RS approach more capable of 106 

interpreting the seasonal trend than the hourly dynamics.  107 
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In addition to the measurement-based approaches, process-based models such as 108 

vegetation photosynthesis and respiration models (VPRM), light use efficiency models (LUE), 109 

and solar-induced fluorescence models (SIF) are widely used to quantify biogenic CO2 110 

exchanges over natural biomes (Gourdji et al., 2022; Madani et al., 2017; Li and Xiao, 2019). 111 

These models are able to run numerical experiments with future climate projections. Recent 112 

attempts were seen to implement process-based simulations in an urban environment, mainly 113 

from two distinctive approaches: the “top-down” and “bottom-up” approach. The “top-down” 114 

approach treats cities as a combination of impervious and natural surfaces and quantifies CO2 115 

exchange based on plant types, coverage, and biomass density (Wu et al., 2021). In fact, the 116 

behaviors of urban plants are under the influence of UHI, elevated CO2 levels, and landscaping 117 

maintenance (Smith et al., 2019; Fu et al., 2021). These factors need to be accounted when 118 

estimating biogenic CO2 exchange in cities. The “bottom-up” approach resolves the complex 119 

hydroclimate dynamics in urban street canyons using single-layer urban canopy schemes and 120 

drives the photosynthesis and respiration models for ecosystem exchange (Goret et al., 2019; Li 121 

and Wang, 2020). Further integrating these "bottom-up" models with regional climate models, 122 

such as Weather Research and Forecast, can allow us to simulate the interplays between plant 123 

behaviors, the urban environment, and climate change at the city and/or regional scale.  124 

To this end, this paper presents a model that quantifies urban biogenic CO2 exchange 125 

with the resolved hydroclimate dynamics in urban street canyons. We further assess the impacts 126 

of environmental and anthropogenic perturbations, viz., heatwave and irrigation, on the urban 127 

biogenic CO2 exchange and reveal the underlying controls from these environmental 128 

perturbations. Specifically, we estimate net ecosystem exchange (NEE), gross primary 129 

productivity (GPP), and ecosystem respiration (Reco) over the Chicago Metropolitan Area (CMA) 130 

using the state-of-art Weather Research Forecast – Urban Biogenic Carbon model (WRF-UBC) 131 

under designed numerical experiments. Our analysis identifies the prevailing urban management 132 

practices in CMA and its sub-zones to enhance carbon reduction from urban greenery. The 133 

results will help the city officials and urban planners understand the variations of NbS regarding 134 

environmental perturbations, which will lead to better decision-making towards the “zero-carbon” 135 

goal. 136 

 137 

 138 
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2. Materials and Methods 139 

2.1 Study area 140 

We select the Chicago Metropolitan Area (CMA) to quantify the biogenic CO2 exchanges. 141 

CMA is the third most populated region in the United States. It has a highly developed urban 142 

core by the side of Lake Michigan with a radial urban-rural gradient extending away from the 143 

lakeshore. According to recent estimates from the US Census Bureau in 2010 and Chicago 144 

Metropolitan Agency for Planning (CMAP) in 2018, 55% of the land in CMA is classified as a 145 

developed urban area with a diverse land use portfolio (Fig. 2a). Many studies have investigated 146 

the urban environment in terms of urban morphology (Patel et al., 2023), extreme heat (Sharma 147 

et al., 2016; Sharma et al., 2017), precipitation (Vavrus and Van Dorn, 2010), anthropogenic 148 

emissions (Conry et al., 2015) of this region, making CMA an ideal testbed for future urban 149 

climate studies. Meanwhile, the region is actively integrating adaptive NbS, primarily by 150 

implementing green urban design and increasing green spaces to mitigate hydrometeorological 151 

extremes and reduce CO2 emissions (Makra and Gardiner, 2021). This is important as there has 152 

been an increase in the frequency of regional heat waves as a result of climate change in the 153 

Great Lakes Region (Wuebbles et al., 2019; Wuebbles et al., 2021). 154 

 155 

2.2 WRF-UBC model 156 

The Weather Research and Forecast - Urban Biogenic Carbon model couples the 157 

urbanized Weather Research and Forecast (uWRF) modeling framework (Skamarock et al., 2019; 158 

Chen et al., 2011) with process-based Arizona State Single Layer Urban Model (ASLUM, Li and 159 

Wang, 2020, Wang et al., 2021) to calculate the photosynthesis and respiration rates of 160 

vegetation in urban street-canyon environments. Both uWRF and ASLUM have been 161 

implemented in prior studies as a tool to examine urban heat and the corresponding mitigation 162 

strategies (Li and Wang, 2021; Li et al., 2022; Sharma et al., 2016; Georgescu et al., 2014; Wang 163 

et al., 2018). In this study, we adopt the surface and near-surface meteorological conditions 164 

estimated from uWRF (version 4.1, Skamarock et al., 2019) over CMA to drive ASLUM for the 165 

subsequent modeling of CO2 fluxes. Specifically, we set up three two-way nested domains using 166 

WRF with the outermost boundary covering the Midwest US and the innermost domain covering 167 

the CMA and its surrounding rural and agricultural areas (Fig. 2b). The spatial resolutions of 168 

three domains are 9 km, 3 km, and 1 km, respectively. The lateral boundary conditions of the 169 



