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Abstract

The ‘signal-to-noise paradox’ for seasonal forecasts of the winter NAO is often described as an ‘underconfident’ forecast and

measured using the ratio-of-predictable components metric (RPC). However, comparison of RPC with other measures of forecast

confidence, such as spread-error ratios, can give conflicting impressions, challenging this informal description. We show, using a

linear statistical model, that the ‘paradox’ is equivalent to a situation where the reliability diagram of any percentile forecast has

a slope exceeding 1. The relationship with spread-error ratios is shown to be far less direct. We furthermore compute reliability

diagrams of winter NAO forecasts using seasonal hindcasts from the European Centre for Medium-range Weather Forecasts and

the UK Meteorological Office. While these broadly exhibit slopes exceeding 1, there is evidence of asymmetry between upper

and lower terciles, indicating a potential violation of linearity/Gaussianity. The limitations and benefits of reliability diagrams

as a diagnostic tool are discussed.
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Key Points:7

• Reliability diagrams for seasonal winter NAO hindcasts are computed and shown8

to exhibit slopes exceeding 1.9

• It is shown that this is equivalent to the RPC value exceeding 1 assuming linear-10
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• The value of reliability diagrams as a diagnostic tool in seasonal forecasts is dis-12

cussed.13
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Abstract14

The ‘signal-to-noise paradox’ for seasonal forecasts of the winter NAO is often described15

as an ‘underconfident’ forecast and measured using the ratio-of-predictable components16

metric (RPC). However, comparison of RPC with other measures of forecast confidence,17

such as spread-error ratios, can give conflicting impressions, challenging this informal de-18

scription. We show, using a linear statistical model, that the ‘paradox’ is equivalent to19

a situation where the reliability diagram of any percentile forecast has a slope exceed-20

ing 1. The relationship with spread-error ratios is shown to be far less direct. We fur-21

thermore compute reliability diagrams of winter NAO forecasts using seasonal hindcasts22

from the European Centre for Medium-range Weather Forecasts and the UK Meteoro-23

logical Office. While these broadly exhibit slopes exceeding 1, there is evidence of asym-24

metry between upper and lower terciles, indicating a potential violation of linearity/Gaussianity.25

The limitations and benefits of reliability diagrams as a diagnostic tool are discussed.26

Plain Language Summary27

The North Atlantic Oscillation (NAO) is an atmospheric phenomenon which can28

be understood as summarising large-scale winter conditions across western Europe. Long-29

range forecasts of the NAO have been shown to be skillful, but also to suffer from a so-30

called ‘signal-to-noise paradox’, which roughly says that the real world appears to be more31

predictable than the forecasts think it is. However, interpreting the exact meaning of this32

‘paradox’ has proved challenging. We help bring some clarity by showing that one can33

interpret the ‘paradox’ as a case of a probabilistically underconfident forecast, namely34

a forecast which tends to underestimate the likelihood of high magnitude NAO events.35

1 Introduction36

It is now well established that weather forecasting models are able to generate skill-37

ful seasonal forecasts of the winter North Atlantic Oscillation (NAO) (Smith et al., 2016;38

Eade et al., 2014; Dunstone et al., 2016; Athanasiadis et al., 2017). However, these fore-39

casts also suffer from a curious phenomenon dubbed a ‘signal-to-noise paradox’ (Eade40

et al., 2014; Dunstone et al., 2016). An overview and discussion of this phenomenon is41

given by Scaife and Smith (2018), who also explain why understanding, and ultimately42

eliminating the ‘paradox’ from forecasts is a problem of great practical importance.43

The ‘paradox’ is commonly measured using a correlation based metric referred to44

as the ‘ratio-of-predictable components’ (RPC), as introduced in Eade et al. (2014). A45

forecast is said to exhibit a ‘signal-to-noise paradox’ when RPC > 1, which corresponds46

to a situation where the ensemble mean is a better predictor of the real world than of47

individual ensemble members (see Section 2.4). However, interpreting this situation and48

understanding how RPC relates to other skill metrics has proved challenging. Indeed,49

the choice of the word ‘paradox’ suggests that this phenomenon is often viewed as strange50

and unintuitive by the weather forecasting community. Eade et al. (2014) interpreted51

forecasts with RPC > 1 as being ‘underconfident’, but in Strommen and Palmer (2019)52

it was shown that root-mean square spread-error ratios, another metric widely used to53

measure forecast confidence (Johnson & Bowler, 2009), do not always give the same qual-54

itative conclusion as the RPC. In fact, one can easily construct statistical forecast mod-55

els that are ‘underconfident’ with respect to RPC but ‘overconfident’ with respect to RMS56

spread-error (Strommen & Palmer, 2019), and there is evidence suggesting such a mis-57

match actually occurs in the case of winter NAO forecasts (A. Weisheimer et al., 2019).58

