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Abstract

Storm tracks are a key component of global atmospheric circulation. Their influence ranges from macro- to mesoscale dynamics,

from large-scale movement of heat and momentum to extreme weather events. The scale of their impact makes understanding

storm track dynamics critical to forecasting and climate projections. In this study, we assess CMIP6 historical experiment

fidelity to observations of the Southern Hemisphere storm track. Specifically, storm track climatology, variability, and its

interactions with low-frequency variability, with the aim of providing confidence for projections of future climate. We find

CMIP6 models replicate results from the ERA-5 reanalysis with high fidelity in some regards; namely, capturing climatology

of the 500hPa geopotential height field, the role of large-scale variability, and the baroclinic connection with high-frequency

variability. However, models fail to capture the magnitude and variability of the storm track, particularly canonical zonal

asymmetry. Our results indicate the importance of the storm track is underestimated in CMIP6.
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Key Points:6

• CMIP6 models do an excellent job representing mean circulation and low-frequency7

variability.8

• Models simulate the baroclinic connection with storm activity well.9

• But models perform poorly in capturing the magnitude of Southern Hemisphere10

storm activity.11
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Abstract12

Storm tracks are a key component of global atmospheric circulation. Their influence ranges13

from macro- to mesoscale dynamics, from large-scale movement of heat and momentum14

to extreme weather events. The scale of their impact makes understanding storm track15

dynamics critical to forecasting and climate projections. In this study, we assess CMIP616

historical experiment fidelity to observations of the Southern Hemisphere storm track.17

Specifically, storm track climatology, variability, and its interactions with low-frequency18

variability, with the aim of providing confidence for projections of future climate. We19

find CMIP6 models replicate results from the ERA-5 reanalysis with high fidelity in some20

regards; namely, capturing climatology of the 500hPa geopotential height field, the role21

of large-scale variability, and the baroclinic connection with high-frequency variability.22

However, models fail to capture the magnitude and variability of the storm track, par-23

ticularly canonical zonal asymmetry. Our results indicate the importance of the storm24

track is underestimated in CMIP6.25

Plain Language Summary26

Storm tracks are regions of considerable storm activity, appearing as a band-like struc-27

ture around the mid-latitudes. They have a significant role in moving energy and mois-28

ture poleward, and are closely associated with extreme weather, such as heavy rainfall,29

and flooding. Storm tracks tend to vary in strength over time and wander across merid-30

ians. Atmospheric circulation phenomena, such as the Southern Annular Mode, inter-31

act with the storm track and can influence the location and direction of storms. We look32

at how well state-of-the-art models simulate the storm track and their interactions with33

circulation phenomena. We find that models generally do an excellent job characteris-34

ing the relevant basic circulation, but the strength of the storm track is considerably un-35

derestimated. This likely has consequences for the reliability of future climate projec-36

tions, as it is generally agreed that storm activity is due to increase.37

1 Introduction38

The Southern Hemisphere Storm Track & Low-Frequency Variability39

The Southern Hemisphere (SH) storm track is a region of maximum storm activ-40

ity covering the Southern Ocean in a band between approximately 40° and 65°S. It is an41

emergent property of the atmosphere, and a key component of circulation patterns – it42

has a leading role in the global circulation of momentum, energy, and moisture (Peixoto43

& Oort, 1992). Storms form downstream of maximum baroclinic instabilities in the time-44

mean westerly flow (Oort & Peixóto, 1983; Chang & Orlanski, 1993; Trenberth, 1991),45

and undergo baroclinic and barotropic growth processes (Chang et al., 2002; O’Gorman,46

2010). The storm track is closely associated with extremes of wind speed, cloud forma-47

tion, and precipitation, and greatly impacts weather patterns, including extreme events,48

through its influence on the behaviour of baroclinic storms (Yettella & Kay, 2017; Pfahl49

& Wernli, 2012).50

Interactions between synoptic storm activity and large-scale low-frequency (LF)51

variability directly impact global circulation patterns (Kidston et al., 2010; Hoerling &52

Ting, 1994). These modes of variability manifest as organised spatial patterns of circu-53

lation anomalies, driving fluctuating meridional gradients, thus stimulating baroclinic-54

ity. This study builds upon previous findings, investigating large-scale circulation pat-55

terns that dominate SH circulation variability – in particular, the Southern Annular Mode56

(SAM), and the El Niño-Southern Oscillation (ENSO) mid-latitude teleconnection – and57

how these phenomena interact with the storm track.58
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The SAM is a modal phenomenon with a positive and negative phase (SAM+ and59

SAM–), manifesting as changes in average circulation over the Antarctic region and mid-60

latitudes. These circulation anomalies affect storm track position, storm frequency and61

storm intensity (Lorenz & Hartmann, 2001; Kidston et al., 2010). Close links exist be-62

tween storm track meridional wandering and the varying meridional pressure gradients63

that characterise the SAM – it may be said that the SAM essentially defines the merid-64

ional location of the storm track. Signatures of SAM+ include reduced average pressures65

over Antarctica and increased average pressures over the mid-latitudes, resulting in a pole-66

ward storm track and strengthening of the jet, whilst the reverse is true under SAM–67

conditions (Fogt & Marshall, 2020; Hartmann & Lo, 1998).68

ENSO is a tropical interannual event which directly affects the shape and position69

of the storm track via its mid-latitude teleconnection (Timmermann et al., 2018; Hoer-70

ling & Ting, 1994). Anomalous convection in the tropics drives the formation of Rossby71

waves which propagate into the extra-tropics. The propagating wave trains cause organ-72

ised circulation anomalies far from the source, known as teleconnection patterns, such73

as the Pacific South American (PSA) pattern (Mo & Higgins, 1998). The storm track74

in turn amplifies and even controls the propagation of wave trains to preferred locations75

(Kok & Opsteegh, 1985; Hoerling & Ting, 1994), creating a positive feedback loop (Trenberth76

et al., 1998; Reboita et al., 2015).77

CMIP6 Models78

Earth Systems Models (ESMs) are the most complex models contributing to the79

Intergovernmental Panel on Climate Change (IPCC) Assessment Report 6 (AR6) (Chen80

et al., 2021). The sixth Coupled Model Intercomparison Project (CMIP6) is the latest81

in a series of projects which coordinates modelling groups contributing ESMs for a co-82

herent, organised approach within the climate research community. ESMs run time in-83

tegrations from initial conditions, with realistic mechanics and constraints, to charac-84

terise the probability distribution of weather states. Instantaneous states are indepen-85

dent of real-world observations; however, the climatology of each time integration should86

match observations.87

While models generally do an excellent job of simulating the climate system, they88

are approximations of the real system and often produce mischaracterisations of the global89

mean state. Part of this error is attributed to model uncertainty, introduced by the con-90

struction of a model. Knutti (2018) splits model uncertainty into three sub-categories:91

model structure; grid resolution; and parameterisation. These are the core representa-92

tional uncertainties in modelling the climate, belonging solely to model design. Utilis-93

ing a multi-model ensemble (MME) mean, assuming a degree of model independence,94

is an effective way to mitigate the influence of model-specific errors, such as those ow-95

ing to a chosen model tuning strategy (Hourdin et al., 2017). By using many realisations96

of independent models, it is hoped a wider exploration of the parameter space – an N-97

dimensional space encompassing all possible model outcomes, where N is the number of98

degrees of freedom stemming from variables like parameterisation and tuning strategy99

