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Abstract

The overwhelming amount of seismic, geodesic and in-situ observations accumulated over the last 30 years clearly indicate that,
from a mechanical point of view, faults should be considered as both damageable elastic solids in which highly localized features
emerge as a result of very short-term brittle processes and materials experiencing ductile strains distributed in large volumes
and over long time scales. The interplay of both deformation mechanisms, brittle and ductile, give rise to transient phenomena
associating slow slip and tremors, known as slow earthquakes, which dissipate a significant amount of stress in the fault system.
The physically-based numerical models developed to improve our comprehension of the mechanical and dynamical behaviour of
faults must therefore have the capacity to treat simultaneously both deformation mechanisms and to cover a wide range of time
scales in a numerically efficient manner. This capability is essential, both for simulating accurately their deformation cycles
and for improving our interpretation of the available observations.

In this paper, we present a numerically efficient visco-elasto-brittle numerical framework that can simulate transient deformations
akin to that observed in the context of subduction zones, over the wide range of time scales relevant for slow earthquakes. We
implement the model in idealized simple shear simulations and explore the sensitivity of its behavior to the value of its main

mechanical parameters.
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Key Points:

» We present a continuum model for the deformation of faults in which the mechan-
ical strength vary continuously as a function of the damage.

e The model’s numerical scheme allows covering the very short and very long time
scale processes involved in the slow earthquake phenomenon.

« The model reproduces different types of transient deformations, akin to slow and
classical earthquakes in subduction zones.
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Abstract

The overwhelming amount of seismic, geodesic and in-situ observations accumulated over
the last 30 years clearly indicate that, from a mechanical point of view, faults should be
considered as both damageable elastic solids in which highly localized features emerge

as a result of very short-term brittle processes and materials experiencing ductile strains
distributed in large volumes and over long time scales. The interplay of both deforma-
tion mechanisms, brittle and ductile, give rise to transient phenomena associating slow
slip and tremors, known as slow earthquakes, which dissipate a significant amount of stress
in the fault system. The physically-based numerical models developed to improve our
comprehension of the mechanical and dynamical behaviour of faults must therefore have
the capacity to treat simultaneously both deformation mechanisms and to cover a wide
range of time scales in a numerically efficient manner. This capability is essential, both
for simulating accurately their deformation cycles and for improving our interpretation
of the available observations.

In this paper, we present a numerically efficient visco-elasto-brittle numerical frame-
work that can simulate transient deformations akin to that observed in the context of
subduction zones, over the wide range of time scales relevant for slow earthquakes. We
implement the model in idealized simple shear simulations and explore the sensitivity
of its behaviour to the value of its main mechanical parameters.

Plain Language Summary

The outer part of the Earth, called the lithosphere, is a complex object that de-
forms both in a solid and a fluid manner. Where tectonic plates meet, such as in fault
zones, this duality gives rise to a variety of phenomena. The solid behaviour is associ-
ated with earthquakes and very sudden slip movements of the fault that we feel at the
surface. The fluid behaviour translates into a slow and steady slip at depth. In between,
the mixed solid-fluid behaviour results in progressive accelerations and decelerations of
the fault slip accompanied with very weak quakes, which are called slow earthquakes. These
slow earthquakes modulate the deformation cycle of faults and most probably impact
the occurrence of "real”, or classical, earthquakes. It is therefore important to account
for them in numerical models that aim to help us understand this cycle better. In this
paper we present a model of the deformation of fault zones that we have developed with
the particular goal of representing slow earthquakes and that allows the lithosphere to
behave sometimes like a solid, sometimes like a fluid.

1 Introduction

Earth’s materials are known to exhibit a variety of deformation mechanisms de-
pending on temperature, pressure and loading conditions as well as on the time and spa-
tial scales at which they are observed (e.g., Burov, 2011). In the most dynamic parts of
the Earth’s lithosphere, such as plate boundaries and fault zones, volcanic systems and
landslides, the interplay between different mechanisms can result in a strong strain lo-
calization and a complex temporal behaviour. The slow deformation occurring over ge-
ological time scales can indeed be suddenly accelerated and give rise to catastrophic events
(earthquakes, eruptions, landslides) that release huge amounts of energy in a very short
time.

Historically, the deformation of the lithosphere has been studied either at the short
time scales (seconds to minutes) of these catastrophic events or at the very large time
scales (years to millions of years) of plate tectonic motion. However, the technological
progresses in observational systems over the last 30 years has brought about a revolu-
tion in the comprehension of its dynamical behaviour, by allowing to explore the time
scales in between. Global Positioning System (GPS), radar interferometry (Synthetic Aper-
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ture Radar, InSAR) and satellite gravimetry data have indeed driven a huge leap for-
ward in terms of measuring the deformation of the Earth surface continuously in time
and space and at high resolution. These new geodetic observations have been accompa-
nied by rapid deployments of dense seismic networks and by the emergence of novel meth-
ods of analysis of continuous seismic data that allow exploring deformation mechanisms
over a significantly wider range of time scales.

In the case of earthquakes, the occurrence of co-seismic rupture processes that re-
distribute Coulomb stresses over short time scales (on the order of seconds) and the as-
sociated scaling properties have been established for a long time (Omori, 1894; Gutem-
berg & Richter, 1949; Turcotte, 1992). However, the recent advances in the observational
systems and data analysis methods have profoundly modified our vision of how plate tec-
tonic motions are accommodated and how stresses are dissipated along faults. In par-
ticular, the combination of high resolution geodetic and seismic data has resulted in im-
proved tracking of co-, post- and inter-seismic deformation patterns (e.g., K. Wang et
al., 2012) and in the discovery of new types of transient phenomena designated as “slow
earthquakes”. These slow earthquakes, associated because of their triggering depth with
the so-called brittle-ductile transition comprised between the brittle, seismic zone near
the surface and the ductile, aseismic zone below (e.g., Dragert et al., 2004; Peng & Gomberg,
2010; Obara & Kato, 2016, and many others), combine periodic accelerations of the fault
slip with weak seismic radiations known as tectonic tremors (e.g., Dragert et al., 2001;
Obara, 2002; Peng & Gomberg, 2010). Analyses based on the cross-correlations of am-
bient seismic noise have demonstrated that the transient deformations accompanying both
slow and major earthquakes are associated with changes in elastic properties of the ma-
terial in the vicinity of the fault, reminiscent of damaging processes and of a non-elastic,
or at least nonlinear elastic behaviour (e.g., Brenguier et al., 2008; Rivet et al., 2011; Q.-
Y. Wang et al., 2019). Seismic data (e.g., Audet et al., 2009), along with other sources
such as tomographic imagery (Shelly et al., 2006) and the observation of exhumed sub-
duction zones (Angiboust et al., 2015), have also allowed identifying fluids as another
major player in the transient deformation of faults. In the context of slow earthquakes
in particular, the increased pore-pressure from fluids trapped in the fault zone and as-
sociated pore-pressure variations and diffusion are indeed believed to partially control
the seismic and slow slip activity via the weakening and fracturing of the host rock, the
local reduction of the effective stress and friction along the shearing plane and the trig-
gering and migration of tremors (e.g., Brown et al., 2005; Frank, Shapiro, et al., 2015;
Shapiro et al., 2018; Cruz-Atienza et al., 2018; Dublanchet, 2019; Luo & Liu, 2019, 2021,
and many others).

1.1 Existing Modelling Approaches

The direct modelling approaches that exist to model the deformation of the Earth’s
lithosphere and faults in particular can be divided in several categories.

The first includes continuum frameworks based on a fluid mechanics approach, namely
viscous, visco-elastic, visco-plastic or elasto-visco-plastic models. Such models have been
developed to represent the diffuse, ductile and potentially large deformations associated
with plate tectonics motion, for instance the formation of mountain ranges and conti-
nental rifts (e.g., Royden et al., 1997; Frederiksen & Braun, 2001; Popov & Sobolev, 2008).
They can reproduce strain localization by including strain-weakening mechanisms, such
as a non-linear dependence of the viscous strain rate on the stress and thermo-mechanical
feedbacks. However, their applications are restricted to ductile deformations on geolog-
ical time scales. In the context of faults, visco-elastic models of the Maxwell or Burg-
ers type (see figure 1) have also been often used to represent the mechanical behaviour
of the combined Earth’s crust and mantle system (e.g. Nur & Mavko, 1974; Pollitz et
al., 2001; Pollitz, 2003, 2005; Hetland & Hager, 2005, 2006; K. Wang et al., 2012; Sun
& Wang, 2015). In such frameworks, the Maxwell component represents the lithosphere,
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which can elastically transmit stresses over short time scales, while relaxing stresses in
an exponential manner over very long time scales. The Kelvin component is added to
represents the more ductile asthenosphere, which hosts mantle convection and is thought
to cause a delayed elastic response, measurable in the reversal of surface velocities af-

ter a major earthquake (e.g., Sun & Wang, 2015). However, with constant mechanical
parameters (elastic moduli and viscosities), these models cannot by themselves account
for the rheological stratification of fault zones, nor for the presence of a relatively local-
ized shearing zone that concentrates the deformation. They are therefore usually imple-
mented in "layered” frameworks (e.g., Hetland & Hager, 2005, 2006; K. Wang et al., 2012;
Sun & Wang, 2015), in which the structure of the system is prescribed and divided in
multiple pre-determined layers with different rheologies (e.g., an elastic layer of crust em-
bedded in a visco-elastic mantle) and is thus not allowed to evolve in time. With con-
stant mechanical parameters also, neither the Maxwell nor the Burgers model can re-
produce the transient deformations of fault systems over a wide enough range of time
scales (Ingleby & Wright, 2017; Periollat et al., 2022): deformations which translate for
instance in an Omori-like decay of post-seismic surface velocity (velocity inversely pro-
portional to the time since the earthquake), observed hours to ten of years after mod-
erate to large continental earthquakes (Ingleby & Wright, 2017).

A second category of models aim to represent the transition between stable and
unstable deformation regimes within the Earth crust by assimilating brittle and frictional
processes to the problem of friction on a material interface. This is the case for the well-
known block-slider framework, a parametric model stemming from experimental stud-
ies of the frictional behaviour of various materials including rocks, which combines the
principle of linear elasticity and non-linear stick-slip friction between a sliding block and
an underlying surface. Purely conceptual models including these basic ingredients have
first been used to explain the statistical properties associated with major earthquakes,
such as the Gutemberg-Richter law (e.g., Burridge & Knopoff, 1967; Carlson & Langer,
1989). The rheology of frictional interfaces has been later formulated as a constitutive
law known as ”"rate-and-state friction” (Dieterich, 1978, 1979a, 1979b) which has been
widely used to model fault instabilities and earthquakes (e.g., Liu & Rice, 2005; Segall
& Bradley, 2012, and many others). This law establishes the following relation between
the measured friction coefficient, p, the sliding velocity, V', and the state of the slip plane,
0:

. Vv Vo

w6, V) =p*+aln v +bln D.
where p* is a friction coefficient at a reference sliding velocity, V*, a and b are propor-
tionality constants for the magnitude of instantaneous and time-dependant displacements
respectively and D, is a characteristic slip distance for the evolution of the system to-
wards a new stable state. It is often coupled to an evolution equation for the state pa-
rameter, 6, which describes aging effects (Dieterich, 1979a; Ruina, 1983). For negative
values of (a—b), the model describes a decrease of the friction coefficient with increas-
ing sliding velocity and hence an unstable, velocity-weakening state, assimilated to a brit-
tle, seismic behaviour. For positive values of (a—b), it describes an increase of the fric-
tion coefficient with the slip velocity, therefore a state of stable, velocity-hardening slip,
assimilated to an aseismic, ductile behaviour. By including additional levels of complex-
ity relevant to faults, which allow a change of sign of (a—b) along the interface (for in-
stance, a dependence of a and b on the temperature), this model can also reproduce tran-
sitions between a brittle and a ductile behaviour and transient slip events (Liu & Rice,
2005, 2007; Segall & Bradley, 2012). Its main limitation, however, is that it is empirically-
based. As such, its extrapolation to the temporal and spatial scales of geophysical sys-
tems such as faults on the basis of the results obtained in the laboratory is not trivial
and questionable (e.g., Chen et al., 2017; van den Ende et al., 2018). A second impor-
tant limitation is that it is an interface rheology, which implies a prescribed, non-evolving
location of the sliding plane and which does not take into account its microstructure or
its volumetric deformation. By this fact, it presents a limit to which it can be enriched



168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

to include the highly relevant physico-chemical, mineralogical and hydro-mechanical pro-
cesses involved in the fault deformation cycle. It is also important to note that a ”fault
plane” approach is in contradiction with seismic data and geological observations of ex-
humed faults, which suggest that the deformation occurs within a core zone made of gouge,
sandwiched between a metric to kilometric-scale zone of damaged rocks (Caine et al.,

1996; Angiboust et al., 2015; Hayman & Lavier, 2014; Gao & Wang, 2017).

Another category of models include continuum mechanics damage frameworks (e.g.,
Ashby & Sammis, 1990; Lyakhovsky, Reches, et al., 1997; Tang, 1997; Amitrano et al.,
1999; Bhat et al., 2012, and many others). So-called elasto-brittle schemes, which cou-
ple a damage variable to an elastic constitutive law, has indeed been used to represent
the fracturing processes and the associated strong localization of the deformation in faults
(e.g. Lyakhovsky, Ben-Zion, & Agnon, 1997; Lyakhovsky et al., 2001; Ben-Zion & Lyakhovsky,
2002, and later papers). Without accounting for the dynamic propagation of fractures
nor the generation of seismic waves, these models represent the redistribution of elas-
tic stresses caused by the generation and coalescence of micro-fractures and the complex
mechanical interactions in the material that stem from its micro-structural heterogene-
ity. They thereby present the advantage of simulating the emergence of a damaged shear-
ing or sliding zone (without the need to prescribe its location or geometry), the stable
to unstable transition of the system that precedes the macroscopic rupture as well as the
scaling laws associated with the localization of the deformation and the spatio-temporal
clustering of the seismic activity (e.g., Ben-Zion & Lyakhovsky, 2002; Turcotte et al.,
2003; Shcherbakov et al.,; 2005). An intrinsic limitation of such schemes, however, is that
they are based on an elastic constitutive law and as such, they cannot simulate any pre-
or post-rupture permanent deformation in the material. By this fact, it cannot repro-
duce the entire deformation cycle of faults. Hamiel et al., (Hamiel et al., 2004) and Dansereau
et al., (Dansereau et al., 2016a) therefore elaborated from elasto-brittle frameworks by
adding a viscous relaxation term that is coupled to the local level of damage in order to
represent, respectively, the small irreversible deformation that accumulate towards the
macro-rupture and the permanent and potentially large post-rupture deformation of the
fractured material. Their visco-elasto-brittle models have been shown to successfully sim-
ulate the scaling laws associated with brittle deformations in faults (e.g., Ben-Zion & Lyakhovsky,
2006) and a mechanically similar system: sea ice (Dansereau et al., 2016a; Rampal et
al., 2019; Olason et al., 2021). However, in the context of faults, the numerically-coupled
treatment of damage propagation and viscous relaxation in these models makes them
too computationally expensive to cover the very long time scales associated with duc-
tile deformations and hence reproduce multiple deformation cycles.

Finally, other models have been developed to help understanding the dynamics of
fluids and its role in the deformation of faults (e.g. Segall & Rice, 1995, and many oth-
ers). In particular, recent idealized models of pressure diffusion in the host rock with rapidly
varying permeability have been able to explain the observed rapid tremor migrations and
their reversals (Cruz-Atienza et al., 2018; Farge et al., 2021). However, a very impor-
tant challenge remains to day: to couple these models with the two- or three-dimensional
deformation of the solid matrix and other near-fault processes to allow assessing their
impact on the geodetically observed strains.

1.2 Focus on the Slow Earthquake Phenomenon

Developing a single numerical modeling framework suitable for all of the above men-
tioned physical processes and that can cover the entire spectrum of associated time scales
is a very ambitious, perhaps unachievable, goal. Therefore, in this paper, we focus on
modelling the mechanical behaviour and deformation of fault zones, leaving aside for the
moment the role of fluids. We also concentrate over time scales intermediate between
those characterizing the cycle of major, or ”classical”, earthquakes (from decades to thou-
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sands of years) and the one of dynamic rupture (faster than hundreds of seconds). Within
this range, the deformation of faults is often controlled by slow earthquakes.

The slowest temporal scale associated with the slow earthquake phenomenon is re-
vealed by geodetic observations of the accompanied slow and diffuse surface deforma-
tion, with typical event durations between weeks and months and inter-events gaps of
the order of a few years (e.g., Dragert et al., 2001; Kostoglodov et al., 2003; Radiguet
et al., 2012). The fastest temporal scale is related to seismic radiations, observed at fre-
quencies above 1 Hz in the form of tectonic tremors (e.g., Obara, 2002; Payero et al., 2008)
or low-frequency earthquakes (LFEs) (e.g., Shelly et al., 2006; Bostock et al., 2012; Frank
et al., 2014) and which imply localized, brittle deformations and associated elastic strain
variations in the source region on the order of fractions of a second. Therefore, even if
ignoring the second-order effect of the long-term deformation of the system attributable
to mantle relaxation, convection and delayed elastic deformations, as done in this pa-
per, building a model for slow earthquakes entails dealing with localized, brittle defor-
mations and diffuse, ductile deformations that are separated by about 8 orders of mag-
nitudes of time scales. This huge separation requires developing a numerical scheme that
allows simulating the relevant processes in reasonable simulation times.

This is the aim of the current work : developing a physically sound and numeri-
cally efficient continuum rheological framework for slow earthquakes. It is important to
note however that doing so, we also keep in mind a future application to a wider range
of time scales relevant to the entire seismic cycle. Another objective is that this frame-
work be simple and versatile, so that to give valuable insights and eventually be trans-
ferable in the context of other geophysical systems that are characterized by a similar
dynamics, that is, a dynamics comprised of mixed brittle/ductile and transient defor-
mations, such as landslides and volcanic edifices (e.g., Peng & Gomberg, 2010; Lacroix
et al., 2014; Carrier et al., 2015; Got et al., 2017; Handwerger et al., 2016; Poli, 2017;
Parisio et al., 2019; Seydoux et al., 2020, and many others). A very important feature
of the proposed modelling approach is that it accounts for rock fracturing processes via
a progressive damage mechanism that is coupled to the mechanical strength of the ma-
terial, which is described not only by an elastic modulii but also an apparent viscosity.
As such, in addition to the long-term evolving strain of the system (observed with GPS,
tiltmeters, strainmeters) the model represents the short-term temporal evolution of the
averaged energy of seismic radiations (observed as tremors and LFEs).

The rheological model is presented in section 2, together with its numerical scheme.
Its implementation in an idealized shearing experiment that is relevant in the context
of subduction zones is described in section 3. The main characteristic numbers and times
describing this experiment are described in section 4. Section 5 presents a demonstra-
tion of its mechanical and numerical behaviour, with a sensitivity analysis on the value
of its main parameters. This analysis demonstrates its capability to simulate the wide
separation of scales between the brittle and ductile processes and transient deformations
at the intermediate time scales.

2 The Physical Model

The model builds on the Burgers framework, which combines the Maxwell (an elas-
tic and a viscous component in series) and the Kelvin-Voigt (an elastic and a viscous com-
ponent in parallel) visco-elastic models (see figure 1). As mentioned in section 1.2, for
the sake of the current paper we neglect the effect of the delayed elasticity of the man-
tle, which is responsible for instance for the reversal of surface velocities following ma-
jor earthquakes but is probably of second-order in the context of slow earthquakes. In
the following description, the model is therefore reduced to the Maxwell component. In
particular, we focus on testing the capability of this component to reproduce transient



269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

]

1l
Ll

~ "
Maxwell Kelvin-Voigth

Figure 1. Schematic representation of the Burgers model. When loaded with a constant
deformation, the Maxwell component undergoes a relaxation (exponential decay) of the stress.
When unloaded, the part of the deformation associated to the viscous element is non-recoverable.
When loaded with a constant stress, the Kelvin component leads to an exponential decay of the
deformation. When unloaded, this deformation is fully recoverable. The implementation of the

model described in this paper neglects the Kelvin component.

deformations and a deformation cycle akin slow earthquakes when F and 7 are not con-
stant but allowed to evolve in both space and time, according to the local degree of frac-
turing of the material at the sub-grid scale, the so-called level of damage. The develop-
ment of the current visco-elastic framework therefore lies crucially on the formulation

of a coupling between E and 7 and this level of damage. The starting point of this cou-
pling follows the simple formulation suggested by (Dansereau et al., 2016a), which was
shown to successfully reproduce the spatial localization and intermittency of the dam-
age and deformation and associated scaling laws in another quasi-brittle material that
undergoes permanent deformations partially dissipating stresses when fractured; sea ice.