Given these subtleties, it seems valuable to further our understanding about what ex-59

actly the ‘paradox’ is measuring.60

The goal of the present paper is to address the following questions:61
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1. Can reliability diagrams (Murphy, 1973), which measure probabilistic forecast skill,62

be used to measure the ‘signal-to-noise paradox’, and if yes, what is the relation63

between such diagrams and the RPC metric?64

2. How reliable are seasonal winter NAO forecasts, as measured by computing re-65

liability diagrams of two state-of-the-art forecast models?66

The value of reliability diagrams as a tool to study seasonal forecasts was first high-67

lighted by A. Weisheimer and Palmer (2014), who emphasised the importance of using68

genuinely probabilistic metrics when assessing forecast skill. Reliability diagrams offer69

an intuitive and easy-to-interpret measure of forecast confidence: a forecast of a binary70

event E can be thought of as ‘overconfident’ if, in situations where the forecast proba-71

bility Pf of E occurring is high, event E actually occurs in the real world with a frequency72

less than Pf . In other words, the forecast model overestimates the true probability of73

E occurring. Similarly, an ‘underconfident’ model would be one where the forecast model74

underestimates the true probability.75

To address these questions, we will make use of two types of data. Firstly, we will76

use artificially generated data based on the simple ‘signal plus noise’ statistical model77

of Siegert et al. (2016). This will allow us to assess forecast reliability and its relation78

to RPC in an idealised situation where, in particular, the sample size can be made large79

enough to minimise noise. In fact, the explicit nature of the statistical model allow for80

a theoretical comparison between reliability and RPC. Secondly, we will compute the win-81

ter NAO forecast reliability for two world-leading forecast models: the UK Met Office82

model (UKMO) (Scaife et al., 2014) and the European Centre for Medium-range Weather83

Forecasts (ECMWF) model (A. Weisheimer et al., 2017).84

2 Data and methods85

2.1 Data86

The UKMO hindcast data used is the 40-member ‘DePreSys3’ ensemble, based on87

the HadGEM3-GC2 version of Met Office Unified Model, as described in Dunstone et88

al. (2016). The dataset consists of 35 ensemble forecasts initialised on November 1st for89

every year between 1980 and 2015. The forecast model includes interactive atmosphere-90

ocean coupling and has a nominal atmospheric resolution of 0.83° longitude by 0.55° lat-91

itude with 85 vertical levels. The nominal ocean resolution is 0.25°. The ensemble mean92

NAO correlations attained are approximately 0.6.93

The ECMWF data used is the 51-member ensemble ‘ASF20C’, based on a version94

of the Integrated Forecast System (IFS) closely related to the System 4 forecast system95

(Molteni et al., 2011). ASF20C consists of 110 ensemble forecasts initialised on Novem-96

ber 1st for every year between 1900 and 2010. The horizontal spectral resolution of the97

model of T255 corresponds to a grid length of approximately 80 km with 91 vertical lev-98

els. ASF20C is uncoupled, and uses prescribed SSTs from the ERA20C reanalysis (Poli99

et al., 2016). Further details can be found in A. Weisheimer et al. (2017). The ensem-100

ble mean NAO correlations attained over the period 1980-2010 are approximately 0.5.101

We use ERA20C as our observational ‘truth’ in order to allow for a comparison with102

ASF20C across the whole 20th century. In order to have a clean comparison with the103

UKMO data, we will consider the 31 winters covering 1980-2010 (N = 31), as well as104

the full period 1900-2010 (N = 109). We only work with DJF means, with each DJF105

season labelled according to the year of the corresponding January.106
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2.2 Definition of the NAO index107

The NAO timeseries for ERA20C and all ECMWF/UKMO ensemble members are108

defined as in Dunstone et al. (2016), namely as the difference in DJF-averaged mean sea-109

level pressure anomalies between Iceland (63-70N, 25-16W) and the Azores (36-40N, 28-110

