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Abstract

Grain size affects the rates of aeolian sediment transport on beaches. Sediment in coastal environments typically consists of

multiple grain size fractions and exhibits spatiotemporal variations. Still, conceptual and numerical aeolian transport models

are simplified and often only include a single fraction that is constant over the model domain. It is unclear to what extent this

simplification is valid and if the inclusion of multi-fraction transport and spatial grain size variations affects aeolian sediment

transport simulations and predictions of coastal dune development. This study applies the numerical aeolian sediment transport

model AeoLiS to compare single-fraction to multi-fraction approaches for a range of grain size distributions and spatial grain

size scenarios. The results show that on timescales of days to years, single-fraction simulations with the median grain size,

D50, often give similar results to multi-fraction simulations provided the wind is able to mobilize all fractions within that time

frame. On these timescales, vertical variability in grain size has a limited effect on total transport rates, but it does influence

the simulation results on minute timescales. Horizontal grain size variability influences both the total transport rates and the

downwind bed grain size composition. The results provide new insights into the influence of beach sediment composition and

spatial variability on total transport rates towards the dunes. The findings of this study can guide the implementation of grain

size variability in numerical aeolian sediment transport models.
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Key points 6 

- The effect of multi-fraction transport and spatial grain size variations were examined with the 7 

numerical aeolian transport model AeoLiS. 8 

- The D50 can be used as a representative grain size in aeolian sediment transport modeling on a 9 

time scale of days to years. 10 

- The bed surface grain size in the upwind, source area might be the most relevant to include in 11 

aeolian sediment transport models. 12 

Abstract 13 

Grain size affects the rates of aeolian sediment transport on beaches. Sediment in coastal environments 14 

typically consists of multiple grain size fractions and exhibits spatiotemporal variations. Still, conceptual 15 

and numerical aeolian transport models are simplified and often only include a single fraction that is 16 

constant over the model domain. It is unclear to what extent this simplification is valid and if the 17 

inclusion of multi-fraction transport and spatial grain size variations affects aeolian sediment transport 18 

simulations and predictions of coastal dune development. This study applies the numerical aeolian 19 

sediment transport model AeoLiS to compare single-fraction to multi-fraction approaches for a range of 20 

grain size distributions and spatial grain size scenarios. The results show that on timescales of days to 21 

years, single-fraction simulations with the median grain size, D50, often give similar results to multi-22 

fraction simulations provided the wind is able to mobilize all fractions within that time frame. On these 23 

timescales, vertical variability in grain size has a limited effect on total transport rates, but it does 24 

influence the simulation results on minute timescales. Horizontal grain size variability influences both 25 

the total transport rates and the downwind bed grain size composition. The results provide new insights 26 

into the influence of beach sediment composition and spatial variability on total transport rates towards 27 

the dunes. The findings of this study can guide the implementation of grain size variability in numerical 28 

aeolian sediment transport models. 29 



Plain language summary 30 

The growth of coastal dunes is caused by the wind, which moves sand from the beach to the dunes. The 31 

sand grains on the beach have different sizes. For instance, the size of the sand grains can vary from the 32 

waterline to the start of the dunes. Small sand grains are more easily picked up by the wind than larger, 33 

heavier grains. Thus, the size of sand grains and how they are spread over the beach can impact how 34 

much sand is moved by the wind. We use computer simulations to calculate how much sand is moved 35 

by the wind during different conditions. We investigate how different assumptions about the grain size 36 

on the beach influence these calculations. The results show that the calculations with one single sand 37 

size, in most cases, give comparable results to simulations with more complicated sand size variations. 38 

The simplified approach is beneficial because it reduces the need for detailed field data of grain sizes for 39 

future calculations. 40 

Index terms and keywords 41 

4217 Coastal processes 42 

4546 Nearshore processes 43 

4558 Sediment transport 44 

0545 Modeling 45 

Key words: grain size, aeolian processes, AeoLiS, beaches 46 

1. Introduction 47 

Sediment available for aeolian transport in coastal settings is characterized by a grain size distribution 48 

that is typically described with a range of grain size fractions (Krumbein, 1934). Grain size affects aeolian 49 

sediment transport due to the larger drag and lift force that is necessary to displace coarser grains 50 