– will compensate for errors, and produce the expected climate. This is observed by Gleckler100

et al. (2008), among others, who find the MME mean consistently outperforms any sin-101

gle model.102

However, the presence of structural uncertainties undermines projections – all con-103

tributing members may possess the same biases that fail to capture a key process or driver104

of climate change (Parker, 2011, 2013). These systematic errors force the probability dis-105

tribution of weather states in a consistent way, and are known to impact predictions of106

an evolving climate. For example, Kidston and Gerber (2010) find biases in the SH jet107

stream mean state explain inter-model differences in projected trends. This highlights108
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the importance of diagnosing systematic biases, and knowledge of these biases provide109

a basis for universal model improvement (Flato et al., 2013).110

The Storm Track in CMIPs Past & Present111

The IPCC 5th Assessment Report (AR5) concluded CMIP5 models capture gen-112

eral characteristics of the storm tracks, albeit with less consistency for the SH. However,113

most models underestimated storm intensity and frequency (Flato et al., 2013). Bracegirdle114

et al. (2020) find the storm track equatorward bias has been reduced from 1.9° in CMIP5115

to 0.4° in CMIP6. They also find significant improvements in jet variability using decor-116

relation times – though a positive bias remains – and CMIP6 models successfully sim-117

ulate a positive SAM trend. Priestley et al. (2020) suggest improvements in CMIP6 mod-118

els has effectively neutralised the equatorward bias.119

Priestley et al. (2020) also find models underestimate peak intensities and bomb120

cyclone frequency in the SH, which they attribute to a poorly captured intensification121

process. Chemke et al. (2022) find CMIP6 models do not capture trends in the barotropic122

growth rate caused by a changing meridional structure of mean zonal winds, specifically123

the rate of change of meridional gradients – an important driver of eddy growth. They124

also find models do not capture the momentum convergence around the flanks of storm125

tracks, as identified in reanalyses by Kidston and Vallis (2010). This, they argue, causes126

a severe underestimation of the observed SH winter positive eddy kinetic energy (EKE)127

trend. Whilst a clear signal emerges in the early 21st century in the latest reanalyses,128

no such signal emerges in models until at least the mid-21st century.129

Study Aims130

The storm track, SAM and ENSO dominate SH circulation patterns, and forced131

changes will have a significant impact at the hemispheric and regional scales. The com-132

panion paper (Campbell & Renwick, 2023, under review) uses the latest reanalyses and133

finds the SAM and ENSO teleconnection are important organisers of storm activity. As-134

sessing how well models capture these key features is vital to provide confidence in pro-135

jections. Changes to the SH storm track characteristics were not explicitly assessed in136

AR5, and continue to receive less attention. We investigate whether these models suc-137

cessfully capture storm track climatology and variability, and its interactions with LF138

variability, by assessing the representational accuracy of CMIP6 models. Although rep-139

resentational accuracy does not provide a complete validation of a model, it does pro-140

vide evidence to support or deny model “fitness-for-purpose”, and should be used as part141

of a wider body of evidence (Knutti, 2018; Parker, 2020).142

We compare the climatology, specified by the latest reanalyses, with the histori-143

cal experiment of an ensemble of 20 CMIP6 models. We characterise model base state,144

and apply the Common Basis Function (CBF) method to investigate model represen-145

tation of relevant large-scale variability. Similarly, we derive CBFs of singular vectors,146

retrieved from a Maximum Covariance Analysis (MCA) on reanalysis data, to establish147

whether CMIP6 models capture the baroclinic connection between low-frequency and148

high-frequency variability, and whether large-scale circulation patterns emerge as lead-149

ing modes of co-variability. Details of our methodology are given in section 2. Results150

for the ensemble mean are presented in section 3. A discussion and conclusion are pro-151

vided in section 4.152

2 Methodology and Data153

We use daily data from the European Centre for Medium-Range Weather Forecasts’154

(ECMWF) Reanalysis, 5th generation (ERA-5) (Hersbach et al., 2020), and an ensem-155

ble of 20 CMIP6 models’ historical experiment, taken from the ESGF Node (https://156
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Table 1. CMIP6 models used in the current study, along with their nominal resolutions.

Model Name Resolution (km) Model Name Resolution (km)

ACCESS-CM2 250 EC-Earth3-CC 100
ACCESS-ESM1-5 250 FGOALS-f3-L 100
BCC-CSM2-MR 100 GFDL-CM4 100
CanESM5 500 GFDL-ESM4 100
CESM2 100 HadGEM3-GC31-MM 100
CESM2-WACCM 100 MPI-ESM-1-2-HAM 250
CMCC-CM2-SR5 100 NESM3 250
CMCC-ESM2 100 NorCPM1 250
EC-Earth3 100 NorESM2-MM 100
EC-Earth3-AerChem 100 SAM0-UNICON 100

esgf-node.llnl.gov/search/cmip6/). We also analysed the Modern-Era Retrospec-157

tive Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017),158

and found results are qualitatively very similar to ERA-5; we therefore use only ERA-159

5 as the reference reanalysis for comparison. It is assumed the chosen sub-ensemble is160

representative of the wider CMIP6 ensemble. Following the findings of Lee et al. (2019),161

we assume inter-model variability is of greater importance, and robust inferences can be162

drawn from CMIP comparisons without considering internal variability. Therefore, we163

use a single realisation from each model.164

To investigate the effect of storm activity on the general circulation, we adopt an165

Eulerian method, using the 500hPa geopotential height (Z500) field, and its associated166

HF variance. We use deseasonalised monthly mean Z500 anomalies to which characterise167

the influence of LF variability, and monthly HF variance anomalies to quantify the ef-168

fect of passing storm centres. Variance due to storm activity is isolated with a 2–8-day169

bandpass filter, as per Trenberth (1991). 1° latitude-longitude resolution is used for ERA-170

5 data – adequately resolving synoptic-scale extratropical storms.171

Many models do not match ERA-5 resolution; however, baroclinic storms have a172

typical scale of O(1000km) – much greater than all model nominal resolutions. We as-173

sume an insensitivity of the Eulerian method to resolution, as an extension of the find-174

ings of Rohrer et al. (2020), with the proviso that nominal resolution is smaller than the175

synoptic-scale. Therefore, we interpolate model output to a finer grid of 1° latitude-longitude176

resolution to match ERA-5. Ensemble models and their nominal resolutions are found177

in Table 1. CMIP6 models generally simulate up to 2014, therefore, we use the 1972-2014178

period – in contrast to the 1979-2021 period used for ERA-5 – to maintain a constant179

sample size and result robustness. The same analysis was conducted on the 1979-2014180

period and the results are qualitatively similar; therefore, results for 1972-2014 are pre-181

sented below.182

We evaluate Z500 and HF variance climatologies and temporal variability by cal-183

culating the difference from ERA-5 data to establish biases, for time-mean fields and tem-184

poral standard deviation (SD). We use temporally and zonally averaged fields to iden-185

tify the mean storm track position in two ways: as the maximum meridional Z500 gra-186

dient; and as the meridional HF variance maximum. A Savitzky-Golay filter is applied187

to smooth artefacts from spectral cores (Savitzky & Golay, 1964) – a sensitivity test re-188

vealed a window length of 20 is stable. Peak positions are interpolated from smoothed189

data.190
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Seasonal Taylor diagrams reveal model ability to capture spatial variability. These191

diagrams summarise four statistical quantities, namely spatial correlation, R, centred192

root mean square difference (RMSD), E′, and the spatial SDs of the target (model) field,193

σf , and of a reference (ERA-5) field, σr. The original paper provides a full description194

of the diagram, and the relationship between the four quantities (Taylor, 2001). For a195

simpler presentation, allowing both mean Z500 and HF variance fields to be plotted on196

the same diagram, E′ and σf are normalised by σr.197

We apply the CBF method, outlined by Lee et al. (2019), to assess model fidelity198

in recreating large-scale variability. Briefly, this method regresses model output onto a199

reference EOF, derived from ERA-5 in this case, thereby generating an analogous PC,200

referred to as a CBF-PC. A model equivalent pattern is reconstructed by linearly regress-201

ing the CBF-PC onto anomalies at each grid cell, and resultant coefficients are scaled202

by the CBF-PC SD. Explained variance is defined as the ratio between the area-weighted203

temporal variance of a reconstructed spatio-temporal field and that of the full field. This204

method provides a consistent approach allowing for direct comparison with the obser-205

vational dataset.206

Large-scale variability assessed includes: the SAM, characterised by the first EOF207

of the Z500 deseasonalised anomalies south of 20°S; the Pacific South American patterns,208