20W). The timeseries are normalised to have mean 0 and standard deviation 1.111

2.3 Reliability diagrams and definition of the forecast events112

There are a wealth of resources and prior literature concerning reliability diagrams113

(Murphy & Winkler, 1977; Bröcker & Smith, 2007; A. Weisheimer & Palmer, 2014). For114

completeness we provide the basic definitions.115

Suppose we have an ensemble forecast of a binary event E at times t consisting of116

ensemble members xt,k, k = 1, . . . R , where R is the ensemble size. Let yt be the time-117

series of E as observed in the real world. At time t, the forecast probability Pf of E oc-118

curring is defined as the proportion of ensemble members for which E occurs. By con-119

sidering all times t that share approximately the same forecast probability Pf , we can120

compute the proportion Pr of such times in which yt registered an occurrence of E. A121

reliability diagram is simply a plot of Pf against Pr.122

A reliable forecast is one where Pf = Pr, which is guaranteed for a perfectly cal-123

ibrated ensemble. In this case the reliability diagram coincides with the diagonal and124

the slope of a linear fit to the data will be 1. A forecast is said to be unreliable if the re-125

liability diagram deviates from the diagonal. We therefore obtain a quantitative mea-126

sure of the reliability of a forecast by estimating the slope of the reliability diagram. This127

measure is only sensible in cases where the relationship between Pf and Pr is approx-128

imately linear. Reliability diagrams computed using weather forecast data can often de-129

viate strongly from linearity, but we will see that in our case the assumption of linear-130

ity is reasonable.131

When applying this framework to seasonal NAO forecasts we follow standard con-132

ventions by defining two binary events in terms of the upper and lower tercile of the dis-133

tribution. These events can jointly be thought of as assessing the reliability of forecasts134

predicting a notable deviation from neutral conditions. The forecast (observed) prob-135

ability is computed with respect to the terciles of the forecast (observational) distribu-136

tion, to avoid overpenalising.137

Probability/occurrence bins are defined for each decile (0-10%, 10-20%, etc.). When138

fitting a straight line to the raw scatter plot, the bins are weighted according to the num-139

ber of samples they contain.140

2.4 Statistical testing and the RPC metric141

For significance tests, we use Monte Carlo resampling: generate 1000 random sam-142

ples, compute the relevant metric in all 1000 cases, and use the resulting distribution to143

generate confidence intervals. With the SN-model, random pairs of ‘observations’ and144

‘forecasts’ are generated by taking random draws from the distributions of s, ϵ and η and145

using the SN-model equations. When considering UKMO/ECMWF forecast data, ran-146

dom draws are generated by resampling years randomly with replacement to obtain shuf-147

fled timeseries of the same length as the original.148

The RPC metric is defined by the formula

RPC =

√
Corr(EnsMean,Obs)2√

σ2
sig/σ

2
tot

, (1)
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where EnsMean is the ensemble mean timeseries, Obs is the observational timeseries,
σ2
sig is the ensemble mean variance, σ2

tot is the average variance of individual ensemble
members, and the square root is always taken to be positive. Eade et al. (2014) moti-
vate this metric, and its name, by noting that if the forecast has skill, then the RPC is
a lower bound approximation to the ratio PC(Obs)/PC(Mod), where the numerator (de-
nominator) is the square root of the proportion of variance that is predictable in the real
world (the forecast world). It can be shown (Strommen & Palmer, 2019) that

RPC ≈ Corr(EnsMean,Obs)

Corr(EnsMean,Mem)
, (2)

where Corr(EnsMean,Mem) denotes the average correlation between the ensemble mean149

and individual ensemble members. Thus RPC > 1 can be understood as a situation150

where the ensemble mean correlates better with the real world than with random mem-151

bers, which in turn implies that the forecast underestimates the predictability of the real152

world. Equation (2) makes it clear that for a statistically perfect forecast (one where ob-153

servations are indistinguishable from a random ensemble member), RPC = 1. Further154

discussion on RPC can be found in Scaife and Smith (2018) and Strommen and Palmer155

(2019).156

2.5 The ‘signal-plus-noise’ statistical model157

We use the idealised statistical model defined in Siegert et al. (2016), which they158

refer to as a signal-plus-noise model, and which we will refer to as the SN-model for short.159

It assumes the forecast signals are linear and Gaussian. The reader should refer to their160

paper for extensive discussion. Here we simply recap the basic details we need.161

Let yt be the NAO index of the real world, and xt,k, k = 1, . . . R be the NAO in-162

dices of an ensemble forecast of y with R members. If the NAO indices have been de-163

fined or normalised so as to have zero mean, the SN-model supposes that164

yt = st + ϵt

xt,k = βst + ηt.