Another particularity of our approach is that, contrary to existing visco-elastic lay-
ered models (e.g., K. Wang et al., 2012; Sun & Wang, 2015), here a unique rheology is
applied to the entire system (see figure 2). Its component are differentiated solely on the
basis of the bulk elastic modulus and on the local level of damage.

2.1 Constitutive Equation

The Maxwell model is applied here in the context of an elastic, compressible solid.
Its constitutive law reads D 1
o

E+XJ:EK:€, (1)

where K is the elastic stiffness tensor, defined in terms of Poisson’s ratio, 0 < v < 0.5,
and from which the elastic modulus, F, is factored out. For any three-dimensional sym-
metric tensor € = ¢;; € 4,5;1 < i,j < 3,(K: €);; = mtr(e)ézj + 22(171%,)6”-.
The strain rate tensor, € is taken equivalent to the rate of strain tensor and is given by
D(u) = Y¥Vu where u is the velocity. The ratio of the material’s apparent viscos-
ity and elastic modulus, A = n/E, hereinafter referred to as the relaxation time, sets
the mesoscopic rate of dissipation of the stresses through permanent deformations.

Following Kachanov (1958) and previous isotropic damage models (e.g., Tang, 1997;
Lyakhovsky, Ben-Zion, & Agnon, 1997; Amitrano et al., 1999) the density of cracks at
the sub-grid scale is described by a mesoscopic scalar damage variable, d, the value of
which evolves between 0 for an undamaged and 1 for a totally damaged material (see
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Figure 2. Schematic representation of the model and simulations, which represent a vertical

(z, z) cross-section of two layers of host rock sheared by applying a constant velocity at the bot-
tom of the lower layer, in the z-direction. A unique visco-elasto-brittle constitutive law is applied
to the entire system. The two layers are differentiated only on the basis of the undamaged value
of their elastic modulus. The expected mechanical behaviour is one in which the bulk of both
layers is quasi-elastic, since damage there is expected to be almost zero and the effective viscosity
is high, and visco-elastic at the interface of the two layers, where the deformation and damage

are localized and potentially high and the elastic modulus and apparent viscosity much reduced.

figure 2). In the case of the elastic modulus, the coupling to d is based on the principle
of effective stress (Kachanov, 1958) and reads

E = Eo(1 - d), (2)

where Ej is the undamaged elastic modulus of the material. In the case of the effective
viscosity, 7, the coupling reads:

77:770(]- _d)a’ (3)

where 79 is the bulk viscosity of the material, i.e., its viscosity in its undamaged state,
and « is an exponent > 1 such that the relaxation time, A, setting the rate of dissipa-
tion of the stresses, decreases with the degree of fracturing of the material. This ad-hoc
but simple coupling allows, on the one hand, the dissipation of the stress through per-
manent deformations where the material is damaged and, on the other hand, the con-
servation of the stress associated to elastic deformations where the material is relatively
undamaged (Dansereau et al., 2016a; Weiss & Dansereau, 2017).

2.2 Progressive Damage Mechanism

The level of damage in the model evolves due to both fracturing and healing pro-
cesses. The first of these processes translates into an increase in d and its occurrence is
determined at any given model iteration by comparing the local state of stress to a crit-
ical stress value, set by a chosen damage criterion. The present implementation uses the
Mohr—Coulomb criterion

o1 = qos + o, (4)

where o1 and o, are the principal stresses, ¢ = [(uz + 1)1/ 24 ,u]Q, 1 is the internal fric-

tion coefficient and o, = W, where C is a non-zero cohesion (resistance of
7 —p

the material to pure shear). No truncation is applied here to this criterion in the case
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of 01,09 < 0 : hence it includes tensile stresses. In a manner similar to other damage
modelling frameworks, some noise is introduced in this criterion, by drawing the value
of C' over each element of the discretized domain from a uniform distribution, to repre-
sent the heterogeneity of natural materials and insure progressive failure even under per-
fectly homogeneous forcing conditions.

As in the elasto-brittle model of (Amitrano et al., 1999), d evolves due to damag-
ing following
1—d =6d(1—4d), (5)

where d’ is the post-damaging value of damage, d, the pre-damaging value and dd, a con-
stant multiplication factor such that dd = 0 when and where the state of stress is sub-
critical and 0 < dd < 1 when and where it is over-critical with respect to the damage
criterion. According to equations (2) and (3), each damage event implies that the local
elastic modulus and apparent viscosity decrease respectively as

E = §dE (6)
n = ddn (7)

where the superscript ’ is hereinafter used to denote the post-damage strength, stress
and deformation. This local decrease in mechanical strength leads to an elastic redis-
tribution of the stresses from the over- to the sub-critical areas of the material, which
allows for the triggering of avalanches of damaging events, representing the propagation
of cracks at the mesoscale, as long as the elastic modulus (or relaxation time) or the ma-
terial remains significant. It is important to note that, as other damage frameworks, the
current model is not dynamic and as such, is not meant to capture the propagation of
the rupture that generates seismic waves. Instead, it aims at representing the effect of
such rupture processes on the deformation of the material.

In developing the model, we take advantage of the very large separation of scales
between the brittle and ductile deformations in faults to make the assumption that the
first type of deformation is quasi-instantaneous relative to the second type. As such, we
treat the evolution of the level of damage as independent of time. The same approxima-
tion is implicitly made in the time-independent (linear) elasto-brittle brittle model of (e.g.,
Amitrano et al., 1999). Here, we therefore follow a similar approach and formulate a steady-
state, iterative scheme for the stress redistribution associated with micro-fracturing and
fracture coalescence at the sub-grid scale. This formulation relies on two hypotheses:

1. the immediate effect of damage is to redistribute the local stresses, not strains.
In the following, this immediate post-damage state is referred to using the ”*”
perscript,

2. as the propagation of damage is quasi-instantaneous compared to viscous relax-
ation processes in the material considered, the viscous stress dissipation term in
equation (1) can be neglected when solving for the damage propagation. The con-
stitutive equation therefore reduces to that of a linear-elastic material:

su-

oc=FK:e¢,

where € is the deformation (as opposed to the deformation rate) tensor.

The following constitutive equations thereby define respectively the pre- and immedi-
ate post-damage states:

o = FEK:¢,
c* = FE*K:¢&",

Using the first hypothesis laid above, the following equality relating the pre-damage and
the immediate post-damage elastic modulus (respectively F and E*) and stresses (o and
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o*) can be written

o* o

E*  E
Using equation (6), the immediate post-damage stress adjustment is therefore given by

o = odd.

Considering further that this local stress adjustment induced by the damage event will
lead, in a second time, to an adjustment in the neighbouring deformation and so, stress,
the new state of equilibrium between the post-damage stress, ¢’, and the post-damage
deformation, &', is given by

o' —odd=Ep(l —d)K: €. (8)

2.3 Healing Mechanism

Healing is another essential ingredient for the reproduction of the deformation of
fault zones (e.g., Bos & Spiers, 2002; Renard et al., 2000, and many others). In the case
of damaged rocks and rock gouges, it can include various processes, like sintering (e.g.,
Hirono et al., 2020), cementing and sealing from dissolution-precipitation processes (e.g.,
Sibson, 1992; R. T. Williams, Mozley, et al., 2019), motion/diffusion of asperities and
dislocations (e.g., Dieterich, 1979a, 1979b, and many others) and compaction (e.g., Hun-
feld et al., 2020). In the current model, the respective effects of all of these processes are
not differentiated but rather encapsulated into a single healing law that prescribes a de-
crease in the level of damage at a constant rate such that:

Dd 1
D= thd,0§d<1, (9)
where t;, the healing time. Through their respective coupling to d, both the elastic mod-
ulus and apparent viscosity are therefore allowed to re-increase towards their bulk value
after damage events : a behaviour that is consistent with observations of the evolution

of seismic velocities (Li & Vidale, 2001; Brenguier et al., 2008). This very simple law,

used here for the purpose of demonstrating the general impact of healing on the mod-

elled mechanical behaviour, could be refined in more realistic implementations of the model
(see section 11).

2.4 The Coupled Visco-Elasto-Brittle Model

The proposed model couples the time-independent treatment of the damage prop-
agation with the time-dependant, visco-elastic Maxwell constitutive equation and the
time-dependant evolution equation for healing. To do so, the complete system of equa-
tions is solved in three steps or subproblems (P):

(P1) The full constitutive equation (1) is first solved together with the full momentum
equation, boundary and forcing conditions (see section 3) and using the field of
damage at the previous time step for a first estimate of the field of velocity and
stress at the current time step. The field of stress is then compared to the local
damage criterion.

(P2) If and only if the stress locally exceeds the damage criterion, the forcing is paused
and the macroscopic deformation of the simulated material is held constant. The
model enters a steady-state subiteration in which (i) the level of damage, d, is ad-
justed to its post-damage value, d’, (ii) equation (8) is solved for the adjusted state
of stress, o/. These two steps are carried iteratively until all states of stresses be-
come sub-critical, at which point the stress state at the current time is set to the
adjusted stress at the final subiteration.

—10—



411

412

413

414

416

417

418

(P3) The healing equation (9) is solved for the field of damage at the current time step,
using the post-damaging level of damage, d’.

This scheme is illustrated schematically in figure 3 and presented in full details in Ap-
pendix B.

MEB + forcing
Knowing d, find ¢ and u such that
V-o=0 -
do 1

E+7De0(l _d)aila: (I1-dK:e€

/
TIME-DEPENDANT

IF 01 > gos + o,

( Linear elastic stress redistribution + zero forcing

1. Find d’ such that
1—d =0d(1—4d)

P2
TIME-INDEPENDANT

2. Knowing d’, find ¢ and u such that
V-o'=0
o' —ddo = Eo(1 —d')K: €.

time

IF o1 < qob + o,

QTOP

ELSE, set d’ = d and

Healing
Find d’ such that

od' 1
— =——4d,0<d <1
ot Ty, U= <

P3
TIME-DEPENDANT

Figure 3. Schematic representation of the numerical scheme, composed of the three sub-
problems, and its resolution over one model time step. For simplicity, the superscript *~’ for
adimensional variables is dropped. The full numerical scheme and time discretization is described

in Appendix B.

3 Implementation

The model is implemented here in a 2-dimensional shearing experiment (see fig-
ure 4), meant as a very idealized representation of a vertical cut (x, z) through a sub-
duction zone. Two layers of host rock are sheared by applying a constant x— velocity
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Figure 4. (a) Simulation setup. The domain, boundaries and boundary conditions are de-

tailed in Appendix B. (b) Functional dependence of the cohesion, C, (i.e., of the damage criteria)
on z, prescribed to avoid concentrating most of the deformation at the top and bottom bound-

aries, where the z—velocity is either locally or entirely prescribed.

at the bottom of the lower layer. No confinement is applied on the lateral sides and the
surface is free, except for the top, right corner of the domain (the furthest surface point
downstream and in the direction of the forcing), for which u, = 0. The horizontal ex-

tent of the system perpendicular to the shearing direction is considered much greater than
the horizontal extent in the shearing direction. Plane strains are therefore assumed. No
discontinuity is introduced over the domain other than in the value of the undamaged
elastic modulus, Fy, which is lower by a factor of 3 in the upper layer, representing the
continental crust, than in the lower layer, representing the oceanic crust (see table 1).
Also, in order to avoid that all of the deformation be trivially accommodated near the
bottom boundary of the domain, where a non-zero x—velocity is prescribed, or near the
top, right corner of the domain, where the x—velocity is fixed to 0, a functional depen-
dence of C on z is prescribed, of the form C = Cy x exp(|5.0 x z/H|), where H is the
thickness of both layers (see figure 4b) and Cj is the minimum cohesion. This function
allows the magnitude of C' to vary little over a wide enough range of values of z centred
on z =0 (e.g., C(z = 0.01) = 1.5 x C(z = 0) and therefore does not affect the degree

of localization of the deformation in the shearing zone that forms between the two sim-
ulated layers. Over each grid cell element, this function is locally multiplied by a value
that is picked randomly over a uniform distribution of values over the range [0.75 1], thereby
introducing some noise in the local damage criteria that represents the natural hetero-
geneity of the material (see section 2.2).

The balance of forces in the experiment neglects inertia and advection. In order
to avoid introducing artifacts in the solution related to our finite-size domain and bound-
ary conditions, we also neglect gravity. The momentum equation therefore reads:

V-o=0. (10)

As slow earthquakes entail deformations (i.e., slip) that are relatively small relative to
the horizontal and vertical extent of subduction zones, the advection, rotation and de-
formation terms which are included in material derivatives in the constitutive equation
(1) and healing equation (9), are all neglected, such that %‘t’ = %—‘z and %‘Z = %. In

all simulations performed here, the total, cumulative deformation of the system remains
below 10% of the the size of the smallest mesh element, ensuring that this approxima-

tion is indeed valid. The effect of the elastic deformations on the material’s density are

neglected as well, such that mass conservation does not need to be imposed.
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Model/setup parameters

Value

Length of the domain L 10%,10%,10% m
Thickness of both layers H %L

Tectonic forcing velocity U 107" ms~!
Undamaged relaxation time Ay = g—?’ 1012 s
Poisson’s ratio v 0.3

Internal friction coefficient W 0.7

Maximal cohesion Cy 10* Pa

Table 1. Model and simulation parameter values.

The model equations are discretized in time using a backward Euler scheme of or-
der 1 (see section BO1 of the Appendix for the details) and discretized in space using fi-
nite elements. In the following, At designate the model time step and Az, the spatial
resolution of the mesh grid. The triangular elements grid used is built using the Gmsh
generator (Geuzaine & Remacle, 2009). As the model is isotropic by construction, and
in order to avoid preferential orientations in the localization of the deformation, it is cho-
sen unstructured. The spatial resolution, Az, is set to be 1/20 of the horizontal extent,
L, of the domain at the top and bottom boundaries. It is refined by a factor of 10, so
that to be 1/200 of L, at the junction of the two layers (see Figure 4) where deforma-
tion is expected to be maximal. As cumulative deformations are small in all simulations,
the deformation of the mesh is not calculated and the position of grid nodes, not updated
in time. The resolution of the variational formulation of the equations make use of the
C++ library RHEOLEF (Saramito, 2020). The polynomial approximations for u are of
order 1 and continuous at inter-element boundaries. As the stress tensor is a function
of the velocity gradient and the damage, a function of the stress tensor, the approxima-
tions for o, ¢, d and d' are of degree 0 and discontinuous at inter-element boundaries.

4 Adimensional System of Equations and Adimensional Parameters

In all of the simulations performed here, the system of equations is solved and re-
sults are expressed in adimensional form. This allows describing and exploring the sen-
sitivity of the rheological framework in terms of a reduced set of parameters and using
the same idealized setup to represent systems with different physical dimensions and/or
deformation time scales.

The model is made adimensional with respect to the horizontal extent, L, of the
domain, the constant velocity prescribed at the bottom of the lower layer, U, and the
average of the undamaged elastic modulus of the two layers, Ey. The time, T', charac-
terizing the deformation process is therefore given by % The superscript '~ is used for
all dimension-less variables and operators, which are listed in table Al. For a full descrip-
tion of the adimensional formulation of the variables and equations, the reader can re-
fer to Appendix A.
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The complete adimensional system of equations reads

Vg = 0 (11)

o5 1 5 .
a—FWU = (1—d)K.E, ( )
1—-d = 6d(1—d) (13)
V-& = 0 (14)
ol —dds = (1-d)K:¢e (15)

od' 1
—= == _7d/ O<dl 1

= 7d, 0<d <1, (16)

with the damage criterion

X 2C/F
o1 =[(1® +1)"% + p)?cy + /Bo

[(u? + )12 = ]

The value of Poisson’s ratio, v, and of the internal friction coefficient, p, are fixed in the
following simulations to values common for geomaterials (Byerlee, 1978; Jaeger & Cook,
1979). The brittleness of the material, given by the ratio of the cohesion to the undam-
aged elastic modulus, Cy/Fy, is also kept constant. Besides these parameters, the four
adimensional parameters that characterize the model are:

(17)

1. Deg = g—?}%, the (undamaged) Deborah number,

2. a, the damage parameter, setting the rate at which the viscosity (or relaxation
time) decreases with the level of damage,

3. dd, the damage increment,

4. Ty, = %, the time for healing,

The limits and range of values over which these parameters are varied in the sensitiv-
ity experiments performed here are summarized in Table 2 and discussed in the follow-
ing sub-sections.

Adimensional parameter Range of values
Characteristic healing time T, 107! —107"
Undamaged Deborah number Deg 0.01, 0.1, 10
Damage increment éd  0.1,0.3,0.5,0.7,0.9
Damage parameter « 2,3,4,6,8

Table 2. Adimensional model parameters and the range of values over which they are varied in

the model sensitivity experiments.

4.1 The Deborah Number, De

The Deborah number can be defined as the dimensionless ratio of the viscous re-
laxation time for the stress, A, and of the time for the deformation process, T = %, (i.e.,
the inverse of the macroscopic shearing rate). It characterizes the fluid-like versus elas-
tic solid-like behaviour in unsteady flows, and as such is a relevant quantity to charac-
terize the deformation of faults and the slow earthquake phenomenon. Materials char-
acterized by a low Deborah number, either because they dissipate stresses rapidly or be-
cause they are deformed very slowly, have a behaviour that approaches that of a (New-
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tonian) fluid and therefore flow steadily. Materials characterized by a high Deborah num-
ber, either because they dissipate stresses very slowly or because they are deformed rapidly,
behave like elastic solids and flow unsteadily.

Compared to classical earthquakes, slow earthquakes appear to be a less intermit-
tent, or equivalently a more steady, and therefore a more predictable form of deforma-
tion. Indeed, in some subduction zones like Cascadia (Dragert et al., 2001) and Guer-
rero, Mexico (Cotte et al., 2009; Radiguet et al., 2012) major slow earthquake episodes
show approximately stable recurrence times. However, the recurrence interval of slow
slip events varies greatly from one subduction zone to another. For instance, it is of a
few months in some segments of the Nankai subduction in Japan (e.g., Poiata et al., 2021),
on the order of one year in Cascadia, and of nearly four years in Guerrero. Recurrence
interval are also known to differ for different segments of the same subduction zone (e.g.,
Brudzinski & Allen, 2007) and are observed to decrease with depth (e.g., Wech & Crea-
ger, 2011; Frank, Radiguet, et al., 2015).

To take into account this variability in our simulations, as well as the variability
and uncertainty related to the mechanical properties of the crust (elastic modulus and
viscosity), we explore three values of the undamaged Deborah number (0.001, 0.1 and
0.1, see table 3) each separated by two orders of magnitude. Practically, in the simula-
tions, these different values are obtained by varying the time associated with the defor-
mation process, T = %7 and maintaining the undamaged relaxation time, \g = g—%,
constant (Ag = 102 s). This relaxation time is consistent with an undamaged elastic
modulus, Ep, on the order of 10!! Pa (in agreement with e.g., Dziewonski & Anderson,
1981) and a bulk, undamaged viscosity, 7o, of 10?3 Pa s (Siravo et al., 2019) for both the
continental and oceanic crust. The deformation process time, 7', is set by considering
a typical tectonic velocity of 1072 m/s (on the order of a few cm/year) and considering
different horizontal extent, L, over which the fault is activated and slip occurs. The low-
est value of Deg explored considers L = 10° m (1000 km), representative of a large sub-
duction zone. Following the definition of the Deborah number, this lower bound can be
interpreted alternatively as representing a smaller but deeper, hence lower viscosity seg-
ment of a fault. The highest value is representative of a small activated segment (1000
m) or alternatively, as a larger but shallower and hence more brittle part of a fault.

It is very important to note, however, that while Deg sets the bulk fluid-like ver-
sus elastic solid-like behaviour of the system and therefore is a relevant quantity to char-
acterize the macroscopic deformation cycle, for instance in terms of its duration, in the
visco-elasto-brittle model presented here, the effective Deborah number, De, is not ho-
mogeneous throughout the system but varies in space and time. Indeed, according to equa-
tions (2) and (3), De evolves locally as a function of the level of damage, as De = Degd® 1.
In all three systems, this decrease will leads to a more fluid-like behaviour where and when
the host rock becomes damaged.

4.2 The Healing Time, T},

In the present model, the healing time represents the time it takes for a completely
damaged element (d = 1) to evolve back to its undamaged state (d = 0) and recover
entirely its mechanical strength. Since several different healing processes are thought to
be at play in faults (see section 2.3) and the rates at which these different processes very
likely depend on various local factors, like pressure, temperature, the availability of flu-
ids and the type of rock (see for instance McLaskey et al., 2012), estimating T}, is highly
non-trivial. Therefore, we define our estimation here based on lower and upper bounds
values. On the one hand, observations of post-seismic velocity changes, which estimates
the time required for the velocity of P and S waves (or, by extension, the elastic mod-
ulus of the crust in the vicinity of the fault) to re-increase to their pre-seismic value, place
the lower bound to a few (2-5) years (e.g., Li et al., 1998; Brenguier et al., 2008). Indeed,
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while cracks that open during the mainshock probably close partially with time, one still
expects the vicinity of the shearing zone to remains highly damaged relative to the sur-
rounding host rock and that, at all times. On the other hand, assuming that the fault

heals completely between large earthquakes, the upper bound can be estimated from pseudo-

recurrence times, which reach a few thousand years in some faults (e.g., Li et al., 1998;
R. T. Williams, Davis, & Goodwin, 2019).

