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Abstract

California’s arid Central Valley relies on groundwater pumped from deep aquifers and surface water transported from the

Sierra Nevada to produce a quarter of the United States’ food demand. The natural recharge to deep aquifers is thought to

be regulated by the adjacent high Sierra Nevada mountains, but the underlying mechanisms remain elusive. We investigate

large sets of geodetic remote sensing, hydrologic, and climate data and employ process-based models at annual time scales to

investigate possible recharge mechanism. Peak annual groundwater storage in the Central Valley lags several months behind that

of groundwater levels, which suggests a longer transmission time for water flow than pressure propagation. We further find that

peak groundwater levels lag the Sierra Nevada snowmelt by about one month, consistent with an ideal fluid pressure diffusion

time in the Sierra’s fractured crystalline body. This suggests that Sierra Nevada snowpack changes likely impact freshwater

availability in the Central Valley aquifers. Our datasets, analysis and process-based models link the current precipitation and

meltwater in the high mountain Sierra to deep Central Valley aquifers through the mountain block recharge process. We call

for new hydroclimate models to account for the role of the Sierra in California’s water cycle and for revision of the current

management and drought resiliency plans.
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Key Points: 10 

• High Sierra snowpack link to deep Central Valley aquifers via mountain block recharge 11 
is consistent with satellite & in-situ observations. 12 

• Peak groundwater levels lag Sierra’s water peak by one month, consistent with fluid 13 
diffusion time in Sierra’s fractured crystalline body 14 

• New hydroclimate models should account for the role of the Sierra Nevada in 15 
California’s water cycle 16 
  17 
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Abstract 18 

California's arid Central Valley relies on groundwater pumped from deep aquifers and 19 
surface water transported from the Sierra Nevada to produce a quarter of the United States’ food 20 
demand. The natural recharge to deep aquifers is thought to be regulated by the adjacent high 21 
Sierra Nevada mountains, but the underlying mechanisms remain elusive. We investigate large 22 
sets of geodetic remote sensing, hydrologic, and climate data and employ process-based models 23 
at annual time scales to investigate possible recharge mechanism. Peak annual groundwater 24 
storage in the Central Valley lags several months behind that of groundwater levels, which 25 
suggests a longer transmission time for water flow than pressure propagation. We further find 26 
that peak groundwater levels lag the Sierra Nevada snowmelt by about one month, consistent 27 
with an ideal fluid pressure diffusion time in the Sierra’s fractured crystalline body. This 28 
suggests that Sierra Nevada snowpack changes likely impact freshwater availability in the 29 
Central Valley aquifers. Our datasets, analysis and process-based models link the current 30 
precipitation and meltwater in the high mountain Sierra to deep Central Valley aquifers through 31 
the mountain block recharge process. We call for new hydroclimate models to account for the 32 
role of the Sierra in California’s water cycle and for revision of the current management and 33 
drought resiliency plans. 34 

 35 

Plain Language Summary 36 

Current trends in hydrology and climate indicate a future in which extreme droughts will likely 37 
become the norm for drier regions. To sustain food production in the Central Valley, California, 38 
a major agricultural producer in the United States with a semiarid climate, groundwater supply 39 
and recharge are crucial to management solutions. We report the first remote-sensing 40 
observations directly linking Sierra Nevada’s snowpack and groundwater storage to Central 41 
Valley's deep aquifer system recharge. We highlight the importance of high mountain 42 
groundwater systems in the water cycle, significantly contributing to recharging valley aquifers. 43 
We suggest that Sierra Nevada snowmelt and mountain recharge processes should be included in 44 
Central Valley aquifer models for accurate forecasting of the impact of climate extremes on 45 
groundwater supply and for developing effective drought adaptation and resiliency plans. 46 

 47 

1 Introduction 48 

Understanding key natural and artificial processes in recharging aquifer systems is 49 
essential for sustainable water management to store water for future use (Escriva-Bou et al., 50 
2020, 2021; Ghasemizade et al., 2019). In arid and semiarid regions, such as the lowland Central 51 
Valley (CV) of California adjacent to the Sierra Nevada Mountains (Fig. 1a), artificial (or 52 
intentional) recharge through basins, unlined canals, and injection contributes to the net recharge, 53 
however, due to the natural disconnect between groundwater overdraft in dry areas and surface 54 
water surplus in wet areas, these contributions are likely small (Alley, 2002; Ayres et al., 2021; 55 
Escriva-Bou et al., 2021; Siebert et al., 2010; Zektser & Everett, 2004). Thus, large-scale natural 56 
recharge to deep aquifers is essential for replenishing dryland groundwater resources. In contrast 57 
to artificial recharge, the mechanism of natural recharge to deep aquifers remains elusive in the 58 
CV. 59 
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California’s wet and dry seasons occur during November-April and May-October, 60 
respectively, with a large portion of the Sierra Nevada’s precipitation falling as snow during the 61 
winter that supplies snow melt in spring (Fig. S1, S2). The Sierra Nevada’s snowpack is thought 62 
to regulate surface water availability in the CV during the summer (Faunt, 2009; Peterson et al., 63 
2003; Urióstegui et al., 2017). Isotope studies and streamflow analysis of snow-dominated 64 
mountainous watersheds of the western USA suggest that snowpacks via snowmelt significantly 65 
contribute to groundwater recharge, depending on present geology (Earman et al., 2006; Tague et 66 
al., 2008; Tague & Grant, 2009). But the mechanism linking the Central Valley’s deep aquifer 67 
recharge to precipitation, underground storage, and water transport in the Sierra Nevada 68 
Mountains is not well-understood (Huth et al., 2004; Jódar et al., 2017; Liu et al., 2017).  69 

Deep valley aquifers adjacent to high mountains, such as the CV, are thought to be 70 
recharged by lateral flows from higher elevations (Feth, 1964). The two main processes 71 
considered are Mountain Front Recharge (MFR) and Mountain Block Recharge (MBR, Fig. 2) 72 
(Somers & McKenzie, 2020). MFR often directly recharges shallow unconfined aquifers and 73 
causes a rise in the water table near streambeds from the mountain front to the basin aquifer. 74 
MBR replenishes deeper, often confined, and semi-confined aquifers laterally connected to high 75 
mountain aquifers (Somers & McKenzie, 2020). MBR occurs through fractures in the mountain 76 
block hydraulically connected to deep valley aquifers. Despite their proximity, there is no 77 
consensus on the role of especially MBR from the Sierra Nevada’s granitic bedrock block into 78 
the CV aquifers; thus, it is not considered in current large-scale hydrological models used in 79 
water management assessments (Faunt, 2009; Hanson et al., 2012; Markovich et al., 2019). 80 
Meixner et al. (2016) lumped both processes to mountain system recharge (MSR) and estimated 81 
that it accounts for ~20% of GW recharge in the CV. Recent modeling experiments indicate that 82 
MFR drives almost all of the MSR to the CV aquifers (Schreiner-McGraw & Ajami, 2022). 83 
However, another study based on hydrological modeling concludes that MBR is more important 84 
and contributes up to 23% of the total GW recharge to the CV (Gilbert & Maxwell, 2017). These 85 
hydrogeological studies generally agree on the role of MSR components. However, they disagree 86 
on the importance of MBR for recharging deep valley aquifers of the CV, while the spatial extent 87 
of their investigations remains at scales of smaller watersheds that do not cover the entire CV.  88 

An observation of groundwater volume change at the scale of the CV is available from 89 
remote sensing techniques, e.g., via their impact on the gravity field observed by the Gravity 90 
Recovery And Climate Experiment (GRACE) or on surface deformation observations with 91 
Global Navigation Satellite System (GNSS) or Interferometric Synthetic Aperture Radar 92 
(InSAR). Some studies, e.g., Murray & Lohmann (2018), Neely et al. (2021) analyzing high-93 
resolution deformation maps, suggest direct recharge of deep aquifers from the surface of the CV 94 
following heavy precipitation events and surface water supply surplus during wet years, ignoring 95 
the impermeable clay layers separating shallow and deep aquifers (Faunt, 2009; Shirzaei et al., 96 
2019) and that there is no evidence of vertical fractures (Carlson, Shirzaei, Ojha, et al., 2020) in 97 
the Valley to provide a direct pathway for the downward flow of surface water. Argus et al. 98 
(2022) use remote sensing data and hydrological models to quantify MBR from the Sierra 99 
Nevada to the CV at about 5 km3/yr, though they fail to provide a feasible conceptual or physical 100 
model describing the deep aquifer recharge mechanisms. 101 

Quantifying the spatiotemporal relationship between California’s high mountains and 102 
deep valley aquifers is essential for developing appropriate plans supporting sustainable 103 
groundwater use. In the climate change era, when drought frequency and intensity have 104 
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increased globally (Fox-Kemper et al., 2021), including in California (Fig. S3), elevation-105 
dependent warming (Pepin et al., 2015) disproportionally impacts the water availability and 106 
storage in high mountains. During the last decades specifically, increased evapotranspiration, 107 
decreased or delayed precipitation, and snowfall have caused severe snow droughts in the 108 
western USA, including the Sierra Nevada (Harpold et al., 2017; Hatchett & McEvoy, 2018; 109 
Mote et al., 2018). These droughts also reduce supply for the MBR. Hence, ignoring the MBR 110 
contribution may cause an overestimation of the lowland aquifer resilience to climate change and 111 
excess freshwater demand.  112 

During a dry year, up to 70% of the groundwater used in CV is pumped within the 113 
growing season, mainly between April to June (Faunt, 2009), causing a long-term decline in 114 
groundwater levels, with the fastest rates observed in the southern San Joaquin basin (Fig. 1a, 115 
including the Tulare basin) (Faunt, 2009; Faunt et al., 2016; Konikow, 2015; Massoud et al., 116 
2018; Ojha et al., 2018). Given the poor quality of shallow water in the southern CV (Hanak et 117 
al., 2017), most groundwater demand is addressed by tapping into deep aquifers at ~50 m to 118 
~500 m depth below the surface, overlain by the confining layer of the Corcoran Clay or other 119 
clay lenses (Fig. 1a). Thus, direct percolation of surface water into deep aquifers is implausible 120 
(Shirzaei et al., 2019), at least at the time scale of a month to a year, corroborated by 121 
groundwater-age data (McMahon et al., 2011). For instance, Burow et al., (2007) reported a 122 
recharge rate of less than 600 mm/yr for unconfined aquifers in San Joaquin Valley. Thus, 123 
ancient groundwater supports California's water supply today (Healy & Scanlon, 2010).  124 

Here, we investigate several big time-dependent datasets, including groundwater level 125 
(GWL, Fig. 1a, S4), surface deformation from Interferometric Synthetic Aperture Radar (InSAR) 126 
and Global Navigation Satellite System (GNSS) (Fig. 1b, S5), Gravity Recovery and Climate 127 
Experiment (GRACE) satellite-derived total water storage (TWS), as well as soil storage (SoS), 128 
snow storage (SnS) and reservoir storage (ReS, Fig. 1c) from hydrological data sources. We 129 
further apply sophisticated time-frequency and correlation analysis to identify hidden and non-130 
stationary patterns in time series, quantifying their relationships. We specifically focus on 131 
investigating seasonal (i.e., annual) variations in hydrologic and geodetic observation time series 132 
that are sensitive to groundwater dynamics and their inter-annual differences. Based on the 133 
analysis, we build a conceptual model for CV deep aquifer recharge that supports the importance 134 
of MBR and agrees with geodetic remote sensing data over the CV. 135 

 136 

2 Materials and Methods 137 

Our study leverages various hydrologic and geodetic datasets, signal processing, 138 
statistical methods and physical models to quantify groundwater dynamics in the CV and Sierra 139 
Nevada Mountains (Fig. 1a). 140 

2.1. Water Storage Components, Precipitation, and Snow Melt 141 

GRACE and GRACE Follow-on missions (hereafter referred to as simply GRACE) 142 
monitor monthly changes in the Earth's gravity field at a spatial resolution of ~300-400 km, 143 
which are converted to equivalent total water storage (TWS) changes close to the surface 144 
(Schmidt et al., 2008; Tapley et al., 2004). In California, associated mass variations can be 145 
attributed to the terrestrial water cycle dynamics at sub-seasonal to interdecadal time scales. 146 
Water flow and storage processes on and below the surface change the region's total amount of 147 
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water stored in the soil, snowcap, surface- (including reservoirs and rivers), and groundwater. 148 
With that, GRACE total water storage variations reflect water loss, e.g., due to drought or human 149 
activities like intense groundwater pumping, as a mass deficit. Vice versa, for wetter periods, the 150 
surplus of water is detected. This allows for predicting groundwater storage in large aquifers if 151 
storage changes in all other components can be quantified and removed from GRACE TWS 152 
(Famiglietti et al., 2011; Scanlon et al., 2012). 153 

Here, we derive groundwater storage (GWS) changes from GRACE observations using 154 
an approach similar to Ojha et al. (2019). We retrieve GRACE TWS variations from the RL06 155 
Level-3 product from NASA’s Jet Propulsion Laboratory (JPL) that solves regional mass 156 
variations at a resolution of 3-degree. We do not apply JPL-mascon scale factors, as we calculate 157 
groundwater changes at this native resolution, and we assume leakage between the mascon tiles 158 
to be neglectable. To separate GWS changes from GRACE TWS, we retrieve mass variations in 159 
other storage compartments from multiple data sets. We acquire soil moisture variations from all 160 
available soil layers in the NOAH, CLSM and VIC models of the Global Land Data Assimilation 161 
System (GLDAS) Version 2.1 (Beaudoing & Rodell, 2016; Rodell et al., 2004) at 0.25 (Noah) 162 
and 1-degree (CLSM and VIC) resolution, respectively, for the entire GRACE period. We 163 
average the three models to one ensemble dataset for further analyses after resampling them to a 164 
uniform 0.5-degree resolution (Fig. 1c). For comparison, we also retrieve soil storage changes 165 
from the WaterGAP Global Hydrological Model (WGHM, version 2.2d) at 0.5-degree 166 
resolution, which is available until 2016 (Fig. S12a). We integrate reservoir storage (ReS) 167 
changes from 18 reservoirs with capacities larger than or equal to 0.9 km3, inside the margins of 168 
the two mascon cells covering the CV (GRACE region, Fig. 1b), which are retrieved from the 169 
California Department of Water Resources (CDWR, 2017). Snow storage (SoS) changes are 170 
acquired in the form of snow water equivalent from the Snow Data Assimilation System 171 
(SNODAS) (NOHRSC, 2004) over the contiguous United States since the end of 2003. Monthly 172 
water mass variations for each storage compartment are summed across the GRACE region and 173 
the regionally aggregated SoS, SnS and ReS variations are removed from GRACE TWS 174 
variations for this area, after Ojha et al. (2019). The resulting time series for each storage 175 
compartment, including groundwater storage changes during both GRACE mission periods, are 176 
shown in Figure 1c. We assume the GRACE based estimate of GWS to be dominated by 177 
groundwater variations in the CV, where porosity of the aquifers is much larger than that in the 178 
SN Mountains. 179 

From the SNODAS dataset we further retrieve driving and output variables related to 180 
snow cover, including ‘solid’- and ‘liquid precipitation’, and ‘snowmelt runoff at the base of the 181 
snowpack’, to investigate these fluxes in the Sierra Nevada Mountains (Fig. S1, S2) and their 182 
correlation to groundwater dynamics.  183 

2.2. Groundwater Levels 184 

Groundwater availability in the CV is conventionally monitored as water level change in 185 
observation and irrigation wells. The data archives from the United States Geological Survey 186 
(USGS) and the California Department for Water Resources (CDWR) provide more than 40,000 187 
records from wells within the CV. The records have varying start dates, not all are continuously 188 
monitored until today, and only some records provide sufficient temporal sampling rates to study 189 
seasonal variations in GWLs. For this study we have screened ‘daily data’ and ‘field data’ 190 
archives from the USGS (USGS, 2021) as well as ‘continuous data’ and ‘periodic data’ archives 191 
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from CDWR (CDWR, 2019) in California and selected records that cover the GRACE mission 192 
period from 2002 to 2020. We have excluded records labeled as ‘irrigation well’ and only 193 
selected sites labeled ‘observation well’. Water levels in irrigation wells are potentially affected 194 
by the localized reduction in pressure during and after pumping from the well. Levels in 195 
observation wells are more likely to represent a regional state of pressure and storage changes in 196 
the entire aquifer. In addition, we categorized data entries that are larger than 3.5 times the 197 
standard deviation of the detrended time series as outliers and excluded them. Moreover, about 198 
half of the records have daily sampling rates and we excluded entire records from the 199 
field/periodic datasets that have less than six entries per year on average. From the initial dataset, 200 
2128 time series (371 from USGS and 1727 from CDWR) provide observation records during 201 
2002-2020 inside the CV. Only 682 records cover at least three years with less than 3 months of 202 
gap (Fig. S4); of those, we select 457 records gathered at depths deeper than 50 m since we want 203 
to focus on time series measured in semi-confined and confined aquifers. About half of the 457 204 
available records are longer than 10 years (Fig. S4a-c). We note that these records were taken at 205 
only 250 unique well locations (circles in Fig. 1a), with some sites containing up to five nested 206 
level meters (Fig. S4d). Most deep sensors at each site are located 50 m to 300 m below the 207 
surface, with about half of the sensors reaching not more than 200 m deep and only a few are 450 208 
m deep or deeper (Fig. 1a, S4e, f). Most usable wells are in the northern Sacramento Valley and 209 
only two dozen sites are in the southern San Joaquin Valley, where only 22 wells measure water 210 
level variations at depths below the Corcoran clay. Examples of GWL time series are shown in 211 
Figure 1a.  212 