Here st, ϵt and ηt are all independent, normally distributed variables with mean zero and165

standard deviations σs, σϵ, ση, and β is a constant representing the sensitivity of the fore-166

casts to the observations. One can interpret this as decomposing the observed NAO yt167

into a predictable signal st, and an unpredictable noise term ϵt. The forecast attains skill168

by capturing a proportion βst of st, and has its own noise given by ηt. The ensemble mem-169

bers are assumed to be completely exchangeable with each other, exhibiting both the170

same signal and same level of noise.171

It will be useful to note that the independence assumptions imply that V ar(y) =
σ2
s + σ2

ϵ and V ar(x) = β2σ2
s + σ2

η. Siegert et al. (2016) also derive a formula for the
RPC of the SN-model in their Appendix B, which in the limit of infinitely many ensem-
ble members becomes

RPCSN =
1

β

√
β2σ2

s + σ2
η√

σ2
s + σ2

ϵ

. (3)

Thus RPC > 1 occurs in this model as a result of either a small signal (β < 1) or ex-172

cessive forecast variance (which when β = 1 happens if ση > σϵ).173

To compare the forecast data to the SN-model behaviour, we fit the free param-174

eters of the SN-model to UKMO and ECMWF forecast data. To do so, we used the ‘mo-175

ment estimator method’ described in Appendix C of Siegert et al. (2016). The estimated176

values of (σs, σϵ, ση, β) are (0.79, 0.61, 0.99, 0.27) for UKMO data, and (0.60, 0.80, 0.98, 0.37)177

for ECMWF data. These values will be discussed in Section 4.1. Because this discus-178

sion is not central to the paper, error-bars are omitted, but one can infer from the un-179
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certainty estimates in Siegert et al. (2016) that the differences between UKMO and ECMWF180

parameters are likely not statistically significant.181

3 Results using the idealised statistical model182

3.1 Numerical analysis183

Figure 1. Reliability and RPC estimates using the SN-model. In (a) a contour plot of the

slope of the reliability diagram across a range of SN-model parameters. In (b) the same but for

RPC. In (c) and (d): example reliability diagrams obtained for a specific choice of parameters

corresponding to an overconfident and underconfident forecast respectively. The sizes of the blue

dots are proportional to the number of samples available in that bin; the blue line is the linear

fit and the blue shading gives the 95% confidence interval of this linear fit. In (a) and (b), the

location of the two examples (black dot and star) as well as the UKMO and ECMWF fits (black

hexagon and pentagon) have been marked.

In order to understand how reliability relates to RPC in the SN-model, we proceed184

as follows. We first fix the ‘observational’ parameters σs and σϵ to be the UKMO esti-185

mates from Section 2.5. We then pick random values of the ‘forecast’ parameters β and186

ση uniformly between 0.10 and 10. These parameters are used to generate an observa-187

tional timeseries y and 50 ensemble member timeseries xk, each of length N = 1000.188

For each such pair of observations and ensemble, we compute the slope of reliability di-189
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agrams corresponding to the upper and lower tercile events, along with the RPC value.190

The large sample size of 1000 reduces the sampling variability and helps highlight gen-191

eral patterns. Figure 1(a) and (b) show how these metrics vary as a function of both β192

and σ2
η/σ

2
ϵ in the case of the upper tercile event. Note that because the SN-model is lin-193

ear, reliability diagrams for upper and lower terciles are always identical. Large (small)194

values of β are interpreted as the signal being large (small) in the forecast, while large195

(small) values of σ2
η/σ

2
ϵ are interpreted as the forecast members exhibiting more (less)196

unpredictable noise than the real world. We refer to this latter ratio as the noise-ratio197

for short.198

Several points can be inferred from Figure 1. Firstly, it can be seen that the re-199

liability of the slope varies monotonically with both β and the noise-ratio. Three essen-200

tial parameter regimes can be identified, corresponding to the value of the slope S: S <201