(Durán et al., 2011; Sarre, 1987). Grain size also alters the creep and saltation trajectory of sediment 51 

(e.g., Cheng et al., 2015; Zhang et al., 2021). Therefore, different grain size fractions lead to different 52 

rates of sediment transport.  53 

Field measurements on beaches have shown considerable spatial variations in grain size in the 54 

alongshore (Hallin, et al., 2019a), cross-shore (Bauer, 1991; Çelikoǧlu et al., 2006; Edwards, 2001; Sonu, 55 

1972; Stauble & Cialone, 1997; van der Wal, 2000a; van IJzendoorn et al., 2022) and vertical dimension 56 

(van IJzendoorn et al., 2022). These horizontal and vertical grain size variations are expected to have a 57 



complex, combined effect on aeolian sediment transport, especially since grain size and sediment 58 

transport continuously interact. However, it is unknown how the spatial grain size variability influences 59 

the rate of aeolian transport towards the dunes. 60 

Despite the variable transport rates for the different grain size fractions available in beach sediment, 61 

aeolian models (e.g., Hoonhout and de Vries, 2016; van Dijk et al., 1999; Roelvink and Costas, 2019, 62 

Hallin, et al., 2019c) are typically simplified by using a single fraction throughout the model domain (e.g., 63 

Hallin, et al., 2019b; Hoonhout & de Vries, 2016; van der Wal, 2000b). However, some models can 64 

simulate multi-fraction transport, including the effect of sorting and the associated changes to the grain 65 

size distribution in the bed. An example of such a model is AeoLis, a process-based aeolian sediment 66 

transport model. The model has been used for multi-fraction simulations (e.g. Hoonhout & de Vries, 67 

2016, 2019) but the difference in transport rates compared to single-fraction simulations has not yet 68 

been fully quantified.  69 

We hypothesize that the inclusion of multi-fraction transport and spatial grain size variations in aeolian 70 

transport simulations has a considerable effect on the calculated sediment transport. Investigating these 71 

effects in an aeolian sediment transport model can provide new insights into the functioning of the 72 

aeolian sediment transport chain. Additionally, quantifying the effects of grain size is expected to 73 

provide important recommendations for grain size as an input parameter in future aeolian transport 74 

modeling that is used for coastal dune development predictions. This quantification can also impact the 75 

use of grain size as a design parameter in the implementation of interventions in the coastal dune 76 

system (e.g., Kroon et al., 2022).  77 

This research investigates to what extent sorting in multi-fraction sediment transport modeling and 78 

spatial grain size variations impact aeolian sediment transport. The important processes in the aeolian 79 

sediment transport chain are discussed in Section 2.1. The choice for a numerical model as study tool is 80 

explained in Section 2.2. The numerical implementation of different grain size scenarios that were 81 

simulated are presented in Section 3. In Section 4, the aeolian transport rates that resulted from the 82 

different grain size scenarios are presented. These results are discussed in Section 5 and the conclusions 83 

are drawn in Section 6. 84 

2. Background  85 

2.1. Modeling the aeolian sediment transport chain 86 
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by processes that occur upwind of the bed surface location. The sediment in the air column was picked 111 

up from the source area during antecedent wind conditions and was transported towards the bed 112 

surface location (i.e. advection). During this transport, bed interaction (i.e. the splash process) might 113 

have resulted in an exchange of sediment between the air and the bed (Anderson & Haff, 1988). This 114 

exchange can alter the grain size distribution of the sediment in the air column depending on the 115 

sediment composition of the beach between the source area and the bed surface location (Dong et al., 116 

2004). 117 

2.2. Studying the role of grain size in the sediment transport chain 118 

In the field, it is difficult to distinguish the effect of grain size variability from other varying 119 

environmental conditions, such as the wind field, bedforms, and surface moisture. Field measurements 120 

are often limited to a single location, which means they can show temporal patterns in grain size 121 

composition that are related to transport processes occurring upwind (Cohn et al., 2022; Field & 122 