 

8 
 

uWRF simulation were provided by North American Regional Reanalysis (NARR) 32km by 170 

32km from the National Center for Environmental Prediction (NCEP) at a 3-hour interval 171 

(https://rda.ucar.edu/datasets/ds608.0/). Physical schemes of microphysics, convection, radiation, 172 

and boundary layer were configured using a well-tested combination for the Chicago region as 173 

described in Sharma et al. (2017). The 30-m resolution National Land Cover Database (NLCD) 174 

2016 is used to better reflect the land surface heterogeneity matching the simulation period. For 175 

the land surface dynamics, we select the single-layer urban canopy scheme for impervious urban 176 

surfaces and Noah-land surface model (Noah-LSM) for natural land and the pervious portion of 177 

the urban grids. Meteorological variables, such as downwelling shortwave radiation (SWD), 178 

windspeed (U), air humidity (q), air pressure (Pa), 2-meter air temperature (T2), surface 179 

temperature (Ts), topsoil temperature (Tsoil), are calculated every 180 seconds and aggregated to 180 

hourly output. The simulation period is from May 1 2016 00:00 UTC to August 31 2016 23:59 181 

UTC (123 days), with the first 3 days as the spin-up period.  182 

The urban gross primary productivity (GPP) and ecosystem respiration (Reco) are 183 

subsequently estimated via the photosynthesis and respiration models in ASLUM. GPP is 184 

formulated as 185 

( )20
GPP , ,[CO ], ,

LAI
V GPP skf F PAR T U dLθ=  ,                          Eq. (1) 186 

where function FGPP is a series of the Ag-rs-type plant photosynthesis functions adopted in 187 

ASLUM; fv is vegetation fraction (-); LAI is the leaf area index (m2m-2); PAR is photosynthetic 188 

activated radiation (Wm-2); Tsk is the leaf skin temperature (oC); [CO2] is near surface CO2 189 

concentration level (ppm); U is the near-surface wind speed; θ is the normalized soil moisture in 190 

urban green spaces (-). The special integral aggregate leaf-level carbon assimilation rate to 191 

canopy-level primary productivity with the consideration of the light extinction inside of the 192 

canopy. The urban ecosystem respiration (Reco) is calculated as 193 

( )eco R soilR , ,Sf F T LAIθ= ,                                                                    Eq. (2) 194 

where FR is the temperature-dependent respiration function adopted in ASLUM; fs is soil fraction; 195 

and Tsoil is the temperature of the surface layer of soil (oC). The detailed formulation of FGPP and 196 

FR is described in Ronda et al. (2001) and Li and Wang (2020). The hydroclimate variables, such 197 

as Tsoil, Tsk, U, θ, and PAR in Eq.(1) and Eq.(2) are directly derived from uWRF simulation at the 198 

urban surface level, while the leaf area index, vegetation fractions, and background CO2 level are 199 
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adopted from external spatial gridded data (see Section 2.3). The urban net ecosystem exchange 200 

(NEE) is calculated as 201 

eco GPPNEE = R − .                                                                    Eq. (3) 202 

NEE is directional. A positive value means a net release of CO2 from urban green spaces, while a 203 

negative value means net CO2 sequestration. 204 

 205 

2.3 External datasets 206 

To better resolve the heterogeneity of the complex urban terrains, we utilize the 207 

vegetation properties from Copernicus Global Land Service (CGLS), which provides LAI and 208 

vegetation fractions at a 300 m spatial resolution and a 10-day temporal interval (Fig. S1). CGLS 209 

has a better representation of the biomass spatiotemporal distributions, especially over urban 210 

areas. The use of CGLS will allow us to achieve finer spatial resolution when quantifying carbon 211 

exchanges, and avoid uncertainties induced by the imprecise vegetation data from the WRF 212 

modeling system (Vahmani and Ban-Weiss, 2016). The land surface CO2 level is a critical 213 

parameter for the photosynthesis process as it determines the concentration gradient of CO2 at 214 

the leaf-air interface (Tomimatsu and Tang, 2016). We adopt Carbon Tracker spatial gridded 215 

data (CT2019, Jacobson et al., 2020) to provide the ambient CO2 concentration over the study 216 

area. The original dataset from CT2019 is linearly interpolated to match the spatiotemporal 217 

resolution of the innermost uWRF domain. 218 

Apart from those essential data to drive WRF-UBC, observations from ground stations 219 

are used to calibrate and validate the simulation experiments. The base rate of respiration, 220 

usually represented by R25 (respiration rate at 25 oC), varies across climate zones. It is necessary 221 

to calibrate the parameters to local measurement to improve the credibility of the modeling 222 

results, especially for simulating at such a high spatiotemporal resolution (Li and Wang, 2020). 223 

We decompose the total carbon flux (Fc) measured by eddy covariance (EC) towers in CMA to 224 

calibrate the parameters in photosynthesis and respiration models. The EC towers (AmeriFlux ID: 225 

US-IB1 and US-IB2) are located over a cropland and  grassland in Fermi National Accelerator 226 

Laboratory in the suburban region west of Chicago, respectively (Fig. 2c). The towers measured 227 