PSA1 and PSA2, characterised by the second and third EOFs of the same Z500 anoma-209

lies, as per Fogt and Bromwich (2006); the asymmetrical component of the SAM (A-SAM),210

characterised by the leading EOF of the Z500 deseasonalised zonal anomalies – with the211

zonal-mean removed – south of 20°S, following the method of Campitelli et al. (2022);212

and Zonal Wavenumber-3 (ZW3), characterised by the first and second EOFs of merid-213

ional wind anomalies between 40°S and 70°S, as per Goyal et al. (2022).214

Similarly, to identify whether CMIP6 models capture the connections identified in215

Campbell and Renwick (2023, under review), we apply the CBF method to singular vec-216

tors specified by modes retrieved from an MCA applied to ERA-5. An MCA performs217

a singular value decomposition on the cross-covariance matrix of two fields, and extracts218

singular vectors in order of importance. Details of the MCA are given in Campbell and219

Renwick (2023, under review), and references therein. Spatial correlation between CBFs220

and their observational equivalents are calculated to quantify fidelity. A nine-point weighted221

smoothing function is applied to CBFs to remove residual spectral effects that obscure222

broad-scale patterns.223

3 Results224

3.1 Base State225

3.1.1 Storm Track Meridional Position226

Previous CMIP generations possessed a poleward bias in mean meridional position227

of the SH storm track (Kidston & Gerber, 2010); Priestley et al. (2020) and Bracegirdle228

et al. (2020) find this is almost neutralised in CMIP6. To verify these findings, we de-229

fine the storm track as the peak Z500 meridional gradient, and peak meridional HF vari-230

ance. Peak positions are provided in Table 2, along with meridional profiles in Figure231

1. Some spectral effects are still evident in the profiles despite smoothing, exhibiting noise-232

like variation.233

Generally, all ensemble members identify the reanalysis peak position to within 2°234

latitude. The ensemble mean meridional peak is only 0.3° equatorward of the ERA-5 cli-235

matological position for the zonal-mean Z500 meridional gradient peak, and the zonal-236

mean HF variance peak matches observations exactly. The ensemble mean Z500 merid-237

ional gradient profile is virtually indistinguishable from the ERA-5 profile, despite dif-238

fering peak positions. The shape of the ensemble mean HF variance profile is also highly239
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Figure 1. Meridional profiles for mean Z500 gradient and HF variance time-and-zonal mean

fields. Vertical lines mark the ensemble mean and ERA-5 peak positions.

similar to ERA-5, but there is a considerable difference in peak amplitude, indicating240

maximum zonal-mean HF variance is underestimated.241

The variance peak is consistently poleward of the Z500 gradient peak in both mod-242

els and ERA-5. This is perhaps indicative of zonal wind anomalies poleward drift reported243

by Lorenz and Hartmann (2001). Broadly, if a model exhibits a bias in one peak, so too244

does the other, suggesting the origin of the bias is linked to both fields. The lack of sta-245

tistical significance in the difference between ERA-5 peaks and the ensemble mean peak246

Table 2. Zonal-and-time-mean meridional peak positions of Z500 meridional gradient and HF

variance for all CMIP6 models.

Z500 Meridional Gradient (°S) HF Variance (°S)

ERA-5 51.2 53.0
MME Mean 50.9 53.0

ACCESS-CM2 49.6 52.4
ACCESS-ESM1-5 50.0 52.6
BCC-CSM2-MR 51.8 52.9
CanESM5 50.0 52.0
CESM2 52.1 53.4
CESM2-WACCM 52.1 53.3
CMCC-CM2-SR5 52.8 53.8
CMCC-ESM2 52.5 53.5
EC-Earth3 50.7 53.4
EC-Earth3-AerChem 49.4 53.4
EC-Earth3-CC 51.0 53.7
FGOALS-f3-L 49.5 52.5
GFDL-CM4 49.0 51.7
GFDL-ESM4 50.3 52.7
HadGEM3-GC31-MM 48.5 51.6
MPI-ESM-1-2-HAM 48.2 51.8
NESM3 51.9 53.5
NorCPM1 53.1 54.4
NorESM2-MM 52.5 54.0
SAM0-UNICON 52.6 54.1
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agrees with Priestley et al. (2020) – the bias in CMIP6 is largely neutralised. Bracegirdle247

et al. (2020) identify a 0.6° equatorward bias, whereas we find a 0.3° equatorward bias248

in one peak and no bias in the other. This difference is probably due to a difference in249

the definition of the storm track meridonal position – they use the Jet Latitude Index250

(JLI) defined by peak zonal-mean winds.251

3.1.2 Spatial Variability and Seasonality252

Taylor diagrams encapsulate a model’s ability to represent spatial patterns and vari-253

ability of a given field. We present Taylor diagrams for seasonal data of both Z500 and254

HF variance climatological fields (Figure 2). Each model performs well overall for both255

fields, with high correlations and relatively low E′ in each case. Performance is weaker256

in the HF variance field; however, pattern correlation remains above 0.95 in all cases.257

Whereas no model scored below 0.99 in the Z500 field, and SDs are clustered around the258

reference value, suggesting the climatological Z500 field is well-captured across seasons.259

Models are considerably weaker in representing HF variance spatial variability. Except-260

ing some models in spring, variability is universally underestimated, with some σf al-261

most half that of ERA-5 (see Figure 2). There is also considerable spread of HF vari-262

ance SDs.263

Figure 2. Taylor diagrams for seasonal data. The HF variance field is shown in blue, the

mean Z500 field in red, with the MME mean emboldened. Correlation between the model and

the reference field is given by the azimuthal angle, field standard deviation, σf , by radial distance

from the origin, and centered RMSE is proportional to the distance from the reference point (la-

belled ERA-5). Both SDs and centred RMSEs are presented in normalised units. The yellow arc

traces the surface of σf equal to 1.
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Figure 3. Spatial biases of the multi-model ensemble mean for the a) mean Z500 (m) and b)

high-frequency variance (m2) time-mean fields, relative to the ERA-5 reanalyses.

The ensemble mean is particularly strong in representing aspects of Z500 clima-264

tology, with a σf approximately equal to ERA-5, and near-perfect correlation in all sea-265

sons. The MME mean possesses a stronger correlation for HF variance than most en-266

semble members. Whereas σf is affected by the generally poor ensemble performance,267

yet retains 82% of the ERA-5 spatial variability. This trend is reflected across seasons.268

There is no clear seasonal variation in performance, indicating relative performance is269

consistent across seasons.270

3.1.3 Mean Field Spatial Biases271

To garner insight into regional differences, model biases from the ERA-5 climato-272

logical fields and temporal variability are derived, and the ensemble mean biases presented273

in Figures 3 and 4. Positive values indicate a higher model value (positive bias), and neg-274

ative values indicate a lower model value (negative bias). Biases for ensemble members275

are not shown, but some details are discussed.276

Most models possess maximum biases on the order of 100m in the mean height field,277

and 3000m2 in the HF variance field, although models of better-than-median performance278

have biases around 50m and 2000m2. Recurring biases are found in the Z500 field of many279

ensemble members, such as a positive bias over the mid-Atlantic Ocean, and a negative280

bias off the south coast of Australia. These common biases persist in the ensemble mean281