Pelletier, 2018). Furthermore, it is difficult to observe the vertical bed composition at a relevant scale 123 

with non-invasive observation techniques (van IJzendoorn et al., 2022). Here, modeling has a major 124 

advantage as it allows the recording and investigation of the transport chain, including the source area, 125 

advective transport through the air, and bed surface grain size throughout the domain.  126 

The numerical aeolian sediment transport model AeoLiS was selected as a tool to simulate the effect of 127 

grain size on aeolian transport in this research. AeoLiS provides a systematic approach to studying 128 

spatiotemporal grain size variations. Distinguishing the impact of grain size from the many other factors 129 

that affect aeolian sediment transport on the beach is challenging. Therefore, wind tunnel experiments, 130 

in which the environmental conditions can be controlled, have been used to isolate individual aspects of 131 

aeolian sediment transport (e.g., grain size by Bagnold, 1937a, and shells by McKenna Neuman et al., 132 

2012). However, it would be difficult if not impossible to set up experiments with complex bed 133 

composition variations at reasonable monetary, time, and labor costs. Numerical modeling provides an 134 

opportunity to gain useful insights into this type of variations at relatively low cost. 135 

3. Methods 136 

3.1. Model description 137 

The multi-fraction approach of the AeoLiS model makes it suitable to study the effect of grain size 138 

variations on aeolian transport. The sediment bed in the model consists of a user-defined number of 139 

vertical layers and horizontal grid cells. The definition of vertical layers is crucial for describing the 140 
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𝑄 = 𝐶 𝑢∗ −  𝑢 ,∗  (1) 160 

in which Q (kg/m/s) is the aeolian sediment transport rate in the case of saturated transport, where C (-) 161 

is a constant equal to 1.5 that accounts for sediment gradation, ρa (kg/m3) is the density of air, and g 162 

(m/s2) is the gravitational constant. The u* is the surface shear velocity which represents the force 163 

exerted on the surface by the wind. The ut,* is the threshold shear velocity which represents the shear 164 

velocity at which grains at the surface start to move (initiation of motion).  165 

The threshold shear velocity is expressed as  166 

𝑢 ,∗ = 𝐴 𝑔 𝑑 (2) 167 

in which ρs (kg/m3) is the density of the sediment, d is the grain size diameter, and A is a constant 168 

coefficient equal to 0.085. The shear velocity is expressed as 169 𝑢∗ = 𝑢  (3) 170 

in which uw (m/s) is the wind velocity at height z (m) and z0 (m) is the aerodynamic roughness. The κ (-) 171 

represents the Von Karman constant. The z0 depends on the surface characteristics of the bed (i.e., the 172 

bed roughness). It should be noted that, in this research, the Nikuradse roughness method was used to 173 

calculate the aerodynamic roughness (𝑧 = ), as it allows for spatially varying grain sizes to impact the 174 

bed roughness through the median grain size, D50, of the bed surface in each individual grid cell.  175 

The equilibrium transport rate resulting from Equation 1 is used in a 1-D advection scheme (de Vries, et 176 

al., 2014b),  177 𝜕𝑐𝜕𝑡 + 𝑢 𝜕𝑐𝜕𝑥 = 𝑐 − 𝑐𝑇  

This equation is applied to calculate the sediment mass per unit area c (kg/m2) throughout time, 178 

indicated as t (s), and space, indicated as x (m). The uz (m/s) represents the wind velocity at height z (m). 179 

The bed exchange, which consists of erosion and deposition, is determined as the difference between 180 

the saturated sediment concentration csat (kg/m2) and the instantaneous sediment concentration c  (i.e., 181 

the sediment concentration already present in the air) divided by an adaptation time scale T (usually 1 182 

s). The adaptation time scale results in a simulation of the fetch effect (e.g., Bauer & Davidson-Arnott, 183 