Fc at 4.05 and 3.76 meters above the ground. Due to the relatively low measurement heights, the 228 

measured Fc can be treated as a close proxy to NEE without the disturbance from anthropogenic 229 

CO2 signals. Ecosystem respiration is derived from the nighttime Fc when photosynthesis 230 
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completely stops in the absence of sunlight, which is commonly referred as the nighttime 231 

partitioning method (Reichstein et al., 2005). We first calibrate the parameters in Eq.(2) to fit the 232 

nighttime Fc measured during 20:00 to 04:00 local time as the observation of nighttime Reco. The 233 

calibrated Eq.(2) will be used to calculate Reco time-series (Fig. S2). Then the measured GPP can 234 

be obtained by subtracting the calculated Reco from the measured Fc. We again calibrate the 235 

parameters in Eq.(1) to match the daily mean value of GPP decomposed from the total Fc. The 236 

calibrated model performed reasonably well in replicating the temporal variations of CO2 fluxes 237 

at the tower locations. It is worth mentioning that spatial coverage of high-quality carbon flux 238 

measurement in an urban environment is rather limited. There are also subsidiary uncertainties 239 

associated with source partitioning at each location. Thus, it is extremely challenging to validate 240 

the model performance spatially. As a result of this known caveat, our study will focus on 241 

comparing two different experimental scenarios (see Section 2.4). In this case, the calibration 242 

and validation against EC datasets will be sufficient to satisfy the objectives of our study. 243 

The daily summaries of air temperature measured by ground weather stations in the 244 

Global Historical Climatology Network daily (GHCNd) from the National Centers for 245 

Environmental Information (NCEI) are used to validate the simulated 2-meter air temperature as 246 

a representative of the fundamental meteorological conditions. In addition, we also validate our 247 

results against the hourly air temperature measurements from Local Climatological Data (LCD) 248 

network. Figure 2c shows the locations of the ground weather stations. The model performance 249 

is evaluated using the root mean squared error (RMSE), calculated as 250 

( )2
sim obsRMSE = 

X X
n
−

,                                                         Eq. (4)  251 

where Xsim is the model simulation; Xobs is the observation from ground weather stations at daily 252 

or hourly intervals; n is the number of observations. The model performs reasonably well with 253 

RMSEs of 2.17 oC and 2.49 oC over the daily and hourly observations (Fig. 2d). This accuracy is 254 

comparable to the model bias reported in the previous studies over the Contiguous United States 255 

(Wang et al., 2019a) and Chicago region (Sharma et al., 2017) using uWRF. The result on the 256 

magnitude and the spatial pattern of heat distribution provided us the confidence to use our 257 

model experiment design for subsequent modeling of photosynthesis and respiration processes.  258 

 259 

2.4 Design of numerical experiments 260 
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In the first set of experiments, we test the impact of high heat on the biogenic CO2 261 

exchange in CMA. The 123-day simulation is divided into heatwave (HW) days and non-262 

heatwave (non-HW) days according to the daily maximum and minimum air temperatures (Tmax 263 

and Tmin). Specifically, we compare the modeled air temperature to the long-term daily climate 264 

normals, viz., average daily maximum and minimum temperatures (Tn, max and Tn, min), derived 265 

from the ground measurements during 1991-2020 at 44 reference locations near CMA (Fig. S3). 266 

A heatwave day is identified when (1) both Tmax and Tmin exceed Tn, max and Tn, min respectively; (2) 267 

last longer than 2 days; and (3) over 90% reference locations meet (1) and (2). These criteria 268 

identify 31 heatwave days during the summer of 2016 (Fig. 3). By contrasting the biogenic CO2 269 

exchange rate during the HW and non-HW days, we can quantify the role of temperature on 270 

plant behaviors. The HW scenarios can also serve as a proxy for the future warming projection in 271 

CMA. 272 

The second set of experiments investigates the impact of irrigation. While keeping the 273 

model configurations unaltered from the previous case (REF case hereafter), we re-run the model 274 

with urban irrigation turned on in uWRF (IRR case henceforth). The prescribed irrigation 275 

scheme waters the vegetated portion in urban cells to soil field capacity every night. This 276 

treatment is the default irrigation configuration in WRF v4.1 and can be easily replicated in 277 

modeling or in practice for the other regions. Urban irrigation is expected to directly increase the 278 

soil water content and indirectly decrease the temperatures by reducing sensible heat and 279 

redistributing available surface energy fluxes (Broadbent et al., 2018; Wang et al., 2019a). As 280 

photosynthesis and respiration processes are sensitive to soil water availability and temperatures, 281 

irrigation will affect biogenic CO2 exchange via multiple mechanisms, potentially leading to an 282 

optimum irrigation scheme for environmental co-benefits in cooling and carbon reduction (Li 283 

and Wang, 2021). 284 

These two sets of experiments will demonstrate the change of biogenic CO2 flux under 285 

environmental and anthropogenic perturbations. As a result, we report the changes in value and 286 

percentage over the CMA and for different land use types.  287 

 288 

3. Result and Discussion 289 

3.1 Biogenic CO2 exchange in CMA 290 
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The NEE over the urbanized area is calculated using the calibrated WRF-UBC (Fig. 4). 291 

During the simulation period, the daily mean NEE over CMA is −2.4 g m−2d−1 with a wide range 292 

of spatial variation primarily correlated with land use type (Fig. 2a) and biomass density (Fig. 293 