2.3. Surface deformation  213 

Surface deformation due to TWS change, including GWS, occurs through two different 214 
processes. Total water mass deforms Earth’s elastic crust, resulting in subsidence for an increase 215 
and uplift for a decrease in water mass. This deformation process has been described and 216 
inverted to quantify TWS in California (Adusumilli et al., 2019; Argus et al., 2022; Borsa et al., 217 
2014; Carlson et al., 2022; Carlson, Shirzaei, Werth, et al., 2020; White et al., 2022). A second 218 
poroelastic deformation process is due to only groundwater changes occurring in semi-confined 219 
or confined aquifers, where pore spaces and granular matrix of rocks compact and groundwater 220 
levels fall under reduced water pressure. The opposite happens for increasing water pressure. 221 
Changes in water pressure in an aquifer can either be caused by net recharge or discharge, i.e. 222 
GWS change, in the aquifer itself, or initiated by water pressure propagating between the aquifer 223 
and a hydraulically connected outside region (Fetter & Kreamer, 2022). Decades of falling 224 
groundwater levels in the CV deep aquifers have caused continuous land subsidence at the 225 
surface and have been observed to be most severe during droughts (Galloway et al., 1999; Ojha 226 
et al., 2018; Smith et al., 2017; Vasco et al., 2022). It has been shown that elastic loading 227 
deformation in California is of the opposite sign and up to two magnitudes smaller than the 228 
poroelastic deformation occurring at the surface of the CV (Carlson, Shirzaei, Werth, et al., 229 
2020). 230 

To study seasonal variations in vertical land motion (VLM) since the early 2000s, we use 231 
vertical deformation time series from the daily tenv3 GNSS solutions from the Nevada Geodetic 232 
Laboratory (NGL). The solutions are processed at NGL using GipsyX software and are 233 
transformed into the IGS14 reference frame. Additional processing information can be found on 234 
the NGL website (http://geodesy.unr.edu/gps/ngl.acn.txt). We do not apply any further 235 
corrections to the GNSS time series for the rest of the analysis. From 1184 stations in California, 236 
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we selected 170 with a minimum record of 5 years between 2002-2020 and exhibiting a seasonal 237 
amplitude larger than the time series median standard deviation. Most stations began 238 
observations around 2008, with a length of 15 years (Fig. S5b). Of these stations, 37 are located 239 
within the CV boundaries (red triangles, Fig. 1b). Example time series at three sites throughout 240 
the study area are shown in the inset of Figure 1b. We determine the seasonal component of 241 
GNSS vertical land motion and the timing of maximum uplift and maximum subsidence using a 242 
time-frequency analysis (see Section 2.4). 243 

We further measure the surface deformation in terms of line-of-sight (LOS) over the 244 
southern CV using Interferometric Synthetic Aperture Radar (InSAR). The SAR dataset includes 245 
238 C-band images from descending track, path 144, of Sentinel-1A/B satellites spanning 246 
2015/11/27-2022/12/20. We apply multi-looking factors of 32 and 6 in range and azimuth to obtain 247 
a pixel dimension of ~75m by ~75m. We use GAMMA software (Werner et al., 2000) to create a 248 
large set of interferograms. The interferograms are selected, so they form triplets, and the numbers 249 
of short, medium, and long temporal baseline pairs are comparable to minimize the phase closure 250 
error impact (Lee & Shirzaei, 2023). We apply the wavelet-based InSAR (WabInSAR) (Lee & 251 
Shirzaei, 2023; Shirzaei, 2013; Shirzaei et al., 2017) algorithm to perform a multitemporal 252 
interferometric analysis of the SAR dataset and create high-accuracy maps of surface deformation 253 
time series. A Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) of 1-254 
arcsecond (~30 m) spatial resolution (Farr et al., 2007) and precise satellite orbital information are 255 
used to estimate and remove the effect of topographic phase and flat earth correction (Franceschetti 256 
& Lanari, 1999). The absolute phase values are obtained by applying a 2D minimum cost flow 257 
algorithm (Costantini, 1998), then combined to create a Line-of-Sight (LOS) time series of surface 258 
deformation by using a reweighted least squares approach. The spatially correlated and temporally 259 
uncorrelated atmospheric delay are also estimated and removed (Shirzaei, 2013). 260 

2. 4. Time-Frequency Analysis 261 

To investigate the temporal variations in water storage components, GWLs, and 262 
deformation data, we perform a time-frequency analysis using a continuous wavelet transform, 263 
following Shirzaei et al. (2013). The wavelet transform allows decomposing signals into building 264 
blocks based on frequency contents. In contrast to the Fourier transforms, the wavelets can 265 
handle non-stationary signals and localize the signal energy in the time and frequency domain 266 
(Goswami & Chan, 1999). Wavelets have a key parameter scale (or dilation), which stretches or 267 
squishes the wavelet function and relates to the analyzed signal frequency. To perform wavelet 268 
analysis, we use the Matlab packages provided by Torrence and Compo (1998) and Erickson 269 
(2019) and apply the wavelet family of derivatives of gaussian (DOG, Fig. S6) at 200 levels of 270 
decomposition or scales. The temporal sampling of all time series is either daily or resampled at 271 
daily intervals.  272 

Figures 3 and S7 illustrate our approach with an example of groundwater level time series 273 
at the DWR well 387793N1218123W004 (Fig. S7a). The wavelet power spectrum map (PSM, 274 
Fig. 3a and S7b) shows the signal’s energy breakdown into several frequency components and 275 
their relative importance based on the amplitude of the PSM. A cone-of-influence overprinted on 276 
the spectrum indicates areas where edge effects play a role, and therefore, the PSM cannot be 277 
interpreted. Signal energy in areas inside the cone of influence is strongest at periods of about 278 
one year, with contour lines indicating their statistical significance with respect to white and red 279 
noise (with a lag-1 autocorrelation parameter of 0.85 for the latter) (Torrence & Compo, 1998). 280 
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Figure 3 also shows examples of wavelet PSM for selected GWL, VLM, and TWS component 281 
time series. 282 

To isolate the annual component from the time series, we set the PSM to zero except for 283 
periods between 0.75-1.25 years and then apply an inverse wavelet transform of the new PSM 284 
(Fig. S7c). This approach considers that the annual components in climate-related processes do 285 
not have an exact one-year period. We further analyze the reconstructed annual signals to 286 
characterize the timing of annual maxima, minima, and the timing of fastest rate declines and 287 
increases (blue, red, and gray circles in Fig. S7c). We summarize the annual values for several 288 
years through temporal averaging using the median operator to retrieve the timing of maximum 289 
in the annual signal (e.g., as shown in Fig. 4). The same approach is applied to the time series of 290 
GWL, TWS components, GNSS and InSAR vertical deformation.  291 

Probability density functions (PDFs) for spatiotemporal variation of timing of annual 292 
peaks were calculated using MATLAB's probability density estimator kdensity(),based on a 293 
normal kernel function for univariate distributions and applies a kernel smoothing window with 294 
an optimized bandwidth for normal densities.  295 

2.5. Vertical Diffusion Model  296 

In the high Sierra Nevada Mountains, a significant portion of snow melt water (Fig. S1, 297 
S2) infiltrates into the ground and recharges top aquifer layers (Peterson et al., 2003; Urióstegui 298 
et al., 2017), which are hydraulically connected to the CV aquifer system (Faunt, 2009). Here, to 299 
obtain the first-order approximation of the diffusion time, namely the time it takes for snow melt-300 
related pore-fluid pressure increase in the Sierra to reach deep aquifer layers of the CV via MBR, 301 
we apply a first-order process-based 1D diffusion model following (Saar & Manga, 2003). The 302 
vertical propagation of hydrostatic pore-fluid pressure 𝑃′ at depth 𝑧 over time 𝑡 is governed by 303 
the diffusion equation: 304 

 𝜅 !
!"#
!$!

= %"#
%&

 .               (1) 305 

with the hydraulic diffusivity 𝜅 = 𝐾/𝑆', which controls how fast pressure will propagate to 306 
depth. It is given by the ratio of vertical hydraulic conductivity 𝐾 to specific storage 𝑆'. The 307 
diffusivity of unfractured granite bedrock has values of around 𝜅 = 10-4 𝑚(/𝑠 (Wang, 2000). 308 
However, for fractured volcanic rock, values as high at 0.3 𝑚(/𝑠 (Saar & Manga, 2003), and 1 309 
𝑚(/𝑠 (Gao et al., 2000), consistent with the range provided by Talwani and Acree (1985), or 310 
even up to 7.9 𝑚(/𝑠 (Montgomery-Brown et al., 2019) are suggested. Here, we consider 311 
diffusivity values of 0.1, 0.3 and 0.5 𝑚(/𝑠 for Sierra’s crystalline fractured rocks. 312 

We solve the parabolic differential Equation 1 using the function pdepe() from the 313 
Matlab software by setting the initial pressure conditions to zero and the boundary conditions of 314 
the pore-fluid pressure to a periodic variation with periodicity 𝜓 of 1 year, annual amplitude 315 
𝑃)*+ and annual phase 𝜑,: 316 

 𝑃#$,&., 	= 𝑃)*+ ∙ cos 3
(/
0
𝑡 + 𝜑,5,         (2) 317 

where at depth 𝑧, pore-fluid pressure is 𝑃$,& = 𝑃$,&12 + 𝑃#$,&. We are only interested in changes 318 
𝑃#$,& of pore-fluid pressure.  319 
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Assuming saturated conditions and solving Equations 1 and 2 for t allows us to estimate 320 
the time it takes to increase pore-fluid pressure annually due to groundwater recharge reaching 321 
vertically from top groundwater layers to depth z. The duration of pressure propagation to deep 322 
aquifer layers is independent of the amplitude of pressure change at the surface and a normalized 323 
solution for 𝑃#$,&.,/𝑃)*+ is sufficient. The time delay estimate is most sensitive to the 324 
magnitude of the hydraulic diffusivity 𝜅 (Eq. 1) as well as the phase 𝜑,, of the annual pressure 325 
variation due to recharge (Eq. 2). We assume that the horizontal diffusivity of the aquifer is large 326 
enough, so the lateral diffusion time is relatively negligible (Fetter & Kreamer, 2022). 327 

The annual phase of pressure variations in upper groundwater layers in the high Sierra 328 
Nevada Mountains 𝜑, may be derived from the annual variation in water available for recharge 329 
in this region, which we quantify as follows. The top groundwater layers in the Sierra Nevada 330 
receive inflow from snow melt water and liquid precipitation (i.e., rainfall). Urióstegui et al. 331 
(2017) and Bales et al. (2011) found that only 10-20% of the snow melt water in the Sierras runs 332 
off through streams, with the remainder being lost to drainage into deep layers and 333 
evapotranspiration. We assume that all of the melt water initially increases pressure in the upper 334 
groundwater layers of the Sierra Nevada Mountains, before evaporating or running off. Also, we 335 
neglect the delay between the time that water for infiltration becomes available and its 336 
percolation into the upper groundwater layers of the Sierra Nevada Mountains. We consider 337 
these assumptions reasonable for wide areas of exposed fractured bedrock and given that we are 338 
only interested in quantifying the phase, not the absolute value of maximum pressure variations. 339 
For that, we retrieve the time series of SNODAS dataset variables ‘snowmelt runoff at the base 340 
of the snowpack’ 𝑀 and ‘liquid precipitation’ 𝑃3456 (see Section 2.1, Fig. S1) averaged for the 341 
drainage area of the Sierra Nevada toward the CV (rose-shaded area in Fig. 1a). We correct 342 
liquid precipitation for canopy interception by a relative value of 20% (Vrugt et al., 2003), as this 343 
intercept changes the relative amplitudes between 𝑀 and 𝑃3456, and therefore, it can impact the 344 
annual phase. Finally, we get a time series of total water available for recharge in the Sierra 345 
Nevada drainage area from (𝑃3456 − 0.2 ∙ 𝑃3456 +𝑀) and quantify monthly mean values of this 346 
time series during 2002-2020 (Fig. S2c). We also determine the mean timing of the annual peak 347 
for each year and at each location in the drainage area, which we apply as the timing of the 348 
annual maximum of the pressure variation to constrain 𝜑, for the boundary condition in 349 
Equation (2). 350 

4 Results 351 

4.1. Year-to-Year Water Variability 352 

The time series of TWS variations obtained from the GRACE satellites (Tapley et al., 353 
2004, 2019) and their components measured through in-situ observations (e.g., wells) (Alam et 354 
al., 2021) or water balance models (Faunt, 2009; Li et al., 2018) are characterized by annual 355 
variations attributed to overall dynamics in the terrestrial water cycle (Tang & Oki, 2016). 356 
Several example time series are shown in Figure 1c. A less obvious pattern comprises the 357 
interannual variations in the amplitude of the annual signal. Identifying the amplitude and timing 358 
of the peak annual and interannual signal components allows for resolving the temporal scale at 359 
which the connected systems interact.  360 

To this end, we apply the wavelet-based time-frequency analysis to extract hidden 361 
patterns in the datasets (see Section 2.2.1, Fig. S6). The results from the time-frequency analysis 362 
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are shown in the form of a PSM, distributing the signal's power into frequencies (or periods) and 363 
time intervals (Fig. 3, S7). We find maximum amplitudes characterize the PSMs associated with 364 
different time series at equivalent periods of 1 year and 3-8 years (Fig. 3). These frequency 365 
components are associated with general variations in water availability associated with 366 
atmosphere-ocean interactions, influencing water cycles in the Southwest USA (Quiring & 367 
Goodrich, 2008). Significant drought periods, such as during 2007-2009 and 2012-2015 (Fig. 368 
S3), correspond with cool phases of El Niño Southern Oscillation (ENSO) recurring every 3-7 369 
years, the cool phase of the Pacific Decadal Oscillation (PDO), and the warm phase of the 370 
Atlantic Multidecadal Oscillation (AMO) (McCabe et al., 2004; Quiring & Goodrich, 2008). The 371 
length of our observation does not allow for resolving signal components over a decade or 372 
longer, as indicated by the cone of influence, the shaded region in the PSM. 373 

Some PSMs also show unique patterns. For instance, the PSMs of GWL changes (Fig. 374 
3a) and GNSS VLM (Fig. 3b) exhibit components at periods of 0.5 and 3 years, albeit the 375 
component of 0.5 years for VLM disappears following 2008. In contrast, the PSM of SnS (Fig. 376 
3e) shows only a transient component over a period of 3 years. PSM of GWS variations (Fig. 3g) 377 
shows a transient component of 1 year period. Notably, the location and amplitude of peak PSM 378 
are not constant and change over time, especially for TWS, SnS, ReS, and GWS variations and 379 
to a lesser extent in SoS due to water availability changes within wet and dry seasons and in 380 
between them as well as due to human interventions. For instance, the amplitude of annual 381 
components was reduced or diminished during the drought years 2007-2010 and 2012-2015. 382 
During these periods, reservoirs were not refilled, and the Sierra Nevada received little 383 
precipitation, reducing the amplitude of the corresponding annual components (Fig. 3e and 3f). 384 
The amplitude of the annual component of GWS variations vanishes during the same years (Fig. 385 
3g). 386 

Figure 3h presents the isolated annual components for all the time series comprising PSM 387 
components of 0.75 to 1.25 yr periods, which display non-stationary behaviors, i.e., the 388 
amplitude changes over time. We find that year-to-year TWS is experiencing the most 389 
pronounced changes and GWS the least. We also note that year-to-year peak extremes do not co-390 
occur for different time series. For instance, during the 2012-2015 drought, TWS, SoS, and ReS 391 
variations experienced their lowest amplitudes in 2013 and 2014, while that of GWS occurred 392 
two years later during 2016, following the snow-poor years in 2014 and 2015. Characterizing 393 
such inter-annual variability in water cycle components improves understanding of hydroclimate 394 
extremes and water storage capacity in the region (Yin & Roderick, 2020). 395 

 396 

4.2. Timing of the Seasonal Signal 397 

We further investigate the spatial variability of the timing of the peak annual amplitude of 398 
TWS and its components across the study region (Fig. 4). Note that spatial detail cannot be 399 
resolved from the GRACE TWS with 300-400 km spatial resolution. To this end, we find the 400 
day-of-year (DOY) corresponding with the peak of the timeseries of the annual components and 401 
then obtain the median of DOY for each time series. Figure 4 plots the median peak DOY for 402 
each dataset at their original spatial resolution, except for GWL and VLM, where the values are 403 
interpolated with an inverse distance weighting scheme and a 25 km radius. The median peak 404 
DOY for GWL is uniform across the Valley (Fig. 4a, S8) with negligible interannual variability 405 
(Fig. S9). GWL peaks occur from February to March (Fig. 4a, S8a) and minima in August (Fig. 406 
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S8b). The fastest GWL rate increase (i.e., the mid-point between annual minima and maxima) 407 
occurs during November (Fig. S8c), and the fastest GWL rate decrease (i.e., the mid-point 408 
between annual maxima and minima) occurs during May (Fig. S8d). These observations are 409 
consistent with the timing of maximum pumping in the CV during April-June. A linear 410 
correlation of 0.3 was found between observation well depth and peak DOY, indicating GWL 411 
rises slightly later in the year at deeper wells (Fig. S8a, left inset). Compared with GWL, the 412 
median peak DOY of GNSS VLM in the CV is spatially more variable (Fig. 4b and S10), with 413 
negligible interannual variability (Fig. S11). We find a bimodal distribution for this peak DOY 414 
(inset in Fig. S10a), with about a third of the stations within the CV peaking from March to April 415 
and most of the remaining stations from September to October. A bimodal behavior is also 416 
observed in the median DOY of annual VLM minima. The median DOY of the fastest VLM rate 417 
increases and decreases are also obtained (Fig. S10), indicating a smaller interannual variability 418 
than that of peak DOY (Fig. S11). We further estimate the median peak DOY of TWS, SoS, SnS, 419 
ReS, and GWS within the GRACE region (Fig. 1b), all of which show spatially uniform patterns 420 
but are distinct from each other (Fig. 4c-g), with spatial DOY averages of 93, 70, 65,102, and 421 
156 days, respectively.   422 

We performed a similar analysis using InSAR LOS deformation observations. Figure 5a 423 
shows the LOS velocity field measuring up to 18.5 cm/yr subsidence in some parts of San 424 
Joaquin Valley. We obtained seasonal phase (peak DOY) and amplitude (Fig. 5b, c) for the 425 
southern CV covered by the Sentinel-1 frame. The spatial distribution of median peak DOY 426 
generally agrees with that of GNSS (Fig. 4b). The denser spatial sampling from the InSAR 427 
analysis, however, reveals an outward propagation of the median annual peak DOY from the 428 
center of CV. Although it varies yearly, the overall outward propagating pattern of peak DOY 429 
remains similar through wet and dry years (Fig. S15). We note that this result is opposite to what 430 
was found by Neely et al. (2021), who suggested an inward propagation of the annual peak 431 
towards the center. Figures 5c and S16 show the median and yearly seasonal amplitude of 432 
surface LOS deformation, reaching up to 4 cm, with the largest value during dry years.    433 