2003; Gillette et al., 1996), where the sediment concentration increases downwind from the start of the 184 



domain. The increase to the maximum sediment concentration (i.e., where the normalized sediment 185 

concentration equals 1) requires a longer fetch with larger wind speeds and finer grain sizes as the 186 

saturated sediment concentration increases. Additionally, the bed exchange is maximized by the 187 

sediment that is available at the bed.  188 

For this study, the AeoLiS model was extended with the capability to input spatially varying bed grain 189 

size properties both in the horizontal (cross-shore and longshore) and vertical domains. The source code 190 

and documentation are open-source (https://github.com/openearth/aeolis-python). More details on 191 

the model concepts in AeoLiS and their numerical implementation can be found in De Vries, et al. 192 

(2014b) and Hoonhout & Vries (2016). 193 

The set-up of the model used in this study was based on an idealized beach environment. The 1D 194 

domain was 200 m long with a grid size of 1 m. The seaward boundary (x=0 m) had zero influx of aeolian 195 

sediment, and the landward boundary was open (x=200 m), so sediment can leave the domain. In the 196 

idealized beach environment, the effect of waves and tides was excluded, and only the wind that blows 197 

over a flatbed was taken into account. The wind direction was constant, and blowing in the direction of 198 

the grid from 0 to 200 m. In all simulations, nearly all default parameters of AeoLiS (v2.1.0) were used 199 

(AeoLiS Development Team, 2023). Only the parameters related to different grain size scenarios and 200 

time scales (discussed in Section 3.2 and 3.3), and the bed interaction (set to 0.05, following Hoonhout & 201 

Vries (2016)) deviated from the default settings. 202 

The idealized beach environment was used to create scenarios with different temporal scales and 203 

different spatial grain size variations. To enable the execution of the different scenarios two main input 204 

parameters were varied: the wind forcing and the bed composition. The impact of these variations were 205 

studied by recording the sediment flux that leaves the domain. The model setup used for all scenarios, 206 

and the python code used for the analysis and generation of the figures in this paper are freely available 207 

(van IJzendoorn, 2023). 208 

3.2. Grain size scenarios 209 

Several grain size scenarios were tested to investigate the effect of grain size variability: single-fraction, 210 

multi-fraction, horizontal variation, and vertical layering. The different grain size scenarios were 211 

simulated over different timescales with both static and variable winds to investigate the impact of 212 

sorting and wind climate. For all scenarios, a corresponding single-fraction reference grain size was used 213 



to quantify the effect of the scenario on the sediment transport. An overview of the scenarios and the 214 

25 different cases that were formulated is presented in Table 1. 215 

Table 1 – Overview of the different grain size scenarios and their associated cases, including the time scales at 216 
which the cases were executed. The underlined time scales are not shown in the Results section because they 217 
exhibit behavior comparable to the other time scales. 218 

Scenario 
# of  

cases 
Case description Time scale 

Single-fraction 6 125, 250, 300, 375, 500, 1000 and 2000 μm  10 min, 1 day, 1 year 

Multi-fraction 1 

Two fractions 

50%-50% 1 day, 1 year 

3 20%-80% 1 day, 1 year 

4 varied percentage 1 day, 1 year 

6 Full particle size distribution 1 day, 1 year 

Spatial variations 3 Horizontal 10 min, 1 day, 1 year 

2 Vertical 10 min, 1 day, 1 year 

 219 

A single fraction scenario and a multi-fraction scenario, which included cases with two-fraction mixes 220 

and full particle size distributions (PSDs), were executed to investigate the effect of including multi-221 

fraction transport in aeolian sediment transport simulations (Figure 3). For the single-fraction scenario, 222 

cases were created with one grain size class between 125 and 2000 μm that was the same in the entire 223 

bed (Figure 3a). In the two-fraction mix cases, grain size classes between 125 and 2000 μm were used. 224 

Two grain size classes were chosen with different weights assigned to both classes for each case (Figure 225 

3b, c and d). The percentages used in the context of grain size distributions indicate weight percentages. 226 

The single-fraction reference for the 50-50% and 80-20% mixes was defined as the average grain size. 227 

The single-fraction 125 μm case was used as a reference for the varied percentage mix.  228 