1 (overconfident), S > 1 (underconfident) and S = 1 (perfect reliability). An exam-202

ple reliability diagram from the S < 1 regime is shown in Figure 1(c) (β = 2, ση =203

σϵ/2) , and an example for the S > 1 regime in Figure 1(d) (β = 0.5, ση = 2σϵ). In204

order for the forecast model to be perfectly statistically calibrated, it is necessary for both205

β and the noise-ratio to be 1. However, Figure 1(a) shows that perfect reliability can be206

obtained for a non-perfect forecast model through a compensation of errors: too much207

(little) noise can be balanced by an overly strong (weak) signal, and vice versa. This ex-208

plains why the S = 1 regime sits on the diagonal.209

Secondly, comparing Figures 1(a) and (b) strongly suggests that the parameter regimes210

defined by RPC < 1, RPC > 1 (‘paradox’) and RPC = 1 are the same as those de-211

fined using the reliability slope. In other words, the model parameters that lead to a re-212

liability slope S > 1 are the same parameters that give RPC > 1. In fact, in the next213

section we will prove this statement under the assumptions of a sufficiently large sam-214

ple and ensemble size. This means that in the SN-model, the ‘paradox’ can be precisely215

understood as an instance of a forecast with reliability slope S > 1.216

A final point of note concerns the impact of sampling variability. The artefacts in217

the contour of Figure 1(a) suggest that sampling variability remains non-trivial even with218

a sample size of N = 1000. This can be seen in the two example diagrams (c) and (d),219

showing deviations from linearity that are necessarily due to sampling variability alone.220

The effect is especially big in the bottom right corner of Figure 1(a), corresponding to221

the limiting case where ensemble members are purely noise-driven, implying that reli-222

ability cannot be sensibly assessed unless the forecast has sufficient skill. By compari-223

son with Figure 1(b), the sample size of 1000 appears sufficient to eliminate sampling224

variability for RPC estimates, even in the noise-driven limit case. However, in regions225

closer to the diagonal, the sampling variability of the reliability slope is small enough to226

easily assess which parameter-regime one is in.227

3.2 Theoretical analysis228

We sketch a proof of the equivalence S > 1 ⇐⇒ RPC > 1 in the SN-model,229

under the assumption that (a) the ensemble size is large enough that the ensemble mean230

x̂t ≈ βst (i.e., noise is completely eliminated), and (b) the sample size is large enough231

that sample estimates (of e.g. variances) equal the true underlying population values.232

For simplicity we also assume β > 0, i.e. that the forecasts have non-zero skill. The sketch233

assumes the event definition E is the upper tercile: at the end we indicate why the same234

argument accounts for an arbitrary upper/lower percentile.235

It is possible to derive exact formulae for the reliability curve (i.e. Pr as a func-236

tion of Pf ) which show that the curve is a strictly increasing ‘sigmoid’ whose growth rate237

is determined by the RPC. These formulae exhibit degeneracies when the ensemble mean238

correlation is very close to 1, which in the SN-model happens when σs >> σϵ. The sketch239
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which follows is essentially correct away from this region and captures the key ideas. Com-240

plete details can be found in the Supporting Information.241

First note that given the assumption that ensemble mean correlations are not close242

to 1, the reliability curve will approximately pass through the point (1/3, 1/3). Intuitively,243

a forecast probability of 1/3 corresponds to a forecast which detects no appreciable pre-244

dictable signal and which therefore gives us no knowledge about the value of yt. Con-245

sequently, yt is roughly speaking expected to be a random draw from its climatology, which246

lands in the upper tercile with probability 1/3, as desired.247

Next, we will show that RPC > 1 if and only if the reliability curve passes through248

the point (1/2, L) for some L > 1/2, i.e. a point above the diagonal. By definition, L =249

P(yt satisfies E | Pf = 0.5), where Pf is the forecast probability. Because yt is nor-250

mally distributed with variance σ2
s+σ2

ϵ , its upper tercile is defined by yt > λ
√

σ2
s + σ2

ϵ ,251

where λ ≈ 0.431 defines the upper tercile threshold of the N (0, 1) distribution. Simi-252

larly, the upper tercile for the forecast distribution is defined by xt,k > λ
√
β2σ2

s + σ2
η.253

Since ensemble members are normally distributed around the ensemble mean, Pf = 0.5254

if and only if half the members exceed the upper tercile threshold, which happens if and255

only if the ensemble mean βst equals the forecast upper tercile threshold. Therefore,256