Next, we investigate the empirical probability density function (PDF) of annual peak 434 
DOY associated with all components of TWS and deformation and several other relevant 435 
hydrological datasets (Fig. 6). Shown are normalized PDFs of annual peak DOY obtained for 436 
each year and each time series without temporal averaging, thus the interannual variabilities are 437 
preserved. Comparing different PDFs, we find for the Sierra Nevada that precipitation generally 438 
peaks in early January, with a mean DOY of 16 (Fig. 6a), meltwater in late February, DOY 55 439 
(Fig. 6c), and the total water availability (combination of precipitation, meltwater, and canopy 440 
interception) in late January, DOY 22 (Fig. 6b). We obtain a wide distribution for the influxes, 441 
and years with a later maximum melt typically have a larger peak, causing the right-skewed 442 
distribution of annual peak DOY of snowmelt (Fig. S2b). The annual SoS peak for the CV 443 
occurs in March, DOY 70 (Fig. 6d), ~2-3 months after precipitation peaks. SnS peaks in March, 444 
ReS and TWS ~1 month later in April, while GWS of the CV peaks in June (Fig. 6e-g). The 445 
VLM minima (i.e., subsidence) across California, outside of the CV, co-occur with TWS 446 
maxima around April, DOY 93 (Fig. 6i). In contrast, GNSS VLM inside the CV (Fig. 6j) peaks 447 
together with GWL (Fig. 6k) around March, DOY 65, and ~3 months before GWS based on 448 
GRACE and composite hydrology (Fig. 6g). Peak VLM inside the CV derived from high-449 
resolution InSAR maps (Fig. 6k, dashed line) have a more complex distribution, with the first 450 
peak co-occuring with GNSS and well levels around beginning of March and a later peak 451 
ranging from beginning to end of April. We further observe a delay of 43 days between total 452 
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water available for recharge in the Sierra Nevada Drainage area (DOY 22, Fig. 6b) and GWL in 453 
the CV (DOY 65, Fig. 6k). 454 

To investigate whether the mean values of the PDFs in Figure 6 were significantly 455 
different, we performed a two-sample mean difference hypothesis test using the t-distribution 456 
(Meyer, 1970). We formulated the null hypothesis so that the mean values were the same and 457 
tested the hypothesis at a significance level of 0.05. The test was rejected, hence, the mean 458 
values are statistically the same for all pairs of PDFs in Figure 6, except between GNSS uplift 459 
(CV) and GWL (CV), between TWS and GNSS Subsidence (CA), between SnS (Sierra Nevada) 460 
and GNSS uplift (CV), and between SnS (Sierra Nevada) and GWL (CV).  461 

When estimating PDFs for the timing of annual peaks of SoS and GWS (Fig. 6e and 6g), 462 
the variability among the individual SoS models was considered (Fig. S12). SoS timing varies by 463 
about ~2 months from January to February (Fig. S12c). We propagate the variation of SoS 464 
timing toward that of GWS by estimating GWS for each individual soil model (Fig. S13a). The 465 
resulting annual GWS timing varies ~2 months from May to July (Fig. S13b,c). This variability 466 
was included when calculating mean, median, standard deviation, and PDFs of annual GWS 467 
timing (Fig. 6g). Although GWS also depends on the timing of TWS, SnS and ReS, annual 468 
amplitudes of SnS and ReS are only 10% of TWS (Fig. 1c). Therefore they will only marginally 469 
impact the calculation of annual timing of GWS. We assume a minimal measurement uncertainty 470 
for the timing of TWS.  471 

4.3. Pressure Diffusion From the High Mountains to Deep Valley Aquifers 472 

Earlier studies (e.g., Gilbert and Maxwell (2017)) have suggested that a natural 473 
connection should exist between deep CV and High Sierra Nevada mountain aquifers through 474 
the fractured granite of the mountain block. We provide a first-order estimate for the diffusion 475 
time, the time it takes for a pressure front to vertically diffuse from the top aquifer layers in the 476 
Sierra Nevada Mountains down to elevations of the deep CV aquifers (Section 2.5, Eq. 1). If we 477 
quantify that using a hydraulic diffusivity 𝜅 = 0.3 m2/s for Sierra’s crystalline fractured rocks, it 478 
takes 18-36 days for the pressure to travel vertically to depth of 600-1300 m (Fig. 7). We further 479 
consider a range for the vertical hydraulic conductivity and evaluate the diffusion time for 𝜅 = 480 
0.1 m2/s and 𝜅 = 0.5 m2/s to depth of 600-1300 m, corresponding with 34-73 days and 12-23 481 
days (Fig. S14), respectively.  482 

5 Discussions and Conclusions 483 

This study performs time-frequency analyses of large hydrologic and geodetic datasets across 484 
California with various spatiotemporal resolutions and uncertainties to characterize the annual 485 
peak DOY, interannual peak amplitude variations, and correlative behaviors across these 486 
observations. We observe relatively low seasonal peaks during droughts for all water storages 487 
(Fig. 3h). However, only for storages in snow and groundwater wavelet PSMs vanish completely 488 
at periods of around one year during droughts when snow cover was diminished to absent during 489 
2007 and 2012-2015 (Fig. 1c, 3e, 3g). We interpret this correlation as an indicator that the 490 
volume of the snowpack and the following snowmelt played a substantial role in groundwater 491 
recharge in the CV. Once corrected for SoS, SnS, and ReS, GRACE measures a combination of 492 
GWS change in shallow and deep aquifers. Hence, we consider snow to be relevant for both 493 
MFR and MBR, with the former mechanism being more relevant for replenishing the shallow 494 
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and the latter more relevant for (slow) flow to the deep aquifers, given the depth of their flow 495 
path.    496 

We further observe that GNSS VLM and InSAR LOS peak DOY vary across California. 497 
The peaks for stations inside the CV co-occur with that of GWL (Fig. 6j, k), specifically at the 498 
sites near the center of the Valley, where aquifer confining layers are thick and observed annual 499 
amplitudes are large (Fig. 5). This indicates the presence of poroelastic aquifer deformation due 500 
to groundwater pumping (Ojha et al., 2018; Smith et al., 2017). In contrast, the VLM peak 501 
minima for stations outside the Valley co-occur with that of TWS peak maxima (Fig. 6h, i), 502 
attributed to the variations in elastic water loading (Argus et al., 2017; Carlson et al., 2022; 503 
Johnson et al., 2017). Interannual variability in the peak amplitudes impacts the hydroclimate 504 
trends, changing baselines used to assess the future risk of climate extremes and vulnerability of 505 
water resources (Stevenson et al., 2022). In summary, a similar peak DOY suggests that some 506 
components of the hydrological system act in concert with or respond elastically to similar 507 
forcing of the hydroclimate or to anthropogenic factors. In contrast, a different peak DOY may 508 
indicate a cascading nature of the response to forcing governed by a time-dependent process.  509 

Here we propose that MBR is the fundamental process, allowing long-term recharge to 510 
deep aquifers in the CV. The feasibility of this mechanism is demonstrated in Fig. 7, where a 511 
first-order process-based pressure diffusion model quantifies the lag between peak pore pressure 512 
in the Sierra Nevada aquifers due to snowmelt and peak pore pressure within deep CV aquifer 513 
layers. We estimate the lag at about a month, ignoring the lateral diffusion time, which is often 514 
negligible for permeable aquifers such as CV (Fetter & Kreamer, 2022). Given the uncertainty 515 
range of hydraulic diffusivity (Somers & McKenzie, 2020), the estimated diffusion time agrees 516 
well with the lag between peak water availability in the mountains and peak water level in deep 517 
aquifers (Fig. 6b and k). This agreement supports the hypothesis that high mountain aquifers are 518 
connected to deep valley aquifers through pressure propagation from MBR, and that it drives 519 
seasonal well level changes in the deep CV aquifers. The peak GWL in March likely occurs 520 
early due to anthropogenic influence since heavy groundwater pumping typically onsetting from 521 
April to May. A later GWL peak would suggest a longer vertical diffusion time, consistent with 522 
the considered range for tested hydraulic conductivities. 523 

We further observed an outward migration of the InSAR LOS peak DOY from the center 524 
of CV (Figs. 5 and S15), which is at odds with the previously published works (e.g., Neely et al., 525 
2021)  that suggested an inward propagation of annual peak DOY from the Sierra Nevada 526 
Mountains toward the center of the CV. They suggested that MFR fed by surface water flowing 527 
off the Sierra Nevada may replenish aquifers (deep and shallow) seasonally across the southern 528 
CV (Neely et al., 2021). However, the MFR mechanism is implausible to recharge deep confined 529 
aquifers (Shirzaei et al., 2019) due to the presence of the impermeable Corcoran clay layer and 530 
other clay lenses (Faunt, 2009) and little evidence of widespread vertical cracks and deep 531 
extensional fissures in the Valley (Carlson, Shirzaei, Ojha, et al., 2020) to provide a potential 532 
pathway for water to percolate deep into the aquifers, though further research on tension 533 
cracking and fissure initiation in the Valley is needed (Carlson, Shirzaei, Ojha, et al., 2020). In 534 
contrast, our hypothesis of MBR linking Sierra groundwater to deep CV’s aquifers is consistent 535 
with Darcy’s fluid flow law, linking the fluid discharge rate to the hydraulic head gradient 536 
between two given points, scaled with the hydraulic conductivity. Under constant hydraulic 537 
conductivity, the largest discharge happens to the point of the lowest hydraulic head. In CV, it is 538 
logical to assume the zone of the fastest subsidence rate is where the heads are lowest, consistent 539 
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with groundwater level observation. Thus the recharge from Siera should replenish aquifers near 540 
the center of Valley first and then propagate outward from the center to areas with smaller 541 
hydraulic gradients, as observed here. Hence, we interpret the InSAR LOS observation of annual 542 
peak DOY as additional support for the hypothesis of a direct pressure link between the Sierra 543 
Nevada aquifers and CV deep aquifers through mountain block conduits. 544 

An unexpected finding is the phase difference between annual peaks of GWL in deep 545 
confined aquifers, and GWS in the entire CV aquifer system (including confined and unconfined 546 
units, Fig. 4a, 4g, 6g and 6k) is about three months. This indicates that different processes 547 
influence GWS and well levels. In confined units, the well level change is driven by changes in 548 
groundwater storage and pore fluid pressure, while the gravity-derived measurements only detect 549 
the change in mass, hence, storage changes. During the spring, pressure rises faster in the deep 550 
aquifers than storage is recovered in the entire aquifer system. A vertical hydraulic connection 551 
via MBR flow paths would allow pressure change propagation from the mountain to CV aquifers 552 
at seasonal time scales. However, direct water seepage along MBR flow paths takes centuries to 553 
millennia (Berghuijs et al., 2022). The proposed mechanism here does not require water 554 
percolation and is consistent with the tracer findings that deep groundwater in the CV is 555 
primarily old (McMahon et al., 2011). Our results further emphasize that vertical pressure 556 
propagation occurs faster than net recharge (i.e., detected as storage change) from the mountain 557 
aquifers to the valley aquifers. The later peak in GWS might be primarily driven by annual 558 
variations in top unconfined aquifer layers (Vasco et al., 2022), which would recharge faster than 559 
deep aquifers. This is also consistent with the relatively late mean annual peak in melt water 560 
occuring during early May (see Fig. S2), hence, a long lasting supply for recharge through 561 
surface-groundwater links along the mountain fronts until late spring. At annual time scales, 562 
MFR likely contributes a significant portion to storage changes in shallow aquifers, and the 563 
seasonal variation in GRACE GWS mainly comprises such shallow aquifers instead of deep 564 
aquifers. In this case, the seasonal well level rises in deep CV aquifer layers may be driven 565 
dominantly by pressure variability rather than storage variability. It should also be noted that the 566 
MBR estimate based on GNSS/GRACE combination from Argus et al. (2022) was derived as the 567 
difference between gravity and elastic loading-based annual GWS estimates to the output of a 568 
hydrological model not including MSR. The authors interpret this difference solely as MBR and 569 
neglect the contribution of MFR in the estimate, owing that the method they apply cannot 570 
discriminate between the two MSR processes. To reliably quantify MBR at the scale of the CV 571 
and discriminate it from MFR, we suggest the implementation of a fully fluid-solid media 572 
coupled 3D groundwater model for the CV that integrates the wealth of hydrologic and remote 573 
sensing observations sensitive to dynamics in the aquifers as demonstrated in this study. The 574 
results should also be crosschecked with observations of groundwater ages, e.g. based on isotope 575 
studies (Earman et al., 2006). 576 

Our findings are subject to uncertainties, albeit statistical tests of significance help 577 
corroborate the main results. The wavelet time-frequency analysis is affected by data gaps and 578 
variable sampling rates, similar to other spectral methods (Goswami & Chan, 1999), although the 579 
ability of the continuous wavelet transforms to localize signal components in time and space 580 
minimizes error propagation. GNSS sites may be affected by other processes causing annual 581 
oscillations, such as non-tidal loading, tectonic processes, thermoelastic deformation, and 582 
draconitic errors (Chanard et al., 2020). Errors in the GWS component from GRACE 583 
observations are subject to any error in the correction terms, which directly maps into the GWS 584 
time series. However, the three months delay between the peak of GWS and GWL remains 585 



manuscript submitted to Earth’s Future 

 

robust against the uncertainty in the timing of GWS (see Section 4.2). Hence, the measure that 586 
pressure propagates faster to deep aquifer layers than the groundwater volume change in the 587 
entire aquifer remains unaffected.  588 

Recent studies (Ajami et al., 2011; Markovich et al., 2019; Meixner et al., 2016; Somers 589 
& McKenzie, 2020; Wahi et al., 2008; Welch & Allen, 2014) have recognized mountains’ 590 
critical role in freshwater supply to lowland dry basins, debunking the outdated notion that 591 
mountain groundwater storage and supply is negligible. In the Sierra Nevada aquifers, 592 
cosmogenic isotope studies linking snowmelt and annual aquifer recharge indicate a strong link 593 
between snowmelt and aquifer recharge and discharge in the mountains (Urióstegui et al., 2017). 594 
Additional evidence is provided by the increased age of groundwater contributing to the spring 595 
stream flow over the Sierra Nevada, consistent with increased temperature and reduced 596 
precipitation at high elevations (Manning et al., 2012). Thus, the high Sierra Nevada snowpack is 597 
essential for recharging mountain aquifers, which, in turn, contributes to the long-term recharge 598 
of deep, confined CV aquifers. Sierra Nevada runoff and MFR's role in freshwater supply in the 599 
CV is well-understood (Faunt, 2009; Meixner et al., 2016). However, the mountain block 600 
recharge process proposed here to replenish deep aquifers is not considered in the current 601 
hydrological models for the Valley, for example, by Faunt et al. (2009). Annual, interannual, and 602 
long-term changes in snowpack directly impact the MFR and MBR from the Sierra Nevada 603 
Mountains to the CV. Thus, the reliance on hydroclimate models that currently do not account 604 
for MBR limits the ability to accurately forecast the risk of climate extremes to California’s 605 
groundwater supply and presents challenges for developing appropriate adaptation and resiliency 606 
strategies. The observation and analysis presented here have implications for the CV's recharge 607 
mechanism to deep aquifers. We call for new models that more comprehensively account for the 608 
Sierra Nevada Mountains' role in California’s water cycle, which may also require a revision of 609 
current management and resiliency plans. Finally, we suggest the integration of pressure physics 610 
into methods quantifying seasonal storage changes in CV aquifers that apply well data and 611 
storage coefficients, or deformation data, given that well level and deformation changes at 612 
seasonal time scales are also driven by a change in pressure, not only in storage. 613 

 614 

Acknowledgments 615 

We thank anonymous reviewers and the editor for constructive comments and 616 
suggestions. This research was partly funded by the National Aeronautics and Space 617 
Administration grants NNX17AD98G (SW, MS, GC), 80NSSC21K0419 (SW, MS, GC) and 618 
80NSSC21K0061 (SW), as well as the Department of Energy grant DE-SC0019307 (MS).  619 
  620 

Open Research 621 

All data used for this study are publicly available from the following sources. GRACE data were 622 
accessed from JPL PO.DAAC at https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-623 
GRFO_MASCON_CRI_GRID_RL06_V2. SNODAS data were downloaded from the National 624 
Snow & Ice Data Center (https://nsidc.org/data/g02158), GLDAS Noah, CLSM and VIC model 625 
outputs from the Goddard Earth Sciences Data and Information Services Center via 626 
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary?keywords=GLDAS, 627 



manuscript submitted to Earth’s Future 

 

https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM10_M_2.1/summary?keywords=GLDAS, and 628 
https://disc.gsfc.nasa.gov/datasets/GLDAS_VIC10_M_2.1/summary?keywords=GLDAS, 629 
respectively. We kindly thank Hannes Müller Schmied (hannes.mueller.schmied@em.uni-630 
frankfurt.de) at the University of Frankfurt for providing WGHM version 2.2d outputs. GNSS 631 
time series were downloaded from the Nevada Geodetic Laboratory 632 
(http://geodesy.unr.edu/gps_timeseries/tenv3/IGS14/). The California Department of Water 633 
Resources provided reservoir data (https://cdec.water.ca.gov/dynamicapp/getAll?sens_num=15) 634 
and groundwater level data, which we retrieved as bulk download from the California Natural 635 
Resources Agency via the California Open Data Portal for “Periodic Groundwater Level 636 
Measurements” (https://data.ca.gov/dataset/periodic-groundwater-level-measurements) and for 637 
“Continuous Groundwater Level Measurements” (https://data.ca.gov/dataset/continuous-638 
groundwater-level-measurements). Further groundwater level data were retrieved from the 639 
USGS archives for “Daily Data” (https://waterdata.usgs.gov/ca/nwis/dv/?referred_module=gw) 640 
and “Field Measurements” (https://nwis.waterdata.usgs.gov/ca/nwis/gwlevels). Wavelet software 641 
packages are provided by C. Torrence and G. Compo at URL: 642 
http://atoc.colorado.edu/research/wavelets, as well as by Jon Erickson at URL: 643 
https://www.mathworks.com/matlabcentral/fileexchange/20821-continuous-wavelet-transform-644 
and-inverse. InSAR results, assembled groundwater records as well as all data analysis results 645 
presented in the supporting information or figures will be made available upon acceptance 646 
through a repository with the Virginia Tech Data Repository (https://data.lib.vt.edu/). During 647 
peer review, all data analysis results are available in the supporting information, and/or figures.  648 
 649 
 650 