For the particle size distribution cases, 6 PSDs were created with Qgrain (Liu et al., 2021). The shape 229 

parameters (i.e., mean, standard deviation, weight and skewness) of the average grain size distribution 230 

of all samples collected in Noordwijk as presented in van IJzendoorn et al. (2022) were determined by 231 

fitting a skewed normal distribution. Subsequently, the median grain size (250 and 500 μm) and 232 

standard deviation (σ = 0.32, 0.62 and 0.92) were varied to create 6 PSDs (Figure 3e). The median grain 233 
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Runs of 10 minutes, 1 day, and 1 year were executed to assess the effect of grain size variations across 269 

time scales. The 10-minute runs involved constant wind speeds between 0 and 30 m/s. The 1 day and 1 270 

year academic cases were simulated with varying winds that were created with the wind generator in 271 

AeoLiS. The wind generator creates a random wind velocity time series with a given mean and maximum 272 

wind speed using a Markov Chain Monte Carlo approach based on a Weibull distribution. A mean wind 273 

speed of 10 m/s with a maximum wind speed of 30 m/s was used as input for the wind generator. 274 

Generated wind speeds fluctuate on the scale of the model timestep, dt, which was varied based on the 275 

simulation time (Table 2).  276 

Table 2 – AeoLiS model settings and wind input for scenarios with different temporal scales 277 

 278 

 279 

 280 

 281 

 282 

 283 

The layer thickness used in the simulations (Table 2) was scaled to the time step. This was done to avoid 284 

sediment depletion in the surface layer during time steps with peak transport, which would influence 285 

calculated transport rates. Increasing the resolution for the longer time scales is possible with a reduced 286 

time step. However, this would greatly increase the computation time needed for each simulation. We 287 

tested whether increasing the vertical resolution from 5 to 50 layers would have an effect on the 10-288 

minute time scale of the vertical layering scenario with a constant 10 m/s wind. The test showed that 289 

the sediment flux remained similar (i.e., a difference < 3%). However, there were some minor 290 

differences in the temporal trends of the pickup of the coarse and fine sediment, which were related to 291 

(numerical) diffusion of the vertical grain size gradient in the 5 layer test. These effects might be 292 

exacerbated at longer time scales and with the inclusion of varying wind speeds in a simulation. 293 

Therefore, the quantitative aeolian sediment transport results that were obtained at different time 294 

scales for each case, were not directly compared in this paper.  295 

4. Results 296 

Simulation 

time 

dt Output_times Wind regime # of 

layers

Layer_thickness 

10 minutes 1 10 Constant,  

range from 0 to 30 m/s 

5 0.00005 

1 day 60 600 Variable, 

mean 10 m/s, max 30 m/s 

5 0.0001 

1 year 3600 86400 Variable, 

mean 10 m/s, max 30 m/s 

5 0.01 
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smaller transport that occurred for the 250 μm and 500 μm fractions in the mix balanced each other, 335 

making the resulting cumulative transport comparable to the 375 μm case. This equalization may occur 336 

because the shear velocity and threshold shear velocity in Figure 5b show approximately linear trends 337 

for this relatively limited grain size range. At the yearly time scale, the behavior of the two-fraction mix 338 

was also closely replicated with a single fraction equal to the average grain size of the mix.  339 

The effect of armoring was further investigated with 80-20% mixes of varying grain sizes (125/2000 μm,  340 

300/1300 μm, and 375/1000 μm) with a constant average grain size equal to 500 μm. At a yearly 341 

timescale, the cumulative sediment flux varied for the different mixes (Figure 7). The 375/1000 μm case 342 

aligned with the result of the average grain size, the 300/1300 μm mix was slightly larger, and the 343 

125/2000 μm mix showed larger deviations. At the start of the year, the cumulative sediment flux of the 344 

125/2000 μm mix exceeded that of the average grain size. Within the first 50 days, it even exceeded the 345 

cumulative sediment flux of the single-fraction 125 μm case. The explaining mechanism is the increase 346 

of the aerodynamic roughness in the mix that was caused by the coarse fraction. A larger aerodynamic 347 

roughness increases the shear velocity (greyscale lines in Figure 5b) and, thus, the transport capacity 348 

which is dependent on the difference between the shear velocity and the threshold shear velocity 349 