Four orders of magnitude of healing time are explored here, which vary between
these lower and upper bounds. In dimensional form, these values are: t;, = 108 s, which
is equivalent to about ~ 3 years, 10° s (~ 30 years), 1019 s (~ 300 years) and 10! s
(~ 3000 years). Since different Deg numbers are explored by varying the process time
T, and as time in our system of equations is made adimensional with respect to T' (see
section 4), the different Dej lead to different adimensional values of the time of healing,
Ty. The dimensional and corresponding adimensional values of ¢, and 7} correspond-
ing to each Deg are listed in table 3.

4.3 The Damage Parameter, «

As mentioned in section 2.2, the purpose of the rather ”ad-hoc” damage param-
eter, «, is that the model accounts for a more rapid dissipation of the stresses where the
material is highly damaged than where it is relatively undamaged. The only physical con-
straint on its value is therefore o > 1. There is no theoretical upper bound for ov. How-
ever, for « large, the relaxation time becomes very small at the onset of damage, what-
ever the damage level. Dansereau (2016b) and Weiss and Dansereau (2017) have demon-
strated that in this case, stresses are readily dissipated after each damage event and the
mechanical behaviour becomes essentially elasto-plastic. Here, the sensitivity of the model
is investigated for values of « between 2 and 8, which proves to be a wide enough range
of values for the model to exhibit different mechanical behaviours relevant in the con-
text of faults and slow earthquakes.

4.4 The Damage Increment, dd

Similar to the damage parameter, the value of the damage increment is not con-
strained other than within the range of values intrinsic to its definition : between 0 and
1. It is however expected to be determinant on the mechanical response of the model.
For large values of dd, the decrease in F at each damage event, given by equations (6)
and (7) respectively, as well as the associated increase in the level of damage, given by
equation (5), are small. Conversely, for small values of dd, the decrease in E and 1 and
associated increase in d at each damage event is large. In the first limit, the dissipation
of the stress in permanent deformations is small. One can expect the emergence of a brit-
tle creep regime, in which the system remains always near criticality. In the second limit,
the dissipation of the stress into permanent deformations is large, which can impede elas-
tic interactions in the system and, by the same fact, the spatial and temporal localiza-
tion of the deformation (Dansereau, 2016b; Weiss & Dansereau, 2017). In the following,
the model behaviour is analyzed for damage increment values of 0.1, 0.3, 0.5, 0.7 and 0.9.

5 Results
5.1 Mechanical Model Response

Here we first describe the overall macroscopic behaviour of the model. This descrip-
tion is based on simulation results obtained for a specific set of model parameters (Deg =
0.001, Tj, = 1075, At = 1071% o = 4, 6d = 0.1), but the conclusions broadly apply
to a wider range of values. Figure 5a shows the temporal evolution of the model response
in terms of the macroscopic shear stress, calculated by integrating the shear stress on
the entire top boundary of the domain, and of the macroscopic damage increment, de-
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Figure 5. (a) Temporal evolution of the macroscopic shear stress (black line) and of

the macroscopic damage increment (as defined by eq. 18, cyan line) for a simulation using

Deop = 0.001, At = 107'° o = 4,6d = 0.land Ty, = 107°. (b) Instantaneous field of the
level of damage after the large avalanche of damage events and associated unloading phase in-
dicated by the vertical red line on panel (a). (¢) Zoom-in on the instantaneous field of De (in
logarithmic scale) corresponding to the black box indicated on panel (b) and normalized distribu-
tion of the instantaneous values of De for all damaged elements of the domain corresponding to

the unloading phase indicated by the vertical red line on panel (a).

fined as the local damage increment integrated over all elements I that are damaged dur-
ing a stress redistribution subiteration k£ and over the K subiterations realized over the
current model time step, n + 1:

K I

S a—6dd)a—drt). (18)

k=11i=1
An animation of this simulation, showing the temporal evolution of the field of damage
(in logarithmic scale) and of both the macroscopic shear stress and damage increment
is available as Supporting Information to this paper (see S1). After the initial and al-
most linear-elastic loading phase, this response is characterized by asymmetric cycles com-
prised of an either partial or total stress drop (hereinafter called unloading phase) and
a subsequent healing and stress increase phase (hereinafter called loading phase). Dam-
age can occur at any moment of the cycle, but unloading phases are generally charac-
terized by the largest avalanches of damaging events, which can span either a large part
of or the entire domain (see S1). When the stress drop is partial, it is generally comprised
of an initial brutal drop associated to a large damage avalanche, followed by a slower re-
laxation phase, not necessarily associated to significant further damage. This post-rupture,
or "post-seismic”, relaxation results from viscous-like permanent deformations along a
fault made of highly damaged, hence low viscosity, material. Such behaviour is made pos-
sible by the rheology proposed above. The occurrence of pre-rupture (akin to foreshocks)
or post-rupture (akin to aftershocks) damage events varies with the choice of model pa-
rameters (see section 11 below). However, for all simulations and parameter values cov-
ered here, the damaging activity localizes at the interface of the two layers (mostly within
the lower plate, see figure 5b), a behaviour that is not prescribed but that arises natu-
rally due to the forcing condition applied at the bottom of the lower layer and to the small
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difference in elastic modulus assigned to each layer. Consequently, the deformation of

the system is also highly localized at this interface. Figure 5b also indicates that dam-
age is heterogeneously distributed along the interface. As a consequence of the prescribed
coupling between d and both the E and n (see eq. 2 and 3), this heterogeneity in dam-
age leads to a large heterogeneity in the value of the relaxation time, or equivalently of
the effective De number, along the interface. As indicated by the distribution shown in
Figure 5c, the values of De associated with damaged grid elements indeed span several
orders of magnitude. The lowest values of De are obtained at the end of unloading phases
and re-increase as the system heals towards the end of loading phases.

However, it is worth noting that, over the range of parameter values explored here,
the vicinity of the interface remains relatively highly damaged at all times (see S1) and
never completely heals: a behaviour that is expected in the context of active faults. By
the same fact, and because the simulations are initialized from a uniformly undamaged
state (d = 0 everywhere), the behaviour during the first loading-unloading cycle is very
different from the subsequent ones : the damaging activity is relatively much higher be-
cause the damaged zone is created from scratch while over all subsequent cycles, the in-
terface is already damaged to a relatively large degree. In all further analyses of the model
behaviour, this first loading-unloading cycle is therefore discarded.

5.2 Convergence and Numerical Efficiency

Here we verify that the macroscopic behaviour of the model converges with increas-
ing temporal resolution. To do so, for the three identified values of Dey (see section 4.1),
simulations are run with five different values of the (adimensional) time step, At. All of
these simulations use the same value of the damage increment (6d = 0.1) and of the
damage parameter (aw = 4) and are initiated with the same field of noise on the cohe-
sion. We explored a range of values of the healing time for these simulations, and retained
the one value that produced the most physically sound results for each set of simulations
with a given Deg value (see section 5.3.1).

Figure 6 shows the temporal evolution of the model response in terms of the macro-
scopic stress (a) and of the macroscopic damage increment (b), defined as in eq. (18).
It indicates that the largest value of the time step explored here leads to a pathologi-
cal model response. This is expected, as this At value approaches the order of magni-
tude of the main period of the loading-unloading cycles : this temporal resolution there-
fore does not allow resolving the progressive propagation of the damage in the system,
nor the sharp stress drop associated with each macroscopic rupture. For smaller values
of the time step, the model response converges well in terms of the main frequency and
amplitude of the macroscopic stress variations when increasing the temporal resolution.
It is also the case for the macroscopic variations in the deformation of the system (not
shown) and in the damage increment.

To robustly test the convergence of the model response, we use a single metric that
combines these three different pieces of information : the local damage increments and
the resulting redistribution of the stress and of strains over the entire system. This is
the elastic energy released within the system due to the propagation of damage, Fp,;t,
the temporal evolution of which is shown in figure 6¢. The distribution of this energy
can be directly related to that of acoustic emissions associated to the micro-fracturing
of rocks (e.g., Amitrano, 2003) and can therefore serve as a proxy for the seismic signal
recorded at the geophysical scale. At each current (n+1) model time step, Fppip is es-
timated as

brit 7 7 7

I
pn+D) _ Z S (UZ( +1,0), (n41,0) _ (n+1,K) . ( +1,K)) 7 (19)
i—1 tot

where i designate each element, I, the total number of elements over the domain, A; the
area of each element and A, the area of the entire domain. The superscripts n + 1,0
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and n + 1, K refer respectively to the stress and strain values before and at the end of
the avalanche of damaging events, which takes a total of K stress redistribution subit-
erations. To compare simulations using different time steps, Ej,;+ is normalized by At.
In agreement with the observed convergence in the variations of the macroscopic stress,
deformation and damage increment, figure 6d clearly shows that the shape of the prob-
ability density function (PDF) of the normalized Ej,;; stabilizes over the three small-
est values of time step explored here.
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Figure 6. Temporal evolution of (a) the macroscopic stress, (b) the macroscopic damage in-
crement and (c) the macroscopic elastic energy released due to the propagation of damage within
the system, normalized by the time step At, for simulations using Deg = 0.001, o = 4, 6d = 0.1,
T, = 107° and At = 107,1071°,107°,1078,107 (corresponding to At = 10* s, 10° s, 10° s,
107 s, 10% s) (d) Probability density function of Eb”vt/At.

Simulations ran with Deg = 0.1 and Deg = 10, the same values of dd (0.1) and
of the damage parameter, a, (4) and values of healing time of T, = 10~* and T}, =
1073 respectively show that a similar convergence is retrieved in both cases over a range
of values of At (see figure C1 of Appendix C). These values are summarized in table 3:
the red ones indicating a non-converged model response. The comparison of these val-
ues across the three Deg explored here suggests that the time step should be chosen such
that % <1078 to ensure a fully converged and therefore physically meaningful model
behaviour. The time step values corresponding to each Dey value and retained for the
sensitivity analyses on the other model parameters are indicated in green in table 3.

We further compare the simulations presented in figure 6 in terms of CPU and real
simulation time. Each simulation was ran for a fixed (adimensional) total time of 5.0
1079, which represents, in dimensional equivalent, 160 years of evolution of the system.
With the specific choice of model parameters employed in this particular simulation, each
loading-unloading cycle covers about 12 years. The model response converges for time
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| T(s) | Deo | At(s)| At |tn(s)| Tn |

10* | 0.001 10* 10~ 108 1077

10° | 1076
106 10~°
107 1078 | 10™ | 107
108 10-7

1013 0.1 103 10710 | 108 | 10°°

105 10-% | 101 | 1073
106 10°7 | 108 | 1072
107 10-6

1011 10 102 1072
10° | 102
10* 10-7 | 1010 | 101
10° 1076 | 10t 100
106 10~°

Table 3. Values of the deformation timescale, T', the model time step, At, and healing time,
tn, explored in the present sensitivity experiments, with their adimensional counterpart : re-
spectively, Deg, At and Tj,. For each value of Deg, the values of At (or A~t) for which the model
response is not fully converged are indicated in red. The value of At (or At) retained for the
sensitivity analyses on T}, dd and « is indicated in green. For each Deg value also, the optimal

value of 5, (or Th) retained for the sensitivity analyses on « and dd are indicated in green.

step values of At = 107,101 and 10~? (or At = 10% 10° and 10 s), which are
equivalent to about 1/10,1 and 10 days respectively. For these three time steps, and for
the spatial resolution described in section 3, the calculated CPU time is of about 25, 3
and 0.4 hours respectively (see figure 7). Considering that each simulation ran sequen-
tially on a personal DELL computer equipped with 2.40 GHz Intel Xeon processors, these
computational times demonstrate that the present numerical scheme makes it possible

to run long-term simulations in the context of faults that cover several loading-unloading
cycles in very reasonable simulation times. It is also interesting to note that, for the same
three time steps for which convergence of the macroscopic model response is obtained,
the calculated CPU time scales linearly with ﬁ, while it does not scale linearly for larger
time steps (At > 1079). This indicates that for the smallest three At values, the num-
ber of steady-state stress redistribution subiterations performed at each time step is nearly
constant and hence does not depend on the model time step. Conversely, for larger At’s,
the system is driven further out of equilibrium at each time (i.e., deformation) increment.
The number of subiterations required for the stresses to be redistributed over the domain
and to become sub-critical again then increases significantly with At, thereby reducing
the gain in computational time.
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Figure 7. CPU time as a function of the (adimensional) model time step, for simulations
using Deg = 0.001, o = 4, dd = 0.1, and T}, = 10~° (see figure 6). Each simulation ran on a single
(2.40 GHz Intel Xeon) processor on a personal DELL computer.

5.3 Sensitivity Analyses
5.3.1 Healing Time, T},

To investigate the effect of healing in the model, we compare the macroscopic stress-
strain time series and the power spectral density (PSD) of the elastic energy released within
the system during the propagation of damage, Ep;+ (see figure 8), for simulations us-
ing Dey = 0.001,0.1 and 10 and four different values of the time for healing, correspond-
ing to dimensional times of ¢;, = 108 s, 10° s, 10'° s and 10'! s. All simulations use o =
4 and dd = 0.1 and a value of the time step that ensures the convergence of the model
response for each Deg value (see table 3). To account for the adjustment of the system
following the first rupture, the first loading-unloading cycle is discarded when comput-
ing the PSD. Each curve shown on figure 8 is the average of 5 PSDs, on which a run-
ning mean centred over a window of 5 frequency values is applied.

The results clearly indicate that the prescribed time of healing controls the frequency
of the loading-unloading cycles in the model: the larger the healing time, the lower the
frequency. However in all of the simulations analyzed, the frequency associated to the
prescribed healing time, indicated by the vertical lines on figure 8, does not correspond
to the frequency of the loading-unloading cycles, but is systematically one or several or-
ders or magnitude lower. This discrepancy is consistent that the interface always remains
relatively highly damaged (see animation in Supporting Informations): less time is there-
fore required to re-initiate an avalanche of damaging events than it would be necessary
if the system had completely heal. The discrepancy increases with the value of Degy, in
agreement with a more elastic behaviour at high Dey number, i.e. a lower contribution
from viscous dissipation that delays the reloading of the system.

Another tendency in the model behaviour emerges. For all values of De explored
here, large values of the healing time (slow healing) lead to a Ej,.;; release, or equivalently
a damaging activity, that concentrates around a narrow range of low frequencies: the PSD
is therefore flat for high frequencies. The corresponding stress-strain curves indicates that
the stress is very rapidly and completely dissipated at each unloading (damaging) event.
This behaviour can be explained by the fact that these large values of healing time ap-
proach the value of the bulk relaxation time (i.e, the relaxation time of undamaged el-
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ements, or Dey). Healing is therefore too slow relative to the dissipation of the stress to
play a significant role in the dynamics of the system.

Conversely, for low values of the healing time (fast healing), the PSD is flat for low
frequencies, with the activity concentrated around a narrow range of high frequencies,
and the stress is very rapidly but only partially dissipated at each damaging event: heal-
ing dominates the dynamics as T} approaches the value of the relaxation time for the
stresses over the most damaged elements in the system (i.e., De;,;, ). This value tends
to decrease inversely to T}, as indicated by the coloured dotted lines on figure 8b.

For intermediate values of T}, and the two lowest values of De explored here (see
figure 8a to d), the slope of the PSDs indicates the presence of correlations in the tem-
poral evolution of Ej,.;; (or, by extension, of the damaging activity). Such temporal cor-
relation or clustering is systematically observed for seismic tremors in subduction zones
and covers large spectrum of time scales, from hours to years (e.g., Idehara et al., 2014;
Frank et al., 2016; Poiata et al., 2021). Therefore, for each investigated De value, we iden-
tify an ”optimal” healing time as the value of T}, for which these correlations span the
largest range of frequencies. It is important to note however, that the frequency at which
spatial correlations emerge in the system is upper bounded in all simulations due to the
finite dimension of the domain and the spatial resolution of the mesh. An intrinsic min-
imum time required to load the system can indeed be estimated, that depends only on
the mechanical strength (the ratio Cy/Ey) and the spatial discretization of the model.

It corresponds to the time it takes to load an initially undamaged system until the first
damage event occurs, if all of the deformation is accommodated over a single single grid
element. Figure 8b shows that the frequency associated to this time, indicated as fronains
indeed marks the transition to a flat PSD at higher frequencies (for the other two sys-
tems, the time step employed is too large and does not allow exploring the model be-
haviour up to this frequency). For the "optimal” T}, values, corresponding to ¢, = 101°
s for De = 0.001 (figure 8a, b blue curve) and ¢, = 10° s for De = 0.1 (figure 8¢, d
green curve), the times associated with the loading, the relaxation of the stresses over
damaged elements and the healing of these elements are such that the three processes
interact and give rise to temporal correlations in the system that span a wide range of
time scales. Interestingly, the stress-strain behaviour of the model in these cases is char-
acterized by loading-unloading cycles in which the stress is sometimes partially and more
gradually dissipated and sometimes completely and drastically dissipated.

The optimal value of T}, decreases as the value of Dej increases, indicating that sys-
tems that are more elastic-solid like (large relaxation time, A) or characterized by a faster
dynamics (small deformation time, %, either due to a small horizontal extent, L or a fast
loading velocity, U) must encompass faster healing mechanisms for these interactions to
take place.

However, for the largest De value used here (see figure 8e, f), temporal correlations
in the damaging activity are restricted to a small range of time scale and that, for all
of the T}, values explored, which we consider as lying in a realistic range in the context
of faults. The associated macroscopic stress-strain behaviour is characterized by regularly-
spaced, almost instantaneous (as opposed to transient) and complete unloading phases,
akin to the stick-slip behaviour observed in block-slider experiments. In the context of
slow earthquakes, this suggests that fault systems that are either very brittle (as near
the surface), small in extent, or loaded too rapidly cannot host the complex spatio-temporal
interactions that give rise to the observed transient deformations.

In the remaining sensitivity experiments (next section), we therefore leave the case
of De = 10 aside and concentrate on simulations using De = 0.001 and De = 0.1.
The optimal values of T}, identified for these two cases are indicated in green in table 3
and used by default in all simulations.
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Figure 8. (a, ¢, d) Time series of the macroscopic stress and (b, d, f) power spectral density
of the Fy,;¢ time series for simulations using (a, b) Deg = 0.001 (A~t = 10710), (¢, d) Deg = 0.1
(At = 107°) and (e, f) Deg = 10 (At = 107®) and four adimensional values of the prescribed
time of healing, corresponding to dimensional values of t, = 10° s (yellow), 10° s (green), 10'°
s (blue) and 10** s (purple curve). All simulations use @« = 4 and dd = 0.1. Each PSD curve is
an average of 5 PSD calculated for 5 simulations initiated with different realizations of the noise
on C and on which a running mean centred over a window of 5 frequency values is applied. The
vertical lines on the PSDs indicate, when these frequencies fall within the range of frequencies
covered in the simulations, the frequencies associated with the four adimensional values of the
prescribed time of healing, 1/T} (plain coloured lines), the minimum time required to load the
system, 1 /tloadmg (plain black line), and the relaxation time associated with the most highly

damaged elements in the system, 1/Deymin (dashed coloured lines).
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5.3.2 Damage Parameter, a, and Damage Increment, §d

The last set of sensitivity experiment focuses on the brittle versus ductile charac-
ter of the model behaviour. As the parameters a and dd both regulate the rate at which
the mechanical strength decreases locally and the behaviour changes from elastic solid-
like and viscous fluid-like as a function of the level of damage, we expect their effect in
this regard to be closely related. We therefore run a set of sensitivity experiments in which
both parameters are varied simultaneously. The results of these experiments for the case
of Deg = 0.001 (At = 107 s and 7}, = 1075 s) and Dey = 0.1 (At = 1079 s and
T, = 10~% s) are presented here.

We recall that for large values of dd, the local decrease in the elastic modulus, F,
and apparent viscosity, 7, at each damaging event is small. Conversely, for small values
of dd, the local decrease in both E and 7 is large. Small values of o lead to a small de-
crease in the relaxation time, , at each damaged element (the damaged material re-
tains stresses longer), while large values of a lead to a large decrease in £ (stresses are
dissipated more readily).