References 651 

Adusumilli, S., Borsa, A. A., Fish, M. A., McMillan, H. K., & Silverii, F. (2019). A decade of terrestrial water 652 
storage changes across the contiguous United States from GPS and GRACE. Geophysical Research Letters, 653 
2019GL085370. https://doi.org/10.1029/2019GL085370 654 

Ajami, H., Troch, P. A., Maddock, T., Meixner, T., & Eastoe, C. (2011). Quantifying mountain block recharge by 655 
means of catchment-scale storage-discharge relationships. Water Resources Research, 47(4). 656 
https://doi.org/10.1029/2010WR009598 657 

Alam, S., Gebremichael, M., Ban, Z., Scanlon, B. R., Senay, G., & Lettenmaier, D. P. (2021). Post‐Drought 658 
Groundwater Storage Recovery in California’s Central Valley. Water Resources Research, 57(10). 659 
https://doi.org/10.1029/2021WR030352 660 

Alley, W. M. (2002). Flow and Storage in Groundwater Systems. Science, 296(5575), 1985–1990. 661 
https://doi.org/10.1126/science.1067123 662 

Argus, D. F., Landerer, F. W., Wiese, D. N., Martens, H. R., Fu, Y., Famiglietti, J. S., Thomas, B. F., Farr, T. G., 663 
Moore, A. W., & Watkins, M. M. (2017). Sustained water loss in California’s mountain ranges during severe 664 
drought from 2012 to 2015 inferred from GPS. Journal of Geophysical Research: Solid Earth, 122(12), 665 
10,510-559,585. https://doi.org/10.1002/2017JB014424 666 

Argus, D. F., Martens, H. R., Borsa, A. A., Knappe, E., Wiese, D. N., Alam, S., Anderson, M., Khatiwada, A., Lau, 667 
N., Peidou, A., Swarr, M., White, A., Bos, M. S., Landerer, F. W., & Gardner, P. (2022). Subsurface water 668 
flux in California’s Central Valley and its source watershed from space geodesy. Geophysical Research 669 
Letters. https://doi.org/10.1029/2022GL099583 670 

Ayres, A., Hanak, E., Gray, B., Sencan, G., Bruno, E., Bou, A. E., & Collins, J. (2021). Improving California’ s 671 
Water Market. 672 

Bales, R. C., Hopmans, J. W., O’Geen, A. T., Meadows, M., Hartsough, P. C., Kirchner, P., Hunsaker, C. T., & 673 
Beaudette, D. (2011). Soil Moisture Response to Snowmelt and Rainfall in a Sierra Nevada Mixed-Conifer 674 
Forest. Vadose Zone Journal, 10(3), 786–799. https://doi.org/10.2136/vzj2011.0001 675 



manuscript submitted to Earth’s Future 

 

Beaudoing, H., & Rodell, M. (2016). GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1, 676 
NASA/GSFC/HSL: Greenbelt, Maryland, USA,. Goddard Earth Sciences Data and Information Services 677 
Center (GES DISC). https://doi.org/10.5067/SXAVCZFAQLNO 678 

Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y., & Allen, S. T. (2022). Global Recharge Data Set 679 
Indicates Strengthened Groundwater Connection to Surface Fluxes. Geophysical Research Letters, 49(23). 680 
https://doi.org/10.1029/2022GL099010 681 

Borsa, A. A., Agnew, D. C., & Cayan, D. R. (2014). Ongoing drought-induced uplift in the western United States. 682 
Science, 345(6204), 1587–1590. https://doi.org/10.1126/science.1260279 683 

Burow, K. R., Dubrovsky, N. M., & Shelton, J. L. (2007). Temporal trends in concentrations of DBCP and nitrate in 684 
groundwater in the eastern San Joaquin Valley, California, USA. Hydrogeology Journal, 15(5), 991–1007. 685 
https://doi.org/10.1007/s10040-006-0148-7 686 

Carlson, G., Shirzaei, M., Ojha, C., & Werth, S. (2020). Subsidence‐Derived Volumetric Strain Models for Mapping 687 
Extensional Fissures and Constraining Rock Mechanical Properties in the San Joaquin Valley, California. 688 
Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2020JB019980 689 

Carlson, G., Shirzaei, M., Werth, S., Zhai, G., & Ojha, C. (2020). Seasonal and Long‐Term Groundwater Unloading 690 
in the Central Valley Modifies Crustal Stress. Journal of Geophysical Research: Solid Earth, 125(1), 1–17. 691 
https://doi.org/10.1029/2019JB018490 692 

Carlson, G., Werth, S., & Shirzaei, M. (2022). Joint Inversion of GNSS and GRACE for Terrestrial Water Storage 693 
Change in California. Journal of Geophysical Research: Solid Earth, 127(3). 694 
https://doi.org/10.1029/2021JB023135 695 

CDWR. (2017). California Department of Water Resources, California Data Exchange Center, Active Monthly 696 
Reservoirs. http://cdec.water.ca.gov/misc/monthly_res.html 697 

CDWR. (2019). Continuous Groundwater Level Measurements. http://wdl.water.ca.gov/waterdatalibrary/ 698 
Chanard, K., Métois, M., Rebischung, P., & Avouac, J. P. (2020). A warning against over-interpretation of seasonal 699 

signals measured by the Global Navigation Satellite System. Nature Communications, 11(1), 1–4. 700 
https://doi.org/10.1038/s41467-020-15100-7 701 

Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Transactions on 702 
Geoscience and Remote Sensing, 36(3), 813–821. https://doi.org/10.1109/36.673674 703 

Earman, S., Campbell, A. R., Phillips, F. M., & Newman, B. D. (2006). Isotopic exchange between snow and 704 
atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern 705 
United States. Journal of Geophysical Research Atmospheres, 111(9). https://doi.org/10.1029/2005JD006470 706 

Erickson, J. (2019). Continuous wavelet transform and inverse (Retrieved August 30, 2019.). MATLAB Central File 707 
Exchange. 708 

Escriva-Bou, A., Hui, R., Maples, S., Medellín-Azuara, J., Harter, T., & Lund, J. R. (2020). Planning for 709 
groundwater sustainability accounting for uncertainty and costs: An application to California’s Central Valley. 710 
Journal of Environmental Management, 264, 110426. 711 

Escriva-Bou, A., Sencan, G., & Hanak, E. (2021). Groundwater Recharge, Fact Sheet August 2021. 712 
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., Swenson, S. C., de Linage, C. R., & 713 

Rodell, M. (2011). Satellites measure recent rates of groundwater depletion in California’s Central Valley. 714 
Geophysical Research Letters, 38(3). https://doi.org/10.1029/2010GL046442 715 

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., 716 
Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. 717 
(2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2), RG2004. 718 
https://doi.org/10.1029/2005RG000183 719 

Faunt, C. C. (2009). Groundwater Availability of the Central Valley Aquifer, California (C. C. Faunt, Ed.). U.S. 720 
Geological Survey Professional Paper 1766. https://pubs.usgs.gov/pp/1766/ 721 

Faunt, C. C., Sneed, M., Traum, J., & Brandt, J. T. (2016). Water availability and land subsidence in the Central 722 
Valley, California, USA. Hydrogeology Journal, 24(3), 675–684. https://doi.org/10.1007/s10040-015-1339-x 723 

Feth, J. H. (1964). Hidden Recharge. Groundwater, 2(4), 14–17. https://doi.org/10.1111/j.1745-724 
6584.1964.tb01780.x 725 

Fetter, C. W., & Kreamer, D. (2022). Applied Hydrogeology (5th ed.). Waveland Press. 726 
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., 727 

Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., 728 
Slangen, A. B. A., & Yu, Y. (2021). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The 729 
Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the 730 
Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. 731 



manuscript submitted to Earth’s Future 

 

Péan, S. Berger, N. Caud, Y. Chen,. Cambridge University Press, Cambridge, United Kingdom and New 732 
York, NY, USA, 2391 pp. doi:10.1017/9781009157896. 733 
https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf.  734 

Franceschetti, G., & Lanari, R. (1999). Synthetic aperture radar processing. CRC Press. 735 
Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States. U.S. Geological 736 

Survey Circular 1182. https://doi.org/10.3133/cir1182 737 
Gao, S. S., Silver, P. G., Linde, A. T., & Sacks, I. S. (2000). Annual modulation of triggered seismicity following 738 

the 1992 Landers earthquake in California. Nature, 406(6795), 500–504. https://doi.org/10.1038/35020045 739 
Ghasemizade, M., Asante, K. O., Petersen, C., Kocis, T., Dahlke, H. E., & Harter, T. (2019). An Integrated 740 

Approach Toward Sustainability via Groundwater Banking in the Southern Central Valley, California. Water 741 
Resources Research, 55(4), 2742–2759. https://doi.org/10.1029/2018WR024069 742 

Gilbert, J. M., & Maxwell, R. M. (2017). Examining regional groundwater-surface water dynamics using an 743 
integrated hydrologic model of the San Joaquin River basin. Hydrology and Earth System Sciences, 21(2), 744 
923–947. https://doi.org/10.5194/hess-21-923-2017 745 

Goswami, J. C., & Chan, A. K. (1999). Fundamentals of Wavelets: Theory, Algorithms, and Applications. Wiley-746 
Interscience. 747 

Hanak, E., Lund, J., Arnold, B., Escriva-Bou, A., Gray, B., Green, S., Harter, T., Howitt, R., MacEwan, D., & 748 
Medellín-Azuara, J. (2017). Water Stress and a Changing San Joaquin Valley. Public Policy Institute of 749 
California. 750 

Hanson, R. T., Flint, L. E., Flint, A. L., Dettinger, M. D., Faunt, C. C., Cayan, D., & Schmid, W. (2012). A method 751 
for physically based model analysis of conjunctive use in response to potential climate changes. Water 752 
Resources Research, 48(2). https://doi.org/10.1029/2011WR010774 753 

Harpold, A., Dettinger, M., & Rajagopal, S. (2017). Defining Snow Drought and Why It Matters. Eos. 754 
https://doi.org/10.1029/2017EO068775 755 

Hatchett, B. J., & McEvoy, D. J. (2018). Exploring the origins of snow drought in the northern sierra nevada, 756 
california. Earth Interactions, 22(2), 1–13. https://doi.org/10.1175/EI-D-17-0027.1 757 

Healy, R. W., & Scanlon, B. R. (2010). Estimating Groundwater Recharge. Cambridge University Press. 758 
Huth, A. K., Leydecker, A., Sickman, J. O., & Bales, R. C. (2004). A two-component hydrograph separation for 759 

three high-elevation catchments in the Sierra Nevada, California. Hydrological Processes, 18(9), 1721–1733. 760 
https://doi.org/10.1002/hyp.1414 761 

Jódar, J., Cabrera, J. A., Martos-Rosillo, S., Ruiz-Constán, A., González-Ramón, A., Lambán, L. J., Herrera, C., & 762 
Custodio, E. (2017). Groundwater discharge in high-mountain watersheds: A valuable resource for 763 
downstream semi-arid zones. The case of the Bérchules River in Sierra Nevada (Southern Spain). Science of 764 
The Total Environment, 593–594, 760–772. https://doi.org/10.1016/j.scitotenv.2017.03.190 765 

Johnson, C. W., Fu, Y., & Bürgmann, R. (2017). Seasonal water storage, stress modulation, and California 766 
seismicity. Science, 356(6343), 1161–1164. https://doi.org/10.1126/science.aak9547 767 

Konikow, L. F. (2015). Long-Term Groundwater Depletion in the United States. Groundwater, 53(1), 2–9. 768 
https://doi.org/10.1111/gwat.12306 769 

Lee, J. C., & Shirzaei, M. (2023). Novel algorithms for pair and pixel selection and atmospheric error correction in 770 
multitemporal InSAR. Remote Sensing of Environment, 286. https://doi.org/10.1016/j.rse.2022.113447 771 

Li, R., Ou, G., Pun, M., & Larson, L. (2018). Evaluation of Groundwater Resources in Response to Agricultural 772 
Management Scenarios in the Central Valley, California. Journal of Water Resources Planning and 773 
Management, 144(12), 04018078. https://doi.org/10.1061/(asce)wr.1943-5452.0001014 774 

Liu, F., Conklin, M. H., & Shaw, G. D. (2017). Insights into hydrologic and hydrochemical processes based on 775 
concentration-discharge and end-member mixing analyses in the mid-Merced River Basin, Sierra Nevada, 776 
California. Water Resources Research, 53(1), 832–850. https://doi.org/10.1002/2016WR019437 777 

Manning, A. H., Clark, J. F., Diaz, S. H., Rademacher, L. K., Earman, S., & Niel Plummer, L. (2012). Evolution of 778 
groundwater age in a mountain watershed over a period of thirteen years. Journal of Hydrology, 460–461, 13–779 
28. https://doi.org/10.1016/j.jhydrol.2012.06.030 780 

Markovich, K. H., Manning, A. H., Condon, L. E., & McIntosh, J. C. (2019). Mountain-Block Recharge: A Review 781 
of Current Understanding. Water Resources Research, 55(11), 8278–8304. 782 
https://doi.org/10.1029/2019WR025676 783 

Massoud, E. C., Purdy, A. J., Miro, M. E., & Famiglietti, J. S. (2018). Projecting groundwater storage changes in 784 
California’s Central Valley. Scientific Reports, 8(1), 12917. https://doi.org/10.1038/s41598-018-31210-1 785 



manuscript submitted to Earth’s Future 

 

McCabe, G. J., Palecki, M. A., & Betancourt, J. L. (2004). Pacific and Atlantic Ocean influences on multidecadal 786 
drought frequency in the United States. Proceedings of the National Academy of Sciences, 101(12), 4136–787 
4141. https://doi.org/10.1073/pnas.0306738101 788 

McMahon, P. B., Plummer, L. N., Böhlke, J. K., Shapiro, S. D., & Hinkle, S. R. (2011). A comparison of recharge 789 
rates in aquifers of the United States based on groundwater-age data. Hydrogeology Journal, 19(4), 779–800. 790 
https://doi.org/10.1007/s10040-011-0722-5 791 

Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H., Blasch, K. W., Brookfield, A. E., Castro, 792 
C. L., Clark, J. F., & Gochis, D. J. (2016). Implications of projected climate change for groundwater recharge 793 
in the western United States. Journal of Hydrology, 534, 124–138. 794 

Meyer, P. L. (1970). Introductory Probability and Statistical Applicaitons (2nd ed.). Oxford & IBH Publishing Co. 795 
Montgomery-Brown, E. K., Shelly, D. R., & Hsieh, P. A. (2019). Snowmelt-Triggered Earthquake Swarms at the 796 

Margin of Long Valley Caldera, California. Geophysical Research Letters, 46(7), 3698–3705. 797 
https://doi.org/10.1029/2019GL082254 798 

Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., & Engel, R. (2018). Dramatic declines in snowpack in the western 799 
US. Npj Climate and Atmospheric Science, 1(1). https://doi.org/10.1038/s41612-018-0012-1 800 

Murray, K. D., & Lohman, R. B. (2018). Short-lived pause in Central California subsidence after heavy winter 801 
precipitation of 2017. Science Advances, 4(8), eaar8144. https://doi.org/10.1126/sciadv.aar8144 802 

Neely, W. R., Borsa, A. A., Burney, J. A., Levy, M. C., Silverii, F., & Sneed, M. (2021). Characterization of 803 
Groundwater Recharge and Flow in California’s San Joaquin Valley From InSAR‐Observed Surface 804 
Deformation. Water Resources Research, 57(4), 1–20. https://doi.org/10.1029/2020wr028451 805 

NOHRSC. (2004). National Operational Hydrologic Remote Sensing Center, Snow Data Assimilation System 806 
(SNODAS) data products at NSIDC, Version 1. National Snow and Ice Data Center, Boulder, CO, USA. 807 
https://doi.org/10.7265/N5TB14TC 808 

Ojha, C., Shirzaei, M., Werth, S., Argus, D. F., & Farr, T. G. (2018). Sustained Groundwater Loss in California’s 809 
Central Valley Exacerbated by Intense Drought Periods. Water Resources Research, 54(7), 4449–4460. 810 
https://doi.org/10.1029/2017WR022250 811 

Ojha, C., Werth, S., & Shirzaei, M. (2019). Groundwater Loss and Aquifer System Compaction in San Joaquin 812 
Valley During 2012–2015 Drought. Journal of Geophysical Research: Solid Earth, 124(3), 3127–3143. 813 
https://doi.org/10.1029/2018JB016083 814 

Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, 815 
M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., 816 
Shahgedanova, M., Wang, M. B., … Yang, D. Q. (2015). Elevation-dependent warming in mountain regions 817 
of the world. Nature Climate Change, 5(5), 424–430. https://doi.org/10.1038/nclimate2563 818 

Peterson, D., Smith, R., Stewart, I., Knowles, N., Soulard, C., Hager, S., & Norton, G. A. (2003). Snowmelt 819 
Discharge Characteristics, Sierra Nevada, California. (Series Name SIR - 2005-5056). U.S. Geological 820 
Survey. 821 

Quiring, S. M., & Goodrich, G. B. (2008). Nature and causes of the 2002 to 2004 drought in the southwestern 822 
United States compared with the historic 1953 to 1957 drought. Climate Research, 36(1), 41–52. 823 
https://doi.org/10.3354/cr00735 824 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., 825 
Radakovich, J., Bosilovich, M., Entin*, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land 826 
Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. 827 
https://doi.org/10.1175/BAMS-85-3-381 828 

Saar, M. O., & Manga, M. (2003). Seismicity induced by seasonal groundwater recharge at Mt. Hood, Oregon. 829 
Earth and Planetary Science Letters, 214(3–4), 605–618. https://doi.org/10.1016/S0012-821X(03)00418-7 830 

Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of 831 
groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), 832 
W04520. https://doi.org/10.1029/2011WR011312 833 

Schmidt, R., Flechtner, F., Meyer, U., Neumayer, K.-H., Dahle, C., König, R., & Kusche, J. (2008). Hydrological 834 
Signals Observed by the GRACE Satellites. Surveys in Geophysics, 29(4–5), 319–334. 835 
https://doi.org/10.1007/s10712-008-9033-3 836 