(Equation 1). After the 50-day period, this increased transport capacity was counteracted by the 350 

coarsening of the bed surface (Figure 7), and the cumulative sediment flux progressively got closer to 351 

the reference case. After 240 days, the cumulative transport of the 125/2000 μm case became even 352 

lower than the reference case, eventually resulting in approximately 15% less cumulative transport at 353 

the end of the year. Similar fluctuations in the difference in cumulative sediment flux occurred for the 354 

300/1300 μm mix, although, the cumulative sediment flux was never less than the reference case.  355 
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>10% of 2000 μm sediment, was present. The full PSD scenarios, which are similar to the grain size 480 

distribution of beach sand, resulted in a maximum transport reduction of 15% over one day and 7.5% 481 

over one year compared to the median grain size. These values are in a similar order of magnitude as 482 

those found by Hoonhout & de Vries (2016), although the presence of shells further exacerbated the 483 

resulting reduction in their study. The results indicate that for most scenarios, the median grain size can 484 

be used as a pragmatic metric for natural grain size distributions in aeolian sediment transport models 485 

at daily to yearly time scales.  486 

However, there are some limitations to simplifying grain size distributions with the median grain size. In 487 

some of the single-fraction simulations, larger transport rates were recorded than in the corresponding 488 

multi-fraction simulation. Wide PSDs might include a relatively large contribution of both coarse and fine 489 

fractions. The fine fraction abundance may result in a relative increase of total transport compared to 490 

narrower PSDs (e.g., PSD 6 compared to PSD 4 and 5 in Figure 10). Additionally, several multi-fraction 491 

cases showed that increased transport can occur despite an increase in the reference grain size (e.g., the 492 

125/2000 μm mix in Figure 7). This sediment transport increase is related to an increase in the bed 493 

roughness and the shear velocity (Equation 3). In all cases, the effect was temporary, as coarsening due 494 

to the removal of fines counteracted the increase in transport caused by the roughness.  495 

The suitability of the D50 as a representative grain size can also be affected by armoring that limits the 496 

aeolian sediment transport. These armoring effects occur when a considerable amount of coarse grains 497 

is present. Whether specific grain sizes will result in armoring depends on the local wind climate. During 498 

energetic wind events, wind peaks can cause an increase in sediment transport and mobilization of 499 

coarse grains from the bed surface, which can expose underlying sediment (e.g., the 125/2000 μm mix 500 

in Figure 7). For the synthetic wind climate that was generated and used in this study, about 2000 μm 501 

was a critical grain size. Future work could further quantify for which wind climates and grain size 502 

distributions the use of the D50 as a representative grain size is valid. For now, a representative wind 503 

forcing could be created based on the wind climate and used in an aeolian sediment transport model to 504 

determine to what extent specific coarse fractions are expected to be mobilized. 505 

Besides wind speed peaks, hydrodynamic processes and trampling can also break up and alter armor 506 

layers. Hydrodynamic processes can cause erosion, deposition and mixing that directly affect the top 507 

layers of the bed surface on a time scale of seasons (e.g., Abuodha, 2003; Prodger et al., 2017), events 508 

(e.g., Gallagher et al., 2016) and tides (e.g., van IJzendoorn et al., 2022). Future work could investigate 509 

the effect of temporally varying grain sizes due to hydrodynamic processes on the sediment flux by 510 



including temporal grain size variations in modeling simulations by making simplified assumptions (e.g. 511 

based on findings by van IJzendoorn et al., 2022) or coupling with a numerical model (Reniers et al., 512 

2013; Srisuwan & Work, 2015). Trampling is also expected to affect the grain size at the bed surface 513 

(Moayeri et al., 2023; Reyes-Martínez et al., 2015). Its effects could be included in aeolian sediment 514 

transport models with mixing of surface layers in locations where human activity is expected.  515 