(Figure 3a) – although with weaker amplitude than any ensemble member – indicating282

these are systematic biases. The bias south of Australia is located approximately between283

two oppositely-signed temporal SD biases, seen in Figure 4. Whether these are connected284

is unclear. The upstream positive bias would suggest models have greater fluctuating Z500285

fields in this region, whereas the downstream negative bias, about 30% of the size, would286

imply less variation in the Z500 field. This is slightly upstream of the Amundsen Sea re-287

gion (ASR), a particularly active region for propagating Rossby waves – its possible there288

may be some link.289

Models display a near universal bias toward weaker HF variance over the expected290

storm track position. This is strongest over the Atlantic and Indian oceans, where ERA-291

5 results indicate the storm track is strongest (see Figure 1 in Campbell and Renwick292

(2023, under review)). Model consensus translates into the MME mean (Figure 3b), where293

the Indian Ocean bias is substantial, around 2000m2. There is a weaker HF variance ab-294

solute bias over the Pacific; however, this coincides with weaker storm activity. HF vari-295

ance magnitude in the Pacific is around 14% less than ERA-5, 22% less in the Indian296

Ocean, indicating storm activity is underestimated in CMIP6 on a hemispheric scale. Along-297
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Figure 4. As with Figure 3, but for temporal standard deviations. The temporal SDs are

calculated using the monthly mean of each field, over the sample periods of the reanalyses (1979-

2021) and CMIP6 models (1972-2014).

side this, Figure 4b shows HF variance temporal variability of the storm track is also weaker,298

implying the magnitude of passing storms is underestimated. Taken together, this strongly299

suggests the magnitude of the storm track is widely underestimated in CMIP6.300

3.2 Common Basis Functions301

3.2.1 Large-scale Modes of Variability302

To investigate model fidelity in representing large-scale variability pertinent to the303

storm track, we reconstruct spatial patterns by regressing model anomalies onto a ref-304

erence EOF to generate CBFs. The modes of variability studied include the A-SAM –305

identified by Zhang et al. (2022) to be an area of weakness in CMIP6 – the PSA1 and306

PSA2 patterns – closely related to the ENSO teleconnection – and ZW3, which plays307

a dominant role in SH circulation patterns and is expected to have a role in guiding baro-308

clinic eddies. Figure 5 presents the CBFs for the ensemble mean and the reference EOFs309

from the ERA-5 reanalysis. The MME mean displays high fidelity for all phenomena,310

as does each model, indicating improvements have been made from the CMIP5 gener-311

ation (Lee et al., 2019). Ensemble CBFs are provided as supplementary material (Fig-312

ures S1-S6, supplementary material).313

For the SAM, spatial correlation is high for all ensemble members, with a minimum314

of 0.96 (Figure S1, supplementary material). The ensemble mean has near perfect cor-315

relation at 0.99, and low E′. Some models tend to exaggerate the spatial coherence in316

the annulus surrounding the central polar region, with greater variance in the Pacific.317

The Atlantic mid-latitude maximum appears to be displaced eastward, which, combined318

with the more zonally symmetric polar region – both identifiable in the MME mean in319

Figure 5 – indicates models exaggerate zonal symmetry, or perhaps a summer-like pat-320

tern dominates. Those CBFs with a central region protruding over the ASR, similar to321

ERA-5, tend to have higher correlations.322

Zhang et al. (2022) find the A-SAM is poorly represented by CMIP6 models. Upon323

inspection of the ensemble SAM CBFs (Figure S1, supplementary material), the con-324

figuration over the ASR appears quite variable – some appear overly symmetrical, oth-325

ers with exaggerated asymmetry. However, this trend is not identified in the A-SAM CBFs,326

and correlations and RMSEs are universally strong (Figure S2, supplementary material),327

translating into a pattern correlation of 0.99 for the ensemble mean (Figure 5). We in-328

spect only annual data, whilst Zhang et al. (2022) subset into seasons. However, they329
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Figure 5. MME mean CBFs characterising circulation variability modes, paired with the

original ERA-5 EOFs for reference. Spatial correlation and centred RMSE between the two are

provided. Values below a specified magnitude are masked for: the SAM (|10m|); A-SAM (|10m|);
PSA1 (|15m|); PSA2 (|15m|); ZW3 EOFs (|0.5ms−1|).

apply an EOF analysis to each model and find the ensemble mean amplitude is consid-330

erably weaker, with comparatively lower pattern correlations. Maximum A-SAM mag-331

nitude for both ERA-5 and the ensemble mean, derived through the CBF method, is com-332

parable, 69.3m and 67.4m, respectively. Whether the CBF method finds similar results333

across seasonal data should be the subject of a future study.334

The PSA1 and PSA2 patterns are well simulated, with high correlations and low335

RMSE, although the spread is greater than SAM and A-SAM CBFs. There is some vari-336

ability in the location and extent of the wave train extrema in the ensemble CBFs (Fig-337

ures S3 and S4, supplementary material). This may be linked to several causes, includ-338

ing differences in source location. Quasi-stationary wave activity is less geographically339

locked in the SH, due to the minimal land mass, thus allowing for greater variability. This340

effect is smoothed over in the MME mean, whose extrema are effectively collocated with341

the reference EOF, retrieving correlations of 0.98 and 0.97 for PSA1 and PSA2, respec-342

tively. The EOFs related to ZW3 are simulated with similarly high fidelity, with the en-343

semble mean possessing a correlation of 1.00 to 2 s.f.344

3.2.2 Connections Between LF and HF Variability345

Leading annual CBFs of the mean Z500 and HF variance fields indicate CMIP6 mod-346

els are universally strong in capturing the dominant role of the SAM. Pattern correla-347

tion for each ensemble member is above 0.80 in both fields, although the Z500 CBFs gen-348

erally record higher correlation. This can be seen in the ensemble mean in Figure 6 (an-349

nual mode 1), with correlations of 0.87 and 0.82 for the Z500 and HF variance CBFs,350

respectively. Steep Z500 meridional gradients – where contours are densely populated351
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Figure 6. Leading three CBFs of mean Z500 and HF variance fields for the ensemble mean,

for annual data and by season, generated from rotated ERA-5 singular vectors. The mean Z500

field is indicated by the contours (10m intervals), positive contours are solid and negative dashed.

HF variance is shown as the colour fill, blue indicating increased HF variance and brown de-

creased variance. HF variance below |150m2| is masked.

– align with the storm track, suggesting the relationship between baroclinicity and height-352

ened storm activity is well-captured.353

This picture is consistent across seasons, with SAM seasonality relatively well-captured354

in the Z500 field, particularly the varying asymmetrical component. However, the storm355
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track undergoes minimal seasonal variation, and remains broad and coherent even in JJA356

(see Figure 6, JJA mode 2), when the storm track has a broken appearance according357

to canonical seasonality (Hoskins & Hodges, 2005). This is expressed by the markedly358

lower pattern correlation in seasons where storm track asymmetry is pronounced: 0.71359

and 0.66 in MAM and JJA, respectively. Note that the ENSO teleconnection- and SAM-360

like modes are reversed in order in JJA, in accordance with the retrieved modes in Fig-361

ure 2 in Campbell and Renwick (2023, under review).362

The ENSO teleconnection in the second CBFs is similarly well-captured, with the363

broad-scale pattern present in all ensemble members (Figure S7, supplementary mate-364

rial). This pattern – a wave train pattern across the Pacific with a low centred over the365