Schreiner-McGraw, A. P., & Ajami, H. (2022). Combined impacts of uncertainty in precipitation and air 837 
temperature on simulated mountain system recharge from an integrated hydrologic model. Hydrology and 838 
Earth System Sciences, 26(4), 1145–1164. https://doi.org/10.5194/hess-26-1145-2022 839 

Shirzaei, M. (2013). A Wavelet-Based Multitemporal DInSAR Algorithm for Monitoring Ground Surface Motion. 840 
Ieee Geoscience and Remote Sensing Letters, 10(3), 456–460. https://doi.org/Doi 10.1109/Lgrs.2012.2208935 841 



manuscript submitted to Earth’s Future 

 

Shirzaei, M., Bürgmann, R., & Fielding, E. J. (2017). Applicability of Sentinel‐1 Terrain Observation by Progressive 842 
Scans multitemporal interferometry for monitoring slow ground motions in the San Francisco Bay Area. 843 
Geophysical Research Letters, 44(6), 2733–2742. https://doi.org/10.1002/2017GL072663. 844 

Shirzaei, M., Bürgmann, R., Foster, J., Walter, T. R., & Brooks, B. A. (2013). Aseismic deformation across the 845 
Hilina fault system, Hawaii, revealed by wavelet analysis of InSAR and GPS time series. Earth and Planetary 846 
Science Letters, 376, 12–19. https://doi.org/10.1016/j.epsl.2013.06.011 847 

Shirzaei, M., Ojha, C., Werth, S., Carlson, G., & Vivoni, E. R. (2019). Comment on “Short-lived pause in Central 848 
California subsidence after heavy winter precipitation of 2017” by K. D. Murray and R. B. Lohman. Science 849 
Advances, 5(eaav8038). https://doi.org/10.1126/sciadv.aav8038 850 

Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater 851 
use for irrigation - A global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880. 852 
https://doi.org/10.5194/hess-14-1863-2010 853 

Smith, R. G., Knight, R., Chen, J., Reeves, J. A., Zebker, H. A., Farr, T., & Liu, Z. (2017). Estimating the permanent 854 
loss of groundwater storage in the southern San Joaquin Valley, California. Water Resources Research, 53(3), 855 
2133–2148. https://doi.org/10.1002/2016WR019861 856 

Somers, L. D., & McKenzie, J. M. (2020). A review of groundwater in high mountain environments. Wiley 857 
Interdisciplinary Reviews: Water, 7(6), 1–27. https://doi.org/10.1002/wat2.1475 858 

Stevenson, S., Coats, S., Touma, D., Cole, J., Lehner, F., Fasullo, J., & Otto-Bliesner, B. (2022). Twenty-first 859 
century hydroclimate: A continually changing baseline, with more frequent extremes. Proceedings of the 860 
National Academy of Sciences, 119(12). https://doi.org/10.1073/pnas.2108124119 861 

Tague, C., & Grant, G. E. (2009). Groundwater dynamics mediate low-flow response to global warming in snow-862 
dominated alpine regions. Water Resources Research, 45(7). https://doi.org/10.1029/2008WR007179 863 

Tague, C., Grant, G., Farrell, M., Choate, J., & Jefferson, A. (2008). Deep groundwater mediates streamflow 864 
response to climate warming in the Oregon Cascades. Climatic Change, 86(1–2), 189–210. 865 
https://doi.org/10.1007/s10584-007-9294-8 866 

Talwani, P., & Acree, S. (1985). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. In 867 
Earthquake prediction (pp. 947–965). Springer. 868 

Tang, Q., & Oki, T. (Eds.). (2016). Terrestrial Water Cycle and Climate Change. John Wiley & Sons, Inc. 869 
https://doi.org/10.1002/9781118971772 870 

Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). GRACE measurements of 871 
mass variability in the Earth system. Science, 305(5683), 503–505. https://doi.org/10.1126/science.1099192 872 

Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., 873 
Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C., 874 
Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., … Velicogna, I. (2019). Contributions of GRACE to 875 
understanding climate change. Nature Climate Change, 9(5), 358–369. https://doi.org/10.1038/s41558-019-876 
0456-2 877 

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. In Bulletin of the American 878 
Meteorological Society (Retrieved December 5, 2018.; Vol. 79, Issue 1, pp. 61–78). 879 
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 880 

Urióstegui, S. H., Bibby, R. K., Esser, B. K., & Clark, J. F. (2017). Quantifying annual groundwater recharge and 881 
storage in the central Sierra Nevada using naturally occurring 35S. Hydrological Processes, 31(6), 1382–882 
1397. https://doi.org/10.1002/hyp.11112 883 

USGS. (2021). USGS Groundwater Data for the Nation. https://waterdata.usgs.gov/nwis/gw 884 
Vasco, D. W., Kim, K., Farr, T. G., Reager, J. T., Bekaert, D., Singh, S., & Beaudoing, H. K. (2022). Using 885 

Sentinel-1 and GRACE satellite data to monitor the long- and short-term hydrological variations within the 886 
Tulare Basin , California. Scientific Reports, 1–14. https://doi.org/10.1038/s41598-022-07650-1 887 

Vrugt, J. A., Dekker, S. C., & Bouten, W. (2003). Identification of rainfall interception model parameters from 888 
measurements of throughfall and forest canopy storage. Water Resources Research, 39(9). 889 
https://doi.org/10.1029/2003WR002013 890 

Wahi, A. K., Hogan, J. F., Ekwurzel, B., Baillie, M. N., & Eastoe, C. J. (2008). Geochemical Quantification of 891 
Semiarid Mountain Recharge. Ground Water, 46(3), 414–425. https://doi.org/10.1111/j.1745-892 
6584.2007.00413.x 893 

Wang, H. F. (2000). Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. 894 
Princeton Univ. Press. 895 



manuscript submitted to Earth’s Future 

 

Welch, L. A., & Allen, D. M. (2014). Hydraulic conductivity characteristics in mountains and implications for 896 
conceptualizing bedrock groundwater flow. Hydrogeology Journal, 22(5), 1003–1026. 897 
https://doi.org/10.1007/s10040-014-1121-5 898 

Werner, C., U. Wegmüller, T. Strozzi, & A. Wiesmann. (2000). Gamma SAR and interferometric processing 899 
software. Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden. 900 

White, A. M., Gardner, W. P., Borsa, A. A., Argus, D. F., & Martens, H. R. (2022). A review of GNSS/GPS in 901 
hydrogeodesy: Hydrologic loading applications and their implications for water resource research. Water 902 
Resources Research. https://doi.org/10.1029/2022WR032078 903 

Yin, D., & Roderick, M. L. (2020). Inter-annual variability of the global terrestrial water cycle. Hydrology and 904 
Earth System Sciences, 24(1), 381–396. https://doi.org/10.5194/hess-24-381-2020 905 

Zektser, I. S., & Everett, L. G. (2004). Groundwater Resources ofthe World and Their Use (IHP-VI Series on 906 
Groundwater No. 6). United Nations Educational, Scientific and Cultural Organization (UNESCO). 907 

  908 
  909 



manuscript submitted to Earth’s Future 

 

 910 

Figure 1. Overview of study area and data sets applied in this study. (a) Study area and 911 
hydrogeological datasets: Outline of the Central Valley aquifer system (grey line, 𝑨𝑪𝑽 = 53,672 912 
km2), Sierra Nevada drainage area (red shade, 𝑨𝑺𝑵 = 63,780 km2), location and depth of 913 
observation wells that provide measurements at depth of 50 m and deeper, and lateral coverage 914 
and depth of the confining Corcoran clay layer (source USGS: 915 
https://water.usgs.gov/GIS/metadata/usgswrd/XML/pp1766_corcoran_clay_depth_feet.xml). See 916 
Figure S4e and S4f for histograms of well depths. Top inset indicates location of the study area 917 
over contiguous US. Bottom inset shows time series of two selected well sites W1 918 
(#352958N1193011W001) and W2 (#387793N1218123W004). (b) Geodetic data sets: Mass 919 
change regions of JPL GRACE mascon solutions (black dashed line) and location of GNSS sites 920 
from the University of Reno, Nevada (red and blue triangles). Red triangles mark stations located 921 
inside the Central Valley (CV), and blue triangles those outside the CV aquifer boundary. (c) 922 
Time series of TWS from GRACE, composite hydrological storages and estimated GW storage 923 
are averaged for the GRACE region shown in panel a, after Ojha et al. [2019]. Gray shaded 924 
background areas (light, medium, dark gray) indicate that the USDM identifies >30% (>30%, 925 
>60%) of California’s area to be in moderate (exceptional, exceptional) dry condition (compare 926 
Fig. S3). 927 
  928 
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 929 

Figure 2. Conceptual and process-based model of pressure propagation and recharge in the 930 
Sierra Nevada to deep aquifer layers of the Central Valley. (a) Hydrogeological setting in the 931 
Central Valley (~400 m a.s.l.) and Sierra Nevada Mountains (up to ~4000 m a.s.l.). Indicated are 932 
major groundwater fluxes in and out from deep aquifer layers, including mountain front and 933 
mountain block recharge (MFR and MBR). Confining unit of the Corcoran clay is only present 934 
in the southern San Joaquin Valley, where pumping is more intense compared to the northern 935 
Sacramento Valley (Fig. 1a). This graph is inspired by Faunt et al. (2009) (Fig. A9 therein), 936 
Smith et al. (2017) (Fig. 2 therein) as well as Somers and McKenzie (2020) (Fig. 5 therein). 937 
  938 
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 939 

Figure 3. Wavelet time-frequency analysis. A wavelet analysis was performed for time series of 940 
all available datasets to isolate the annual signal component. Wavelet spectrum of time series of 941 
(a) groundwater level at well 387793N1218123W004 and (b) vertical land motion at GNSS site 942 
BLSA (see Fig. 1 for their location), and of average water storage variations in the GRACE 943 
region: (c) total water storage (TWS) from GRACE, (d) soil storage (SoS) from GLDAS and 944 
WGHM, (e) snow storage (SnS) from SNODAS, (f) reservoir storage (ReS) from CDWR and (g) 945 
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groundwater storage (GWS) in CV. (h) Reconstructed annual signal component for periods 946 
within range of 0.75-0.25 years from water storage wavelet spectra shown in panel c-g. 947 

 948 

Figure 4. Timing of annual maximum of groundwater related signals. Timings are given in day-949 
of-year (DOY). (a) Groundwater levels (GWL) at 250 observation sites throughout the Central 950 
Valley providing at least three years of data during 2002-2020 at depths below 50 m. (b) Vertical 951 
land motion (maximum uplift) at 170 GNSS sites throughout entire California with a seasonal 952 
amplitude larger than the median of the time series error standard deviation. Timing for 953 
groundwater and GNSS were inversely interpolated using a 25 km correlation radius. Remaining 954 
panels show timing of annual maximum water storage at 0.5-degree sampling resolution: (c) total 955 
water storage (TWS) from GRACE, (d) soil storage (SoS) from GLDAS-Noah, (e) snow storage 956 
(SnS) from SNODAS, (f) reservoir storage (ReS) from CDWR and (g) resulting groundwater 957 
storage (GWS). White areas have either no data or amplitude of annual variation is near zero. 958 
Annual oscillations of vertical land motion inside the CV are temporally aligned with those of 959 
groundwater level variations. In contrast, oscillations of vertical land motion outside the Central 960 
Valley are in resonance with annual oscillations of total water storage changes detected by 961 
GRACE (compare panel b with c, and Fig. 6), because maximum VLM outside the Valley is 962 
driven by minimum elastic load of the water masses. Individual values for groundwater well and 963 
GNSS sites, timing of minima, related histograms, and standard deviations of annual timing 964 
during observation periods are shown in Figures S8, S9, S10, and S11.  965 
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 966 

Figure 5. a) LOS velocity map for period 2015/11/27-2022/12/20. b) Median seasonal phase 967 
(peak DOY), and (c) amplitude of InSAR deformation time series for water years 2016-2022. 968 
See Figs. S15 and S16 for yearly phase and amplitude maps, respectively. 969 
  970 
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 971 

Figure 6. Normalized probability density functions for timing of annual extremes in 972 
groundwater-related signals across California. Row and line color indicate signal type: (a) total 973 
precipitation in the recharge area of the Sierra Nevada (SN, see Fig. 1a) from SNODAS, (b) Sum 974 
of liquid precipitation and melt water corrected for canopy interception in SN from SNODAS, 975 
(c) Melt water in SN from SNODAS, (d) soil storage from hydrological models for GRACE 976 
region corresponding with the Central Valley (CV, Fig. 1b), (e) snow storage from SNODAS for 977 
CV, (f) surface reservoir storage from CDWR for CV, (g) GRACE-based estimate of 978 
groundwater storage for CV, (H) total water storage from GRACE for CV, (i) vertical land 979 
motion from GNSS for all available sites in California (CA), and (j) for GNSS sites (red) in the 980 
CV only, and for InSAR pixels in the southern CV from Fig. 5 with a seasonal amplitude larger 981 
than 3 mm, and lastly, (k) groundwater levels from observation wells in CV. See Figure 1 for 982 
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location of subregions. Each function indicates maximum probability for timing of annual 983 
maximum (a-i, k) or minimum (j) amplitude of the annual signal based on wavelet analysis (Fig. 984 
3 and Fig. S7). Vertical lines represent the mean value for timing of annual maximum. 985 
Distribution is normalized by maximum probability density value and results from year-to-year 986 
variation of the regionally averaged gridded datasets (a-h) and from spatial variation of well and 987 
GNSS data sets (i-k). 988 
  989 
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 990 

Figure 7. Vertical pressure propagation for elevation difference between the Sierra Nevada 991 
Mountains and the Central Valley aquifers. Normalized pressure change (∆𝑃′/𝑃)*+) at different 992 
depth due to standard 1D calculation of pressure front propagation along mountain block 993 
recharge conduits in the fractured bedrock of the Sierra Nevada Mountains. Graphs are 994 
incrementally offset by -1 for each depth. In top groundwater layers, maximum pressure occurs 995 
on January 22nd (DOY 22), which is driven by mean annual water availability in the recharge 996 
area (Fig. 6b). Table to the right indicates DOY and time delay of the pressure propagation to 997 
depth of 300-2000 m. Given a hydraulic diffusivity 𝜅 = 0.3 𝑚(/𝑠 (reasonable for fractured 998 
granite bedrocks), the pressure front needs ~0.6 (1.2, 1.6) months to propagate to depth of 600 999 
(1300, 2000) m. A smaller hydraulic diffusivity would lead to a slower propagation to depth and 1000 
vice versa, examples for 𝜅 = 0.5, 0.1 𝑚(/𝑠 are shown in Figure S14. 1001 
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Key Points: 10 

• High Sierra snowpack link to deep Central Valley aquifers via mountain block recharge 11 
is consistent with satellite & in-situ observations. 12 

• Peak groundwater levels lag Sierra’s water peak by one month, consistent with fluid 13 
diffusion time in Sierra’s fractured crystalline body 14 

• New hydroclimate models should account for the role of the Sierra Nevada in 15 
California’s water cycle 16 
  17 
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Abstract 18 

California's arid Central Valley relies on groundwater pumped from deep aquifers and 19 
surface water transported from the Sierra Nevada to produce a quarter of the United States’ food 20 
demand. The natural recharge to deep aquifers is thought to be regulated by the adjacent high 21 
Sierra Nevada mountains, but the underlying mechanisms remain elusive. We investigate large 22 
sets of geodetic remote sensing, hydrologic, and climate data and employ process-based models 23 
at annual time scales to investigate possible recharge mechanism. Peak annual groundwater 24 
storage in the Central Valley lags several months behind that of groundwater levels, which 25 
suggests a longer transmission time for water flow than pressure propagation. We further find 26 
that peak groundwater levels lag the Sierra Nevada snowmelt by about one month, consistent 27 
with an ideal fluid pressure diffusion time in the Sierra’s fractured crystalline body. This 28 
suggests that Sierra Nevada snowpack changes likely impact freshwater availability in the 29 
Central Valley aquifers. Our datasets, analysis and process-based models link the current 30 
precipitation and meltwater in the high mountain Sierra to deep Central Valley aquifers through 31 
the mountain block recharge process. We call for new hydroclimate models to account for the 32 
role of the Sierra in California’s water cycle and for revision of the current management and 33 
drought resiliency plans. 34 

 35 

Plain Language Summary 36 

Current trends in hydrology and climate indicate a future in which extreme droughts will likely 37 
become the norm for drier regions. To sustain food production in the Central Valley, California, 38 
a major agricultural producer in the United States with a semiarid climate, groundwater supply 39 
and recharge are crucial to management solutions. We report the first remote-sensing 40 
observations directly linking Sierra Nevada’s snowpack and groundwater storage to Central 41 
Valley's deep aquifer system recharge. We highlight the importance of high mountain 42 
groundwater systems in the water cycle, significantly contributing to recharging valley aquifers. 43 
We suggest that Sierra Nevada snowmelt and mountain recharge processes should be included in 44 
Central Valley aquifer models for accurate forecasting of the impact of climate extremes on 45 
groundwater supply and for developing effective drought adaptation and resiliency plans. 46 

 47 

1 Introduction 48 

Understanding key natural and artificial processes in recharging aquifer systems is 49 
essential for sustainable water management to store water for future use (Escriva-Bou et al., 50 
2020, 2021; Ghasemizade et al., 2019). In arid and semiarid regions, such as the lowland Central 51 
Valley (CV) of California adjacent to the Sierra Nevada Mountains (Fig. 1a), artificial (or 52 
intentional) recharge through basins, unlined canals, and injection contributes to the net recharge, 53 
however, due to the natural disconnect between groundwater overdraft in dry areas and surface 54 
water surplus in wet areas, these contributions are likely small (Alley, 2002; Ayres et al., 2021; 55 
Escriva-Bou et al., 2021; Siebert et al., 2010; Zektser & Everett, 2004). Thus, large-scale natural 56 
recharge to deep aquifers is essential for replenishing dryland groundwater resources. In contrast 57 
to artificial recharge, the mechanism of natural recharge to deep aquifers remains elusive in the 58 
CV. 59 
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California’s wet and dry seasons occur during November-April and May-October, 60 
respectively, with a large portion of the Sierra Nevada’s precipitation falling as snow during the 61 
winter that supplies snow melt in spring (Fig. S1, S2). The Sierra Nevada’s snowpack is thought 62 
to regulate surface water availability in the CV during the summer (Faunt, 2009; Peterson et al., 63 
2003; Urióstegui et al., 2017). Isotope studies and streamflow analysis of snow-dominated 64 
mountainous watersheds of the western USA suggest that snowpacks via snowmelt significantly 65 
contribute to groundwater recharge, depending on present geology (Earman et al., 2006; Tague et 66 
al., 2008; Tague & Grant, 2009). But the mechanism linking the Central Valley’s deep aquifer 67 
recharge to precipitation, underground storage, and water transport in the Sierra Nevada 68 
Mountains is not well-understood (Huth et al., 2004; Jódar et al., 2017; Liu et al., 2017).  69 