L = P
(
yt = st + ϵt > λ

√
σ2
s + σ2

ϵ | βst = λ
√

β2σ2
s + σ2

η

)
. (4)

This is the probability of ϵt exceeding a fixed threshold conditioned on the value of st.257

Since ϵ and s are independent, the conditional can be dropped, yielding258

L = P
(
ϵt > λ

√
σ2
s + σ2

ϵ −
λ

β

√
β2σ2

s + σ2
η

)
. (5)

Because ϵt is normally distributed with mean 0, this probability exceeds 0.5 if and only259

if the right-hand-side of the inequality in (5) is less than 0. Rearranging and simplify-260

ing this implies261

L > 0.5 ⇐⇒

√
β2σ2

s + σ2
η

β
√
σ2
s + σ2

ϵ

> 1, (6)

which by equation 3 precisely says that RPC > 1.262

We have shown that the reliability curve intersects the diagonal at Pf = 1/3 and263

is above the diagonal at Pf = 1/2 ⇐⇒ RPC > 1. Since the reliability curve is264

strictly increasing, this already clarifies why S > 1 ⇐⇒ RPC > 1. Similar argu-265

ments show that the curve is always below the diagonal for Pf < 1/3 and always above266

the diagonal for Pf > 1/2. The explicit sigmoid shape of the curve can be used to guar-267

antee an overall slope exceeding 1, finishing the proof sketch.268

The case where E is the lower tercile only requires a slight modification: the lower269

terciles are defined by the condition of being less than −λ times the variance. The re-270

versing of the inequality and the change of the sign cancel out in the end to give the same271

conclusion. If a different percentile C had been used to define E, then as long as C <272

0.5 the exact same argument will work. If C > 0.5, the same argument can be applied273

to the lower percentile event 1− C to establish the same claim by symmetry.274

It is interesting to note that an expression for the root mean-squared-error divided275

by the average ensemble spread can also be established under the same assumptions of276

large sample and ensemble size:277
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RMSE

Spread
=

√
(β − 1)2σ2

s + σ2
ϵ

ση
,

where the precise meaning of RMSE and Spread are as in Fortin et al. (2014). Given a278

statistically perfect forecast this ratio equals 1 (Fortin et al., 2014), which can be eas-279

ily verified in our case by setting β = 1 and σϵ = ση, the conditions required for per-280

fect statistical calibration (Siegert et al., 2016). However, it is clear that for a non-perfect281

forecast, the relationship between this ratio and RPC (or the reliability slope) is not straight-282

forward, suggesting that spread-error metrics are measuring forecast confidence in a fun-283

damentally different manner to RPC and reliability diagrams.284

4 Results using forecast data285

We consider in turn the modern period 1980-2010 and the full period 1900-2010.286

Note that a full discussion of the challenges arising from sampling variability is reserved287

for Section 5.288

4.1 The period 1980-2010289

Figure 2 shows the reliability diagrams of seasonal winter NAO forecasts using both290

the upper and lower tercile events, for ECMWF and UKMO forecast data, using the pe-291

riod 1980-2010 (N = 31) for which they overlap. Thick red lines show the raw estimate,292

with shading indicating uncertainty.293

In diagrams (a), (c) and (d), the NAO reliability slope exceeds 1, and robustly so294

for the upper tercile event. In (b), the lower tercile event for ECMWF, the uncertainty295

is too great to assess the reliability, but the overall assessment of both NAO forecasts296

is that they are unreliable and underconfident. Given the conclusions of the previous sec-297

tion, this is consistent with the presence of the ‘signal-to-noise paradox’ of these fore-298

casts, with the UKMO and ECMWF exhibiting an RPC of 2.3 and 1.8 respectively. There-299

fore, despite the large uncertainties in the exact quantitative estimates of several of the300

reliability slopes in Figure 2, these diagrams give the same qualitative conclusion as anal-301

ysis based on RPC.302

The equivalence of reliability and RPC in the previous section assumed the linear303

and Gaussian SN-model. The only indication of a violating of linearity/Gaussianity here304

is in the discrepancy being between the upper and lower ECWMF terciles. However, the305

uncertainty of the lower tercile slope is large enough to still be consistent with the SN-306

model.307

In order to allow for a qualitative comparison between UKMO and ECMWF, their308

positions in (β, σ2
η/σ

2
ϵ )-space have been marked on Figures 1(a) and (b), though we re-309

mind the reader that the uncertainty in the parameters means this comparison should310

be treated cautiously. The ECMWF forecasts appear to be slightly more reliable than311