5.2. The implementation of spatial grain size variations in aeolian sediment transport modeling 516 

Significant vertical grain size variations at the bed surface have been measured (e.g., van IJzendoorn et 517 

al., 2022) and over larger soil depths (e.g., Gallagher et al., 2016; Gunaratna et al., 2019). The 518 

measurements of van IJzendoorn et al. (2022) showed a maximum range of 119 μm in the D50 of 519 

different layers in the top 5 cm of the bed surface. Based on our results, we expect that these variations 520 

could be simulated relatively accurately on the daily and yearly timescales with the D50. On the minute-521 

scale, we expect that the sediment flux could significantly be altered, especially when layers with a 522 

significant contribution of coarse fraction are present near the bed surface. We recommend the 523 

inclusion of vertical grain size layering in aeolian sediment transport models where short-term time 524 

scales are considered. On time scales longer than days, they can be omitted. 525 

The source area at the beginning of the domain has a significant impact on the cumulative sediment flux 526 

across all time scales. As a result, there can be a disconnect between the grain size that is at the bed 527 

surface and the transport that occurs at that location. Consider a point measurement at the end of the 528 

domain of the coarse - fine and fine - coarse - fine cases for the 10-minute time scale (Figure 13). The 529 

grain size at these locations was comparable but the cumulative sediment flux deviated considerably. 530 

This difference was mostly related to the grain size of the material present in the source area where 531 

pickup of fine and coarse sediment occurred. This shows it is important to consider the grain size that is 532 

present in the source area when explaining minute-scale sediment transport measurements, as 533 

previously indicated by Cohn et al., (2022), Field and Pelletier (2018) and Uphues et al. (2021). These 534 

grain size measurements should be recent because wind speed peaks can cause temporal variations in 535 

the bed surface grain size and the related aeolian sediment transport.  536 

The intertidal area was found to be an important source for aeolian sediment transport towards the 537 

dunes by de Vries, (2014a). Our findings show that this upwind source of sediment is important for the 538 

bed surface grain size development across the domain and the sediment transport magnitude. Thus, the 539 

results suggest that the grain size in the intertidal area (e.g., Bascom, 1951) might be the most 540 



important to include in aeolian sediment transport models that are used for coastal dune development 541 

predictions. These findings align with measurements of aeolian sediment transport in the intertidal area 542 

by Swann et al., (2021), who found similar grain sizes in the air column as on the bed. Future work could 543 

further validate or falsify these findings by combining minute-scale quantitative sediment transport 544 

measurements with bed surface grain size measurements that can show a temporal variation through 545 

time. Furthermore, the importance of the grain size in the intertidal area emphasizes the need to study 546 

sediment supply by hydrodynamic processes and, specifically, its effect on grain size composition. 547 

6. Conclusions 548 

The sorting of multi-fraction sediment, spatial variations in grain size, and their impact on aeolian 549 

sediment transport were studied using a numerical aeolian sediment transport model. Results show 550 

that, in general, the D50 can be used as a representative grain size in aeolian sediment transport 551 

modeling on a time scale of days to years. For wide grain size distributions, the multi-fraction sediment 552 

flux may differ from the single-fraction flux of the reference grain size. In these cases, simplified model 553 

runs that include the full particle size distribution and a wind forcing representative for the wind climate 554 

to test the impact on the sediment flux could be considered.  555 

On a time scale of 10-minutes, the bed surface grain size has a direct effect on the aeolian sediment 556 

transport flux. Due to this strong relation between grain size and sediment transport, vertical grain size 557 

layering may be required in models that predict aeolian sediment transport at this time scale. On time 558 

scales from days to years, modeling the effect of vertical layering may not be needed if a representative 559 

grain size is used.  560 

The effect of horizontal grain size variations is relevant across all time scales. The grain size in the 561 

upwind part of the domain can directly affect the transport magnitude across the domain. The intertidal 562 

area can be the dominant source of aeolian sediment transport that affects coastal dune development. 563 

In these cases, we recommend to include the grain size present in this region in aeolian sediment 564 

transport models and consider its impact on point measurements of sediment transport recorded on the 565 

beach. Additionally, we recommend to further investigate the supply of sediment to the intertidal zone 566 

by marine processes, specifically focusing on grain size. 567 
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