Deep valley aquifers adjacent to high mountains, such as the CV, are thought to be 70 
recharged by lateral flows from higher elevations (Feth, 1964). The two main processes 71 
considered are Mountain Front Recharge (MFR) and Mountain Block Recharge (MBR, Fig. 2) 72 
(Somers & McKenzie, 2020). MFR often directly recharges shallow unconfined aquifers and 73 
causes a rise in the water table near streambeds from the mountain front to the basin aquifer. 74 
MBR replenishes deeper, often confined, and semi-confined aquifers laterally connected to high 75 
mountain aquifers (Somers & McKenzie, 2020). MBR occurs through fractures in the mountain 76 
block hydraulically connected to deep valley aquifers. Despite their proximity, there is no 77 
consensus on the role of especially MBR from the Sierra Nevada’s granitic bedrock block into 78 
the CV aquifers; thus, it is not considered in current large-scale hydrological models used in 79 
water management assessments (Faunt, 2009; Hanson et al., 2012; Markovich et al., 2019). 80 
Meixner et al. (2016) lumped both processes to mountain system recharge (MSR) and estimated 81 
that it accounts for ~20% of GW recharge in the CV. Recent modeling experiments indicate that 82 
MFR drives almost all of the MSR to the CV aquifers (Schreiner-McGraw & Ajami, 2022). 83 
However, another study based on hydrological modeling concludes that MBR is more important 84 
and contributes up to 23% of the total GW recharge to the CV (Gilbert & Maxwell, 2017). These 85 
hydrogeological studies generally agree on the role of MSR components. However, they disagree 86 
on the importance of MBR for recharging deep valley aquifers of the CV, while the spatial extent 87 
of their investigations remains at scales of smaller watersheds that do not cover the entire CV.  88 

An observation of groundwater volume change at the scale of the CV is available from 89 
remote sensing techniques, e.g., via their impact on the gravity field observed by the Gravity 90 
Recovery And Climate Experiment (GRACE) or on surface deformation observations with 91 
Global Navigation Satellite System (GNSS) or Interferometric Synthetic Aperture Radar 92 
(InSAR). Some studies, e.g., Murray & Lohmann (2018), Neely et al. (2021) analyzing high-93 
resolution deformation maps, suggest direct recharge of deep aquifers from the surface of the CV 94 
following heavy precipitation events and surface water supply surplus during wet years, ignoring 95 
the impermeable clay layers separating shallow and deep aquifers (Faunt, 2009; Shirzaei et al., 96 
2019) and that there is no evidence of vertical fractures (Carlson, Shirzaei, Ojha, et al., 2020) in 97 
the Valley to provide a direct pathway for the downward flow of surface water. Argus et al. 98 
(2022) use remote sensing data and hydrological models to quantify MBR from the Sierra 99 
Nevada to the CV at about 5 km3/yr, though they fail to provide a feasible conceptual or physical 100 
model describing the deep aquifer recharge mechanisms. 101 

Quantifying the spatiotemporal relationship between California’s high mountains and 102 
deep valley aquifers is essential for developing appropriate plans supporting sustainable 103 
groundwater use. In the climate change era, when drought frequency and intensity have 104 
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increased globally (Fox-Kemper et al., 2021), including in California (Fig. S3), elevation-105 
dependent warming (Pepin et al., 2015) disproportionally impacts the water availability and 106 
storage in high mountains. During the last decades specifically, increased evapotranspiration, 107 
decreased or delayed precipitation, and snowfall have caused severe snow droughts in the 108 
western USA, including the Sierra Nevada (Harpold et al., 2017; Hatchett & McEvoy, 2018; 109 
Mote et al., 2018). These droughts also reduce supply for the MBR. Hence, ignoring the MBR 110 
contribution may cause an overestimation of the lowland aquifer resilience to climate change and 111 
excess freshwater demand.  112 

During a dry year, up to 70% of the groundwater used in CV is pumped within the 113 
growing season, mainly between April to June (Faunt, 2009), causing a long-term decline in 114 
groundwater levels, with the fastest rates observed in the southern San Joaquin basin (Fig. 1a, 115 
including the Tulare basin) (Faunt, 2009; Faunt et al., 2016; Konikow, 2015; Massoud et al., 116 
2018; Ojha et al., 2018). Given the poor quality of shallow water in the southern CV (Hanak et 117 
al., 2017), most groundwater demand is addressed by tapping into deep aquifers at ~50 m to 118 
~500 m depth below the surface, overlain by the confining layer of the Corcoran Clay or other 119 
clay lenses (Fig. 1a). Thus, direct percolation of surface water into deep aquifers is implausible 120 
(Shirzaei et al., 2019), at least at the time scale of a month to a year, corroborated by 121 
groundwater-age data (McMahon et al., 2011). For instance, Burow et al., (2007) reported a 122 
recharge rate of less than 600 mm/yr for unconfined aquifers in San Joaquin Valley. Thus, 123 
ancient groundwater supports California's water supply today (Healy & Scanlon, 2010).  124 

Here, we investigate several big time-dependent datasets, including groundwater level 125 
(GWL, Fig. 1a, S4), surface deformation from Interferometric Synthetic Aperture Radar (InSAR) 126 
and Global Navigation Satellite System (GNSS) (Fig. 1b, S5), Gravity Recovery and Climate 127 
Experiment (GRACE) satellite-derived total water storage (TWS), as well as soil storage (SoS), 128 
snow storage (SnS) and reservoir storage (ReS, Fig. 1c) from hydrological data sources. We 129 
further apply sophisticated time-frequency and correlation analysis to identify hidden and non-130 
stationary patterns in time series, quantifying their relationships. We specifically focus on 131 
investigating seasonal (i.e., annual) variations in hydrologic and geodetic observation time series 132 
that are sensitive to groundwater dynamics and their inter-annual differences. Based on the 133 
analysis, we build a conceptual model for CV deep aquifer recharge that supports the importance 134 
of MBR and agrees with geodetic remote sensing data over the CV. 135 

 136 

2 Materials and Methods 137 

Our study leverages various hydrologic and geodetic datasets, signal processing, 138 
statistical methods and physical models to quantify groundwater dynamics in the CV and Sierra 139 
Nevada Mountains (Fig. 1a). 140 

2.1. Water Storage Components, Precipitation, and Snow Melt 141 

GRACE and GRACE Follow-on missions (hereafter referred to as simply GRACE) 142 
monitor monthly changes in the Earth's gravity field at a spatial resolution of ~300-400 km, 143 
which are converted to equivalent total water storage (TWS) changes close to the surface 144 
(Schmidt et al., 2008; Tapley et al., 2004). In California, associated mass variations can be 145 
attributed to the terrestrial water cycle dynamics at sub-seasonal to interdecadal time scales. 146 
Water flow and storage processes on and below the surface change the region's total amount of 147 
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water stored in the soil, snowcap, surface- (including reservoirs and rivers), and groundwater. 148 
With that, GRACE total water storage variations reflect water loss, e.g., due to drought or human 149 
activities like intense groundwater pumping, as a mass deficit. Vice versa, for wetter periods, the 150 
surplus of water is detected. This allows for predicting groundwater storage in large aquifers if 151 
storage changes in all other components can be quantified and removed from GRACE TWS 152 
(Famiglietti et al., 2011; Scanlon et al., 2012). 153 

Here, we derive groundwater storage (GWS) changes from GRACE observations using 154 
an approach similar to Ojha et al. (2019). We retrieve GRACE TWS variations from the RL06 155 
Level-3 product from NASA’s Jet Propulsion Laboratory (JPL) that solves regional mass 156 
variations at a resolution of 3-degree. We do not apply JPL-mascon scale factors, as we calculate 157 
groundwater changes at this native resolution, and we assume leakage between the mascon tiles 158 
to be neglectable. To separate GWS changes from GRACE TWS, we retrieve mass variations in 159 
other storage compartments from multiple data sets. We acquire soil moisture variations from all 160 
available soil layers in the NOAH, CLSM and VIC models of the Global Land Data Assimilation 161 
System (GLDAS) Version 2.1 (Beaudoing & Rodell, 2016; Rodell et al., 2004) at 0.25 (Noah) 162 
and 1-degree (CLSM and VIC) resolution, respectively, for the entire GRACE period. We 163 
average the three models to one ensemble dataset for further analyses after resampling them to a 164 
uniform 0.5-degree resolution (Fig. 1c). For comparison, we also retrieve soil storage changes 165 
from the WaterGAP Global Hydrological Model (WGHM, version 2.2d) at 0.5-degree 166 
resolution, which is available until 2016 (Fig. S12a). We integrate reservoir storage (ReS) 167 
changes from 18 reservoirs with capacities larger than or equal to 0.9 km3, inside the margins of 168 
the two mascon cells covering the CV (GRACE region, Fig. 1b), which are retrieved from the 169 
California Department of Water Resources (CDWR, 2017). Snow storage (SoS) changes are 170 
acquired in the form of snow water equivalent from the Snow Data Assimilation System 171 
(SNODAS) (NOHRSC, 2004) over the contiguous United States since the end of 2003. Monthly 172 
water mass variations for each storage compartment are summed across the GRACE region and 173 
the regionally aggregated SoS, SnS and ReS variations are removed from GRACE TWS 174 
variations for this area, after Ojha et al. (2019). The resulting time series for each storage 175 
compartment, including groundwater storage changes during both GRACE mission periods, are 176 
shown in Figure 1c. We assume the GRACE based estimate of GWS to be dominated by 177 
groundwater variations in the CV, where porosity of the aquifers is much larger than that in the 178 
SN Mountains. 179 

From the SNODAS dataset we further retrieve driving and output variables related to 180 
snow cover, including ‘solid’- and ‘liquid precipitation’, and ‘snowmelt runoff at the base of the 181 
snowpack’, to investigate these fluxes in the Sierra Nevada Mountains (Fig. S1, S2) and their 182 
correlation to groundwater dynamics.  183 

2.2. Groundwater Levels 184 

Groundwater availability in the CV is conventionally monitored as water level change in 185 
observation and irrigation wells. The data archives from the United States Geological Survey 186 
(USGS) and the California Department for Water Resources (CDWR) provide more than 40,000 187 
records from wells within the CV. The records have varying start dates, not all are continuously 188 
monitored until today, and only some records provide sufficient temporal sampling rates to study 189 
seasonal variations in GWLs. For this study we have screened ‘daily data’ and ‘field data’ 190 
archives from the USGS (USGS, 2021) as well as ‘continuous data’ and ‘periodic data’ archives 191 



manuscript submitted to Earth’s Future 

 

from CDWR (CDWR, 2019) in California and selected records that cover the GRACE mission 192 
period from 2002 to 2020. We have excluded records labeled as ‘irrigation well’ and only 193 
selected sites labeled ‘observation well’. Water levels in irrigation wells are potentially affected 194 
by the localized reduction in pressure during and after pumping from the well. Levels in 195 
observation wells are more likely to represent a regional state of pressure and storage changes in 196 
the entire aquifer. In addition, we categorized data entries that are larger than 3.5 times the 197 
standard deviation of the detrended time series as outliers and excluded them. Moreover, about 198 
half of the records have daily sampling rates and we excluded entire records from the 199 
field/periodic datasets that have less than six entries per year on average. From the initial dataset, 200 
2128 time series (371 from USGS and 1727 from CDWR) provide observation records during 201 
2002-2020 inside the CV. Only 682 records cover at least three years with less than 3 months of 202 
gap (Fig. S4); of those, we select 457 records gathered at depths deeper than 50 m since we want 203 
to focus on time series measured in semi-confined and confined aquifers. About half of the 457 204 
available records are longer than 10 years (Fig. S4a-c). We note that these records were taken at 205 
only 250 unique well locations (circles in Fig. 1a), with some sites containing up to five nested 206 
level meters (Fig. S4d). Most deep sensors at each site are located 50 m to 300 m below the 207 
surface, with about half of the sensors reaching not more than 200 m deep and only a few are 450 208 
m deep or deeper (Fig. 1a, S4e, f). Most usable wells are in the northern Sacramento Valley and 209 
only two dozen sites are in the southern San Joaquin Valley, where only 22 wells measure water 210 
level variations at depths below the Corcoran clay. Examples of GWL time series are shown in 211 
Figure 1a.  212 

2.3. Surface deformation  213 

Surface deformation due to TWS change, including GWS, occurs through two different 214 
processes. Total water mass deforms Earth’s elastic crust, resulting in subsidence for an increase 215 
and uplift for a decrease in water mass. This deformation process has been described and 216 
inverted to quantify TWS in California (Adusumilli et al., 2019; Argus et al., 2022; Borsa et al., 217 
2014; Carlson et al., 2022; Carlson, Shirzaei, Werth, et al., 2020; White et al., 2022). A second 218 
poroelastic deformation process is due to only groundwater changes occurring in semi-confined 219 
or confined aquifers, where pore spaces and granular matrix of rocks compact and groundwater 220 
levels fall under reduced water pressure. The opposite happens for increasing water pressure. 221 
Changes in water pressure in an aquifer can either be caused by net recharge or discharge, i.e. 222 
GWS change, in the aquifer itself, or initiated by water pressure propagating between the aquifer 223 
and a hydraulically connected outside region (Fetter & Kreamer, 2022). Decades of falling 224 
groundwater levels in the CV deep aquifers have caused continuous land subsidence at the 225 
surface and have been observed to be most severe during droughts (Galloway et al., 1999; Ojha 226 
et al., 2018; Smith et al., 2017; Vasco et al., 2022). It has been shown that elastic loading 227 
deformation in California is of the opposite sign and up to two magnitudes smaller than the 228 
poroelastic deformation occurring at the surface of the CV (Carlson, Shirzaei, Werth, et al., 229 
2020). 230 

To study seasonal variations in vertical land motion (VLM) since the early 2000s, we use 231 
vertical deformation time series from the daily tenv3 GNSS solutions from the Nevada Geodetic 232 
Laboratory (NGL). The solutions are processed at NGL using GipsyX software and are 233 
transformed into the IGS14 reference frame. Additional processing information can be found on 234 
the NGL website (http://geodesy.unr.edu/gps/ngl.acn.txt). We do not apply any further 235 
corrections to the GNSS time series for the rest of the analysis. From 1184 stations in California, 236 
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we selected 170 with a minimum record of 5 years between 2002-2020 and exhibiting a seasonal 237 
amplitude larger than the time series median standard deviation. Most stations began 238 
observations around 2008, with a length of 15 years (Fig. S5b). Of these stations, 37 are located 239 
within the CV boundaries (red triangles, Fig. 1b). Example time series at three sites throughout 240 
the study area are shown in the inset of Figure 1b. We determine the seasonal component of 241 
GNSS vertical land motion and the timing of maximum uplift and maximum subsidence using a 242 
time-frequency analysis (see Section 2.4). 243 

We further measure the surface deformation in terms of line-of-sight (LOS) over the 244 
southern CV using Interferometric Synthetic Aperture Radar (InSAR). The SAR dataset includes 245 
238 C-band images from descending track, path 144, of Sentinel-1A/B satellites spanning 246 
2015/11/27-2022/12/20. We apply multi-looking factors of 32 and 6 in range and azimuth to obtain 247 
a pixel dimension of ~75m by ~75m. We use GAMMA software (Werner et al., 2000) to create a 248 
large set of interferograms. The interferograms are selected, so they form triplets, and the numbers 249 
of short, medium, and long temporal baseline pairs are comparable to minimize the phase closure 250 
error impact (Lee & Shirzaei, 2023). We apply the wavelet-based InSAR (WabInSAR) (Lee & 251 
Shirzaei, 2023; Shirzaei, 2013; Shirzaei et al., 2017) algorithm to perform a multitemporal 252 
interferometric analysis of the SAR dataset and create high-accuracy maps of surface deformation 253 
time series. A Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) of 1-254 
arcsecond (~30 m) spatial resolution (Farr et al., 2007) and precise satellite orbital information are 255 
used to estimate and remove the effect of topographic phase and flat earth correction (Franceschetti 256 
& Lanari, 1999). The absolute phase values are obtained by applying a 2D minimum cost flow 257 
algorithm (Costantini, 1998), then combined to create a Line-of-Sight (LOS) time series of surface 258 
deformation by using a reweighted least squares approach. The spatially correlated and temporally 259 
uncorrelated atmospheric delay are also estimated and removed (Shirzaei, 2013). 260 

2. 4. Time-Frequency Analysis 261 

To investigate the temporal variations in water storage components, GWLs, and 262 
deformation data, we perform a time-frequency analysis using a continuous wavelet transform, 263 
following Shirzaei et al. (2013). The wavelet transform allows decomposing signals into building 264 
blocks based on frequency contents. In contrast to the Fourier transforms, the wavelets can 265 
handle non-stationary signals and localize the signal energy in the time and frequency domain 266 
(Goswami & Chan, 1999). Wavelets have a key parameter scale (or dilation), which stretches or 267 
squishes the wavelet function and relates to the analyzed signal frequency. To perform wavelet 268 
analysis, we use the Matlab packages provided by Torrence and Compo (1998) and Erickson 269 
(2019) and apply the wavelet family of derivatives of gaussian (DOG, Fig. S6) at 200 levels of 270 
decomposition or scales. The temporal sampling of all time series is either daily or resampled at 271 
daily intervals.  272 

Figures 3 and S7 illustrate our approach with an example of groundwater level time series 273 
at the DWR well 387793N1218123W004 (Fig. S7a). The wavelet power spectrum map (PSM, 274 
Fig. 3a and S7b) shows the signal’s energy breakdown into several frequency components and 275 
their relative importance based on the amplitude of the PSM. A cone-of-influence overprinted on 276 
the spectrum indicates areas where edge effects play a role, and therefore, the PSM cannot be 277 
interpreted. Signal energy in areas inside the cone of influence is strongest at periods of about 278 
one year, with contour lines indicating their statistical significance with respect to white and red 279 
noise (with a lag-1 autocorrelation parameter of 0.85 for the latter) (Torrence & Compo, 1998). 280 
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Figure 3 also shows examples of wavelet PSM for selected GWL, VLM, and TWS component 281 
time series. 282 

To isolate the annual component from the time series, we set the PSM to zero except for 283 
periods between 0.75-1.25 years and then apply an inverse wavelet transform of the new PSM 284 
(Fig. S7c). This approach considers that the annual components in climate-related processes do 285 
not have an exact one-year period. We further analyze the reconstructed annual signals to 286 
characterize the timing of annual maxima, minima, and the timing of fastest rate declines and 287 
increases (blue, red, and gray circles in Fig. S7c). We summarize the annual values for several 288 
years through temporal averaging using the median operator to retrieve the timing of maximum 289 
in the annual signal (e.g., as shown in Fig. 4). The same approach is applied to the time series of 290 
GWL, TWS components, GNSS and InSAR vertical deformation.  291 

Probability density functions (PDFs) for spatiotemporal variation of timing of annual 292 
peaks were calculated using MATLAB's probability density estimator kdensity(),based on a 293 
normal kernel function for univariate distributions and applies a kernel smoothing window with 294 
an optimized bandwidth for normal densities.  295 

2.5. Vertical Diffusion Model  296 

In the high Sierra Nevada Mountains, a significant portion of snow melt water (Fig. S1, 297 
S2) infiltrates into the ground and recharges top aquifer layers (Peterson et al., 2003; Urióstegui 298 
et al., 2017), which are hydraulically connected to the CV aquifer system (Faunt, 2009). Here, to 299 
obtain the first-order approximation of the diffusion time, namely the time it takes for snow melt-300 
related pore-fluid pressure increase in the Sierra to reach deep aquifer layers of the CV via MBR, 301 
we apply a first-order process-based 1D diffusion model following (Saar & Manga, 2003). The 302 
vertical propagation of hydrostatic pore-fluid pressure 𝑃′ at depth 𝑧 over time 𝑡 is governed by 303 
the diffusion equation: 304 

 𝜅 !
!"#
!$!