UKMO, exhibiting both a higher β and a noise-ratio closer to 1. However, this is at the312

expense of less skill than UKMO, due to a smaller overall signal σs. The differing val-313

ues of σs and σϵ for the two datasets (Section 2.5) may seem puzzling, given the same314

observations are used for each. However, as emphasised in Siegert et al. (2016), the de-315

composition of observations into s and ϵ is a statistical construct which is in no way in-316

dependent of the forecast product being used. For example, if UKMO simulates a tele-317

connection missing in ECMWF, a parameter fit using UKMO will assign the variabil-318

ity associated with this teleconnection to the signal, while ECMWF would assign it to319

the noise.320
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Figure 2. In (a) and (b), reliability diagrams of, respectively, upper and lower tercile DJF

NAO forecasts by the ECMWF ensemble, and in (c) and (d) the same but for UKMO forecasts.

The period covered is 1980-2010. The sizes of the red dots are proportional to the number of

samples available in that bin; the thick red line is the linear fit and the red shading gives the 95%

confidence interval of this linear fit. The ‘perfect reliability’ diagonal (thick black line) is included

for convenience.

4.2 The period 1901-2010321

Figure 3 shows the reliability diagrams for the ECMWF model covering the full322

110-year period 1901-2010 (N = 109). While the upper tercile uncertainty crosses the323

diagonal, the face-value reliability slope indicates underconfidence, consistent with the324

modern period 1980-2010. On the other hand, the lower tercile interestingly indicates325

robust overconfidence, giving an overall impression of good reliability when considering326

both terciles jointly.327

These results are consistent with the analysis in A. Weisheimer et al. (2019), which328

showed that RPC ≈ 1 in these forecasts when computed over the period 1901-2010. Their329

analysis further showed pronounced decadal variability in both skill and RPC, with the330

modern period standing out as an era of relatively high skill and RPC values. These re-331
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Figure 3. In (a) and (b), reliability diagrams of, respectively, upper and lower tercile DJF

NAO forecasts by the ECMWF ensemble. The period covered is 1901-2010. The sizes of the red

dots are proportional to the number of samples available in that bin; the thick red line is the

linear fit and the red shading gives the 95% confidence interval of this linear fit. The ‘perfect

reliability’ diagonal (thick black line) is included for convenience.

liability diagrams, if taken at face value, complement A. Weisheimer et al. (2019) by in-332

dicating that the main source of both skill and high RPC values are forecasts of posi-333

tive NAO events, with forecasts of negative events being qualitatively different. In par-334

ticular, the ECMWF underconfidence of positive NAO events and overconfidence of neg-335

ative NAO events appear to be relatively consistent features across both the full period336

1901-2010 and the modern period 1980-2010.337

5 Discussion and conclusions338

We have shown, given the assumption of linearity/Gaussianity, that the ‘signal-to-339

noise paradox’ corresponds precisely to a situation where upper/lower percentile fore-340

casts have a reliability diagram with a slope exceeding 1. More precisely, by utilising the341

linear statistical model of Siegert et al. (2016), we showed that given a large sample size342

and sufficiently many ensemble members, the RPC metric exceeds 1 if and only if the343

reliability slope exceeds 1: the higher the RPC, the steeper the slope, and vice versa. This344

justifies the intuitive interpretation of the ‘paradox’ as a case of an ‘underconfident fore-345

cast’, with confidence measured probabilistically using reliability diagrams. On the other346

hand, the ratio of RMSE over ensemble spread is not straightforwardly related to RPC,347

meaning that this interpretation does not hold if confidence is measured using spread-348

error ratios.349

Furthermore, we showed, using ECMWF and UKMO seasonal hindcasts, that ter-350

cile forecasts of the winter NAO generally exhibit reliability diagrams with slopes exceed-351

ing 1. In other words, the ‘signal-to-noise paradox’ present in these hindcasts can be de-352