Damage Increment, dd

Time series of the macroscopic stress (see figure 9 and 10, left panels) show that
for all values of «, increasing dd decreases the amplitude of the macroscopic stress drop
associated with each unloading phase. As the stress is then never completely released
at each loading-unloading cycle but stabilizes around a non-zero value, the loading time
required for critical values of stress to be reached is reduced and the frequency of each
cycle is thereby increased. For large values of dd, the PDF of the macroscopic damage
increment, defined as in equation (18), is a truncated power law that is confined to small
values of damage increment (see figure 9, right panels, which indicates that damage and
deformation take place through isolated events, with small spatial extents.

Conversely, as dd is decreased, the amplitude in the variations of the macroscopic
stress and the length of the loading-unloading cycles is increased. The unloading phases
are characterized by sharper stress drops, indicating a more brittle behaviour. The dis-
tributions of the macroscopic damage increment are shifted towards larger values of dam-
age increments.

Damage Parameter, o

For a given value of dd, increasing the value of « also induces larger macroscopic
stress drops, lower frequency loading-unloading cycles and larger values of the macro-
scopic damage increment. Another effect of increasing « is that the stress relaxation and
re-increase in the vicinity of each stress minimum is more progressive in time, consistent
with a more rapid decrease in the viscosity of the material at the onset of damaging and
a more viscous fluid-like, i.e, dissipative, behaviour. The inverse is true when decreas-
ing «a: the macroscopic behaviour is more brittle-like, with smaller but quasi-instantaneous
stress relaxation phases and rapid, quasi-elastic stress loading phases.

Limit Cases

For virtually all values of «, large values of dd give rise to a macroscopic stress-strain
behaviour in which, after the initial elastic loading phase, where is no stress relaxation
but rather a slow stress increase akin to the behaviour of a strain hardening creeping ma-
terial. In this case, the PDF's of the macroscopic damage increment are upper-truncated
power laws.

For small values of « and small values of dd (e.g., see figure 9a or 10a for o = 2
and dd = 0.1), the macroscopic behaviour, showing very sharp but small amplitude stress
drops at each loading-unloading cycle, is reminiscent of a quasi-brittle material in which
the stress relaxation through viscous-like deformation is insignificant. Each stress un-
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loading phase is associated with a large avalanche of damage events that spans the en-
tire domain. This explains the sharp mode in the PDF of the macroscopic damage in-
crements at large increment values, which indicates that a characteristic avalanche size
emerges, associated to a finite-size effect.

For large values of o and small values of dd (e.g., see figure 9 or 10, d and e, for
a = 6 or 8), the dissipation of stresses at the onset of damaging is the largest and the
material becomes readily fluid-like. The stress is regularly and completely dissipated at
each loading-unloading cycle. Local damage events are suppressed, which is expressed
by the translation of the PDF of macroscopic damage increments towards larger incre-
ment values. The elastic redistribution of stresses are inhered and, therefore, the spatio-
temporal correlations in the damaging activity are limited, which reduces the horizon-
tal extent of avalanches and explains the appearance of broad modes in the PDF's of dam-
age increments as well as their departure from a power law.

For intermediate values of « (e.g., @ = 3,4, see figure 9 or 10, b and ¢) and small
values of dd (0.1, 0.3, 0.5), the distribution of damage increments can be well-fitted with
a power-law, that extents at large damage increment values. This suggests that the model
simulates a mechanical behaviour that is, at least to some extent, scale-invariant. Un-
loading phases are characterized by stress drops of variable amplitudes, which are ini-
tially almost-instantaneous and then followed by a transient period.

6 Discussions

In this section, we further discuss what the model in its current state is able and
not able to simulate in the context of fault deformation and slow earthquakes. To do so,
we investigate the simulated dynamical behaviour for one specific case in which only dd
is varied and all other mechanical parameters are identical. This simulation is identified
by the black box on figure 10c and uses Deg = 0.1, @ = 4, with the corresponding de-
fault values of At and T}, (see table 3). In particular, we analyze the temporal evolution
of pointwise displacements and velocities at the top boundary of the domain, which con-
stitute proxies for the surface displacements and velocities as measured by Global Po-
sitioning Systems (GPS). In the following, we focus on the horizontal displacement and
velocity at one point, the top left corner of the domain, which is furthest from the top
right corner and therefore less influenced by the prescribed boundary condition there (u, =
0). It is important to note that on figures 11a, b and e, f, the prescribed velocity forc-

ing, U, is subtracted from the recorded horizontal surface velocity. Also, the first few loading-

unloading cycles are omitted from the analysis, as they are susceptible to carry the sig-
nature the first (outlier) rupture event.

The comparison of two simulations in which only the damage increment is varied
between 0.1 and 0.5, summarized in figure 11, suggests that over a certain range of me-
chanical parameters the model can reproduce two different types of mechanical behaviour,
which are more analogous to classical earthquakes and slow slip events, respectively. In
the first case (0d = 0.1, left panels), the macroscopic shear stress on the top bound-
ary indeed shows very rapid and large-amplitude release phases followed by short post-
seismic stress relaxation phases and much longer reloading phases (see figure 11a). Each
brutal stress release event is associated with a sharp reversal of the surface horizontal
(x—) velocity and an equally sharp drop in the surface horizontal displacement (see fig-
ure 11c), which suggests a strong decoupling of the upper and lower plates following large
damage events, reminiscent of classical earthquakes. In the second case (dd = 0.5, right
panels), the asymmetry in the loading-unloading cycles is much less pronounced (see fig-
ures 11b and d): the stress is much more progressively dissipated at each loading-unloading
cycle, which is accompanied by lower amplitude variations of the surface velocity and
a progressive decrease in the surface displacement, reminiscent of slow slip events (e.g.,
Rogers & Dragert, 2003; Radiguet et al., 2016).
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Figure 9. Time series of the macroscopic stress (left panels) and probability density function
of the macroscopic damage increment (right panels) for Deg = 0.001 (At = 107, T}, = 107%)
and d = 0.1,0.3,0.5,0.7,0.9 and (a) a =2, (b) a =3, (¢) a =4, (d) a =6, (e) a = 8.

The damaging activity also differs between the two cases (see figures 11c, d). In
the first, fewer damage events are recorded over the same simulation time. The damag-
ing activity concentrates over large events that either precede (as in foreshocks) or co-
incide with stress release phases. In the second case, the damaging activity is more sym-
metric with respect to unloading phases, with damaging event both preceding (as in fore-
shocks) and following (as in aftershocks) stress release events.
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Figure 10. Time series of the macroscopic stress (left panels) and probability density function
of the macroscopic damage increment (right panels) for Deg = 0.1 (At = 107'°, T}, = 107°) and
0d =0.1,0.3,0.5,0.7,0.9 and (a) a =2, (b) a =3, (¢) a =4, (d) a =6, (e) a = 8.

We further analyze the temporal evolution of the surface horizontal velocity dur-
ing each loading-unloading cycle, that is, over a period of time that starts at the onset
of each stress release phase and extents until the next phase, as delimited by the dashed
lines and arrows on figures 11a, b and ¢, d. In the first case, using dd = 0.1, the model
reproduces a power law decay of the velocity of the form

V(t) ~ tlp (20)
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where ¢ is the time after the onset of stress release, and the exponent p is slightly smaller
than 1 (see figure 11e). This behaviour is akin to the observed Omori-like decay of post-
earthquake surface velocities (Perfettini & Avouac, 2004; Savage et al., 2005; Ingleby &
Wright, 2017; Periollat et al., 2022), which suggests that long-term temporal correlations
in the system control the evolution of post-earthquake surface velocities in the case of
classical earthquakes. It is important to note however that in the present case, this trend
spans a little more than two orders of magnitude, which is much less than what the ob-
servations cover. This is due to the fact that, for the purpose of this paper, we have cho-
sen our mechanical parameters (in particular the ratio Cy/Ep, which controls the sys-
tem loading time, see section 5.3.1) to be consistent with the typical recurrence time of
slow earthquakes, not with the larger time scales associated with classical earthquakes.

In the second case, using dd = 0.5, the post-rupture surface velocities are signif-
icantly smaller than in the previous case, and remain relatively stable for some time, be-
fore slowly decaying at larger timescales (see figure 11f). Such behaviour is similar to
what is observed during some largest SSEs for which the details of the displacement time
series can be resolved (Cotte et al., 2009; Radiguet et al., 2012).

These results suggest that the proposed modeling framework could be able to re-
produce both slow earthquakes and classical earthquakes. Numerically at least, it can
do it because it is efficient enough.

One important point however is that, not over the entire range of model param-
eter values but over the range that generates a mechanical behaviour most analogous to
slow and classical earthquakes, the model definitely exhibits a pseudo-periodic behaviour.
While it might be consistent with slow earthquakes (e.g., Dragert et al., 2001; Cotte et
al., 2009; Radiguet et al., 2016), such behaviour is less consistent with classical earth-
quakes. While recent studies have found that large (classical) earthquakes occur more
regularly than a purely random process (e.g., T. Williams et al., 2019; Griffin et al., 2020),
the temporal evolution of classical earthquakes in general is indeed more intermittent
and their recurrence time, hardly predictable (e.g., Gardner & Knopoff, 1974; Michael,
2011). We however believe that more variability in recurrence times and stress drop mag-
nitudes and an intermittent behaviour covering a wider range of time scales could be ob-
tained by incorporating additional physical components to the model. Leaving aside the
more complex dynamics of fluids aspects, we list some simple and logical options below.

The first consists in moving to a healing law that does not prescribe a unique, con-
stant healing time. Such a law would be in better agreement with available observations.
Measurements of relative seismic velocity changes after majors earthquakes indeed in-
dicate a healing rate that is not constant but decrease in time after the main shock, sug-
gesting that the damaged region within the fault regains strength rapidly in the early
stage of the interseismic period and progressively more slowly in the later stages (e.g.,
Li & Vidale, 2001; Brenguier et al., 2008). In the present model, this behaviour could
be parameterized through a logarithmic healing law that does not include any charac-
teristic time for healing but that instead depends locally on the time elapsed since the
last damage event. Such a law would agree with the aging version of the rate-and-state
interface model of (Ruina, 1983), which imply that the surfaces that are in contact and
at rest strengthen logarithmically and would allow the system to evolve in a less deter-
ministic manner.

The second consists in accounting for a representation of the rheological stratifi-
cation of subduction zones, which is known to depend strongly on temperature (e.g. Pea-
cock, 2009) and therefore on depth. In the present 2-dimensional, idealized numerical
experiments, this stratification could be coarsely accounted for by allowing the bulk, un-
damaged viscosity of the host rock in the two plates to vary as a simple function (for in-
stance, linear) of the horizontal distance (x) parallel to the interface, so that to repre-
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Figure 11. (a, b) Temporal evolution of the macroscopic stress (black curve) and of the

surface z-velocity at the upper left corner of the domain (red curve) for a simulation in which
Dep = 0.1 (At =107°, T}, = 107%), @ = 4 and (a) dd = 0.1 and (b) 6d = 0.5. (c, d) Correspond-
ing temporal evolution of the cumulated surface z-displacement at the upper left corner of the
domain (black curve) and of macroscopic damage increment (cyan curve). (e, f) Corresponding
surface z-velocity at the upper left corner of the domain as a function of the time elapsed be-
tween each unloading event, as indicated by the dashed lines and arrows on figures (a) to (d). In

figures a, b, e and f, the prescribed forcing velocity, U, is subtracted from the z—velocity.

sent a more brittle (high viscosity) behaviour towards the surface and a more ductile (low
viscosity) behaviour at depth. Such a dependence of the viscosity with depth would al-
low mitigating the impact of finite size effects and at the same time, exploring spatial
and temporal interactions between the different types of mechanical behaviours simu-
lated by the model, that is, an essentially brittle behaviour akin to low-depth, classical
earthquakes, a mixed brittle-ductile behaviour akin to slow-slip events and diffuse, duc-
tile deformations akin to the deeper parts of subduction zones. In the same line of ideas,
the use of the full Burger model, that is, incorporating the Kelvin component that was
left aside in the present experiments but which is meant to accounts for the deforma-
tion of the mantle (e.g., Nur & Mavko, 1974; Pollitz et al., 2001), would act as an ad-
ditional source of post-seismic transient deformation and as such would bring some ex-
tra complexity in the temporal behaviour of the model.

The third addition would account for friction, which most likely plays a first-order
role in the brittle part of the shear zone (e.g., Byerlee, 1967; Scholz, 1998, and many oth-
ers), where asperities can become locked, thereby allowing for stresses to locally build-
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up and local quakes to be triggered. To simulate the effect of static friction in a simple
manner, an additional threshold on the the minimum stress required for the occurrence

of viscous deformation (as opposed to damage) could be coupled to the viscous stress
dissipation term of equation 1. This criterion, of the cohesion-less Mohr-Coulomb type,
would ensure that for low states of stress, slip would be hindered and elastic stresses would
build-up locally towards critically.

7 Conclusions

In this paper, we have presented a continuum, volumetric mechanical model suited
for modelling slow earthquakes. We have also presented a numerical framework for this
model that is efficient enough to cover several deformation cycles in very reasonable sim-
ulation times in a 2-dimensional setup, while allowing to resolve both the very short-term
and localized damage initiation and propagation processes associated with the co-seismic
rupture and the diffuse deformations within the bulk of the host rock that relaxes stresses
over very long time scales. In between these very short and very long time scales and
over a certain range of parameters, the model can simulate a correlated seismic (i.e., dam-
age) activity as well as different transient, seismic and aseismic processes akin to clas-
sical and slow earthquakes, such as the post-seismic stress relaxation phase.

In particular, the fact that the model can reproduce the observed Omori-like de-
cay in surface post-seismic velocities over a certain range of mechanical parameter val-
ues, even in the presently highly idealized simulation setup, is an important result, as
it supports the hypothesis of (Ingleby & Wright, 2017) that visco-elastic models, either
of the Maxwell or the Burgers type, require a continuously varying viscosity or, equiv-
alently, a continuously varying relaxation time, to reproduce this observed trend. Here,
this continuous variation in the relaxation time is achieved by applying a unique rheo-
logical law over the entire system, hence avoiding the need to prescribe the mechanical
behaviour in different parts of the system or the location of the shearing zone, but let-
ting both the elastic modulus and viscosity evolve in time and in space as simple func-
tions of the level of damage.

Leaving aside for the moment the inclusion of the dynamics of fluids, we have sug-
gested several simple additions to the current rheological framework that aim at extend-
ing its application to the representation of the entire seismic ”cycle”: that is a deforma-
tion that comprises both classical and slow earthquakes. The one-by-one inclusion of these
additions - a logarithmic, time-since-damage-dependant healing law, a variation of the
viscosity with depth and a deformation threshold for static friction -, the evaluation of
their respective impact on the simulated mechanical behaviour and the assessment of their
relative contribution towards a more realistic reproduction of the deformation cycle of
faults is the aim of our next paper.

Appendix A Adimensional system of equations
The model is made adimensional with respect to
1. the horizontal extent, L, of the domain in the direction of the forcing,

2. the prescribed forcing velocity, U,
3. the undamaged elastic modulus, Ej.

The time characterizing the deformation process is therefore T' = % In the following,
the superscript 7’ is used for all dimension-less variables and operators, which are listed

in table Al.
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Variables, dimensions and operators Non-dimensional equivalent

Spatial (2D) dimension X x=7%
Time t t= %
Velocity u u=g
Internal stress o o= Eio
Level of damage d,d d,d
Del Operator \Y V=LV

Table A1l. Dimensional model variables and operators and their adimensional counterpart.

In terms of these adimensional variables and operators, the momentum equation
reads:

V-5=0 (A1)
for either the pre- or post-damage stress, o or o’.

The full constitutive equation becomes

U_, 06 Ey -
— _ _+_ ) g =

U -
Fhb—+ —F— —Fp(l1 —d)K: ¢
L%0F " N(1—do T o(l —d)K: &,

L

o 0 1 i

E—FWO’:(l—d)K:é‘, (A2)

where Deg = g—‘;% is the (undamaged) Deborah number. The constitutive equation for

the post-damage stress redistribution is:
o' —dds = (1 —d)K: & (A3)
Damage being a non-dimensional variable, the damage equation (5) is itself adimensional:
1—d =6d(1—-d). (A4)

The adimensional healing equation reads

10d 1
———=——d,0<d <1,
T Ot th -
. od 1
—=—_—d,0<d <1. A5
ot Ty - ( )

where T}, = %’

Appendix B Numerical Scheme

Here we present the time discretization and the numerical algorithm employed to
solve the system of equations in the shearing experiments. For simplicity, the superscript
'~! for adimensional variables is drop in the following notations.

This system of equations (Al for o and for o/, A2, A3, A4, A5) forms a problem
that is solved for the following unknowns : ¢ and ¢’ (3 components each), o and o’ (3
components each) and d’, starting from an initial state of rest and zero damage. It is solved
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over a closed 2-dimensional domain 2 € R (see figure 4), with an external boundary
partitioned as 02 = I'top, I'bottom, Llefts Iright- A constant x—velocity is applied on I'yottom-
It is fixed to 0 during the steady-state, stress redistribution process. The z—velocity is
fixed to 0 on I'pottom and u, = 0 on the right upper corner of the domain. The top and
lateral boundaries are free, hence o -n =0 on I'¢op, et and Trigne-

B01 Time discretization

We discretize the time, ¢, such that ¢, = nAt, with At > 0 and n = 0,1,2,....
and use a backward Euler (implicit) scheme of order 1. Expressing the strain rate ten-
sor as € = D(u) = 1 (Vu+ Vu”) and the strain tensor as D(u)At, the time-discretized
system of equations reads:

V.ot = 0,
ontl _gn 1
"= (1-d")K: D(u"!
AU De(l_an ( ) )
1—d™ = 6d(1—d")
v - U/7z+1 — 0,
o™t —§do™ T = (1-d™)K: D(u" ' At),
dm-l—l —_dm 1
_ _ “"(ilTl 0 (i/7L4—], < 1.
At Ty, » 9 < -

The numerical scheme divides this time-discretized problem, Py, into three subprob-
lems. Using the superscript k = 0,1, 2, ... for the steady-state stress-redistribution sub-

iteration in subproblem 2, these problems reads:

(P14) The momentum and constitutive equations are first solved simultaneously for the
fields of velocity and stress, " t! and u™*! at the current time step, by apply-
ing the constant z—velocity forcing on I'yottom and the other boundary conditions
and using the level of damage at the previous time step, d".

(P24q)

The steady-state stress redistribution equations are solved iteratively, with the x—velocity

on IMpottom NOW set to zero. In this subproblem, the damage equation is first solved
for d’™**1 by comparing the field of stress at the current subiteration, e ¥, to
the local damage criteria, o.. The updated level of damage is then substituted into
the post-damage constitutive equation. Together with the momentum equation,

it is solved for the adjusted fields of velocity, u™+1**1 and stress, o/*t1* +1 These
steps are iterated until all of the adjusted stresses become sub-critical. Then the
post-damage level of damage, d'", is set to d™*+1.

(P3g)
step, d’™*1 and d"t! is set to d'™tT.

The complete algorithm reads:
Initialization (n =0)

n

dn — d/n —

Forn >0, set k=0
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The healing equation is finally solved for the level of damage at the current time
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d ith o™ an nown, find o and u such that
P1;) With ™ and d™ k find o™t and u™t! h th

n+l _ n 1

4 O_n+1 _
At Deg (1 —dn)* ™"

V.ot = 0,
(1—d")K: D(u"t?),

and with

UZ+1 = 0 on I'vottom,
U;H'l = 1 on I'vottom,
u”™ = 0on Iiop N Tright
o"l.n = Oon Tiop, Tiete and Tiigne, -

IF anywhere in Q o™ > qoi ™t + 0., set o/ FHE = " and d™F = d”.