= %"#
%&

 .               (1) 305 

with the hydraulic diffusivity 𝜅 = 𝐾/𝑆', which controls how fast pressure will propagate to 306 
depth. It is given by the ratio of vertical hydraulic conductivity 𝐾 to specific storage 𝑆'. The 307 
diffusivity of unfractured granite bedrock has values of around 𝜅 = 10-4 𝑚(/𝑠 (Wang, 2000). 308 
However, for fractured volcanic rock, values as high at 0.3 𝑚(/𝑠 (Saar & Manga, 2003), and 1 309 
𝑚(/𝑠 (Gao et al., 2000), consistent with the range provided by Talwani and Acree (1985), or 310 
even up to 7.9 𝑚(/𝑠 (Montgomery-Brown et al., 2019) are suggested. Here, we consider 311 
diffusivity values of 0.1, 0.3 and 0.5 𝑚(/𝑠 for Sierra’s crystalline fractured rocks. 312 

We solve the parabolic differential Equation 1 using the function pdepe() from the 313 
Matlab software by setting the initial pressure conditions to zero and the boundary conditions of 314 
the pore-fluid pressure to a periodic variation with periodicity 𝜓 of 1 year, annual amplitude 315 
𝑃)*+ and annual phase 𝜑,: 316 

 𝑃#$,&., 	= 𝑃)*+ ∙ cos 3
(/
0
𝑡 + 𝜑,5,         (2) 317 

where at depth 𝑧, pore-fluid pressure is 𝑃$,& = 𝑃$,&12 + 𝑃#$,&. We are only interested in changes 318 
𝑃#$,& of pore-fluid pressure.  319 
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Assuming saturated conditions and solving Equations 1 and 2 for t allows us to estimate 320 
the time it takes to increase pore-fluid pressure annually due to groundwater recharge reaching 321 
vertically from top groundwater layers to depth z. The duration of pressure propagation to deep 322 
aquifer layers is independent of the amplitude of pressure change at the surface and a normalized 323 
solution for 𝑃#$,&.,/𝑃)*+ is sufficient. The time delay estimate is most sensitive to the 324 
magnitude of the hydraulic diffusivity 𝜅 (Eq. 1) as well as the phase 𝜑,, of the annual pressure 325 
variation due to recharge (Eq. 2). We assume that the horizontal diffusivity of the aquifer is large 326 
enough, so the lateral diffusion time is relatively negligible (Fetter & Kreamer, 2022). 327 

The annual phase of pressure variations in upper groundwater layers in the high Sierra 328 
Nevada Mountains 𝜑, may be derived from the annual variation in water available for recharge 329 
in this region, which we quantify as follows. The top groundwater layers in the Sierra Nevada 330 
receive inflow from snow melt water and liquid precipitation (i.e., rainfall). Urióstegui et al. 331 
(2017) and Bales et al. (2011) found that only 10-20% of the snow melt water in the Sierras runs 332 
off through streams, with the remainder being lost to drainage into deep layers and 333 
evapotranspiration. We assume that all of the melt water initially increases pressure in the upper 334 
groundwater layers of the Sierra Nevada Mountains, before evaporating or running off. Also, we 335 
neglect the delay between the time that water for infiltration becomes available and its 336 
percolation into the upper groundwater layers of the Sierra Nevada Mountains. We consider 337 
these assumptions reasonable for wide areas of exposed fractured bedrock and given that we are 338 
only interested in quantifying the phase, not the absolute value of maximum pressure variations. 339 
For that, we retrieve the time series of SNODAS dataset variables ‘snowmelt runoff at the base 340 
of the snowpack’ 𝑀 and ‘liquid precipitation’ 𝑃3456 (see Section 2.1, Fig. S1) averaged for the 341 
drainage area of the Sierra Nevada toward the CV (rose-shaded area in Fig. 1a). We correct 342 
liquid precipitation for canopy interception by a relative value of 20% (Vrugt et al., 2003), as this 343 
intercept changes the relative amplitudes between 𝑀 and 𝑃3456, and therefore, it can impact the 344 
annual phase. Finally, we get a time series of total water available for recharge in the Sierra 345 
Nevada drainage area from (𝑃3456 − 0.2 ∙ 𝑃3456 +𝑀) and quantify monthly mean values of this 346 
time series during 2002-2020 (Fig. S2c). We also determine the mean timing of the annual peak 347 
for each year and at each location in the drainage area, which we apply as the timing of the 348 
annual maximum of the pressure variation to constrain 𝜑, for the boundary condition in 349 
Equation (2). 350 

4 Results 351 

4.1. Year-to-Year Water Variability 352 

The time series of TWS variations obtained from the GRACE satellites (Tapley et al., 353 
2004, 2019) and their components measured through in-situ observations (e.g., wells) (Alam et 354 
al., 2021) or water balance models (Faunt, 2009; Li et al., 2018) are characterized by annual 355 
variations attributed to overall dynamics in the terrestrial water cycle (Tang & Oki, 2016). 356 
Several example time series are shown in Figure 1c. A less obvious pattern comprises the 357 
interannual variations in the amplitude of the annual signal. Identifying the amplitude and timing 358 
of the peak annual and interannual signal components allows for resolving the temporal scale at 359 
which the connected systems interact.  360 

To this end, we apply the wavelet-based time-frequency analysis to extract hidden 361 
patterns in the datasets (see Section 2.2.1, Fig. S6). The results from the time-frequency analysis 362 



manuscript submitted to Earth’s Future 

 

are shown in the form of a PSM, distributing the signal's power into frequencies (or periods) and 363 
time intervals (Fig. 3, S7). We find maximum amplitudes characterize the PSMs associated with 364 
different time series at equivalent periods of 1 year and 3-8 years (Fig. 3). These frequency 365 
components are associated with general variations in water availability associated with 366 
atmosphere-ocean interactions, influencing water cycles in the Southwest USA (Quiring & 367 
Goodrich, 2008). Significant drought periods, such as during 2007-2009 and 2012-2015 (Fig. 368 
S3), correspond with cool phases of El Niño Southern Oscillation (ENSO) recurring every 3-7 369 
years, the cool phase of the Pacific Decadal Oscillation (PDO), and the warm phase of the 370 
Atlantic Multidecadal Oscillation (AMO) (McCabe et al., 2004; Quiring & Goodrich, 2008). The 371 
length of our observation does not allow for resolving signal components over a decade or 372 
longer, as indicated by the cone of influence, the shaded region in the PSM. 373 

Some PSMs also show unique patterns. For instance, the PSMs of GWL changes (Fig. 374 
3a) and GNSS VLM (Fig. 3b) exhibit components at periods of 0.5 and 3 years, albeit the 375 
component of 0.5 years for VLM disappears following 2008. In contrast, the PSM of SnS (Fig. 376 
3e) shows only a transient component over a period of 3 years. PSM of GWS variations (Fig. 3g) 377 
shows a transient component of 1 year period. Notably, the location and amplitude of peak PSM 378 
are not constant and change over time, especially for TWS, SnS, ReS, and GWS variations and 379 
to a lesser extent in SoS due to water availability changes within wet and dry seasons and in 380 
between them as well as due to human interventions. For instance, the amplitude of annual 381 
components was reduced or diminished during the drought years 2007-2010 and 2012-2015. 382 
During these periods, reservoirs were not refilled, and the Sierra Nevada received little 383 
precipitation, reducing the amplitude of the corresponding annual components (Fig. 3e and 3f). 384 
The amplitude of the annual component of GWS variations vanishes during the same years (Fig. 385 
3g). 386 

Figure 3h presents the isolated annual components for all the time series comprising PSM 387 
components of 0.75 to 1.25 yr periods, which display non-stationary behaviors, i.e., the 388 
amplitude changes over time. We find that year-to-year TWS is experiencing the most 389 
pronounced changes and GWS the least. We also note that year-to-year peak extremes do not co-390 
occur for different time series. For instance, during the 2012-2015 drought, TWS, SoS, and ReS 391 
variations experienced their lowest amplitudes in 2013 and 2014, while that of GWS occurred 392 
two years later during 2016, following the snow-poor years in 2014 and 2015. Characterizing 393 
such inter-annual variability in water cycle components improves understanding of hydroclimate 394 
extremes and water storage capacity in the region (Yin & Roderick, 2020). 395 

 396 

4.2. Timing of the Seasonal Signal 397 

We further investigate the spatial variability of the timing of the peak annual amplitude of 398 
TWS and its components across the study region (Fig. 4). Note that spatial detail cannot be 399 
resolved from the GRACE TWS with 300-400 km spatial resolution. To this end, we find the 400 
day-of-year (DOY) corresponding with the peak of the timeseries of the annual components and 401 
then obtain the median of DOY for each time series. Figure 4 plots the median peak DOY for 402 
each dataset at their original spatial resolution, except for GWL and VLM, where the values are 403 
interpolated with an inverse distance weighting scheme and a 25 km radius. The median peak 404 
DOY for GWL is uniform across the Valley (Fig. 4a, S8) with negligible interannual variability 405 
(Fig. S9). GWL peaks occur from February to March (Fig. 4a, S8a) and minima in August (Fig. 406 
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S8b). The fastest GWL rate increase (i.e., the mid-point between annual minima and maxima) 407 
occurs during November (Fig. S8c), and the fastest GWL rate decrease (i.e., the mid-point 408 
between annual maxima and minima) occurs during May (Fig. S8d). These observations are 409 
consistent with the timing of maximum pumping in the CV during April-June. A linear 410 
correlation of 0.3 was found between observation well depth and peak DOY, indicating GWL 411 
rises slightly later in the year at deeper wells (Fig. S8a, left inset). Compared with GWL, the 412 
median peak DOY of GNSS VLM in the CV is spatially more variable (Fig. 4b and S10), with 413 
negligible interannual variability (Fig. S11). We find a bimodal distribution for this peak DOY 414 
(inset in Fig. S10a), with about a third of the stations within the CV peaking from March to April 415 
and most of the remaining stations from September to October. A bimodal behavior is also 416 
observed in the median DOY of annual VLM minima. The median DOY of the fastest VLM rate 417 
increases and decreases are also obtained (Fig. S10), indicating a smaller interannual variability 418 
than that of peak DOY (Fig. S11). We further estimate the median peak DOY of TWS, SoS, SnS, 419 
ReS, and GWS within the GRACE region (Fig. 1b), all of which show spatially uniform patterns 420 
but are distinct from each other (Fig. 4c-g), with spatial DOY averages of 93, 70, 65,102, and 421 
156 days, respectively.   422 

We performed a similar analysis using InSAR LOS deformation observations. Figure 5a 423 
shows the LOS velocity field measuring up to 18.5 cm/yr subsidence in some parts of San 424 
Joaquin Valley. We obtained seasonal phase (peak DOY) and amplitude (Fig. 5b, c) for the 425 
southern CV covered by the Sentinel-1 frame. The spatial distribution of median peak DOY 426 
generally agrees with that of GNSS (Fig. 4b). The denser spatial sampling from the InSAR 427 
analysis, however, reveals an outward propagation of the median annual peak DOY from the 428 
center of CV. Although it varies yearly, the overall outward propagating pattern of peak DOY 429 
remains similar through wet and dry years (Fig. S15). We note that this result is opposite to what 430 
was found by Neely et al. (2021), who suggested an inward propagation of the annual peak 431 
towards the center. Figures 5c and S16 show the median and yearly seasonal amplitude of 432 
surface LOS deformation, reaching up to 4 cm, with the largest value during dry years.    433 

Next, we investigate the empirical probability density function (PDF) of annual peak 434 
DOY associated with all components of TWS and deformation and several other relevant 435 
hydrological datasets (Fig. 6). Shown are normalized PDFs of annual peak DOY obtained for 436 
each year and each time series without temporal averaging, thus the interannual variabilities are 437 
preserved. Comparing different PDFs, we find for the Sierra Nevada that precipitation generally 438 
peaks in early January, with a mean DOY of 16 (Fig. 6a), meltwater in late February, DOY 55 439 
(Fig. 6c), and the total water availability (combination of precipitation, meltwater, and canopy 440 
interception) in late January, DOY 22 (Fig. 6b). We obtain a wide distribution for the influxes, 441 
and years with a later maximum melt typically have a larger peak, causing the right-skewed 442 
distribution of annual peak DOY of snowmelt (Fig. S2b). The annual SoS peak for the CV 443 
occurs in March, DOY 70 (Fig. 6d), ~2-3 months after precipitation peaks. SnS peaks in March, 444 
ReS and TWS ~1 month later in April, while GWS of the CV peaks in June (Fig. 6e-g). The 445 
VLM minima (i.e., subsidence) across California, outside of the CV, co-occur with TWS 446 
maxima around April, DOY 93 (Fig. 6i). In contrast, GNSS VLM inside the CV (Fig. 6j) peaks 447 
together with GWL (Fig. 6k) around March, DOY 65, and ~3 months before GWS based on 448 
GRACE and composite hydrology (Fig. 6g). Peak VLM inside the CV derived from high-449 
resolution InSAR maps (Fig. 6k, dashed line) have a more complex distribution, with the first 450 
peak co-occuring with GNSS and well levels around beginning of March and a later peak 451 
ranging from beginning to end of April. We further observe a delay of 43 days between total 452 
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water available for recharge in the Sierra Nevada Drainage area (DOY 22, Fig. 6b) and GWL in 453 
the CV (DOY 65, Fig. 6k). 454 

To investigate whether the mean values of the PDFs in Figure 6 were significantly 455 
different, we performed a two-sample mean difference hypothesis test using the t-distribution 456 
(Meyer, 1970). We formulated the null hypothesis so that the mean values were the same and 457 
tested the hypothesis at a significance level of 0.05. The test was rejected, hence, the mean 458 
values are statistically the same for all pairs of PDFs in Figure 6, except between GNSS uplift 459 
(CV) and GWL (CV), between TWS and GNSS Subsidence (CA), between SnS (Sierra Nevada) 460 
and GNSS uplift (CV), and between SnS (Sierra Nevada) and GWL (CV).  461 

When estimating PDFs for the timing of annual peaks of SoS and GWS (Fig. 6e and 6g), 462 
the variability among the individual SoS models was considered (Fig. S12). SoS timing varies by 463 
about ~2 months from January to February (Fig. S12c). We propagate the variation of SoS 464 
timing toward that of GWS by estimating GWS for each individual soil model (Fig. S13a). The 465 
resulting annual GWS timing varies ~2 months from May to July (Fig. S13b,c). This variability 466 
was included when calculating mean, median, standard deviation, and PDFs of annual GWS 467 
timing (Fig. 6g). Although GWS also depends on the timing of TWS, SnS and ReS, annual 468 
amplitudes of SnS and ReS are only 10% of TWS (Fig. 1c). Therefore they will only marginally 469 
impact the calculation of annual timing of GWS. We assume a minimal measurement uncertainty 470 
for the timing of TWS.  471 

4.3. Pressure Diffusion From the High Mountains to Deep Valley Aquifers 472 

Earlier studies (e.g., Gilbert and Maxwell (2017)) have suggested that a natural 473 
connection should exist between deep CV and High Sierra Nevada mountain aquifers through 474 
the fractured granite of the mountain block. We provide a first-order estimate for the diffusion 475 
time, the time it takes for a pressure front to vertically diffuse from the top aquifer layers in the 476 
Sierra Nevada Mountains down to elevations of the deep CV aquifers (Section 2.5, Eq. 1). If we 477 
quantify that using a hydraulic diffusivity 𝜅 = 0.3 m2/s for Sierra’s crystalline fractured rocks, it 478 
takes 18-36 days for the pressure to travel vertically to depth of 600-1300 m (Fig. 7). We further 479 
consider a range for the vertical hydraulic conductivity and evaluate the diffusion time for 𝜅 = 480 
0.1 m2/s and 𝜅 = 0.5 m2/s to depth of 600-1300 m, corresponding with 34-73 days and 12-23 481 
days (Fig. S14), respectively.  482 