ASR, and leading and trailing highs – persists in the ensemble mean, with high pattern366

correlations (see Figure 6, annual mode 2). Correlations are weaker than the leading CBFs,367

though the regional nature of the teleconnection likely contributes. Alignment of the ASL368

with heightened storm activity in the Pacific mid-latitudes is captured across ensemble369

members; however, the response of the HF variance field is much wider than ERA-5 sug-370

gests, with a weak HF variance pervading the rest of the hemisphere, collocated with the371

storm track.372

Teleconnection seasonality is reasonably well represented in the Z500 field, with a373

clear SAM-like response in both fields in DJF, and more wave train-like patterns in other374

seasons. Across the seasons, a ring of HF variance is present, unlike in ERA-5. This ring375

is particularly strong in DJF, and the correlation drops as low as 0.44. Despite this fea-376

ture being part of canonical seasonality, it seems to be exaggerated by CMIP6 models,377

so too is the depth of the ASL.378

Ensemble members tend to capture the ZW3 patterns in the third seasonal CBFs379

(see, for example, SON mode 3 in Figure 6), and pattern correlations remain high. The380

weaker ZW3 signal in DJF is representative of ERA-5, likely linked to weakened Rossby381

wave propagation during these months. Note, there is no physical reason for the sign of382

the HF variance to reverse between seasonal and annual data, but is arbitrarily assigned383

when singular vectors are retrieved from the ERA-5 MCA. The HF variance ring encir-384

cling the pole is visible in all CBFs, and is not found in ERA-5 modes.385

The explained variance (EV) of HF variance singular vectors, derived through the386

CBF method, is fairly stable – around 10% for the first three CBFs – suggesting the im-387

portance of HF variance modes of co-variability does not diminish, in direct contrast to388

ERA-5. On the other hand, the EV of Z500 CBFs decreases from an average 28% in the389

leading CBF, 16% in the second, and 5% in the third CBF.390

4 Conclusion391

We have considered output from the CMIP6 programme to assess model perfor-392

mance in representing the SH storm track and associated large-scale variability. We char-393

acterised model base state, and applied the CBF method to EOFs and MCA modes to394

assess fidelity in representing pertinent modes of variability, and connections between395

the Z500 and HF variance fields. We find CMIP6 models are generally of high fidelity396

to the ERA-5 reanalysis in capturing Z500 climatology and large-scale variability. The397

baroclinic connection between the fields – alignment of steep meridional Z500 gradients398

with increased storm activity – is broadly replicated, so too the organising roles of the399

SAM and ENSO teleconnection. However, a considerable failure of CMIP6 models is in400

capturing the magnitude and variability of the storm track, particularly the asymmet-401

rically strong activity in the Indian Ocean. Our results indicate the importance of the402

storm track is widely underestimated.403

The ensemble mean is markedly superior to ensemble members in capturing Z500404

climatology, performing at well above the median in all relevant metrics (see Figure 7).405
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This suggests model-specific errors are compensated for by the ensemble mean. No sig-406

nificant biases were found in storm track position, in agreement with Priestley et al. (2020)407

and Bracegirdle et al. (2020). Meridional profiles are almost exactly alike, although max-408

imum zonal-mean HF variance is considerably underestimated. CBFs of large-scale vari-409

ability show universal strong correlation with EOFs derived from the ERA-5 reanaly-410

sis, suggesting models successfully capture patterns of LF variability. One caveat with411

the CBF method is the potential positive bias introduced by using metrics quantifying412

spatial likeness and variability, when the derivation spatially constrains patterns by re-413

gressing onto a reference field, but this effect is not explored in detail here.414

Figure 7. Portrait plot of relative model error for the climatological Z500 and HF variance

climatological fields, as well as CBFs for the large-scale variability. Relative error is derived by

dividing by median model bias. The error from the two ZW3 CBFs are averaged and presented

here as a single value. A negative (red) value indicates better than median performance.

High pattern correlations of leading CBFs suggest all model-derived field anoma-415

lies strongly map onto the modes derived from the ERA-5 MCA (Figure 6). This indi-416

cates the SAM retains its role in organising HF variability on a hemispheric scale. This417

result is reinforced by the appearance of the SAM as the leading mode in an MCA ap-418

plied directly to model output (Figure S8, supplementary material). However, the sta-419

ble EV in HF variance CBFs suggests its relative importance does not diminish through-420

out the first three modes. This may be linked to the reduced temporal variability, as seen421

in Figure 4, perhaps implying storm activity manifests in an overly consistent and sym-422

metrical fashion, in spite of LF variability, and the growth and cessation of passing storms423

is not well-captured.424

The second CBFs (Figures 6 and S7, supplementary material) indicate Rossby wave425

activity over the Pacific is fairly well-captured. Results from the direct MCA (Figure S8,426
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supplementary material) shows considerable variability in the location of Rossby wave427

trains over the Pacific; however, considering the strong mapping of model anomalies onto428

the ERA-5 Z500 singular vectors, this may be a consequence of the dependence of an MCA429

on sample size, rather than representative of principal locations of the ENSO telecon-430

nection. Given the Pacific sector is a particularly active region for propagating Rossby431

waves, it is uncertain whether the high pattern correlations in the second CBFs are en-432

tirely due to the ENSO teleconnection.433

Performance is relatively poor across the ensemble in HF variance spatial and tem-434

poral variability, and climatological field biases. This appears to be linked to a hemispheric435

underestimation of HF variance, particularly over the Indian Ocean. Two models with-436

out large HF variance biases, BCC-CSM2-MR and NESM3, are similarly unique in over-437

estimating HF variance spatial variability. Likewise, models with diminished spatial vari-438

ability are also those with the largest bias in the Indian Ocean, greater than |4000m2|.439

Why it is that the BCC-CSM2-MR and NESM3 models simulate greater HF variance440

is unclear, but it seems to have no relation to nominal resolution; this might be the sub-441

ject of future study.442

The zonal asymmetry of the storm track, as described in Hoskins and Hodges (2005),443

is not well-captured. Figure 2 shows HF variance spatial variability is much lower than444

the reanalysis, and the asymmetrical biases – a stronger bias in the Indian Ocean rel-445

ative to the Pacific (Figure 3) – serve to homogenise the storm track, hence smaller spa-446

tial SDs, as well as generally underestimating storm activity. Temporal SD biases sim-447

ilarly indicate the amplitude of eddy activity is underestimated. The poor performance448

in these metrics strongly suggests there is a systematic bias in underrepresenting the role449

of the storm track, which could have severe consequences for global circulation patterns450

in ESMs, including the poleward transport of heat and momentum. The impact of this451

bias on energy transport and circulation patterns will be the subject of a future study.452

Typical length-scales of the downstream development process would suggest the453

biases in the mean Z500 and HF variance fields (Figure 3) are unlikely to be connected,454

as they are well separated. More likely, the Z500 biases are connected with regional dy-455

namics. The HF variance bias is hemispheric, and likely caused by a failure to capture456

the relevant physics, such as intensification processes (Priestley et al., 2020). Consistent457

alignment between steep meridional gradients and increased storm activity indicates baro-458

clinic processes of the storm track are relatively well-captured in CMIP6. Chemke et al.459

(2022) suggest observations of increasing EKE is due to positive trends in barotropic growth460

rates caused by changes in meridional zonal-wind structure, which, they find, CMIP6461

models fail to capture. The momentum convergence around the flanks, caused by prop-462

agating eddies feeding momentum back into the storm track (Lorenz & Hartmann, 2001),463

is also poorly represented (Chemke et al., 2022), which likely contributes to reduced eddy464

activity. A critical systematic bias such as this casts considerable doubt as to the valid-465

ity of storm track projections.466
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CMIP6 model fidelity in capturing the Southern1

Hemisphere storm track and its connections with2

low-frequency variability3
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Key Points:6

• CMIP6 models do an excellent job representing mean circulation and low-frequency7

variability.8

• Models simulate the baroclinic connection with storm activity well.9

• But models perform poorly in capturing the magnitude of Southern Hemisphere10

storm activity.11
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Abstract12

Storm tracks are a key component of global atmospheric circulation. Their influence ranges13

from macro- to mesoscale dynamics, from large-scale movement of heat and momentum14

to extreme weather events. The scale of their impact makes understanding storm track15

dynamics critical to forecasting and climate projections. In this study, we assess CMIP616

historical experiment fidelity to observations of the Southern Hemisphere storm track.17