S1). Regions with high vegetation fraction (fv) and leaf area index (LAI) tend to have lower NEE 294 

(higher carbon sequestration rate), represented by the riparian parks along the Des Plaines River 295 

and the sparsely distributed urban forests in CMA. The NEE in these urban parks is −6.7 g 296 

m−2d−1, followed by those undeveloped (−2.7 g m−2d−1) and residential areas (−2.5 g m−2d−1). 297 

These exchange rates convert to a total CO2 sink of −1.5×104 metric tons of CO2 per day 298 

(tCO2/day) in CMA from urban vegetation, dominated by residential areas (41.8%, −6.3×103 299 

tCO2/day) and urban parks (40.9%, −6.1×103 tCO2/day). The other land use types account for 300 

45.6% of the land but contributed only 17.3% to carbon sequestration. Vegetated land in 301 

commercial and industrial areas releases CO2 to the atmosphere (Fig. S4b), although the amount 302 

is very subtle (0.3×103 tCO2/day).  303 

 304 

3.2 Impacts of heatwaves  305 

During the 31 heatwave (HW) days, the daily mean and maximum temperature are 25.0 306 
oC and 30.1 oC, respectively, which are 5.0 oC and 5.3 oC hotter compared to the non-heatwave 307 

(non-HW) days with significant differences (p<0.001) in diurnal cycles. It is worth mentioning 308 

that despite the high temperatures during HW episodes, no extreme drought condition is 309 

observed due to the occasional precipitations during the summer of 2016 (Fig. 3). The difference 310 

in soil water content (SWC) between HW and non-HW days are negligible (Fig. S5a). During 311 

HW days, we observe an overall increase of NEE from −1.7×104 tCO2/day to −0.8×104 tCO2/day 312 

with a relatively homogenous distribution over CMA (Fig. 6a). Note that the increase in NEE is 313 

not caused by the slowdown of biochemical reactions due to high temperatures. On the contrary, 314 

the high temperature stimulates the biochemical processes and drastically promotes the GPP and 315 

Reco by 16.8% and 38.6%, respectively (Fig. 5a). It is evident that the respiration rate increases 316 

faster than the photosynthesis rate, resulting in a net increase in NEE. The distinctive rate change 317 

can be attributed to the different locations of photosynthesis and ecosystem respiration. More 318 

specifically, Reco consists primarily of plant above-ground respiration, root respiration, and soil 319 

respiration, with the first process happening in the air and the rest two occurring underground. 320 

As soil respiration occurs outside of the vegetation, its rate is not strictly coupled with 321 
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photosynthesis. As a result of the differences in the responses of photosynthesis and respiration 322 

to the same environmental perturbation,   net biogenic carbon fluxes will vary. We discuss the 323 

underlying mechanisms in further detail in Section 3.4.  324 

Figures 6b&c show the change of GPP, and Reco (dGPP, dReco), respectively. The spatial 325 

patterns generally follow the distribution of vegetation fraction and LAI, meaning areas with 326 

higher biomass will be more susceptible to a higher temperature. For example, urban parks, 327 

which have over 80% of vegetation coverage and 3.3 m2m-2 LAI, have the largest dNEE of 1.5 g 328 

m−2d−1 from −7.1 to −5.4 g m−2d−1 (Fig. 7a). No significant correlation is observed when 329 

examining the relations between the averaged dNEE of each land type to the other factors, such 330 

as mean air and soil temperatures or soil water content (Fig. S5 upper panel). In addition, there is 331 

no discernable difference in the rise of temperatures among different land use types. As a result, 332 

we conclude that biomass density plays a critical role in determining the impact of heatwave on 333 

CO2 exchange.  334 

 335 

3.3 Impacts of irrigation  336 

In the irrigation experiment, the soil is irrigated to a preset threshold every night (see 337 

Section 2.3). The irrigation leads to an average increase of SWC by 7.0% over CMA (Fig. S5d). 338 

Meanwhile, the average temperatures of air (T2) and soil (Tsoil) are reduced by 0.3 oC and 2.8 oC, 339 

respectively. The total NEE in the irrigation case is −2.3×104 tCO2/day (Fig. 6d). Compared to 340 

the reference case (−1.5×104 tCO2/day), irrigation can help to capture 0.8×104 tCO2/day during 341 

the summer of 2016. The significant carbon reduction is led by the increase of GPP (7.9%) and 342 

the decrease of Reco (−4.8%) (Fig. 7b). In this case, the irrigation-induced environmental changes 343 

(i.e., cooling and moisturizing) form a pair of competing mechanisms affecting photosynthesis 344 

and respiration in separate and opposite ways. Specifically, cooling will slow down biochemical 345 

reactions, decrease GPP and Reco, and moisturizing will stimulate vegetation growth and promote 346 

soil respiration. Intriguingly, the cooling effect from irrigation is more notable in soils than in the 347 

air. Therefore, irrigation suppresses soil respiration more than photosynthesis, leading to overall 348 

net carbon capture. We discuss these mechanisms further in Section 3.4.  349 

Vegetation in residential yards exhibits the most significant change in NEE, contributing 350 