(P24) For k >0,

1. Find d™*+ such that
1—d™F = 5d (1 —d™"),

2. Find o™tLE+1 gnd u LA+ such that

v . 0_?’L+1,k+1 _ O7
J/n—i—l,k-{-l o 5d0ln+l,k _ Eo(l _ d/n,k:-l—l)K: (D(u/n+1,k+1)At)
and with
u,/szrl’kJrl = Oon 1_‘bottoma
u;n+1,k+1 = 0Oon 1_‘bottoma
uMTERL =0 on Lop N Tright
o TR n = 0 on Tyop, Dless and Thigne, -

m+1k+1 m+1k+1
IF oML < gl tHE L L 6

STOP and set o™t = o/ +tLEHL gnd d'™ = d™F+1 (P3,) Find d™1 such that

m+1 _ gyn
% = *Tid/n, 0< d/n+1 S 1.
h

Set dnt1 = d'mtl,

Appendix C Convergence

Figure C1 shows the probability density function of Ep,;:/ At obtained in the case
of Deg = 0.1 and Dey = 10, using a = 4, 6d = 0.1 and T}, = 10~ and T}, = 1073 re-
spectively. The PDFs indicate that the macroscopic model response converges as At is
decreased, as for the case of Deg = 0.001 described in section 5.2. The values of At for
which the response is not converged are indicated in red in table 3. The value of At cor-
responding to each Dey value and used in the sensitivity analyses on T}, a and dd are
indicated in green in the same table.
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Figure C1. Probability density function of Ebrit/dt for simulations using o = 4, éd = 0.1 and
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Abstract

The overwhelming amount of seismic, geodesic and in-situ observations accumulated over
the last 30 years clearly indicate that, from a mechanical point of view, faults should be
considered as both damageable elastic solids in which highly localized features emerge

as a result of very short-term brittle processes and materials experiencing ductile strains
distributed in large volumes and over long time scales. The interplay of both deforma-
tion mechanisms, brittle and ductile, give rise to transient phenomena associating slow
slip and tremors, known as slow earthquakes, which dissipate a significant amount of stress
in the fault system. The physically-based numerical models developed to improve our
comprehension of the mechanical and dynamical behaviour of faults must therefore have
the capacity to treat simultaneously both deformation mechanisms and to cover a wide
range of time scales in a numerically efficient manner. This capability is essential, both
for simulating accurately their deformation cycles and for improving our interpretation
of the available observations.

In this paper, we present a numerically efficient visco-elasto-brittle numerical frame-
work that can simulate transient deformations akin to that observed in the context of
subduction zones, over the wide range of time scales relevant for slow earthquakes. We
implement the model in idealized simple shear simulations and explore the sensitivity
of its behaviour to the value of its main mechanical parameters.

Plain Language Summary

The outer part of the Earth, called the lithosphere, is a complex object that de-
forms both in a solid and a fluid manner. Where tectonic plates meet, such as in fault
zones, this duality gives rise to a variety of phenomena. The solid behaviour is associ-
ated with earthquakes and very sudden slip movements of the fault that we feel at the
surface. The fluid behaviour translates into a slow and steady slip at depth. In between,
the mixed solid-fluid behaviour results in progressive accelerations and decelerations of
the fault slip accompanied with very weak quakes, which are called slow earthquakes. These
slow earthquakes modulate the deformation cycle of faults and most probably impact
the occurrence of "real”, or classical, earthquakes. It is therefore important to account
for them in numerical models that aim to help us understand this cycle better. In this
paper we present a model of the deformation of fault zones that we have developed with
the particular goal of representing slow earthquakes and that allows the lithosphere to
behave sometimes like a solid, sometimes like a fluid.

1 Introduction

Earth’s materials are known to exhibit a variety of deformation mechanisms de-
pending on temperature, pressure and loading conditions as well as on the time and spa-
tial scales at which they are observed (e.g., Burov, 2011). In the most dynamic parts of
the Earth’s lithosphere, such as plate boundaries and fault zones, volcanic systems and
landslides, the interplay between different mechanisms can result in a strong strain lo-
calization and a complex temporal behaviour. The slow deformation occurring over ge-
ological time scales can indeed be suddenly accelerated and give rise to catastrophic events
(earthquakes, eruptions, landslides) that release huge amounts of energy in a very short
time.

Historically, the deformation of the lithosphere has been studied either at the short
time scales (seconds to minutes) of these catastrophic events or at the very large time
scales (years to millions of years) of plate tectonic motion. However, the technological
progresses in observational systems over the last 30 years has brought about a revolu-
tion in the comprehension of its dynamical behaviour, by allowing to explore the time
scales in between. Global Positioning System (GPS), radar interferometry (Synthetic Aper-
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ture Radar, InSAR) and satellite gravimetry data have indeed driven a huge leap for-
ward in terms of measuring the deformation of the Earth surface continuously in time
and space and at high resolution. These new geodetic observations have been accompa-
nied by rapid deployments of dense seismic networks and by the emergence of novel meth-
ods of analysis of continuous seismic data that allow exploring deformation mechanisms
over a significantly wider range of time scales.

In the case of earthquakes, the occurrence of co-seismic rupture processes that re-
distribute Coulomb stresses over short time scales (on the order of seconds) and the as-
sociated scaling properties have been established for a long time (Omori, 1894; Gutem-
berg & Richter, 1949; Turcotte, 1992). However, the recent advances in the observational
systems and data analysis methods have profoundly modified our vision of how plate tec-
tonic motions are accommodated and how stresses are dissipated along faults. In par-
ticular, the combination of high resolution geodetic and seismic data has resulted in im-
proved tracking of co-, post- and inter-seismic deformation patterns (e.g., K. Wang et
al., 2012) and in the discovery of new types of transient phenomena designated as “slow
earthquakes”. These slow earthquakes, associated because of their triggering depth with
the so-called brittle-ductile transition comprised between the brittle, seismic zone near
the surface and the ductile, aseismic zone below (e.g., Dragert et al., 2004; Peng & Gomberg,
2010; Obara & Kato, 2016, and many others), combine periodic accelerations of the fault
slip with weak seismic radiations known as tectonic tremors (e.g., Dragert et al., 2001;
Obara, 2002; Peng & Gomberg, 2010). Analyses based on the cross-correlations of am-
bient seismic noise have demonstrated that the transient deformations accompanying both
slow and major earthquakes are associated with changes in elastic properties of the ma-
terial in the vicinity of the fault, reminiscent of damaging processes and of a non-elastic,
or at least nonlinear elastic behaviour (e.g., Brenguier et al., 2008; Rivet et al., 2011; Q.-
Y. Wang et al., 2019). Seismic data (e.g., Audet et al., 2009), along with other sources
such as tomographic imagery (Shelly et al., 2006) and the observation of exhumed sub-
duction zones (Angiboust et al., 2015), have also allowed identifying fluids as another
major player in the transient deformation of faults. In the context of slow earthquakes
in particular, the increased pore-pressure from fluids trapped in the fault zone and as-
sociated pore-pressure variations and diffusion are indeed believed to partially control
the seismic and slow slip activity via the weakening and fracturing of the host rock, the
local reduction of the effective stress and friction along the shearing plane and the trig-
gering and migration of tremors (e.g., Brown et al., 2005; Frank, Shapiro, et al., 2015;
Shapiro et al., 2018; Cruz-Atienza et al., 2018; Dublanchet, 2019; Luo & Liu, 2019, 2021,
and many others).

1.1 Existing Modelling Approaches

The direct modelling approaches that exist to model the deformation of the Earth’s
lithosphere and faults in particular can be divided in several categories.

The first includes continuum frameworks based on a fluid mechanics approach, namely
viscous, visco-elastic, visco-plastic or elasto-visco-plastic models. Such models have been
developed to represent the diffuse, ductile and potentially large deformations associated
with plate tectonics motion, for instance the formation of mountain ranges and conti-
nental rifts (e.g., Royden et al., 1997; Frederiksen & Braun, 2001; Popov & Sobolev, 2008).
They can reproduce strain localization by including strain-weakening mechanisms, such
as a non-linear dependence of the viscous strain rate on the stress and thermo-mechanical
feedbacks. However, their applications are restricted to ductile deformations on geolog-
ical time scales. In the context of faults, visco-elastic models of the Maxwell or Burg-
ers type (see figure 1) have also been often used to represent the mechanical behaviour
of the combined Earth’s crust and mantle system (e.g. Nur & Mavko, 1974; Pollitz et
al., 2001; Pollitz, 2003, 2005; Hetland & Hager, 2005, 2006; K. Wang et al., 2012; Sun
& Wang, 2015). In such frameworks, the Maxwell component represents the lithosphere,
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which can elastically transmit stresses over short time scales, while relaxing stresses in
an exponential manner over very long time scales. The Kelvin component is added to
represents the more ductile asthenosphere, which hosts mantle convection and is thought
to cause a delayed elastic response, measurable in the reversal of surface velocities af-

ter a major earthquake (e.g., Sun & Wang, 2015). However, with constant mechanical
parameters (elastic moduli and viscosities), these models cannot by themselves account
for the rheological stratification of fault zones, nor for the presence of a relatively local-
ized shearing zone that concentrates the deformation. They are therefore usually imple-
mented in "layered” frameworks (e.g., Hetland & Hager, 2005, 2006; K. Wang et al., 2012;
Sun & Wang, 2015), in which the structure of the system is prescribed and divided in
multiple pre-determined layers with different rheologies (e.g., an elastic layer of crust em-
bedded in a visco-elastic mantle) and is thus not allowed to evolve in time. With con-
stant mechanical parameters also, neither the Maxwell nor the Burgers model can re-
produce the transient deformations of fault systems over a wide enough range of time
scales (Ingleby & Wright, 2017; Periollat et al., 2022): deformations which translate for
instance in an Omori-like decay of post-seismic surface velocity (velocity inversely pro-
portional to the time since the earthquake), observed hours to ten of years after mod-
erate to large continental earthquakes (Ingleby & Wright, 2017).

A second category of models aim to represent the transition between stable and
unstable deformation regimes within the Earth crust by assimilating brittle and frictional
processes to the problem of friction on a material interface. This is the case for the well-
known block-slider framework, a parametric model stemming from experimental stud-
ies of the frictional behaviour of various materials including rocks, which combines the
principle of linear elasticity and non-linear stick-slip friction between a sliding block and
an underlying surface. Purely conceptual models including these basic ingredients have
first been used to explain the statistical properties associated with major earthquakes,
such as the Gutemberg-Richter law (e.g., Burridge & Knopoff, 1967; Carlson & Langer,
1989). The rheology of frictional interfaces has been later formulated as a constitutive
law known as ”"rate-and-state friction” (Dieterich, 1978, 1979a, 1979b) which has been
widely used to model fault instabilities and earthquakes (e.g., Liu & Rice, 2005; Segall
& Bradley, 2012, and many others). This law establishes the following relation between
the measured friction coefficient, p, the sliding velocity, V', and the state of the slip plane,
0:

. Vv Vo

w6, V) =p*+aln v +bln D.
where p* is a friction coefficient at a reference sliding velocity, V*, a and b are propor-
tionality constants for the magnitude of instantaneous and time-dependant displacements
respectively and D, is a characteristic slip distance for the evolution of the system to-
wards a new stable state. It is often coupled to an evolution equation for the state pa-
rameter, 6, which describes aging effects (Dieterich, 1979a; Ruina, 1983). For negative
values of (a—b), the model describes a decrease of the friction coefficient with increas-
ing sliding velocity and hence an unstable, velocity-weakening state, assimilated to a brit-
tle, seismic behaviour. For positive values of (a—b), it describes an increase of the fric-
tion coefficient with the slip velocity, therefore a state of stable, velocity-hardening slip,
assimilated to an aseismic, ductile behaviour. By including additional levels of complex-
ity relevant to faults, which allow a change of sign of (a—b) along the interface (for in-
stance, a dependence of a and b on the temperature), this model can also reproduce tran-
sitions between a brittle and a ductile behaviour and transient slip events (Liu & Rice,
2005, 2007; Segall & Bradley, 2012). Its main limitation, however, is that it is empirically-
based. As such, its extrapolation to the temporal and spatial scales of geophysical sys-
tems such as faults on the basis of the results obtained in the laboratory is not trivial
and questionable (e.g., Chen et al., 2017; van den Ende et al., 2018). A second impor-
tant limitation is that it is an interface rheology, which implies a prescribed, non-evolving
location of the sliding plane and which does not take into account its microstructure or
its volumetric deformation. By this fact, it presents a limit to which it can be enriched
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to include the highly relevant physico-chemical, mineralogical and hydro-mechanical pro-
cesses involved in the fault deformation cycle. It is also important to note that a ”fault
plane” approach is in contradiction with seismic data and geological observations of ex-
humed faults, which suggest that the deformation occurs within a core zone made of gouge,
sandwiched between a metric to kilometric-scale zone of damaged rocks (Caine et al.,

1996; Angiboust et al., 2015; Hayman & Lavier, 2014; Gao & Wang, 2017).

Another category of models include continuum mechanics damage frameworks (e.g.,
Ashby & Sammis, 1990; Lyakhovsky, Reches, et al., 1997; Tang, 1997; Amitrano et al.,
1999; Bhat et al., 2012, and many others). So-called elasto-brittle schemes, which cou-
ple a damage variable to an elastic constitutive law, has indeed been used to represent
the fracturing processes and the associated strong localization of the deformation in faults
(e.g. Lyakhovsky, Ben-Zion, & Agnon, 1997; Lyakhovsky et al., 2001; Ben-Zion & Lyakhovsky,
2002, and later papers). Without accounting for the dynamic propagation of fractures
nor the generation of seismic waves, these models represent the redistribution of elas-
tic stresses caused by the generation and coalescence of micro-fractures and the complex
mechanical interactions in the material that stem from its micro-structural heterogene-
ity. They thereby present the advantage of simulating the emergence of a damaged shear-
ing or sliding zone (without the need to prescribe its location or geometry), the stable
to unstable transition of the system that precedes the macroscopic rupture as well as the
scaling laws associated with the localization of the deformation and the spatio-temporal
clustering of the seismic activity (e.g., Ben-Zion & Lyakhovsky, 2002; Turcotte et al.,
2003; Shcherbakov et al.,; 2005). An intrinsic limitation of such schemes, however, is that
they are based on an elastic constitutive law and as such, they cannot simulate any pre-
or post-rupture permanent deformation in the material. By this fact, it cannot repro-
duce the entire deformation cycle of faults. Hamiel et al., (Hamiel et al., 2004) and Dansereau
et al., (Dansereau et al., 2016a) therefore elaborated from elasto-brittle frameworks by
adding a viscous relaxation term that is coupled to the local level of damage in order to
represent, respectively, the small irreversible deformation that accumulate towards the
macro-rupture and the permanent and potentially large post-rupture deformation of the
fractured material. Their visco-elasto-brittle models have been shown to successfully sim-
ulate the scaling laws associated with brittle deformations in faults (e.g., Ben-Zion & Lyakhovsky,
2006) and a mechanically similar system: sea ice (Dansereau et al., 2016a; Rampal et
al., 2019; Olason et al., 2021). However, in the context of faults, the numerically-coupled
treatment of damage propagation and viscous relaxation in these models makes them
too computationally expensive to cover the very long time scales associated with duc-
tile deformations and hence reproduce multiple deformation cycles.

Finally, other models have been developed to help understanding the dynamics of
fluids and its role in the deformation of faults (e.g. Segall & Rice, 1995, and many oth-
ers). In particular, recent idealized models of pressure diffusion in the host rock with rapidly
varying permeability have been able to explain the observed rapid tremor migrations and
their reversals (Cruz-Atienza et al., 2018; Farge et al., 2021). However, a very impor-
tant challenge remains to day: to couple these models with the two- or three-dimensional
deformation of the solid matrix and other near-fault processes to allow assessing their
impact on the geodetically observed strains.

1.2 Focus on the Slow Earthquake Phenomenon

Developing a single numerical modeling framework suitable for all of the above men-
tioned physical processes and that can cover the entire spectrum of associated time scales
is a very ambitious, perhaps unachievable, goal. Therefore, in this paper, we focus on
modelling the mechanical behaviour and deformation of fault zones, leaving aside for the
moment the role of fluids. We also concentrate over time scales intermediate between
those characterizing the cycle of major, or ”classical”, earthquakes (from decades to thou-
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sands of years) and the one of dynamic rupture (faster than hundreds of seconds). Within
this range, the deformation of faults is often controlled by slow earthquakes.

The slowest temporal scale associated with the slow earthquake phenomenon is re-
vealed by geodetic observations of the accompanied slow and diffuse surface deforma-
tion, with typical event durations between weeks and months and inter-events gaps of
the order of a few years (e.g., Dragert et al., 2001; Kostoglodov et al., 2003; Radiguet
et al., 2012). The fastest temporal scale is related to seismic radiations, observed at fre-
quencies above 1 Hz in the form of tectonic tremors (e.g., Obara, 2002; Payero et al., 2008)
or low-frequency earthquakes (LFEs) (e.g., Shelly et al., 2006; Bostock et al., 2012; Frank
et al., 2014) and which imply localized, brittle deformations and associated elastic strain
variations in the source region on the order of fractions of a second. Therefore, even if
ignoring the second-order effect of the long-term deformation of the system attributable
to mantle relaxation, convection and delayed elastic deformations, as done in this pa-
per, building a model for slow earthquakes entails dealing with localized, brittle defor-
mations and diffuse, ductile deformations that are separated by about 8 orders of mag-
nitudes of time scales. This huge separation requires developing a numerical scheme that
allows simulating the relevant processes in reasonable simulation times.

This is the aim of the current work : developing a physically sound and numeri-
cally efficient continuum rheological framework for slow earthquakes. It is important to
note however that doing so, we also keep in mind a future application to a wider range
of time scales relevant to the entire seismic cycle. Another objective is that this frame-
work be simple and versatile, so that to give valuable insights and eventually be trans-
ferable in the context of other geophysical systems that are characterized by a similar
dynamics, that is, a dynamics comprised of mixed brittle/ductile and transient defor-
mations, such as landslides and volcanic edifices (e.g., Peng & Gomberg, 2010; Lacroix
et al., 2014; Carrier et al., 2015; Got et al., 2017; Handwerger et al., 2016; Poli, 2017;
Parisio et al., 2019; Seydoux et al., 2020, and many others). A very important feature
of the proposed modelling approach is that it accounts for rock fracturing processes via
a progressive damage mechanism that is coupled to the mechanical strength of the ma-
terial, which is described not only by an elastic modulii but also an apparent viscosity.
As such, in addition to the long-term evolving strain of the system (observed with GPS,
tiltmeters, strainmeters) the model represents the short-term temporal evolution of the
averaged energy of seismic radiations (observed as tremors and LFEs).

The rheological model is presented in section 2, together with its numerical scheme.
Its implementation in an idealized shearing experiment that is relevant in the context
of subduction zones is described in section 3. The main characteristic numbers and times
describing this experiment are described in section 4. Section 5 presents a demonstra-
tion of its mechanical and numerical behaviour, with a sensitivity analysis on the value
of its main parameters. This analysis demonstrates its capability to simulate the wide
separation of scales between the brittle and ductile processes and transient deformations
at the intermediate time scales.

2 The Physical Model

The model builds on the Burgers framework, which combines the Maxwell (an elas-
tic and a viscous component in series) and the Kelvin-Voigt (an elastic and a viscous com-
ponent in parallel) visco-elastic models (see figure 1). As mentioned in section 1.2, for
the sake of the current paper we neglect the effect of the delayed elasticity of the man-
tle, which is responsible for instance for the reversal of surface velocities following ma-
jor earthquakes but is probably of second-order in the context of slow earthquakes. In
the following description, the model is therefore reduced to the Maxwell component. In
particular, we focus on testing the capability of this component to reproduce transient
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Figure 1. Schematic representation of the Burgers model. When loaded with a constant
deformation, the Maxwell component undergoes a relaxation (exponential decay) of the stress.
When unloaded, the part of the deformation associated to the viscous element is non-recoverable.
When loaded with a constant stress, the Kelvin component leads to an exponential decay of the
deformation. When unloaded, this deformation is fully recoverable. The implementation of the

model described in this paper neglects the Kelvin component.

deformations and a deformation cycle akin slow earthquakes when F and 7 are not con-
stant but allowed to evolve in both space and time, according to the local degree of frac-
turing of the material at the sub-grid scale, the so-called level of damage. The develop-
ment of the current visco-elastic framework therefore lies crucially on the formulation

of a coupling between E and 7 and this level of damage. The starting point of this cou-
pling follows the simple formulation suggested by (Dansereau et al., 2016a), which was
shown to successfully reproduce the spatial localization and intermittency of the dam-
age and deformation and associated scaling laws in another quasi-brittle material that
undergoes permanent deformations partially dissipating stresses when fractured; sea ice.

Another particularity of our approach is that, contrary to existing visco-elastic lay-
ered models (e.g., K. Wang et al., 2012; Sun & Wang, 2015), here a unique rheology is
applied to the entire system (see figure 2). Its component are differentiated solely on the
basis of the bulk elastic modulus and on the local level of damage.

2.1 Constitutive Equation

The Maxwell model is applied here in the context of an elastic, compressible solid.
Its constitutive law reads D 1
o

E+XJ:EK:€, (1)

where K is the elastic stiffness tensor, defined in terms of Poisson’s ratio, 0 < v < 0.5,
and from which the elastic modulus, F, is factored out. For any three-dimensional sym-
metric tensor € = ¢;; € 4,5;1 < i,j < 3,(K: €);; = mtr(e)ézj + 22(171%,)6”-.
The strain rate tensor, € is taken equivalent to the rate of strain tensor and is given by
D(u) = Y¥Vu where u is the velocity. The ratio of the material’s apparent viscos-
ity and elastic modulus, A = n/E, hereinafter referred to as the relaxation time, sets
the mesoscopic rate of dissipation of the stresses through permanent deformations.