Specifically, storm track climatology, variability, and its interactions with low-frequency18

variability, with the aim of providing confidence for projections of future climate. We19

find CMIP6 models replicate results from the ERA-5 reanalysis with high fidelity in some20

regards; namely, capturing climatology of the 500hPa geopotential height field, the role21

of large-scale variability, and the baroclinic connection with high-frequency variability.22

However, models fail to capture the magnitude and variability of the storm track, par-23

ticularly canonical zonal asymmetry. Our results indicate the importance of the storm24

track is underestimated in CMIP6.25

Plain Language Summary26

Storm tracks are regions of considerable storm activity, appearing as a band-like struc-27

ture around the mid-latitudes. They have a significant role in moving energy and mois-28

ture poleward, and are closely associated with extreme weather, such as heavy rainfall,29

and flooding. Storm tracks tend to vary in strength over time and wander across merid-30

ians. Atmospheric circulation phenomena, such as the Southern Annular Mode, inter-31

act with the storm track and can influence the location and direction of storms. We look32

at how well state-of-the-art models simulate the storm track and their interactions with33

circulation phenomena. We find that models generally do an excellent job characteris-34

ing the relevant basic circulation, but the strength of the storm track is considerably un-35

derestimated. This likely has consequences for the reliability of future climate projec-36

tions, as it is generally agreed that storm activity is due to increase.37

1 Introduction38

The Southern Hemisphere Storm Track & Low-Frequency Variability39

The Southern Hemisphere (SH) storm track is a region of maximum storm activ-40

ity covering the Southern Ocean in a band between approximately 40° and 65°S. It is an41

emergent property of the atmosphere, and a key component of circulation patterns – it42

has a leading role in the global circulation of momentum, energy, and moisture (Peixoto43

& Oort, 1992). Storms form downstream of maximum baroclinic instabilities in the time-44

mean westerly flow (Oort & Peixóto, 1983; Chang & Orlanski, 1993; Trenberth, 1991),45

and undergo baroclinic and barotropic growth processes (Chang et al., 2002; O’Gorman,46

2010). The storm track is closely associated with extremes of wind speed, cloud forma-47

tion, and precipitation, and greatly impacts weather patterns, including extreme events,48

through its influence on the behaviour of baroclinic storms (Yettella & Kay, 2017; Pfahl49

& Wernli, 2012).50

Interactions between synoptic storm activity and large-scale low-frequency (LF)51

variability directly impact global circulation patterns (Kidston et al., 2010; Hoerling &52

Ting, 1994). These modes of variability manifest as organised spatial patterns of circu-53

lation anomalies, driving fluctuating meridional gradients, thus stimulating baroclinic-54

ity. This study builds upon previous findings, investigating large-scale circulation pat-55

terns that dominate SH circulation variability – in particular, the Southern Annular Mode56

(SAM), and the El Niño-Southern Oscillation (ENSO) mid-latitude teleconnection – and57

how these phenomena interact with the storm track.58
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The SAM is a modal phenomenon with a positive and negative phase (SAM+ and59

SAM–), manifesting as changes in average circulation over the Antarctic region and mid-60

latitudes. These circulation anomalies affect storm track position, storm frequency and61

storm intensity (Lorenz & Hartmann, 2001; Kidston et al., 2010). Close links exist be-62

tween storm track meridional wandering and the varying meridional pressure gradients63

that characterise the SAM – it may be said that the SAM essentially defines the merid-64

ional location of the storm track. Signatures of SAM+ include reduced average pressures65

over Antarctica and increased average pressures over the mid-latitudes, resulting in a pole-66

ward storm track and strengthening of the jet, whilst the reverse is true under SAM–67

conditions (Fogt & Marshall, 2020; Hartmann & Lo, 1998).68

ENSO is a tropical interannual event which directly affects the shape and position69

of the storm track via its mid-latitude teleconnection (Timmermann et al., 2018; Hoer-70

ling & Ting, 1994). Anomalous convection in the tropics drives the formation of Rossby71

waves which propagate into the extra-tropics. The propagating wave trains cause organ-72

ised circulation anomalies far from the source, known as teleconnection patterns, such73

as the Pacific South American (PSA) pattern (Mo & Higgins, 1998). The storm track74

in turn amplifies and even controls the propagation of wave trains to preferred locations75

(Kok & Opsteegh, 1985; Hoerling & Ting, 1994), creating a positive feedback loop (Trenberth76

et al., 1998; Reboita et al., 2015).77

CMIP6 Models78

Earth Systems Models (ESMs) are the most complex models contributing to the79

Intergovernmental Panel on Climate Change (IPCC) Assessment Report 6 (AR6) (Chen80

et al., 2021). The sixth Coupled Model Intercomparison Project (CMIP6) is the latest81

in a series of projects which coordinates modelling groups contributing ESMs for a co-82

herent, organised approach within the climate research community. ESMs run time in-83

tegrations from initial conditions, with realistic mechanics and constraints, to charac-84

terise the probability distribution of weather states. Instantaneous states are indepen-85

dent of real-world observations; however, the climatology of each time integration should86

match observations.87

While models generally do an excellent job of simulating the climate system, they88

are approximations of the real system and often produce mischaracterisations of the global89

mean state. Part of this error is attributed to model uncertainty, introduced by the con-90

struction of a model. Knutti (2018) splits model uncertainty into three sub-categories:91

model structure; grid resolution; and parameterisation. These are the core representa-92

tional uncertainties in modelling the climate, belonging solely to model design. Utilis-93

ing a multi-model ensemble (MME) mean, assuming a degree of model independence,94

is an effective way to mitigate the influence of model-specific errors, such as those ow-95

ing to a chosen model tuning strategy (Hourdin et al., 2017). By using many realisations96

of independent models, it is hoped a wider exploration of the parameter space – an N-97

dimensional space encompassing all possible model outcomes, where N is the number of98

degrees of freedom stemming from variables like parameterisation and tuning strategy99

– will compensate for errors, and produce the expected climate. This is observed by Gleckler100

et al. (2008), among others, who find the MME mean consistently outperforms any sin-101

gle model.102

However, the presence of structural uncertainties undermines projections – all con-103

tributing members may possess the same biases that fail to capture a key process or driver104

of climate change (Parker, 2011, 2013). These systematic errors force the probability dis-105

tribution of weather states in a consistent way, and are known to impact predictions of106

an evolving climate. For example, Kidston and Gerber (2010) find biases in the SH jet107

stream mean state explain inter-model differences in projected trends. This highlights108
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the importance of diagnosing systematic biases, and knowledge of these biases provide109

a basis for universal model improvement (Flato et al., 2013).110

The Storm Track in CMIPs Past & Present111

The IPCC 5th Assessment Report (AR5) concluded CMIP5 models capture gen-112

eral characteristics of the storm tracks, albeit with less consistency for the SH. However,113

most models underestimated storm intensity and frequency (Flato et al., 2013). Bracegirdle114

et al. (2020) find the storm track equatorward bias has been reduced from 1.9° in CMIP5115

to 0.4° in CMIP6. They also find significant improvements in jet variability using decor-116

relation times – though a positive bias remains – and CMIP6 models successfully sim-117

ulate a positive SAM trend. Priestley et al. (2020) suggest improvements in CMIP6 mod-118

els has effectively neutralised the equatorward bias.119

Priestley et al. (2020) also find models underestimate peak intensities and bomb120

cyclone frequency in the SH, which they attribute to a poorly captured intensification121

process. Chemke et al. (2022) find CMIP6 models do not capture trends in the barotropic122

growth rate caused by a changing meridional structure of mean zonal winds, specifically123

the rate of change of meridional gradients – an important driver of eddy growth. They124

also find models do not capture the momentum convergence around the flanks of storm125

tracks, as identified in reanalyses by Kidston and Vallis (2010). This, they argue, causes126

a severe underestimation of the observed SH winter positive eddy kinetic energy (EKE)127

trend. Whilst a clear signal emerges in the early 21st century in the latest reanalyses,128

no such signal emerges in models until at least the mid-21st century.129

Study Aims130

The storm track, SAM and ENSO dominate SH circulation patterns, and forced131

changes will have a significant impact at the hemispheric and regional scales. The com-132

panion paper (Campbell & Renwick, 2023, under review) uses the latest reanalyses and133

finds the SAM and ENSO teleconnection are important organisers of storm activity. As-134

sessing how well models capture these key features is vital to provide confidence in pro-135

jections. Changes to the SH storm track characteristics were not explicitly assessed in136