44.1% in the total capture of 0.8×104 tCO2/day. The next highest segment is the vegetation in 351 

urban parks (19.7%), followed by those along roads and streets (15.9%). Unlike the results from 352 
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the heatwave experiment, the spatial distribution of dNEE in the irrigation experiment does not 353 

follow the biomass distribution strictly (Fig. 6d, c.f. Fig. S1). The spatial patterns of dGPP and 354 

dReco do not show meaningful associations either (Fig. 6e&f). Generally, GPP is governed by 355 

solar irradiance, ambient CO2 level, air temperature, soil moisture, and plant biomass. In this 356 

experiment, we assume similar solar irradiance and CO2 levels between irrigation and the 357 

reference cases. We use the same biomass density from CGLS in both simulations. Therefore, 358 

the change of GPP is mainly affected by the variations of air temperature and soil water content. 359 

The result shows that the averaged irrigation-induced air cooling is 0.3 oC, with a maximum air 360 

cooling of ~0.5 oC in the western part of CMA (Fig. S5e). The limited air cooling does not have 361 

a significant impact on GPP. Contrary to the minor air cooling, we observe a homogeneous 362 

increase in soil water (Fig. S5d). The magnitude of dGPP is enhanced by the biomass density, 363 

demonstrated in the densely vegetated residential areas to the immediate north and west of the 364 

urban core (Fig. 6e, c.f. Fig. S1). We also notice that a small area in the northwest region of 365 

CMA does not significantly change of GPP despite its moderate vegetation coverage. The likely 366 

reason for this is the modest increase in soil moisture in this area compared to the others. 367 

The change of ecosystem respiration (dReco) shows distinctive spatial distribution from 368 

dGPP (Fig. 6f). Qualitatively, Reco will increase under higher soil temperature and higher 369 

moisture. However, irrigation cools down the environment and adds soil water simultaneously, 370 

affecting Reco in opposite ways: the lower temperature decreases Reco; while the higher soil 371 

moisture increases Reco. This forms a group of competing mechanisms, which offsets each other 372 

when influencing the overall dReco. For example, the west CMA shows a manifest decrease in 373 

soil temperature and a moderate increase in soil water content (Fig. S5e&f). These lead to little 374 

change in Reco in this area (Fig. 6f). In the northwest area of CMA, where dGPP is small, exhibits 375 

a noticeable decline of Reco. This occurs when the weak “moisturizing” effect encounters a 376 

relatively strong “cooling” effect on respiration. We will explain the rationale for this mechanism 377 

in Section 3.4. 378 

Surprisingly, we do not observe an apparent increase in Reco over CMA, which 379 

contradicts some observation-based studies (Decina et al., 2016; Kindler et al., 2022). One 380 

hypothesis suggests that excessive amounts of soil water will continuously enhance Reco, while 381 

the cooling effect will cease once the irrigation exceeds certain thresholds (Li and Wang, 2021). 382 

In our experiment, the irrigation stops when the soil water content reaches the prescribed 383 
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threshold, mimicking the operation of on-demand smart irrigation systems, thus may prevent 384 

further increase of Reco due to excessive soil water (Fig. 1g c.f. Fig. 1f). However, in practice, a 385 

typical timed or metered irrigation system supplies water regardless of weather conditions and 386 

cannot control soil moisture accurately. This may directly cause the increase in CO2 release 387 

reported in observation-based studies. The City of Chicago initiated the MeterSave program 388 

(https://metersave.org/MeterSave) in 2018. It offers irrigation systems equipped with rain gauges 389 

and moisture sensors for its residents, which will regulate water use and avoid excessive water 390 

supply like the irrigation experiment conducted in this study. Nonetheless, adopting a smart 391 

irrigation system in every residential yard is impractical. Our numerical experiments illustrate 392 

the potential for carbon reduction from urban irrigation when an optimized scheme is 393 

implemented (Yang and Wang, 2015; Liu et al., 2021). 394 

 395 

3.4 Competing mechanisms in CO2 exchange 396 

The most effective way to mitigate carbon emissions from urban vegetation is to increase 397 

GPP while decreasing Reco to achieve an overall increase in carbon sequestration. In this case 398 

study over CMA, we observe general improvements in carbon reduction by irrigation (i.e., dNEE 399 

< 0), resulting from two major groups of competing mechanisms. To better understand their 400 

individual contributions to outcomes, we introduce the Environmental Benefit Score (EBS) as a 401 

rating metric to simplify and quantify the impacts of high heat and irrigation on carbon and 402 

hydroclimate dynamics (Fig. 8). Positive scores (+1 and +2) are given if the changes under 403 

perturbations (i.e., temperature and water supply changes) contribute positively and reduce CO2 404 

emission. Likewise, negative impacts will have negative scores (−1 and −2). We further denote 405 

the results using EBS(x), where x can be the carbon, temperature, or water components (dGPP, 406 

dReco, drought, or water supply) under environmental and anthropogenic perturbations. 407 

In the heatwave group, for example, the outcome depends on the individual impacts of 408 

humidity and temperature on Reco and GPP. Therefore, we have  409 

EBS(dNEE) = EBS(Humidity) + EBS(dReco) + EBS(dGPP).                    Eq. (5) 410 