tected using reliability diagrams. Consideration of the ECMWF hindcast, which covers353

the full 20th century, suggests that the main source of forecast underconfidence is from354

positive NAO forecasts, with negative NAO forecasts being more overconfident on av-355
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erage. This apparent asymmetry between positive and negative NAO forecasts indicates356

a violation of linearity/Gaussianity, which may be due to the effects of skew (Stephenson357

et al., 2004), flow-dependent predictability (Frame et al., 2013; Ferranti et al., 2015; Mat-358

sueda & Palmer, 2018), or non-linear regime dynamics (Strommen, 2020). The relation-359

ship with A. Weisheimer et al. (2017), which found that ECMWF skill is higher for neg-360

ative NAO events, is unclear, since higher skill might be expected to increase the RPC361

(by equation 2) and hence lead to underconfidence. The asymmetry may also be a ran-362

dom artefact.363

The clear limitation to the use of reliability diagrams to assess seasonal mean fore-364

casts, such as the winter NAO, is the uncertainty arising from sampling variability. This365

uncertainty has two sources. Firstly, given the 1980-2010 hindcast sample size of 31, each366

forecast-probability bin was found to contain somewhere between 3 and 10 samples, which367

is clearly insufficient to robustly estimate the conditional observed frequency. Secondly,368

the ‘paradox’ has the effect of clustering forecast probabilities close to 50%, meaning there369

are few cases of extreme forecast probabilities available, especially high-probability cases.370

The resulting uncertainty means that reliability diagrams based on a typical hindcast371

sample size of 30-40 years can only sensibly be used for qualitative, rather than quan-372

titative, assessment. Longer hindcasts spanning the 20th century currently only exist for373

the ECMWF model.374

The fact that reliability diagrams are particularly sensitive to sampling variabil-375

ity is well known, and several ‘tactics’ have become standard for overcoming this. For376

example, when assessing reliability of seasonal forecasts for a particular region (such as377

the UK), it is common to treat forecasts for each individual gridpoint in the region as378

independent instances of the regional forecast (A. Weisheimer & Palmer, 2014). While379

this has the effect of dramatically increasing the sample size, the assumptions will clearly380

often fail: neighboring gridpoints are not independent and the presence of orography means381

individual gridpoints may not be representative of the region as a whole. The large un-382

certainties in the 1980-2010 winter NAO reliability estimates (Figure 2) may seem less383

unfavourable in this light. We also note that uncertainties in RPC estimation are typ-384

ically considerable: in cases of low forecast skill (ensemble mean correlations < 0.4) these385

uncertainties can easily be large enough to make it impossible to assess if the RPC is greater386

or less than 1 (Strommen & Palmer, 2019).387

Nevertheless, it is natural to ask if tactics similar to the use of gridpoint forecasts388

can be used to more robustly assess the reliability of winter NAO forecasts. One pos-389

sibility is to use forecasts of the December, January and February NAO separately. This390

was explored, but found to pose challenges, since forecast skill was found to not be uni-391

form across each month, with December showing little to no skill. It is therefore not im-392

mediately clear how to relate reliability of the pooled monthly forecasts to reliability of393

the seasonal mean forecast. Other future avenues of exploration might include pooling394

forecasts of multiple principal components beyond just the first.395

In conclusion, despite the limitations imposed by sampling variability, we propose396

that reliability diagrams of seasonal means can provide a useful complementary view of397

the ‘signal-to-noise paradox’, and more broadly contribute to the qualitative assessment398

of seasonal forecasts. In particular, exploration of both upper and lower percentile fore-399

casts seems valuable as an easy way to help identify the largest contributors to the ‘para-400

dox’ in a way that the raw RPC cannot. The theoretical relationship between RPC and401

reliability slopes we established is also helpful for guiding intuition. It would be inter-402

esting to assess if a similar relationship holds in more non-linear models, such as the regime-403

based one of Strommen and Palmer (2019).404
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The NAO hindcast timeseries and python code used to create the figures of this406

paper are freely available on GitHub: https://github.com/KristianJS/reliability407

diags/408

ASF20C data is freely available on CEDA (C. Weisheimer A.; O’Reilly, 2020). ERA20C409

data is freely available via ECMWF at https://apps.ecmwf.int/datasets/data/era20c410

-daily/levtype=sfc/type=an/.411
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