Following Kachanov (1958) and previous isotropic damage models (e.g., Tang, 1997;
Lyakhovsky, Ben-Zion, & Agnon, 1997; Amitrano et al., 1999) the density of cracks at
the sub-grid scale is described by a mesoscopic scalar damage variable, d, the value of
which evolves between 0 for an undamaged and 1 for a totally damaged material (see
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Figure 2. Schematic representation of the model and simulations, which represent a vertical

(z, z) cross-section of two layers of host rock sheared by applying a constant velocity at the bot-
tom of the lower layer, in the z-direction. A unique visco-elasto-brittle constitutive law is applied
to the entire system. The two layers are differentiated only on the basis of the undamaged value
of their elastic modulus. The expected mechanical behaviour is one in which the bulk of both
layers is quasi-elastic, since damage there is expected to be almost zero and the effective viscosity
is high, and visco-elastic at the interface of the two layers, where the deformation and damage

are localized and potentially high and the elastic modulus and apparent viscosity much reduced.

figure 2). In the case of the elastic modulus, the coupling to d is based on the principle
of effective stress (Kachanov, 1958) and reads

E = Eo(1 - d), (2)

where Ej is the undamaged elastic modulus of the material. In the case of the effective
viscosity, 7, the coupling reads:

77:770(]- _d)a’ (3)

where 79 is the bulk viscosity of the material, i.e., its viscosity in its undamaged state,
and « is an exponent > 1 such that the relaxation time, A, setting the rate of dissipa-
tion of the stresses, decreases with the degree of fracturing of the material. This ad-hoc
but simple coupling allows, on the one hand, the dissipation of the stress through per-
manent deformations where the material is damaged and, on the other hand, the con-
servation of the stress associated to elastic deformations where the material is relatively
undamaged (Dansereau et al., 2016a; Weiss & Dansereau, 2017).

2.2 Progressive Damage Mechanism

The level of damage in the model evolves due to both fracturing and healing pro-
cesses. The first of these processes translates into an increase in d and its occurrence is
determined at any given model iteration by comparing the local state of stress to a crit-
ical stress value, set by a chosen damage criterion. The present implementation uses the
Mohr—Coulomb criterion

o1 = qos + o, (4)

where o1 and o, are the principal stresses, ¢ = [(uz + 1)1/ 24 ,u]Q, 1 is the internal fric-

tion coefficient and o, = W, where C is a non-zero cohesion (resistance of
7 —p

the material to pure shear). No truncation is applied here to this criterion in the case
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of 01,09 < 0 : hence it includes tensile stresses. In a manner similar to other damage
modelling frameworks, some noise is introduced in this criterion, by drawing the value
of C' over each element of the discretized domain from a uniform distribution, to repre-
sent the heterogeneity of natural materials and insure progressive failure even under per-
fectly homogeneous forcing conditions.

As in the elasto-brittle model of (Amitrano et al., 1999), d evolves due to damag-
ing following
1—d =6d(1—4d), (5)

where d’ is the post-damaging value of damage, d, the pre-damaging value and dd, a con-
stant multiplication factor such that dd = 0 when and where the state of stress is sub-
critical and 0 < dd < 1 when and where it is over-critical with respect to the damage
criterion. According to equations (2) and (3), each damage event implies that the local
elastic modulus and apparent viscosity decrease respectively as

E = §dE (6)
n = ddn (7)

where the superscript ’ is hereinafter used to denote the post-damage strength, stress
and deformation. This local decrease in mechanical strength leads to an elastic redis-
tribution of the stresses from the over- to the sub-critical areas of the material, which
allows for the triggering of avalanches of damaging events, representing the propagation
of cracks at the mesoscale, as long as the elastic modulus (or relaxation time) or the ma-
terial remains significant. It is important to note that, as other damage frameworks, the
current model is not dynamic and as such, is not meant to capture the propagation of
the rupture that generates seismic waves. Instead, it aims at representing the effect of
such rupture processes on the deformation of the material.

In developing the model, we take advantage of the very large separation of scales
between the brittle and ductile deformations in faults to make the assumption that the
first type of deformation is quasi-instantaneous relative to the second type. As such, we
treat the evolution of the level of damage as independent of time. The same approxima-
tion is implicitly made in the time-independent (linear) elasto-brittle brittle model of (e.g.,
Amitrano et al., 1999). Here, we therefore follow a similar approach and formulate a steady-
state, iterative scheme for the stress redistribution associated with micro-fracturing and
fracture coalescence at the sub-grid scale. This formulation relies on two hypotheses:

1. the immediate effect of damage is to redistribute the local stresses, not strains.
In the following, this immediate post-damage state is referred to using the ”*”
perscript,

2. as the propagation of damage is quasi-instantaneous compared to viscous relax-
ation processes in the material considered, the viscous stress dissipation term in
equation (1) can be neglected when solving for the damage propagation. The con-
stitutive equation therefore reduces to that of a linear-elastic material:

su-

oc=FK:e¢,

where € is the deformation (as opposed to the deformation rate) tensor.

The following constitutive equations thereby define respectively the pre- and immedi-
ate post-damage states:

o = FEK:¢,
c* = FE*K:¢&",

Using the first hypothesis laid above, the following equality relating the pre-damage and
the immediate post-damage elastic modulus (respectively F and E*) and stresses (o and
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o*) can be written

o* o

E*  E
Using equation (6), the immediate post-damage stress adjustment is therefore given by

o = odd.

Considering further that this local stress adjustment induced by the damage event will
lead, in a second time, to an adjustment in the neighbouring deformation and so, stress,
the new state of equilibrium between the post-damage stress, ¢’, and the post-damage
deformation, &', is given by

o' —odd=Ep(l —d)K: €. (8)

2.3 Healing Mechanism

Healing is another essential ingredient for the reproduction of the deformation of
fault zones (e.g., Bos & Spiers, 2002; Renard et al., 2000, and many others). In the case
of damaged rocks and rock gouges, it can include various processes, like sintering (e.g.,
Hirono et al., 2020), cementing and sealing from dissolution-precipitation processes (e.g.,
Sibson, 1992; R. T. Williams, Mozley, et al., 2019), motion/diffusion of asperities and
dislocations (e.g., Dieterich, 1979a, 1979b, and many others) and compaction (e.g., Hun-
feld et al., 2020). In the current model, the respective effects of all of these processes are
not differentiated but rather encapsulated into a single healing law that prescribes a de-
crease in the level of damage at a constant rate such that:

Dd 1
D= thd,0§d<1, (9)
where t;, the healing time. Through their respective coupling to d, both the elastic mod-
ulus and apparent viscosity are therefore allowed to re-increase towards their bulk value
after damage events : a behaviour that is consistent with observations of the evolution

of seismic velocities (Li & Vidale, 2001; Brenguier et al., 2008). This very simple law,

used here for the purpose of demonstrating the general impact of healing on the mod-

elled mechanical behaviour, could be refined in more realistic implementations of the model
(see section 11).

2.4 The Coupled Visco-Elasto-Brittle Model

The proposed model couples the time-independent treatment of the damage prop-
agation with the time-dependant, visco-elastic Maxwell constitutive equation and the
time-dependant evolution equation for healing. To do so, the complete system of equa-
tions is solved in three steps or subproblems (P):

(P1) The full constitutive equation (1) is first solved together with the full momentum
equation, boundary and forcing conditions (see section 3) and using the field of
damage at the previous time step for a first estimate of the field of velocity and
stress at the current time step. The field of stress is then compared to the local
damage criterion.

(P2) If and only if the stress locally exceeds the damage criterion, the forcing is paused
and the macroscopic deformation of the simulated material is held constant. The
model enters a steady-state subiteration in which (i) the level of damage, d, is ad-
justed to its post-damage value, d’, (ii) equation (8) is solved for the adjusted state
of stress, o/. These two steps are carried iteratively until all states of stresses be-
come sub-critical, at which point the stress state at the current time is set to the
adjusted stress at the final subiteration.

—10—
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(P3) The healing equation (9) is solved for the field of damage at the current time step,
using the post-damaging level of damage, d’.

This scheme is illustrated schematically in figure 3 and presented in full details in Ap-
pendix B.

MEB + forcing
Knowing d, find ¢ and u such that
V-o=0 -
do 1

E+7De0(l _d)aila: (I1-dK:e€

/
TIME-DEPENDANT

IF 01 > gos + o,

( Linear elastic stress redistribution + zero forcing

1. Find d’ such that
1—d =0d(1—4d)

P2
TIME-INDEPENDANT

2. Knowing d’, find ¢ and u such that
V-o'=0
o' —ddo = Eo(1 —d')K: €.

time

IF o1 < qob + o,

QTOP

ELSE, set d’ = d and

Healing
Find d’ such that

od' 1
— =——4d,0<d <1
ot Ty, U= <

P3
TIME-DEPENDANT

Figure 3. Schematic representation of the numerical scheme, composed of the three sub-
problems, and its resolution over one model time step. For simplicity, the superscript *~’ for
adimensional variables is dropped. The full numerical scheme and time discretization is described

in Appendix B.

3 Implementation

The model is implemented here in a 2-dimensional shearing experiment (see fig-
ure 4), meant as a very idealized representation of a vertical cut (x, z) through a sub-
duction zone. Two layers of host rock are sheared by applying a constant x— velocity

—11—
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Figure 4. (a) Simulation setup. The domain, boundaries and boundary conditions are de-

tailed in Appendix B. (b) Functional dependence of the cohesion, C, (i.e., of the damage criteria)
on z, prescribed to avoid concentrating most of the deformation at the top and bottom bound-

aries, where the z—velocity is either locally or entirely prescribed.

at the bottom of the lower layer. No confinement is applied on the lateral sides and the
surface is free, except for the top, right corner of the domain (the furthest surface point
downstream and in the direction of the forcing), for which u, = 0. The horizontal ex-

tent of the system perpendicular to the shearing direction is considered much greater than
the horizontal extent in the shearing direction. Plane strains are therefore assumed. No
discontinuity is introduced over the domain other than in the value of the undamaged
elastic modulus, Fy, which is lower by a factor of 3 in the upper layer, representing the
continental crust, than in the lower layer, representing the oceanic crust (see table 1).
Also, in order to avoid that all of the deformation be trivially accommodated near the
bottom boundary of the domain, where a non-zero x—velocity is prescribed, or near the
top, right corner of the domain, where the x—velocity is fixed to 0, a functional depen-
dence of C on z is prescribed, of the form C = Cy x exp(|5.0 x z/H|), where H is the
thickness of both layers (see figure 4b) and Cj is the minimum cohesion. This function
allows the magnitude of C' to vary little over a wide enough range of values of z centred
on z =0 (e.g., C(z = 0.01) = 1.5 x C(z = 0) and therefore does not affect the degree

of localization of the deformation in the shearing zone that forms between the two sim-
ulated layers. Over each grid cell element, this function is locally multiplied by a value
that is picked randomly over a uniform distribution of values over the range [0.75 1], thereby
introducing some noise in the local damage criteria that represents the natural hetero-
geneity of the material (see section 2.2).

The balance of forces in the experiment neglects inertia and advection. In order
to avoid introducing artifacts in the solution related to our finite-size domain and bound-
ary conditions, we also neglect gravity. The momentum equation therefore reads:

V-o=0. (10)

As slow earthquakes entail deformations (i.e., slip) that are relatively small relative to
the horizontal and vertical extent of subduction zones, the advection, rotation and de-
formation terms which are included in material derivatives in the constitutive equation
(1) and healing equation (9), are all neglected, such that %‘t’ = %—‘z and %‘Z = %. In

all simulations performed here, the total, cumulative deformation of the system remains
below 10% of the the size of the smallest mesh element, ensuring that this approxima-

tion is indeed valid. The effect of the elastic deformations on the material’s density are

neglected as well, such that mass conservation does not need to be imposed.

—12—
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Model/setup parameters

Value

Length of the domain L 10%,10%,10% m
Thickness of both layers H %L

Tectonic forcing velocity U 107" ms~!
Undamaged relaxation time Ay = g—?’ 1012 s
Poisson’s ratio v 0.3

Internal friction coefficient W 0.7

Maximal cohesion Cy 10* Pa

Table 1. Model and simulation parameter values.

The model equations are discretized in time using a backward Euler scheme of or-
der 1 (see section BO1 of the Appendix for the details) and discretized in space using fi-
nite elements. In the following, At designate the model time step and Az, the spatial
resolution of the mesh grid. The triangular elements grid used is built using the Gmsh
generator (Geuzaine & Remacle, 2009). As the model is isotropic by construction, and
in order to avoid preferential orientations in the localization of the deformation, it is cho-
sen unstructured. The spatial resolution, Az, is set to be 1/20 of the horizontal extent,
L, of the domain at the top and bottom boundaries. It is refined by a factor of 10, so
that to be 1/200 of L, at the junction of the two layers (see Figure 4) where deforma-
tion is expected to be maximal. As cumulative deformations are small in all simulations,
the deformation of the mesh is not calculated and the position of grid nodes, not updated
in time. The resolution of the variational formulation of the equations make use of the
C++ library RHEOLEF (Saramito, 2020). The polynomial approximations for u are of
order 1 and continuous at inter-element boundaries. As the stress tensor is a function
of the velocity gradient and the damage, a function of the stress tensor, the approxima-
tions for o, ¢, d and d' are of degree 0 and discontinuous at inter-element boundaries.

4 Adimensional System of Equations and Adimensional Parameters

In all of the simulations performed here, the system of equations is solved and re-
sults are expressed in adimensional form. This allows describing and exploring the sen-
sitivity of the rheological framework in terms of a reduced set of parameters and using
the same idealized setup to represent systems with different physical dimensions and/or
deformation time scales.

The model is made adimensional with respect to the horizontal extent, L, of the
domain, the constant velocity prescribed at the bottom of the lower layer, U, and the
average of the undamaged elastic modulus of the two layers, Ey. The time, T', charac-
terizing the deformation process is therefore given by % The superscript '~ is used for
all dimension-less variables and operators, which are listed in table Al. For a full descrip-
tion of the adimensional formulation of the variables and equations, the reader can re-
fer to Appendix A.
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The complete adimensional system of equations reads

Vg = 0 (11)

o5 1 5 .
a—FWU = (1—d)K.E, ( )
1—-d = 6d(1—d) (13)
V-& = 0 (14)
ol —dds = (1-d)K:¢e (15)

od' 1
—= == _7d/ O<dl 1

= 7d, 0<d <1, (16)

with the damage criterion

X 2C/F
o1 =[(1® +1)"% + p)?cy + /Bo

[(u? + )12 = ]

The value of Poisson’s ratio, v, and of the internal friction coefficient, p, are fixed in the
following simulations to values common for geomaterials (Byerlee, 1978; Jaeger & Cook,
1979). The brittleness of the material, given by the ratio of the cohesion to the undam-
aged elastic modulus, Cy/Fy, is also kept constant. Besides these parameters, the four
adimensional parameters that characterize the model are:

(17)

1. Deg = g—?}%, the (undamaged) Deborah number,

2. a, the damage parameter, setting the rate at which the viscosity (or relaxation
time) decreases with the level of damage,

3. dd, the damage increment,

4. Ty, = %, the time for healing,

The limits and range of values over which these parameters are varied in the sensitiv-
ity experiments performed here are summarized in Table 2 and discussed in the follow-
ing sub-sections.

Adimensional parameter Range of values
Characteristic healing time T, 107! —107"
Undamaged Deborah number Deg 0.01, 0.1, 10
Damage increment éd  0.1,0.3,0.5,0.7,0.9
Damage parameter « 2,3,4,6,8

Table 2. Adimensional model parameters and the range of values over which they are varied in

the model sensitivity experiments.

4.1 The Deborah Number, De

The Deborah number can be defined as the dimensionless ratio of the viscous re-
laxation time for the stress, A, and of the time for the deformation process, T = %, (i.e.,
the inverse of the macroscopic shearing rate). It characterizes the fluid-like versus elas-
tic solid-like behaviour in unsteady flows, and as such is a relevant quantity to charac-
terize the deformation of faults and the slow earthquake phenomenon. Materials char-
acterized by a low Deborah number, either because they dissipate stresses rapidly or be-
cause they are deformed very slowly, have a behaviour that approaches that of a (New-
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tonian) fluid and therefore flow steadily. Materials characterized by a high Deborah num-
ber, either because they dissipate stresses very slowly or because they are deformed rapidly,
behave like elastic solids and flow unsteadily.

Compared to classical earthquakes, slow earthquakes appear to be a less intermit-
tent, or equivalently a more steady, and therefore a more predictable form of deforma-
tion. Indeed, in some subduction zones like Cascadia (Dragert et al., 2001) and Guer-
rero, Mexico (Cotte et al., 2009; Radiguet et al., 2012) major slow earthquake episodes
show approximately stable recurrence times. However, the recurrence interval of slow
slip events varies greatly from one subduction zone to another. For instance, it is of a
few months in some segments of the Nankai subduction in Japan (e.g., Poiata et al., 2021),
on the order of one year in Cascadia, and of nearly four years in Guerrero. Recurrence
interval are also known to differ for different segments of the same subduction zone (e.g.,
Brudzinski & Allen, 2007) and are observed to decrease with depth (e.g., Wech & Crea-
ger, 2011; Frank, Radiguet, et al., 2015).

To take into account this variability in our simulations, as well as the variability
and uncertainty related to the mechanical properties of the crust (elastic modulus and
viscosity), we explore three values of the undamaged Deborah number (0.001, 0.1 and
0.1, see table 3) each separated by two orders of magnitude. Practically, in the simula-
tions, these different values are obtained by varying the time associated with the defor-
mation process, T = %7 and maintaining the undamaged relaxation time, \g = g—%,
constant (Ag = 102 s). This relaxation time is consistent with an undamaged elastic
modulus, Ep, on the order of 10!! Pa (in agreement with e.g., Dziewonski & Anderson,
1981) and a bulk, undamaged viscosity, 7o, of 10?3 Pa s (Siravo et al., 2019) for both the
continental and oceanic crust. The deformation process time, 7', is set by considering
a typical tectonic velocity of 1072 m/s (on the order of a few cm/year) and considering
different horizontal extent, L, over which the fault is activated and slip occurs. The low-
est value of Deg explored considers L = 10° m (1000 km), representative of a large sub-
duction zone. Following the definition of the Deborah number, this lower bound can be
interpreted alternatively as representing a smaller but deeper, hence lower viscosity seg-
ment of a fault. The highest value is representative of a small activated segment (1000
m) or alternatively, as a larger but shallower and hence more brittle part of a fault.

It is very important to note, however, that while Deg sets the bulk fluid-like ver-
sus elastic solid-like behaviour of the system and therefore is a relevant quantity to char-
acterize the macroscopic deformation cycle, for instance in terms of its duration, in the
visco-elasto-brittle model presented here, the effective Deborah number, De, is not ho-
mogeneous throughout the system but varies in space and time. Indeed, according to equa-
tions (2) and (3), De evolves locally as a function of the level of damage, as De = Degd® 1.
In all three systems, this decrease will leads to a more fluid-like behaviour where and when
the host rock becomes damaged.

4.2 The Healing Time, T},

In the present model, the healing time represents the time it takes for a completely
damaged element (d = 1) to evolve back to its undamaged state (d = 0) and recover
entirely its mechanical strength. Since several different healing processes are thought to
be at play in faults (see section 2.3) and the rates at which these different processes very
likely depend on various local factors, like pressure, temperature, the availability of flu-
ids and the type of rock (see for instance McLaskey et al., 2012), estimating T}, is highly
non-trivial. Therefore, we define our estimation here based on lower and upper bounds
values. On the one hand, observations of post-seismic velocity changes, which estimates
the time required for the velocity of P and S waves (or, by extension, the elastic mod-
ulus of the crust in the vicinity of the fault) to re-increase to their pre-seismic value, place
the lower bound to a few (2-5) years (e.g., Li et al., 1998; Brenguier et al., 2008). Indeed,
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while cracks that open during the mainshock probably close partially with time, one still
expects the vicinity of the shearing zone to remains highly damaged relative to the sur-
rounding host rock and that, at all times. On the other hand, assuming that the fault

heals completely between large earthquakes, the upper bound can be estimated from pseudo-

recurrence times, which reach a few thousand years in some faults (e.g., Li et al., 1998;
R. T. Williams, Davis, & Goodwin, 2019).

Four orders of magnitude of healing time are explored here, which vary between
these lower and upper bounds. In dimensional form, these values are: t;, = 108 s, which
is equivalent to about ~ 3 years, 10° s (~ 30 years), 1019 s (~ 300 years) and 10! s
(~ 3000 years). Since different Deg numbers are explored by varying the process time
T, and as time in our system of equations is made adimensional with respect to T' (see
section 4), the different Dej lead to different adimensional values of the time of healing,
Ty. The dimensional and corresponding adimensional values of ¢, and 7} correspond-
ing to each Deg are listed in table 3.