The simulation shows that dNEE > 0 over the entire CMA region during a heatwave shows 411 

negative environmental impacts (Fig. 6a). Meanwhile, dGPP > 0 and dReco > 0 with the change 412 

of Reco a high magnitude. Therefore, we give EBS(dGPP) = +1, while EBS(dReco) = −2. Since 413 

there is no drought during heatwaves in our experiment; we have EBS(Humidity) = 0. These lead 414 
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to EBS(dNEE) = −1 (Fig. 8a), which matches the simulation result. If a drought occurred while 415 

other changes remained the same, the outcome would shift to “Worst” as EBS(Humidity) = −1, 416 

and EBS(dNEE) = EBS(Humidity) + EBS(dReco) + EBS(dGPP) = −2 (Fig. 8b). 417 

The mechanisms in the irrigation group are more complicated, as irrigation 418 

simultaneously lowers temperature (cooling) and adds water supply (moisturizing). Both effects 419 

will oppositely change GPP and Reco, as mentioned in Section 3.3. In this case, the dNEE is 420 

affected by their separate impacts on GPP and Reco, leading to various outcomes as shown in 421 

Figure 8 Group 2, and can be expressed as: 422 

EBS(dNEE) =  EBS(dNEEM) + EBS(dNEEC) 423 

         = [EBS(dReco, M) + EBS(dGPPM)] + [EBS(dReco, C) + EBS(dGPPC)].  Eq. (6) 424 

where the subscript “M” and “C” represents the change induced by “moisturizing” and “cooling”, 425 

respectively. Eq. (6) shows the net impact of a certain mechanism. It can also be regrouped as  426 

 EBS(dNEE) = [EBS(dReco, M) + EBS(dReco, C)] + [EBS(dGPPM)+ EBS(dGPPC)],  Eq. (7) 427 

to reflect the competing mechanisms on one specific carbon flux.  428 

In the irrigation group, the different sub-zones of CMA exhibit distinctive behaviors (Fig. 429 

8). From the simulation result, we find the moderate benefit in Zone 3 is primarily contributed by 430 

the increase of GPP (EBS(dGPP) = 1, Fig. 6e). The change of Reco, however, is muted 431 

(EBS(dReco) = 0, Fig. 6f) because of the competing processes between moisturizing and cooling 432 

effect on respiration (black lines lead to Fig. 8c). Moreover, if we compare the moisturizing and 433 

cooling effect on dNEE, it shows cooling effect contributes more to reduce CO2 emissions from 434 

urban vegetation.  Thus Zone 3 is a cooling dominant zone (see Text S1 for a detail explanation). 435 

Similarly, the carbon reduction in Zone 5 is led by the increase in GPP. But unlike Zone 436 

3, Zone 5 is a moisturizing dominant zone, meaning the cooling-induced dGPP and dReco offset 437 

each other (Fig. 8f, Text S2). Zones 2 and 4 benefit from the reduction of Reco led by cooling, 438 

while the change of GPP is insignificant. They are also moisturizing dominant zones (Fig. 8d, 439 

Text S3). Among the five zones, Zone 1 has the most notable decrease in NEE and thus has the 440 

highest EBS (Fig. 8e).  441 

To achieve the best outcome like Zone 1, one needs to precisely regulate the irrigation for 442 

a delicate balance to simultaneously avoid increasing in Reco due to moisturizing and decreasing 443 

of GPP due to cooling. For instance, Reco in Zone 3 increases dramatically due to moisturizing 444 

(EBS(dReco,M) = −2). This negative impact can be alleviated by irrigating less or enhancing soil 445 
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drainage to control the soil water content in Zone 3. Distinctively, carbon reduction in Zone 5 446 

can be promoted under a cooler environment, which needs the help of additional heat mitigation 447 

actions such as shading trees and cool roofs. Our results show that the impacts of irrigation on 448 

the urban core are minor due to limited vegetation fractions. For the highly developed area in the 449 

urban core, increasing biomass will be the most effective action for carbon reduction. Note that 450 

these scores represented the relative magnitude among the sub-zones in CMA rather than their 451 

absolute magnitude. Though Zone 1 had the most favorable result in the current set of 452 

experiments, its carbon reduction can still be improved by further increasing vegetation fraction 453 

or optimizing the growth condition of urban plants. These conclusions can be generalized 454 

according to the pathways and outcome categories illustrated in the EBS chart (Fig. 8), especially 455 

for users without much knowledge of numerical modeling and plant physiological functions. 456 

 457 

4. Conclusions 458 

In summary, this study highlights the importance of CO2 exchange from biogenic sectors 459 

in assessing carbon footprint at a city level. As an example, when comparing annual average 460 

emissions from on-road traffic of CMA in 2015 (2.3×104 tCO2/day, Gurney et al., 2020) and 461 

total yearly emission (CO2 equivalent) in 2017 (8.5×104 tCO2/day, Chicago, 2019), urban 462 

vegetation in CMA (−1.5×104 tCO2/day) offsets more than half of the traffic emissions during the 463 

simulation period and over a quarter of the total emission. Meanwhile, the active biochemical 464 

processes during warm months can be affected significantly by environmental and anthropogenic 465 

perturbations. High temperature caused by heatwaves reduces the CO2 sink power from 466 

vegetated land by 0.9×104 tCO2/day, which is equivalent to 39% of traffic emissions. As the 467 

frequency, intensity, and duration of heatwaves are expected to increase due to climate change 468 