5 Discussions and Conclusions 483 

This study performs time-frequency analyses of large hydrologic and geodetic datasets across 484 
California with various spatiotemporal resolutions and uncertainties to characterize the annual 485 
peak DOY, interannual peak amplitude variations, and correlative behaviors across these 486 
observations. We observe relatively low seasonal peaks during droughts for all water storages 487 
(Fig. 3h). However, only for storages in snow and groundwater wavelet PSMs vanish completely 488 
at periods of around one year during droughts when snow cover was diminished to absent during 489 
2007 and 2012-2015 (Fig. 1c, 3e, 3g). We interpret this correlation as an indicator that the 490 
volume of the snowpack and the following snowmelt played a substantial role in groundwater 491 
recharge in the CV. Once corrected for SoS, SnS, and ReS, GRACE measures a combination of 492 
GWS change in shallow and deep aquifers. Hence, we consider snow to be relevant for both 493 
MFR and MBR, with the former mechanism being more relevant for replenishing the shallow 494 
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and the latter more relevant for (slow) flow to the deep aquifers, given the depth of their flow 495 
path.    496 

We further observe that GNSS VLM and InSAR LOS peak DOY vary across California. 497 
The peaks for stations inside the CV co-occur with that of GWL (Fig. 6j, k), specifically at the 498 
sites near the center of the Valley, where aquifer confining layers are thick and observed annual 499 
amplitudes are large (Fig. 5). This indicates the presence of poroelastic aquifer deformation due 500 
to groundwater pumping (Ojha et al., 2018; Smith et al., 2017). In contrast, the VLM peak 501 
minima for stations outside the Valley co-occur with that of TWS peak maxima (Fig. 6h, i), 502 
attributed to the variations in elastic water loading (Argus et al., 2017; Carlson et al., 2022; 503 
Johnson et al., 2017). Interannual variability in the peak amplitudes impacts the hydroclimate 504 
trends, changing baselines used to assess the future risk of climate extremes and vulnerability of 505 
water resources (Stevenson et al., 2022). In summary, a similar peak DOY suggests that some 506 
components of the hydrological system act in concert with or respond elastically to similar 507 
forcing of the hydroclimate or to anthropogenic factors. In contrast, a different peak DOY may 508 
indicate a cascading nature of the response to forcing governed by a time-dependent process.  509 

Here we propose that MBR is the fundamental process, allowing long-term recharge to 510 
deep aquifers in the CV. The feasibility of this mechanism is demonstrated in Fig. 7, where a 511 
first-order process-based pressure diffusion model quantifies the lag between peak pore pressure 512 
in the Sierra Nevada aquifers due to snowmelt and peak pore pressure within deep CV aquifer 513 
layers. We estimate the lag at about a month, ignoring the lateral diffusion time, which is often 514 
negligible for permeable aquifers such as CV (Fetter & Kreamer, 2022). Given the uncertainty 515 
range of hydraulic diffusivity (Somers & McKenzie, 2020), the estimated diffusion time agrees 516 
well with the lag between peak water availability in the mountains and peak water level in deep 517 
aquifers (Fig. 6b and k). This agreement supports the hypothesis that high mountain aquifers are 518 
connected to deep valley aquifers through pressure propagation from MBR, and that it drives 519 
seasonal well level changes in the deep CV aquifers. The peak GWL in March likely occurs 520 
early due to anthropogenic influence since heavy groundwater pumping typically onsetting from 521 
April to May. A later GWL peak would suggest a longer vertical diffusion time, consistent with 522 
the considered range for tested hydraulic conductivities. 523 

We further observed an outward migration of the InSAR LOS peak DOY from the center 524 
of CV (Figs. 5 and S15), which is at odds with the previously published works (e.g., Neely et al., 525 
2021)  that suggested an inward propagation of annual peak DOY from the Sierra Nevada 526 
Mountains toward the center of the CV. They suggested that MFR fed by surface water flowing 527 
off the Sierra Nevada may replenish aquifers (deep and shallow) seasonally across the southern 528 
CV (Neely et al., 2021). However, the MFR mechanism is implausible to recharge deep confined 529 
aquifers (Shirzaei et al., 2019) due to the presence of the impermeable Corcoran clay layer and 530 
other clay lenses (Faunt, 2009) and little evidence of widespread vertical cracks and deep 531 
extensional fissures in the Valley (Carlson, Shirzaei, Ojha, et al., 2020) to provide a potential 532 
pathway for water to percolate deep into the aquifers, though further research on tension 533 
cracking and fissure initiation in the Valley is needed (Carlson, Shirzaei, Ojha, et al., 2020). In 534 
contrast, our hypothesis of MBR linking Sierra groundwater to deep CV’s aquifers is consistent 535 
with Darcy’s fluid flow law, linking the fluid discharge rate to the hydraulic head gradient 536 
between two given points, scaled with the hydraulic conductivity. Under constant hydraulic 537 
conductivity, the largest discharge happens to the point of the lowest hydraulic head. In CV, it is 538 
logical to assume the zone of the fastest subsidence rate is where the heads are lowest, consistent 539 
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with groundwater level observation. Thus the recharge from Siera should replenish aquifers near 540 
the center of Valley first and then propagate outward from the center to areas with smaller 541 
hydraulic gradients, as observed here. Hence, we interpret the InSAR LOS observation of annual 542 
peak DOY as additional support for the hypothesis of a direct pressure link between the Sierra 543 
Nevada aquifers and CV deep aquifers through mountain block conduits. 544 

An unexpected finding is the phase difference between annual peaks of GWL in deep 545 
confined aquifers, and GWS in the entire CV aquifer system (including confined and unconfined 546 
units, Fig. 4a, 4g, 6g and 6k) is about three months. This indicates that different processes 547 
influence GWS and well levels. In confined units, the well level change is driven by changes in 548 
groundwater storage and pore fluid pressure, while the gravity-derived measurements only detect 549 
the change in mass, hence, storage changes. During the spring, pressure rises faster in the deep 550 
aquifers than storage is recovered in the entire aquifer system. A vertical hydraulic connection 551 
via MBR flow paths would allow pressure change propagation from the mountain to CV aquifers 552 
at seasonal time scales. However, direct water seepage along MBR flow paths takes centuries to 553 
millennia (Berghuijs et al., 2022). The proposed mechanism here does not require water 554 
percolation and is consistent with the tracer findings that deep groundwater in the CV is 555 
primarily old (McMahon et al., 2011). Our results further emphasize that vertical pressure 556 
propagation occurs faster than net recharge (i.e., detected as storage change) from the mountain 557 
aquifers to the valley aquifers. The later peak in GWS might be primarily driven by annual 558 
variations in top unconfined aquifer layers (Vasco et al., 2022), which would recharge faster than 559 
deep aquifers. This is also consistent with the relatively late mean annual peak in melt water 560 
occuring during early May (see Fig. S2), hence, a long lasting supply for recharge through 561 
surface-groundwater links along the mountain fronts until late spring. At annual time scales, 562 
MFR likely contributes a significant portion to storage changes in shallow aquifers, and the 563 
seasonal variation in GRACE GWS mainly comprises such shallow aquifers instead of deep 564 
aquifers. In this case, the seasonal well level rises in deep CV aquifer layers may be driven 565 
dominantly by pressure variability rather than storage variability. It should also be noted that the 566 
MBR estimate based on GNSS/GRACE combination from Argus et al. (2022) was derived as the 567 
difference between gravity and elastic loading-based annual GWS estimates to the output of a 568 
hydrological model not including MSR. The authors interpret this difference solely as MBR and 569 
neglect the contribution of MFR in the estimate, owing that the method they apply cannot 570 
discriminate between the two MSR processes. To reliably quantify MBR at the scale of the CV 571 
and discriminate it from MFR, we suggest the implementation of a fully fluid-solid media 572 
coupled 3D groundwater model for the CV that integrates the wealth of hydrologic and remote 573 
sensing observations sensitive to dynamics in the aquifers as demonstrated in this study. The 574 
results should also be crosschecked with observations of groundwater ages, e.g. based on isotope 575 
studies (Earman et al., 2006). 576 

Our findings are subject to uncertainties, albeit statistical tests of significance help 577 
corroborate the main results. The wavelet time-frequency analysis is affected by data gaps and 578 
variable sampling rates, similar to other spectral methods (Goswami & Chan, 1999), although the 579 
ability of the continuous wavelet transforms to localize signal components in time and space 580 
minimizes error propagation. GNSS sites may be affected by other processes causing annual 581 
oscillations, such as non-tidal loading, tectonic processes, thermoelastic deformation, and 582 
draconitic errors (Chanard et al., 2020). Errors in the GWS component from GRACE 583 
observations are subject to any error in the correction terms, which directly maps into the GWS 584 
time series. However, the three months delay between the peak of GWS and GWL remains 585 
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robust against the uncertainty in the timing of GWS (see Section 4.2). Hence, the measure that 586 
pressure propagates faster to deep aquifer layers than the groundwater volume change in the 587 
entire aquifer remains unaffected.  588 

Recent studies (Ajami et al., 2011; Markovich et al., 2019; Meixner et al., 2016; Somers 589 
& McKenzie, 2020; Wahi et al., 2008; Welch & Allen, 2014) have recognized mountains’ 590 
critical role in freshwater supply to lowland dry basins, debunking the outdated notion that 591 
mountain groundwater storage and supply is negligible. In the Sierra Nevada aquifers, 592 
cosmogenic isotope studies linking snowmelt and annual aquifer recharge indicate a strong link 593 
between snowmelt and aquifer recharge and discharge in the mountains (Urióstegui et al., 2017). 594 
Additional evidence is provided by the increased age of groundwater contributing to the spring 595 
stream flow over the Sierra Nevada, consistent with increased temperature and reduced 596 
precipitation at high elevations (Manning et al., 2012). Thus, the high Sierra Nevada snowpack is 597 
essential for recharging mountain aquifers, which, in turn, contributes to the long-term recharge 598 
of deep, confined CV aquifers. Sierra Nevada runoff and MFR's role in freshwater supply in the 599 
CV is well-understood (Faunt, 2009; Meixner et al., 2016). However, the mountain block 600 
recharge process proposed here to replenish deep aquifers is not considered in the current 601 
hydrological models for the Valley, for example, by Faunt et al. (2009). Annual, interannual, and 602 
long-term changes in snowpack directly impact the MFR and MBR from the Sierra Nevada 603 
Mountains to the CV. Thus, the reliance on hydroclimate models that currently do not account 604 
for MBR limits the ability to accurately forecast the risk of climate extremes to California’s 605 
groundwater supply and presents challenges for developing appropriate adaptation and resiliency 606 
strategies. The observation and analysis presented here have implications for the CV's recharge 607 
mechanism to deep aquifers. We call for new models that more comprehensively account for the 608 
Sierra Nevada Mountains' role in California’s water cycle, which may also require a revision of 609 
current management and resiliency plans. Finally, we suggest the integration of pressure physics 610 
into methods quantifying seasonal storage changes in CV aquifers that apply well data and 611 
storage coefficients, or deformation data, given that well level and deformation changes at 612 
seasonal time scales are also driven by a change in pressure, not only in storage. 613 
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 910 

Figure 1. Overview of study area and data sets applied in this study. (a) Study area and 911 
hydrogeological datasets: Outline of the Central Valley aquifer system (grey line, 𝑨𝑪𝑽 = 53,672 912 
km2), Sierra Nevada drainage area (red shade, 𝑨𝑺𝑵 = 63,780 km2), location and depth of 913 
observation wells that provide measurements at depth of 50 m and deeper, and lateral coverage 914 
and depth of the confining Corcoran clay layer (source USGS: 915 
https://water.usgs.gov/GIS/metadata/usgswrd/XML/pp1766_corcoran_clay_depth_feet.xml). See 916 
Figure S4e and S4f for histograms of well depths. Top inset indicates location of the study area 917 
over contiguous US. Bottom inset shows time series of two selected well sites W1 918 
(#352958N1193011W001) and W2 (#387793N1218123W004). (b) Geodetic data sets: Mass 919 
change regions of JPL GRACE mascon solutions (black dashed line) and location of GNSS sites 920 
from the University of Reno, Nevada (red and blue triangles). Red triangles mark stations located 921 
inside the Central Valley (CV), and blue triangles those outside the CV aquifer boundary. (c) 922 
Time series of TWS from GRACE, composite hydrological storages and estimated GW storage 923 
are averaged for the GRACE region shown in panel a, after Ojha et al. [2019]. Gray shaded 924 
background areas (light, medium, dark gray) indicate that the USDM identifies >30% (>30%, 925 
>60%) of California’s area to be in moderate (exceptional, exceptional) dry condition (compare 926 
Fig. S3). 927 
  928 
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 929 

Figure 2. Conceptual and process-based model of pressure propagation and recharge in the 930 
Sierra Nevada to deep aquifer layers of the Central Valley. (a) Hydrogeological setting in the 931 
Central Valley (~400 m a.s.l.) and Sierra Nevada Mountains (up to ~4000 m a.s.l.). Indicated are 932 
major groundwater fluxes in and out from deep aquifer layers, including mountain front and 933 
mountain block recharge (MFR and MBR). Confining unit of the Corcoran clay is only present 934 
in the southern San Joaquin Valley, where pumping is more intense compared to the northern 935 
Sacramento Valley (Fig. 1a). This graph is inspired by Faunt et al. (2009) (Fig. A9 therein), 936 
Smith et al. (2017) (Fig. 2 therein) as well as Somers and McKenzie (2020) (Fig. 5 therein). 937 
  938 
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 939 

Figure 3. Wavelet time-frequency analysis. A wavelet analysis was performed for time series of 940 
all available datasets to isolate the annual signal component. Wavelet spectrum of time series of 941 
(a) groundwater level at well 387793N1218123W004 and (b) vertical land motion at GNSS site 942 
BLSA (see Fig. 1 for their location), and of average water storage variations in the GRACE 943 
region: (c) total water storage (TWS) from GRACE, (d) soil storage (SoS) from GLDAS and 944 
WGHM, (e) snow storage (SnS) from SNODAS, (f) reservoir storage (ReS) from CDWR and (g) 945 
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groundwater storage (GWS) in CV. (h) Reconstructed annual signal component for periods 946 
within range of 0.75-0.25 years from water storage wavelet spectra shown in panel c-g. 947 

 948 

Figure 4. Timing of annual maximum of groundwater related signals. Timings are given in day-949 
of-year (DOY). (a) Groundwater levels (GWL) at 250 observation sites throughout the Central 950 
Valley providing at least three years of data during 2002-2020 at depths below 50 m. (b) Vertical 951 
land motion (maximum uplift) at 170 GNSS sites throughout entire California with a seasonal 952 
amplitude larger than the median of the time series error standard deviation. Timing for 953 
groundwater and GNSS were inversely interpolated using a 25 km correlation radius. Remaining 954 
panels show timing of annual maximum water storage at 0.5-degree sampling resolution: (c) total 955 
water storage (TWS) from GRACE, (d) soil storage (SoS) from GLDAS-Noah, (e) snow storage 956 
(SnS) from SNODAS, (f) reservoir storage (ReS) from CDWR and (g) resulting groundwater 957 
storage (GWS). White areas have either no data or amplitude of annual variation is near zero. 958 
Annual oscillations of vertical land motion inside the CV are temporally aligned with those of 959 
groundwater level variations. In contrast, oscillations of vertical land motion outside the Central 960 
Valley are in resonance with annual oscillations of total water storage changes detected by 961 
GRACE (compare panel b with c, and Fig. 6), because maximum VLM outside the Valley is 962 
driven by minimum elastic load of the water masses. Individual values for groundwater well and 963 
GNSS sites, timing of minima, related histograms, and standard deviations of annual timing 964 
during observation periods are shown in Figures S8, S9, S10, and S11.  965 
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 966 

Figure 5. a) LOS velocity map for period 2015/11/27-2022/12/20. b) Median seasonal phase 967 
(peak DOY), and (c) amplitude of InSAR deformation time series for water years 2016-2022. 968 
See Figs. S15 and S16 for yearly phase and amplitude maps, respectively. 969 
  970 
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 971 

Figure 6. Normalized probability density functions for timing of annual extremes in 972 
groundwater-related signals across California. Row and line color indicate signal type: (a) total 973 
precipitation in the recharge area of the Sierra Nevada (SN, see Fig. 1a) from SNODAS, (b) Sum 974 
of liquid precipitation and melt water corrected for canopy interception in SN from SNODAS, 975 
(c) Melt water in SN from SNODAS, (d) soil storage from hydrological models for GRACE 976 
region corresponding with the Central Valley (CV, Fig. 1b), (e) snow storage from SNODAS for 977 
CV, (f) surface reservoir storage from CDWR for CV, (g) GRACE-based estimate of 978 
groundwater storage for CV, (H) total water storage from GRACE for CV, (i) vertical land 979 
motion from GNSS for all available sites in California (CA), and (j) for GNSS sites (red) in the 980 
CV only, and for InSAR pixels in the southern CV from Fig. 5 with a seasonal amplitude larger 981 
than 3 mm, and lastly, (k) groundwater levels from observation wells in CV. See Figure 1 for 982 
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location of subregions. Each function indicates maximum probability for timing of annual 983 
maximum (a-i, k) or minimum (j) amplitude of the annual signal based on wavelet analysis (Fig. 984 
3 and Fig. S7). Vertical lines represent the mean value for timing of annual maximum. 985 
Distribution is normalized by maximum probability density value and results from year-to-year 986 
variation of the regionally averaged gridded datasets (a-h) and from spatial variation of well and 987 
GNSS data sets (i-k). 988 
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 990 

Figure 7. Vertical pressure propagation for elevation difference between the Sierra Nevada 991 
Mountains and the Central Valley aquifers. Normalized pressure change (∆𝑃′/𝑃)*+) at different 992 
depth due to standard 1D calculation of pressure front propagation along mountain block 993 
recharge conduits in the fractured bedrock of the Sierra Nevada Mountains. Graphs are 994 
incrementally offset by -1 for each depth. In top groundwater layers, maximum pressure occurs 995 
on January 22nd (DOY 22), which is driven by mean annual water availability in the recharge 996 
area (Fig. 6b). Table to the right indicates DOY and time delay of the pressure propagation to 997 
depth of 300-2000 m. Given a hydraulic diffusivity 𝜅 = 0.3 𝑚(/𝑠 (reasonable for fractured 998 
granite bedrocks), the pressure front needs ~0.6 (1.2, 1.6) months to propagate to depth of 600 999 
(1300, 2000) m. A smaller hydraulic diffusivity would lead to a slower propagation to depth and 1000 
vice versa, examples for 𝜅 = 0.5, 0.1 𝑚(/𝑠 are shown in Figure S14. 1001 