4.3 The Damage Parameter, «

As mentioned in section 2.2, the purpose of the rather ”ad-hoc” damage param-
eter, «, is that the model accounts for a more rapid dissipation of the stresses where the
material is highly damaged than where it is relatively undamaged. The only physical con-
straint on its value is therefore o > 1. There is no theoretical upper bound for ov. How-
ever, for « large, the relaxation time becomes very small at the onset of damage, what-
ever the damage level. Dansereau (2016b) and Weiss and Dansereau (2017) have demon-
strated that in this case, stresses are readily dissipated after each damage event and the
mechanical behaviour becomes essentially elasto-plastic. Here, the sensitivity of the model
is investigated for values of « between 2 and 8, which proves to be a wide enough range
of values for the model to exhibit different mechanical behaviours relevant in the con-
text of faults and slow earthquakes.

4.4 The Damage Increment, dd

Similar to the damage parameter, the value of the damage increment is not con-
strained other than within the range of values intrinsic to its definition : between 0 and
1. It is however expected to be determinant on the mechanical response of the model.
For large values of dd, the decrease in F at each damage event, given by equations (6)
and (7) respectively, as well as the associated increase in the level of damage, given by
equation (5), are small. Conversely, for small values of dd, the decrease in E and 1 and
associated increase in d at each damage event is large. In the first limit, the dissipation
of the stress in permanent deformations is small. One can expect the emergence of a brit-
tle creep regime, in which the system remains always near criticality. In the second limit,
the dissipation of the stress into permanent deformations is large, which can impede elas-
tic interactions in the system and, by the same fact, the spatial and temporal localiza-
tion of the deformation (Dansereau, 2016b; Weiss & Dansereau, 2017). In the following,
the model behaviour is analyzed for damage increment values of 0.1, 0.3, 0.5, 0.7 and 0.9.

5 Results
5.1 Mechanical Model Response

Here we first describe the overall macroscopic behaviour of the model. This descrip-
tion is based on simulation results obtained for a specific set of model parameters (Deg =
0.001, Tj, = 1075, At = 1071% o = 4, 6d = 0.1), but the conclusions broadly apply
to a wider range of values. Figure 5a shows the temporal evolution of the model response
in terms of the macroscopic shear stress, calculated by integrating the shear stress on
the entire top boundary of the domain, and of the macroscopic damage increment, de-
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Figure 5. (a) Temporal evolution of the macroscopic shear stress (black line) and of

the macroscopic damage increment (as defined by eq. 18, cyan line) for a simulation using

Deop = 0.001, At = 107'° o = 4,6d = 0.land Ty, = 107°. (b) Instantaneous field of the
level of damage after the large avalanche of damage events and associated unloading phase in-
dicated by the vertical red line on panel (a). (¢) Zoom-in on the instantaneous field of De (in
logarithmic scale) corresponding to the black box indicated on panel (b) and normalized distribu-
tion of the instantaneous values of De for all damaged elements of the domain corresponding to

the unloading phase indicated by the vertical red line on panel (a).

fined as the local damage increment integrated over all elements I that are damaged dur-
ing a stress redistribution subiteration k£ and over the K subiterations realized over the
current model time step, n + 1:

K I

S a—6dd)a—drt). (18)

k=11i=1
An animation of this simulation, showing the temporal evolution of the field of damage
(in logarithmic scale) and of both the macroscopic shear stress and damage increment
is available as Supporting Information to this paper (see S1). After the initial and al-
most linear-elastic loading phase, this response is characterized by asymmetric cycles com-
prised of an either partial or total stress drop (hereinafter called unloading phase) and
a subsequent healing and stress increase phase (hereinafter called loading phase). Dam-
age can occur at any moment of the cycle, but unloading phases are generally charac-
terized by the largest avalanches of damaging events, which can span either a large part
of or the entire domain (see S1). When the stress drop is partial, it is generally comprised
of an initial brutal drop associated to a large damage avalanche, followed by a slower re-
laxation phase, not necessarily associated to significant further damage. This post-rupture,
or "post-seismic”, relaxation results from viscous-like permanent deformations along a
fault made of highly damaged, hence low viscosity, material. Such behaviour is made pos-
sible by the rheology proposed above. The occurrence of pre-rupture (akin to foreshocks)
or post-rupture (akin to aftershocks) damage events varies with the choice of model pa-
rameters (see section 11 below). However, for all simulations and parameter values cov-
ered here, the damaging activity localizes at the interface of the two layers (mostly within
the lower plate, see figure 5b), a behaviour that is not prescribed but that arises natu-
rally due to the forcing condition applied at the bottom of the lower layer and to the small

—17—



632

633

634

635

637

638

639

640

641

642

643

644

645

646

647

648

650

651

653

654

655

656

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

676

677

678

679

680

681

difference in elastic modulus assigned to each layer. Consequently, the deformation of

the system is also highly localized at this interface. Figure 5b also indicates that dam-
age is heterogeneously distributed along the interface. As a consequence of the prescribed
coupling between d and both the E and n (see eq. 2 and 3), this heterogeneity in dam-
age leads to a large heterogeneity in the value of the relaxation time, or equivalently of
the effective De number, along the interface. As indicated by the distribution shown in
Figure 5c, the values of De associated with damaged grid elements indeed span several
orders of magnitude. The lowest values of De are obtained at the end of unloading phases
and re-increase as the system heals towards the end of loading phases.

However, it is worth noting that, over the range of parameter values explored here,
the vicinity of the interface remains relatively highly damaged at all times (see S1) and
never completely heals: a behaviour that is expected in the context of active faults. By
the same fact, and because the simulations are initialized from a uniformly undamaged
state (d = 0 everywhere), the behaviour during the first loading-unloading cycle is very
different from the subsequent ones : the damaging activity is relatively much higher be-
cause the damaged zone is created from scratch while over all subsequent cycles, the in-
terface is already damaged to a relatively large degree. In all further analyses of the model
behaviour, this first loading-unloading cycle is therefore discarded.

5.2 Convergence and Numerical Efficiency

Here we verify that the macroscopic behaviour of the model converges with increas-
ing temporal resolution. To do so, for the three identified values of Dey (see section 4.1),
simulations are run with five different values of the (adimensional) time step, At. All of
these simulations use the same value of the damage increment (6d = 0.1) and of the
damage parameter (aw = 4) and are initiated with the same field of noise on the cohe-
sion. We explored a range of values of the healing time for these simulations, and retained
the one value that produced the most physically sound results for each set of simulations
with a given Deg value (see section 5.3.1).

Figure 6 shows the temporal evolution of the model response in terms of the macro-
scopic stress (a) and of the macroscopic damage increment (b), defined as in eq. (18).
It indicates that the largest value of the time step explored here leads to a pathologi-
cal model response. This is expected, as this At value approaches the order of magni-
tude of the main period of the loading-unloading cycles : this temporal resolution there-
fore does not allow resolving the progressive propagation of the damage in the system,
nor the sharp stress drop associated with each macroscopic rupture. For smaller values
of the time step, the model response converges well in terms of the main frequency and
amplitude of the macroscopic stress variations when increasing the temporal resolution.
It is also the case for the macroscopic variations in the deformation of the system (not
shown) and in the damage increment.

To robustly test the convergence of the model response, we use a single metric that
combines these three different pieces of information : the local damage increments and
the resulting redistribution of the stress and of strains over the entire system. This is
the elastic energy released within the system due to the propagation of damage, Fp,;t,
the temporal evolution of which is shown in figure 6¢. The distribution of this energy
can be directly related to that of acoustic emissions associated to the micro-fracturing
of rocks (e.g., Amitrano, 2003) and can therefore serve as a proxy for the seismic signal
recorded at the geophysical scale. At each current (n+1) model time step, Fppip is es-
timated as

brit 7 7 7

I
pn+D) _ Z S (UZ( +1,0), (n41,0) _ (n+1,K) . ( +1,K)) 7 (19)
i—1 tot

where i designate each element, I, the total number of elements over the domain, A; the
area of each element and A, the area of the entire domain. The superscripts n + 1,0
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and n + 1, K refer respectively to the stress and strain values before and at the end of
the avalanche of damaging events, which takes a total of K stress redistribution subit-
erations. To compare simulations using different time steps, Ej,;+ is normalized by At.
In agreement with the observed convergence in the variations of the macroscopic stress,
deformation and damage increment, figure 6d clearly shows that the shape of the prob-
ability density function (PDF) of the normalized Ej,;; stabilizes over the three small-
est values of time step explored here.
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Figure 6. Temporal evolution of (a) the macroscopic stress, (b) the macroscopic damage in-
crement and (c) the macroscopic elastic energy released due to the propagation of damage within
the system, normalized by the time step At, for simulations using Deg = 0.001, o = 4, 6d = 0.1,
T, = 107° and At = 107,1071°,107°,1078,107 (corresponding to At = 10* s, 10° s, 10° s,
107 s, 10% s) (d) Probability density function of Eb”vt/At.

Simulations ran with Deg = 0.1 and Deg = 10, the same values of dd (0.1) and
of the damage parameter, a, (4) and values of healing time of T, = 10~* and T}, =
1073 respectively show that a similar convergence is retrieved in both cases over a range
of values of At (see figure C1 of Appendix C). These values are summarized in table 3:
the red ones indicating a non-converged model response. The comparison of these val-
ues across the three Deg explored here suggests that the time step should be chosen such
that % <1078 to ensure a fully converged and therefore physically meaningful model
behaviour. The time step values corresponding to each Dey value and retained for the
sensitivity analyses on the other model parameters are indicated in green in table 3.

We further compare the simulations presented in figure 6 in terms of CPU and real
simulation time. Each simulation was ran for a fixed (adimensional) total time of 5.0
1079, which represents, in dimensional equivalent, 160 years of evolution of the system.
With the specific choice of model parameters employed in this particular simulation, each
loading-unloading cycle covers about 12 years. The model response converges for time
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| T(s) | Deo | At(s)| At |tn(s)| Tn |

10* | 0.001 10* 10~ 108 1077

10° | 1076
106 10~°
107 1078 | 10™ | 107
108 10-7

1013 0.1 103 10710 | 108 | 10°°

105 10-% | 101 | 1073
106 10°7 | 108 | 1072
107 10-6

1011 10 102 1072
10° | 102
10* 10-7 | 1010 | 101
10° 1076 | 10t 100
106 10~°

Table 3. Values of the deformation timescale, T', the model time step, At, and healing time,
tn, explored in the present sensitivity experiments, with their adimensional counterpart : re-
spectively, Deg, At and Tj,. For each value of Deg, the values of At (or A~t) for which the model
response is not fully converged are indicated in red. The value of At (or At) retained for the
sensitivity analyses on T}, dd and « is indicated in green. For each Deg value also, the optimal

value of 5, (or Th) retained for the sensitivity analyses on « and dd are indicated in green.

step values of At = 107,101 and 10~? (or At = 10% 10° and 10 s), which are
equivalent to about 1/10,1 and 10 days respectively. For these three time steps, and for
the spatial resolution described in section 3, the calculated CPU time is of about 25, 3
and 0.4 hours respectively (see figure 7). Considering that each simulation ran sequen-
tially on a personal DELL computer equipped with 2.40 GHz Intel Xeon processors, these
computational times demonstrate that the present numerical scheme makes it possible

to run long-term simulations in the context of faults that cover several loading-unloading
cycles in very reasonable simulation times. It is also interesting to note that, for the same
three time steps for which convergence of the macroscopic model response is obtained,
the calculated CPU time scales linearly with ﬁ, while it does not scale linearly for larger
time steps (At > 1079). This indicates that for the smallest three At values, the num-
ber of steady-state stress redistribution subiterations performed at each time step is nearly
constant and hence does not depend on the model time step. Conversely, for larger At’s,
the system is driven further out of equilibrium at each time (i.e., deformation) increment.
The number of subiterations required for the stresses to be redistributed over the domain
and to become sub-critical again then increases significantly with At, thereby reducing
the gain in computational time.
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Figure 7. CPU time as a function of the (adimensional) model time step, for simulations
using Deg = 0.001, o = 4, dd = 0.1, and T}, = 10~° (see figure 6). Each simulation ran on a single
(2.40 GHz Intel Xeon) processor on a personal DELL computer.

5.3 Sensitivity Analyses
5.3.1 Healing Time, T},

To investigate the effect of healing in the model, we compare the macroscopic stress-
strain time series and the power spectral density (PSD) of the elastic energy released within
the system during the propagation of damage, Ep;+ (see figure 8), for simulations us-
ing Dey = 0.001,0.1 and 10 and four different values of the time for healing, correspond-
ing to dimensional times of ¢;, = 108 s, 10° s, 10'° s and 10'! s. All simulations use o =
4 and dd = 0.1 and a value of the time step that ensures the convergence of the model
response for each Deg value (see table 3). To account for the adjustment of the system
following the first rupture, the first loading-unloading cycle is discarded when comput-
ing the PSD. Each curve shown on figure 8 is the average of 5 PSDs, on which a run-
ning mean centred over a window of 5 frequency values is applied.

The results clearly indicate that the prescribed time of healing controls the frequency
of the loading-unloading cycles in the model: the larger the healing time, the lower the
frequency. However in all of the simulations analyzed, the frequency associated to the
prescribed healing time, indicated by the vertical lines on figure 8, does not correspond
to the frequency of the loading-unloading cycles, but is systematically one or several or-
ders or magnitude lower. This discrepancy is consistent that the interface always remains
relatively highly damaged (see animation in Supporting Informations): less time is there-
fore required to re-initiate an avalanche of damaging events than it would be necessary
if the system had completely heal. The discrepancy increases with the value of Degy, in
agreement with a more elastic behaviour at high Dey number, i.e. a lower contribution
from viscous dissipation that delays the reloading of the system.

Another tendency in the model behaviour emerges. For all values of De explored
here, large values of the healing time (slow healing) lead to a Ej,.;; release, or equivalently
a damaging activity, that concentrates around a narrow range of low frequencies: the PSD
is therefore flat for high frequencies. The corresponding stress-strain curves indicates that
the stress is very rapidly and completely dissipated at each unloading (damaging) event.
This behaviour can be explained by the fact that these large values of healing time ap-
proach the value of the bulk relaxation time (i.e, the relaxation time of undamaged el-
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ements, or Dey). Healing is therefore too slow relative to the dissipation of the stress to
play a significant role in the dynamics of the system.

Conversely, for low values of the healing time (fast healing), the PSD is flat for low
frequencies, with the activity concentrated around a narrow range of high frequencies,
and the stress is very rapidly but only partially dissipated at each damaging event: heal-
ing dominates the dynamics as T} approaches the value of the relaxation time for the
stresses over the most damaged elements in the system (i.e., De;,;, ). This value tends
to decrease inversely to T}, as indicated by the coloured dotted lines on figure 8b.

For intermediate values of T}, and the two lowest values of De explored here (see
figure 8a to d), the slope of the PSDs indicates the presence of correlations in the tem-
poral evolution of Ej,.;; (or, by extension, of the damaging activity). Such temporal cor-
relation or clustering is systematically observed for seismic tremors in subduction zones
and covers large spectrum of time scales, from hours to years (e.g., Idehara et al., 2014;
Frank et al., 2016; Poiata et al., 2021). Therefore, for each investigated De value, we iden-
tify an ”optimal” healing time as the value of T}, for which these correlations span the
largest range of frequencies. It is important to note however, that the frequency at which
spatial correlations emerge in the system is upper bounded in all simulations due to the
finite dimension of the domain and the spatial resolution of the mesh. An intrinsic min-
imum time required to load the system can indeed be estimated, that depends only on
the mechanical strength (the ratio Cy/Ey) and the spatial discretization of the model.

It corresponds to the time it takes to load an initially undamaged system until the first
damage event occurs, if all of the deformation is accommodated over a single single grid
element. Figure 8b shows that the frequency associated to this time, indicated as fronains
indeed marks the transition to a flat PSD at higher frequencies (for the other two sys-
tems, the time step employed is too large and does not allow exploring the model be-
haviour up to this frequency). For the "optimal” T}, values, corresponding to ¢, = 101°
s for De = 0.001 (figure 8a, b blue curve) and ¢, = 10° s for De = 0.1 (figure 8¢, d
green curve), the times associated with the loading, the relaxation of the stresses over
damaged elements and the healing of these elements are such that the three processes
interact and give rise to temporal correlations in the system that span a wide range of
time scales. Interestingly, the stress-strain behaviour of the model in these cases is char-
acterized by loading-unloading cycles in which the stress is sometimes partially and more
gradually dissipated and sometimes completely and drastically dissipated.

The optimal value of T}, decreases as the value of Dej increases, indicating that sys-
tems that are more elastic-solid like (large relaxation time, A) or characterized by a faster
dynamics (small deformation time, %, either due to a small horizontal extent, L or a fast
loading velocity, U) must encompass faster healing mechanisms for these interactions to
take place.

However, for the largest De value used here (see figure 8e, f), temporal correlations
in the damaging activity are restricted to a small range of time scale and that, for all
of the T}, values explored, which we consider as lying in a realistic range in the context
of faults. The associated macroscopic stress-strain behaviour is characterized by regularly-
spaced, almost instantaneous (as opposed to transient) and complete unloading phases,
akin to the stick-slip behaviour observed in block-slider experiments. In the context of
slow earthquakes, this suggests that fault systems that are either very brittle (as near
the surface), small in extent, or loaded too rapidly cannot host the complex spatio-temporal
interactions that give rise to the observed transient deformations.

In the remaining sensitivity experiments (next section), we therefore leave the case
of De = 10 aside and concentrate on simulations using De = 0.001 and De = 0.1.
The optimal values of T}, identified for these two cases are indicated in green in table 3
and used by default in all simulations.
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Figure 8. (a, ¢, d) Time series of the macroscopic stress and (b, d, f) power spectral density
of the Fy,;¢ time series for simulations using (a, b) Deg = 0.001 (A~t = 10710), (¢, d) Deg = 0.1
(At = 107°) and (e, f) Deg = 10 (At = 107®) and four adimensional values of the prescribed
time of healing, corresponding to dimensional values of t, = 10° s (yellow), 10° s (green), 10'°
s (blue) and 10** s (purple curve). All simulations use @« = 4 and dd = 0.1. Each PSD curve is
an average of 5 PSD calculated for 5 simulations initiated with different realizations of the noise
on C and on which a running mean centred over a window of 5 frequency values is applied. The
vertical lines on the PSDs indicate, when these frequencies fall within the range of frequencies
covered in the simulations, the frequencies associated with the four adimensional values of the
prescribed time of healing, 1/T} (plain coloured lines), the minimum time required to load the
system, 1 /tloadmg (plain black line), and the relaxation time associated with the most highly

damaged elements in the system, 1/Deymin (dashed coloured lines).
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5.3.2 Damage Parameter, a, and Damage Increment, §d

The last set of sensitivity experiment focuses on the brittle versus ductile charac-
ter of the model behaviour. As the parameters a and dd both regulate the rate at which
the mechanical strength decreases locally and the behaviour changes from elastic solid-
like and viscous fluid-like as a function of the level of damage, we expect their effect in
this regard to be closely related. We therefore run a set of sensitivity experiments in which
both parameters are varied simultaneously. The results of these experiments for the case
of Deg = 0.001 (At = 107 s and 7}, = 1075 s) and Dey = 0.1 (At = 1079 s and
T, = 10~% s) are presented here.

We recall that for large values of dd, the local decrease in the elastic modulus, F,
and apparent viscosity, 7, at each damaging event is small. Conversely, for small values
of dd, the local decrease in both E and 7 is large. Small values of o lead to a small de-
crease in the relaxation time, , at each damaged element (the damaged material re-
tains stresses longer), while large values of a lead to a large decrease in £ (stresses are
dissipated more readily).

Damage Increment, dd

Time series of the macroscopic stress (see figure 9 and 10, left panels) show that
for all values of «, increasing dd decreases the amplitude of the macroscopic stress drop
associated with each unloading phase. As the stress is then never completely released
at each loading-unloading cycle but stabilizes around a non-zero value, the loading time
required for critical values of stress to be reached is reduced and the frequency of each
cycle is thereby increased. For large values of dd, the PDF of the macroscopic damage
increment, defined as in equation (18), is a truncated power law that is confined to small
values of damage increment (see figure 9, right panels, which indicates that damage and
deformation take place through isolated events, with small spatial extents.

Conversely, as dd is decreased, the amplitude in the variations of the macroscopic
stress and the length of the loading-unloading cycles is increased. The unloading phases
are characterized by sharper stress drops, indicating a more brittle behaviour. The dis-
tributions of the macroscopic damage increment are shifted towards larger values of dam-
age increments.