(Perkins-Kirkpatrick and Lewis, 2020), urban regions will be even more vulnerable in terms of 469 

the rising temperatures along with the urban heat island effects, and the unexpected loss of 470 

carbon capture. On the contrary, urban irrigation helps mitigate heat and is usually considered a 471 

practical NbS. In addition, it increases 0.8×104 tCO2/day of carbon capture, offsetting ~35% of 472 

traffic emissions in equivalent. However, the irrigation efficacy varies spatially and is governed 473 

by different mechanisms. Some regions are sensitive to excessive irrigation and should precisely 474 

regulate the soil water to avoid further respiration rate increases. The other regions will be 475 

benefited from an overall cooler environment.  476 
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 Spatially, we also find that the vegetation in residential areas, urban parks, and along the 477 

road and streets play a vital role in the city’s carbon portfolio. These three land use categories 478 

account for ~81% of total carbon sequestration in CMA. Fortunately, these lands are usually 479 

equipped with irrigation systems and managed. Through detailed modeling and evaluation of the 480 

Environmental Benefit Score chart, we demonstrate that urban vegetation is more than just a 481 

"cool refugee" to the built environment. However, given the widespread application of irrigation, 482 

its influence on carbon exchange should be carefully considered to ensure overall positive 483 

environmental impacts. Using EBS, we illustrate the possible outcomes and the entangled 484 

dynamics in the heat-water-carbon nexus under anthropogenic forcings, with the goal of 485 

improving our understanding of urban vegetation carbon balance. The modeling framework 486 

described above can be applied to other cities and broader regions where the land use data are 487 

available. 488 

It is noteworthy that the heatwaves do not coincide with severe drought conditions during 489 

our experiment. Although we observe a significant loss of carbon capture due to heatwaves, the 490 

situation can be even worse in the event of compounded extremes, which happened in the history 491 

of CMA. For example, two months before the heatwave on July 4-7th 2012, the precipitation in 492 

Illinois was 7.42 inches below average, making it the 3rd driest season in the state’s history. 493 

Drought can increase evaporative demand and lead to fast depletion of soil moisture, thereby 494 

impeding biochemical activities (see Fig. 1d) or even leading to the death of vegetation. In this 495 

case, the potential GPP improved by warming will likely be offset by water constraints (Madani 496 

et al., 2020). Urban irrigation will prevent plants from severe drought and help them maintain 497 

normal biochemical processes when rainfall is insufficient. However, these processes are 498 

sensitive to soil water, and irrigation needs to be regulated to avoid unnecessary CO2 emission or 499 

the loss of sink power.  500 

Meanwhile, we reckon a few caveats in this study, such as the limited in-situ validation 501 

data and the hypothetical irrigation scheme. These limitations are primarily constrained by 502 

computational and observational resources. In conjunction with the highly heterogeneous urban 503 

surfaces, the lack of data makes it exceptionally difficult and computationally intensive to 504 

conduct the numerical experiments presented in this study. Despite these caveats, we hope the 505 

analysis could shed light on the decision-making towards carbon reduction from NbS and 506 

facilitate urban-centric climate projects such as the ongoing Community Research on Climate 507 
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and Urban Science (CROCUS) project sponsored by the US Department of Energy. The future 508 

implementation of WRF-UBC should incorporate a comprehensive database of the study area, 509 

such as the actual irrigation scheme, water use, proposed land use, zoning policies, etc., for better 510 

estimations of the current and future scenarios. It is also critical to consider other real-world 511 

constraints such as water resources, cost of maintenance and labor, etc. However, capturing these 512 

dynamics will need even more extensive numerical experiments from high-resolution modeling 513 

(Sharma et al., 2021) or even the help of advanced machine-learning techniques (Li et al., 2022). 514 

The future extension of this work will aim to provide a more holistic perspective on NbS via 515 

multi-objective optimization for carbon reduction.  516 

 517 

  518 



 

20 
 

Acknowledgment 519 

This research is supported by the Walder Foundation and NSF award #139316. This work is also 520 

supported by the U.S. Department of Energy, Office of Science, Biological and Environmental 521 

Research, under contract DE-AC02-06CH11357. We would like to acknowledge high-522 

performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's 523 

Computational and Information Systems Laboratory, sponsored by the National Science 524 

Foundation. CarbonTracker CT2019B results provided by NOAA ESRL, Boulder, Colorado, 525 

USA from the website at http://carbontracker.noaa.gov. We also acknowledge Metropolitan 526 

Mayors Caucus, NOAA, City of Chicago, and Chicago Metropolitan Agency for Planning for 527 

providing the data used in this study. 528 

 529 

Conflict of Interests 530 

The authors declare that they have no known competing financial interests or personal 531 

relationships that could have appeared to influence the work reported in this paper. 532 

 533 

Open Research Statement 534 

All the datasets used in this study are publicly available with open access under the CC-BY-4.0 535 

license: CT2019B data at https://gml.noaa.gov/ccgg/carbontracker/. GHCNd dataset at 536 

https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-537 

daily. EC towers US-IB1 and US-IB2 via AmeriFlux site at 538 

https://ameriflux.lbl.gov/sites/siteinfo/US-IB1 and https://ameriflux.lbl.gov/sites/siteinfo/US-IB2. 539 