AR5, and continue to receive less attention. We investigate whether these models suc-137

cessfully capture storm track climatology and variability, and its interactions with LF138

variability, by assessing the representational accuracy of CMIP6 models. Although rep-139

resentational accuracy does not provide a complete validation of a model, it does pro-140

vide evidence to support or deny model “fitness-for-purpose”, and should be used as part141

of a wider body of evidence (Knutti, 2018; Parker, 2020).142

We compare the climatology, specified by the latest reanalyses, with the histori-143

cal experiment of an ensemble of 20 CMIP6 models. We characterise model base state,144

and apply the Common Basis Function (CBF) method to investigate model represen-145

tation of relevant large-scale variability. Similarly, we derive CBFs of singular vectors,146

retrieved from a Maximum Covariance Analysis (MCA) on reanalysis data, to establish147

whether CMIP6 models capture the baroclinic connection between low-frequency and148

high-frequency variability, and whether large-scale circulation patterns emerge as lead-149

ing modes of co-variability. Details of our methodology are given in section 2. Results150

for the ensemble mean are presented in section 3. A discussion and conclusion are pro-151

vided in section 4.152

2 Methodology and Data153

We use daily data from the European Centre for Medium-Range Weather Forecasts’154

(ECMWF) Reanalysis, 5th generation (ERA-5) (Hersbach et al., 2020), and an ensem-155

ble of 20 CMIP6 models’ historical experiment, taken from the ESGF Node (https://156
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Table 1. CMIP6 models used in the current study, along with their nominal resolutions.

Model Name Resolution (km) Model Name Resolution (km)

ACCESS-CM2 250 EC-Earth3-CC 100
ACCESS-ESM1-5 250 FGOALS-f3-L 100
BCC-CSM2-MR 100 GFDL-CM4 100
CanESM5 500 GFDL-ESM4 100
CESM2 100 HadGEM3-GC31-MM 100
CESM2-WACCM 100 MPI-ESM-1-2-HAM 250
CMCC-CM2-SR5 100 NESM3 250
CMCC-ESM2 100 NorCPM1 250
EC-Earth3 100 NorESM2-MM 100
EC-Earth3-AerChem 100 SAM0-UNICON 100

esgf-node.llnl.gov/search/cmip6/). We also analysed the Modern-Era Retrospec-157

tive Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017),158

and found results are qualitatively very similar to ERA-5; we therefore use only ERA-159

5 as the reference reanalysis for comparison. It is assumed the chosen sub-ensemble is160

representative of the wider CMIP6 ensemble. Following the findings of Lee et al. (2019),161

we assume inter-model variability is of greater importance, and robust inferences can be162

drawn from CMIP comparisons without considering internal variability. Therefore, we163

use a single realisation from each model.164

To investigate the effect of storm activity on the general circulation, we adopt an165

Eulerian method, using the 500hPa geopotential height (Z500) field, and its associated166

HF variance. We use deseasonalised monthly mean Z500 anomalies to which characterise167

the influence of LF variability, and monthly HF variance anomalies to quantify the ef-168

fect of passing storm centres. Variance due to storm activity is isolated with a 2–8-day169

bandpass filter, as per Trenberth (1991). 1° latitude-longitude resolution is used for ERA-170

5 data – adequately resolving synoptic-scale extratropical storms.171

Many models do not match ERA-5 resolution; however, baroclinic storms have a172

typical scale of O(1000km) – much greater than all model nominal resolutions. We as-173

sume an insensitivity of the Eulerian method to resolution, as an extension of the find-174

ings of Rohrer et al. (2020), with the proviso that nominal resolution is smaller than the175

synoptic-scale. Therefore, we interpolate model output to a finer grid of 1° latitude-longitude176

resolution to match ERA-5. Ensemble models and their nominal resolutions are found177

in Table 1. CMIP6 models generally simulate up to 2014, therefore, we use the 1972-2014178

period – in contrast to the 1979-2021 period used for ERA-5 – to maintain a constant179

sample size and result robustness. The same analysis was conducted on the 1979-2014180

period and the results are qualitatively similar; therefore, results for 1972-2014 are pre-181

sented below.182

We evaluate Z500 and HF variance climatologies and temporal variability by cal-183

culating the difference from ERA-5 data to establish biases, for time-mean fields and tem-184

poral standard deviation (SD). We use temporally and zonally averaged fields to iden-185

tify the mean storm track position in two ways: as the maximum meridional Z500 gra-186

dient; and as the meridional HF variance maximum. A Savitzky-Golay filter is applied187

to smooth artefacts from spectral cores (Savitzky & Golay, 1964) – a sensitivity test re-188

vealed a window length of 20 is stable. Peak positions are interpolated from smoothed189

data.190
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Seasonal Taylor diagrams reveal model ability to capture spatial variability. These191

diagrams summarise four statistical quantities, namely spatial correlation, R, centred192

root mean square difference (RMSD), E′, and the spatial SDs of the target (model) field,193

σf , and of a reference (ERA-5) field, σr. The original paper provides a full description194

of the diagram, and the relationship between the four quantities (Taylor, 2001). For a195

simpler presentation, allowing both mean Z500 and HF variance fields to be plotted on196

the same diagram, E′ and σf are normalised by σr.197

We apply the CBF method, outlined by Lee et al. (2019), to assess model fidelity198

in recreating large-scale variability. Briefly, this method regresses model output onto a199

reference EOF, derived from ERA-5 in this case, thereby generating an analogous PC,200

referred to as a CBF-PC. A model equivalent pattern is reconstructed by linearly regress-201

ing the CBF-PC onto anomalies at each grid cell, and resultant coefficients are scaled202

by the CBF-PC SD. Explained variance is defined as the ratio between the area-weighted203

temporal variance of a reconstructed spatio-temporal field and that of the full field. This204

method provides a consistent approach allowing for direct comparison with the obser-205

vational dataset.206

Large-scale variability assessed includes: the SAM, characterised by the first EOF207

of the Z500 deseasonalised anomalies south of 20°S; the Pacific South American patterns,208

PSA1 and PSA2, characterised by the second and third EOFs of the same Z500 anoma-209

lies, as per Fogt and Bromwich (2006); the asymmetrical component of the SAM (A-SAM),210

characterised by the leading EOF of the Z500 deseasonalised zonal anomalies – with the211

zonal-mean removed – south of 20°S, following the method of Campitelli et al. (2022);212

and Zonal Wavenumber-3 (ZW3), characterised by the first and second EOFs of merid-213

ional wind anomalies between 40°S and 70°S, as per Goyal et al. (2022).214

Similarly, to identify whether CMIP6 models capture the connections identified in215

Campbell and Renwick (2023, under review), we apply the CBF method to singular vec-216

tors specified by modes retrieved from an MCA applied to ERA-5. An MCA performs217

a singular value decomposition on the cross-covariance matrix of two fields, and extracts218

singular vectors in order of importance. Details of the MCA are given in Campbell and219