Damage Parameter, o

For a given value of dd, increasing the value of « also induces larger macroscopic
stress drops, lower frequency loading-unloading cycles and larger values of the macro-
scopic damage increment. Another effect of increasing « is that the stress relaxation and
re-increase in the vicinity of each stress minimum is more progressive in time, consistent
with a more rapid decrease in the viscosity of the material at the onset of damaging and
a more viscous fluid-like, i.e, dissipative, behaviour. The inverse is true when decreas-
ing «a: the macroscopic behaviour is more brittle-like, with smaller but quasi-instantaneous
stress relaxation phases and rapid, quasi-elastic stress loading phases.

Limit Cases

For virtually all values of «, large values of dd give rise to a macroscopic stress-strain
behaviour in which, after the initial elastic loading phase, where is no stress relaxation
but rather a slow stress increase akin to the behaviour of a strain hardening creeping ma-
terial. In this case, the PDF's of the macroscopic damage increment are upper-truncated
power laws.

For small values of « and small values of dd (e.g., see figure 9a or 10a for o = 2
and dd = 0.1), the macroscopic behaviour, showing very sharp but small amplitude stress
drops at each loading-unloading cycle, is reminiscent of a quasi-brittle material in which
the stress relaxation through viscous-like deformation is insignificant. Each stress un-
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loading phase is associated with a large avalanche of damage events that spans the en-
tire domain. This explains the sharp mode in the PDF of the macroscopic damage in-
crements at large increment values, which indicates that a characteristic avalanche size
emerges, associated to a finite-size effect.

For large values of o and small values of dd (e.g., see figure 9 or 10, d and e, for
a = 6 or 8), the dissipation of stresses at the onset of damaging is the largest and the
material becomes readily fluid-like. The stress is regularly and completely dissipated at
each loading-unloading cycle. Local damage events are suppressed, which is expressed
by the translation of the PDF of macroscopic damage increments towards larger incre-
ment values. The elastic redistribution of stresses are inhered and, therefore, the spatio-
temporal correlations in the damaging activity are limited, which reduces the horizon-
tal extent of avalanches and explains the appearance of broad modes in the PDF's of dam-
age increments as well as their departure from a power law.

For intermediate values of « (e.g., @ = 3,4, see figure 9 or 10, b and ¢) and small
values of dd (0.1, 0.3, 0.5), the distribution of damage increments can be well-fitted with
a power-law, that extents at large damage increment values. This suggests that the model
simulates a mechanical behaviour that is, at least to some extent, scale-invariant. Un-
loading phases are characterized by stress drops of variable amplitudes, which are ini-
tially almost-instantaneous and then followed by a transient period.

6 Discussions

In this section, we further discuss what the model in its current state is able and
not able to simulate in the context of fault deformation and slow earthquakes. To do so,
we investigate the simulated dynamical behaviour for one specific case in which only dd
is varied and all other mechanical parameters are identical. This simulation is identified
by the black box on figure 10c and uses Deg = 0.1, @ = 4, with the corresponding de-
fault values of At and T}, (see table 3). In particular, we analyze the temporal evolution
of pointwise displacements and velocities at the top boundary of the domain, which con-
stitute proxies for the surface displacements and velocities as measured by Global Po-
sitioning Systems (GPS). In the following, we focus on the horizontal displacement and
velocity at one point, the top left corner of the domain, which is furthest from the top
right corner and therefore less influenced by the prescribed boundary condition there (u, =
0). It is important to note that on figures 11a, b and e, f, the prescribed velocity forc-

ing, U, is subtracted from the recorded horizontal surface velocity. Also, the first few loading-

unloading cycles are omitted from the analysis, as they are susceptible to carry the sig-
nature the first (outlier) rupture event.

The comparison of two simulations in which only the damage increment is varied
between 0.1 and 0.5, summarized in figure 11, suggests that over a certain range of me-
chanical parameters the model can reproduce two different types of mechanical behaviour,
which are more analogous to classical earthquakes and slow slip events, respectively. In
the first case (0d = 0.1, left panels), the macroscopic shear stress on the top bound-
ary indeed shows very rapid and large-amplitude release phases followed by short post-
seismic stress relaxation phases and much longer reloading phases (see figure 11a). Each
brutal stress release event is associated with a sharp reversal of the surface horizontal
(x—) velocity and an equally sharp drop in the surface horizontal displacement (see fig-
ure 11c), which suggests a strong decoupling of the upper and lower plates following large
damage events, reminiscent of classical earthquakes. In the second case (dd = 0.5, right
panels), the asymmetry in the loading-unloading cycles is much less pronounced (see fig-
ures 11b and d): the stress is much more progressively dissipated at each loading-unloading
cycle, which is accompanied by lower amplitude variations of the surface velocity and
a progressive decrease in the surface displacement, reminiscent of slow slip events (e.g.,
Rogers & Dragert, 2003; Radiguet et al., 2016).
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Figure 9. Time series of the macroscopic stress (left panels) and probability density function
of the macroscopic damage increment (right panels) for Deg = 0.001 (At = 107, T}, = 107%)
and d = 0.1,0.3,0.5,0.7,0.9 and (a) a =2, (b) a =3, (¢) a =4, (d) a =6, (e) a = 8.

The damaging activity also differs between the two cases (see figures 11c, d). In
the first, fewer damage events are recorded over the same simulation time. The damag-
ing activity concentrates over large events that either precede (as in foreshocks) or co-
incide with stress release phases. In the second case, the damaging activity is more sym-
metric with respect to unloading phases, with damaging event both preceding (as in fore-
shocks) and following (as in aftershocks) stress release events.
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We further analyze the temporal evolution of the surface horizontal velocity dur-
ing each loading-unloading cycle, that is, over a period of time that starts at the onset
of each stress release phase and extents until the next phase, as delimited by the dashed
lines and arrows on figures 11a, b and ¢, d. In the first case, using dd = 0.1, the model
reproduces a power law decay of the velocity of the form

V(t) ~ tlp (20)
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where ¢ is the time after the onset of stress release, and the exponent p is slightly smaller
than 1 (see figure 11e). This behaviour is akin to the observed Omori-like decay of post-
earthquake surface velocities (Perfettini & Avouac, 2004; Savage et al., 2005; Ingleby &
Wright, 2017; Periollat et al., 2022), which suggests that long-term temporal correlations
in the system control the evolution of post-earthquake surface velocities in the case of
classical earthquakes. It is important to note however that in the present case, this trend
spans a little more than two orders of magnitude, which is much less than what the ob-
servations cover. This is due to the fact that, for the purpose of this paper, we have cho-
sen our mechanical parameters (in particular the ratio Cy/Ep, which controls the sys-
tem loading time, see section 5.3.1) to be consistent with the typical recurrence time of
slow earthquakes, not with the larger time scales associated with classical earthquakes.

In the second case, using dd = 0.5, the post-rupture surface velocities are signif-
icantly smaller than in the previous case, and remain relatively stable for some time, be-
fore slowly decaying at larger timescales (see figure 11f). Such behaviour is similar to
what is observed during some largest SSEs for which the details of the displacement time
series can be resolved (Cotte et al., 2009; Radiguet et al., 2012).

These results suggest that the proposed modeling framework could be able to re-
produce both slow earthquakes and classical earthquakes. Numerically at least, it can
do it because it is efficient enough.

One important point however is that, not over the entire range of model param-
eter values but over the range that generates a mechanical behaviour most analogous to
slow and classical earthquakes, the model definitely exhibits a pseudo-periodic behaviour.
While it might be consistent with slow earthquakes (e.g., Dragert et al., 2001; Cotte et
al., 2009; Radiguet et al., 2016), such behaviour is less consistent with classical earth-
quakes. While recent studies have found that large (classical) earthquakes occur more
regularly than a purely random process (e.g., T. Williams et al., 2019; Griffin et al., 2020),
the temporal evolution of classical earthquakes in general is indeed more intermittent
and their recurrence time, hardly predictable (e.g., Gardner & Knopoff, 1974; Michael,
2011). We however believe that more variability in recurrence times and stress drop mag-
nitudes and an intermittent behaviour covering a wider range of time scales could be ob-
tained by incorporating additional physical components to the model. Leaving aside the
more complex dynamics of fluids aspects, we list some simple and logical options below.

The first consists in moving to a healing law that does not prescribe a unique, con-
stant healing time. Such a law would be in better agreement with available observations.
Measurements of relative seismic velocity changes after majors earthquakes indeed in-
dicate a healing rate that is not constant but decrease in time after the main shock, sug-
gesting that the damaged region within the fault regains strength rapidly in the early
stage of the interseismic period and progressively more slowly in the later stages (e.g.,
Li & Vidale, 2001; Brenguier et al., 2008). In the present model, this behaviour could
be parameterized through a logarithmic healing law that does not include any charac-
teristic time for healing but that instead depends locally on the time elapsed since the
last damage event. Such a law would agree with the aging version of the rate-and-state
interface model of (Ruina, 1983), which imply that the surfaces that are in contact and
at rest strengthen logarithmically and would allow the system to evolve in a less deter-
ministic manner.

The second consists in accounting for a representation of the rheological stratifi-
cation of subduction zones, which is known to depend strongly on temperature (e.g. Pea-
cock, 2009) and therefore on depth. In the present 2-dimensional, idealized numerical
experiments, this stratification could be coarsely accounted for by allowing the bulk, un-
damaged viscosity of the host rock in the two plates to vary as a simple function (for in-
stance, linear) of the horizontal distance (x) parallel to the interface, so that to repre-
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Figure 11. (a, b) Temporal evolution of the macroscopic stress (black curve) and of the

surface z-velocity at the upper left corner of the domain (red curve) for a simulation in which
Dep = 0.1 (At =107°, T}, = 107%), @ = 4 and (a) dd = 0.1 and (b) 6d = 0.5. (c, d) Correspond-
ing temporal evolution of the cumulated surface z-displacement at the upper left corner of the
domain (black curve) and of macroscopic damage increment (cyan curve). (e, f) Corresponding
surface z-velocity at the upper left corner of the domain as a function of the time elapsed be-
tween each unloading event, as indicated by the dashed lines and arrows on figures (a) to (d). In

figures a, b, e and f, the prescribed forcing velocity, U, is subtracted from the z—velocity.

sent a more brittle (high viscosity) behaviour towards the surface and a more ductile (low
viscosity) behaviour at depth. Such a dependence of the viscosity with depth would al-
low mitigating the impact of finite size effects and at the same time, exploring spatial
and temporal interactions between the different types of mechanical behaviours simu-
lated by the model, that is, an essentially brittle behaviour akin to low-depth, classical
earthquakes, a mixed brittle-ductile behaviour akin to slow-slip events and diffuse, duc-
tile deformations akin to the deeper parts of subduction zones. In the same line of ideas,
the use of the full Burger model, that is, incorporating the Kelvin component that was
left aside in the present experiments but which is meant to accounts for the deforma-
tion of the mantle (e.g., Nur & Mavko, 1974; Pollitz et al., 2001), would act as an ad-
ditional source of post-seismic transient deformation and as such would bring some ex-
tra complexity in the temporal behaviour of the model.

The third addition would account for friction, which most likely plays a first-order
role in the brittle part of the shear zone (e.g., Byerlee, 1967; Scholz, 1998, and many oth-
ers), where asperities can become locked, thereby allowing for stresses to locally build-
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up and local quakes to be triggered. To simulate the effect of static friction in a simple
manner, an additional threshold on the the minimum stress required for the occurrence

of viscous deformation (as opposed to damage) could be coupled to the viscous stress
dissipation term of equation 1. This criterion, of the cohesion-less Mohr-Coulomb type,
would ensure that for low states of stress, slip would be hindered and elastic stresses would
build-up locally towards critically.

7 Conclusions

In this paper, we have presented a continuum, volumetric mechanical model suited
for modelling slow earthquakes. We have also presented a numerical framework for this
model that is efficient enough to cover several deformation cycles in very reasonable sim-
ulation times in a 2-dimensional setup, while allowing to resolve both the very short-term
and localized damage initiation and propagation processes associated with the co-seismic
rupture and the diffuse deformations within the bulk of the host rock that relaxes stresses
over very long time scales. In between these very short and very long time scales and
over a certain range of parameters, the model can simulate a correlated seismic (i.e., dam-
age) activity as well as different transient, seismic and aseismic processes akin to clas-
sical and slow earthquakes, such as the post-seismic stress relaxation phase.

In particular, the fact that the model can reproduce the observed Omori-like de-
cay in surface post-seismic velocities over a certain range of mechanical parameter val-
ues, even in the presently highly idealized simulation setup, is an important result, as
it supports the hypothesis of (Ingleby & Wright, 2017) that visco-elastic models, either
of the Maxwell or the Burgers type, require a continuously varying viscosity or, equiv-
alently, a continuously varying relaxation time, to reproduce this observed trend. Here,
this continuous variation in the relaxation time is achieved by applying a unique rheo-
logical law over the entire system, hence avoiding the need to prescribe the mechanical
behaviour in different parts of the system or the location of the shearing zone, but let-
ting both the elastic modulus and viscosity evolve in time and in space as simple func-
tions of the level of damage.

Leaving aside for the moment the inclusion of the dynamics of fluids, we have sug-
gested several simple additions to the current rheological framework that aim at extend-
ing its application to the representation of the entire seismic ”cycle”: that is a deforma-
tion that comprises both classical and slow earthquakes. The one-by-one inclusion of these
additions - a logarithmic, time-since-damage-dependant healing law, a variation of the
viscosity with depth and a deformation threshold for static friction -, the evaluation of
their respective impact on the simulated mechanical behaviour and the assessment of their
relative contribution towards a more realistic reproduction of the deformation cycle of
faults is the aim of our next paper.

Appendix A Adimensional system of equations
The model is made adimensional with respect to
1. the horizontal extent, L, of the domain in the direction of the forcing,

2. the prescribed forcing velocity, U,
3. the undamaged elastic modulus, Ej.

The time characterizing the deformation process is therefore T' = % In the following,
the superscript 7’ is used for all dimension-less variables and operators, which are listed

in table Al.
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Variables, dimensions and operators Non-dimensional equivalent

Spatial (2D) dimension X x=7%
Time t t= %
Velocity u u=g
Internal stress o o= Eio
Level of damage d,d d,d
Del Operator \Y V=LV

Table A1l. Dimensional model variables and operators and their adimensional counterpart.

In terms of these adimensional variables and operators, the momentum equation
reads:

V-5=0 (A1)
for either the pre- or post-damage stress, o or o’.

The full constitutive equation becomes

U_, 06 Ey -
— _ _+_ ) g =

U -
Fhb—+ —F— —Fp(l1 —d)K: ¢
L%0F " N(1—do T o(l —d)K: &,

L

o 0 1 i

E—FWO’:(l—d)K:é‘, (A2)

where Deg = g—‘;% is the (undamaged) Deborah number. The constitutive equation for

the post-damage stress redistribution is:
o' —dds = (1 —d)K: & (A3)
Damage being a non-dimensional variable, the damage equation (5) is itself adimensional:
1—d =6d(1—-d). (A4)

The adimensional healing equation reads

10d 1
———=——d,0<d <1,
T Ot th -
. od 1
—=—_—d,0<d <1. A5
ot Ty - ( )

where T}, = %’

Appendix B Numerical Scheme

Here we present the time discretization and the numerical algorithm employed to
solve the system of equations in the shearing experiments. For simplicity, the superscript
'~! for adimensional variables is drop in the following notations.

This system of equations (Al for o and for o/, A2, A3, A4, A5) forms a problem
that is solved for the following unknowns : ¢ and ¢’ (3 components each), o and o’ (3
components each) and d’, starting from an initial state of rest and zero damage. It is solved
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over a closed 2-dimensional domain 2 € R (see figure 4), with an external boundary
partitioned as 02 = I'top, I'bottom, Llefts Iright- A constant x—velocity is applied on I'yottom-
It is fixed to 0 during the steady-state, stress redistribution process. The z—velocity is
fixed to 0 on I'pottom and u, = 0 on the right upper corner of the domain. The top and
lateral boundaries are free, hence o -n =0 on I'¢op, et and Trigne-

B01 Time discretization

We discretize the time, ¢, such that ¢, = nAt, with At > 0 and n = 0,1,2,....
and use a backward Euler (implicit) scheme of order 1. Expressing the strain rate ten-
sor as € = D(u) = 1 (Vu+ Vu”) and the strain tensor as D(u)At, the time-discretized
system of equations reads:

V.ot = 0,
ontl _gn 1
"= (1-d")K: D(u"!
AU De(l_an ( ) )
1—d™ = 6d(1—d")
v - U/7z+1 — 0,
o™t —§do™ T = (1-d™)K: D(u" ' At),
dm-l—l —_dm 1
_ _ “"(ilTl 0 (i/7L4—], < 1.
At Ty, » 9 < -

The numerical scheme divides this time-discretized problem, Py, into three subprob-
lems. Using the superscript k = 0,1, 2, ... for the steady-state stress-redistribution sub-

iteration in subproblem 2, these problems reads:

(P14) The momentum and constitutive equations are first solved simultaneously for the
fields of velocity and stress, " t! and u™*! at the current time step, by apply-
ing the constant z—velocity forcing on I'yottom and the other boundary conditions
and using the level of damage at the previous time step, d".

(P24q)

The steady-state stress redistribution equations are solved iteratively, with the x—velocity

on IMpottom NOW set to zero. In this subproblem, the damage equation is first solved
for d’™**1 by comparing the field of stress at the current subiteration, e ¥, to
the local damage criteria, o.. The updated level of damage is then substituted into
the post-damage constitutive equation. Together with the momentum equation,

it is solved for the adjusted fields of velocity, u™+1**1 and stress, o/*t1* +1 These
steps are iterated until all of the adjusted stresses become sub-critical. Then the
post-damage level of damage, d'", is set to d™*+1.

(P3g)
step, d’™*1 and d"t! is set to d'™tT.

The complete algorithm reads:
Initialization (n =0)

n

dn — d/n —

Forn >0, set k=0
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The healing equation is finally solved for the level of damage at the current time
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d ith o™ an nown, find o and u such that
P1;) With ™ and d™ k find o™t and u™t! h th

n+l _ n 1

4 O_n+1 _
At Deg (1 —dn)* ™"

V.ot = 0,
(1—d")K: D(u"t?),

and with

UZ+1 = 0 on I'vottom,
U;H'l = 1 on I'vottom,
u”™ = 0on Iiop N Tright
o"l.n = Oon Tiop, Tiete and Tiigne, -

IF anywhere in Q o™ > qoi ™t + 0., set o/ FHE = " and d™F = d”.

(P24) For k >0,

1. Find d™*+ such that
1—d™F = 5d (1 —d™"),

2. Find o™tLE+1 gnd u LA+ such that

v . 0_?’L+1,k+1 _ O7
J/n—i—l,k-{-l o 5d0ln+l,k _ Eo(l _ d/n,k:-l—l)K: (D(u/n+1,k+1)At)
and with
u,/szrl’kJrl = Oon 1_‘bottoma
u;n+1,k+1 = 0Oon 1_‘bottoma
uMTERL =0 on Lop N Tright
o TR n = 0 on Tyop, Dless and Thigne, -

m+1k+1 m+1k+1
IF oML < gl tHE L L 6

STOP and set o™t = o/ +tLEHL gnd d'™ = d™F+1 (P3,) Find d™1 such that

m+1 _ gyn
% = *Tid/n, 0< d/n+1 S 1.
h

Set dnt1 = d'mtl,

Appendix C Convergence

Figure C1 shows the probability density function of Ep,;:/ At obtained in the case
of Deg = 0.1 and Dey = 10, using a = 4, 6d = 0.1 and T}, = 10~ and T}, = 1073 re-
spectively. The PDFs indicate that the macroscopic model response converges as At is
decreased, as for the case of Deg = 0.001 described in section 5.2. The values of At for
which the response is not converged are indicated in red in table 3. The value of At cor-
responding to each Dey value and used in the sensitivity analyses on T}, a and dd are
indicated in green in the same table.
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Figure C1. Probability density function of Ebrit/dt for simulations using o = 4, éd = 0.1 and
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spectively).
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.Saramito/rheolef/html/index.html.
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1. Captions for Movie S1
Introduction The movie provided as Supporting Information is an animation of the
numerical model simulation results that supplements the description of the model me-
chanical response provided in section 5.1. The simulation is ran with a specific set of
model parameters, but the main features of this mechanical response are also observed
over a range of parameter values.
Movie S1.

Animation of the numerical simulation results obtained using the following model me-
chanical parameters: Deg = 0.001, 7), = 1075, At = 1071°, o = 4, §d = 0.1, and corre-
sponding to the snapshots and time series presented in figure 5, described in section 5.1.
The upper panel represents the temporal evolution of the field of level of damage, d (in

logarithmic scale) and the lower panel, the corresponding temporal evolution of the macro-
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X-2
scopic shear stress, calculated by integrating the shear stress on the entire top boundary
of the domain (black curve) and of the macroscopic damage increment, calculated as in

equation (17) (grey curve).
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