Land use of CMA at https://www.cmap.illinois.gov/data.  540 

 541 

  542 



 

21 
 

 543 
Figure 1. Diagrams of biogenic carbon exchange in urban areas. (a) Plants in cities live 544 
under high ambient CO2 concentration and high temperature (UHI). (b) Biogenic carbon balance 545 
in urban vegetation (Eq. 3). (c-g). Qualitative illustrations of carbon balance under normal, dry 546 
heatwave, moist heatwave, irrigation, and over-irrigation conditions, respectively. The length of 547 
bars and arrows in subplot (c-g) show the magnitude of carbon fluxes. Blue, green, and orange 548 
colors represent NEE, GPP, and Reco, respectively. Comparing to normal condition (c), dry 549 
heatwave (d) damages plant physiological functions and suppresses CO2 exchange rate due to 550 
severe water stress. On contrary, moist heatwave (e) stimulates CO2 exchanges with high 551 
temperature without water stress. Proper irrigation (f) adds water and reduce temperature, 552 
leading to environmental co-benefits in cooling and carbon reduction. Excessive irrigation (g) 553 
will likely cause significant increase of Reco, leading to less carbon sequestration comparing to 554 
proper irrigation (f).  555 

 556 

 557 

  558 
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 559 
Figure 2. (a) Land cover types of CMA; (b) Domain configuration in WRF; (c) Locations of 560 

ground weather stations and EC towers used for model calibration and validation in this study; (d) 561 
The comparisons of daily (upper panel) and hourly (lower panel) air temperatures from WRF 562 
model and ground weather stations. GHCN -  Global Historical Climatology Network; LCD - 563 

Local Climatological Data; EC - eddy covariance towers (US-IB1 & US-IB2).564 
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 565 
Figure 3. Identification of heatwave days. The figure also shows the simulated hourly mean air 566 
temperature (black line) and observed daily precipitation (overhead black bars) over CMA 567 
during the study period. Dashed lines indicate the long-term climate normals in terms of daily 568 
maximum (red, Tn,max) and minimum (blue, Tn,min) temperatures. The shaded areas along the 569 
dashed lines show the variations (three standard deviations) among the reference stations. The 570 
identified heatwave days are marked by the yellow shaded areas.  571 
  572 
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 573 

 574 
Figure 4. Daily mean net ecosystem exchange (NEE) over urbanized areas in CMA. 575 
Negative values (cool colors) represent net absorption of CO2 from urban vegetation, vice versa. 576 
Red lines indicate the administrative boundary of the counties containing CMA. Black lines 577 
show the boundary of urban areas from 2010 US Census data, which excluding the agricultural 578 
and preserved natural land. The special urban boundary used in this study is the intersection of 579 
the two boundaries. All statistics in text and figures are calculated within this special urban 580 
boundary.  581 

 582 

583 
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 584 

Figure 5. Summary of biogenic CO2 exchange by land use category. (a) heatwave (HW) vs. 585 
non-heatwave (non-HW); and (b) irrigation (IRR) vs. non-irrigation (REF). Blue, green, and 586 
orange colors represent NEE, GPP, and Reco, respectively. Only land use categories with 587 
meaningful vegetation coverage are shown here: residential, maintained parks, and road/streets. 588 
See Fig. S4 for the full chart of other categories (commercial, institutional, industrial, 589 
transportation, undeveloped).  590 

 591 

592 
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 593 

Figure 6. Maps of the impacts on CO2 exchanges from environmental and anthropogenic 594 
perturbations. (a-c) Impacts of heatwave on NEE, GPP, Reco, respectively; and (d-f) impacts of 595 
irrigation on NEE, GPP, Reco, respectively. The color bars are adjusted for each subplot. Cool 596 
colors (green and blue) indicate positive environmental impacts (additional CO2 sequestration), 597 
while warm colors (yellow and red) indicate negative environmental impacts (additional CO2 598 
release). 599 

 600 

601 
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 602 

Figure 7. Change of biogenic CO2 fluxes under environmental and anthropogenic 603 
perturbations. Rate (a) and percent (b) changes of dNEE, dGPP, and dReco due to heatwave 604 
(solid bars) and irrigation (hollow bars). Blue, green, and orange colors represent dNEE, dGPP, 605 
and dReco, respectively. See Fig. S4 for the full chart of other categories (commercial, 606 
institutional, industrial, transportation, undeveloped).  607 

 608 
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 609 
Figure 8. Governing mechanisms on biogenic CO2 exchange under environmental and 610 
anthropogenic perturbations. The environmental impacts are summarized using Environmental 611 
Benefit Scores (EBS) for the change due to heatwaves (Group 1) and irrigation (Group 2). (a-f) 612 
denote the specific examples of EBS in CMA and its subzones. Both perturbations have direct 613 
impacts on water supply and temperature, leading to the changes of GPP and Reco (square nodes). 614 
Circle nodes represent the possible outcomes from the combinations of competing mechanisms 615 
(see section 3.4). Red colors denote additional CO2 emission under environmental perturbations, 616 
while green colors denote additional CO2 sequestration.  617 

  618 
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