Renwick (2023, under review), and references therein. Spatial correlation between CBFs220

and their observational equivalents are calculated to quantify fidelity. A nine-point weighted221

smoothing function is applied to CBFs to remove residual spectral effects that obscure222

broad-scale patterns.223

3 Results224

3.1 Base State225

3.1.1 Storm Track Meridional Position226

Previous CMIP generations possessed a poleward bias in mean meridional position227

of the SH storm track (Kidston & Gerber, 2010); Priestley et al. (2020) and Bracegirdle228

et al. (2020) find this is almost neutralised in CMIP6. To verify these findings, we de-229

fine the storm track as the peak Z500 meridional gradient, and peak meridional HF vari-230

ance. Peak positions are provided in Table 2, along with meridional profiles in Figure231

1. Some spectral effects are still evident in the profiles despite smoothing, exhibiting noise-232

like variation.233

Generally, all ensemble members identify the reanalysis peak position to within 2°234

latitude. The ensemble mean meridional peak is only 0.3° equatorward of the ERA-5 cli-235

matological position for the zonal-mean Z500 meridional gradient peak, and the zonal-236

mean HF variance peak matches observations exactly. The ensemble mean Z500 merid-237

ional gradient profile is virtually indistinguishable from the ERA-5 profile, despite dif-238

fering peak positions. The shape of the ensemble mean HF variance profile is also highly239
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Figure 1. Meridional profiles for mean Z500 gradient and HF variance time-and-zonal mean

fields. Vertical lines mark the ensemble mean and ERA-5 peak positions.

similar to ERA-5, but there is a considerable difference in peak amplitude, indicating240

maximum zonal-mean HF variance is underestimated.241

The variance peak is consistently poleward of the Z500 gradient peak in both mod-242

els and ERA-5. This is perhaps indicative of zonal wind anomalies poleward drift reported243

by Lorenz and Hartmann (2001). Broadly, if a model exhibits a bias in one peak, so too244

does the other, suggesting the origin of the bias is linked to both fields. The lack of sta-245

tistical significance in the difference between ERA-5 peaks and the ensemble mean peak246

Table 2. Zonal-and-time-mean meridional peak positions of Z500 meridional gradient and HF

variance for all CMIP6 models.

Z500 Meridional Gradient (°S) HF Variance (°S)

ERA-5 51.2 53.0
MME Mean 50.9 53.0

ACCESS-CM2 49.6 52.4
ACCESS-ESM1-5 50.0 52.6
BCC-CSM2-MR 51.8 52.9
CanESM5 50.0 52.0
CESM2 52.1 53.4
CESM2-WACCM 52.1 53.3
CMCC-CM2-SR5 52.8 53.8
CMCC-ESM2 52.5 53.5
EC-Earth3 50.7 53.4
EC-Earth3-AerChem 49.4 53.4
EC-Earth3-CC 51.0 53.7
FGOALS-f3-L 49.5 52.5
GFDL-CM4 49.0 51.7
GFDL-ESM4 50.3 52.7
HadGEM3-GC31-MM 48.5 51.6
MPI-ESM-1-2-HAM 48.2 51.8
NESM3 51.9 53.5
NorCPM1 53.1 54.4
NorESM2-MM 52.5 54.0
SAM0-UNICON 52.6 54.1
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agrees with Priestley et al. (2020) – the bias in CMIP6 is largely neutralised. Bracegirdle247

et al. (2020) identify a 0.6° equatorward bias, whereas we find a 0.3° equatorward bias248

in one peak and no bias in the other. This difference is probably due to a difference in249

the definition of the storm track meridonal position – they use the Jet Latitude Index250

(JLI) defined by peak zonal-mean winds.251

3.1.2 Spatial Variability and Seasonality252

Taylor diagrams encapsulate a model’s ability to represent spatial patterns and vari-253

ability of a given field. We present Taylor diagrams for seasonal data of both Z500 and254

HF variance climatological fields (Figure 2). Each model performs well overall for both255

fields, with high correlations and relatively low E′ in each case. Performance is weaker256

in the HF variance field; however, pattern correlation remains above 0.95 in all cases.257

Whereas no model scored below 0.99 in the Z500 field, and SDs are clustered around the258

reference value, suggesting the climatological Z500 field is well-captured across seasons.259

Models are considerably weaker in representing HF variance spatial variability. Except-260

ing some models in spring, variability is universally underestimated, with some σf al-261

most half that of ERA-5 (see Figure 2). There is also considerable spread of HF vari-262

ance SDs.263

Figure 2. Taylor diagrams for seasonal data. The HF variance field is shown in blue, the

mean Z500 field in red, with the MME mean emboldened. Correlation between the model and

the reference field is given by the azimuthal angle, field standard deviation, σf , by radial distance

from the origin, and centered RMSE is proportional to the distance from the reference point (la-

belled ERA-5). Both SDs and centred RMSEs are presented in normalised units. The yellow arc

traces the surface of σf equal to 1.
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Figure 3. Spatial biases of the multi-model ensemble mean for the a) mean Z500 (m) and b)

high-frequency variance (m2) time-mean fields, relative to the ERA-5 reanalyses.

The ensemble mean is particularly strong in representing aspects of Z500 clima-264

tology, with a σf approximately equal to ERA-5, and near-perfect correlation in all sea-265

sons. The MME mean possesses a stronger correlation for HF variance than most en-266

semble members. Whereas σf is affected by the generally poor ensemble performance,267

yet retains 82% of the ERA-5 spatial variability. This trend is reflected across seasons.268

There is no clear seasonal variation in performance, indicating relative performance is269

consistent across seasons.270

3.1.3 Mean Field Spatial Biases271

To garner insight into regional differences, model biases from the ERA-5 climato-272

logical fields and temporal variability are derived, and the ensemble mean biases presented273

in Figures 3 and 4. Positive values indicate a higher model value (positive bias), and neg-274

ative values indicate a lower model value (negative bias). Biases for ensemble members275

are not shown, but some details are discussed.276

Most models possess maximum biases on the order of 100m in the mean height field,277

and 3000m2 in the HF variance field, although models of better-than-median performance278

have biases around 50m and 2000m2. Recurring biases are found in the Z500 field of many279

ensemble members, such as a positive bias over the mid-Atlantic Ocean, and a negative280

bias off the south coast of Australia. These common biases persist in the ensemble mean281

(Figure 3a) – although with weaker amplitude than any ensemble member – indicating282

these are systematic biases. The bias south of Australia is located approximately between283

two oppositely-signed temporal SD biases, seen in Figure 4. Whether these are connected284

is unclear. The upstream positive bias would suggest models have greater fluctuating Z500285

fields in this region, whereas the downstream negative bias, about 30% of the size, would286

imply less variation in the Z500 field. This is slightly upstream of the Amundsen Sea re-287

gion (ASR), a particularly active region for propagating Rossby waves – its possible there288

may be some link.289

Models display a near universal bias toward weaker HF variance over the expected290

storm track position. This is strongest over the Atlantic and Indian oceans, where ERA-291

5 results indicate the storm track is strongest (see Figure 1 in Campbell and Renwick292

(2023, under review)). Model consensus translates into the MME mean (Figure 3b), where293

the Indian Ocean bias is substantial, around 2000m2. There is a weaker HF variance ab-294

solute bias over the Pacific; however, this coincides with weaker storm activity. HF vari-295

ance magnitude in the Pacific is around 14% less than ERA-5, 22% less in the Indian296

Ocean, indicating storm activity is underestimated in CMIP6 on a hemispheric scale. Along-297
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Figure 4. As with Figure 3, but for temporal standard deviations. The temporal SDs are

calculated using the monthly mean of each field, over the sample periods of the reanalyses (1979-

2021) and CMIP6 models (1972-2014).

side this, Figure 4b shows HF variance temporal variability of the storm track is also weaker,298

implying the magnitude of passing storms is underestimated. Taken together, this strongly299

suggests the magnitude of the storm track is widely underestimated in CMIP6.300

3.2 Common Basis Functions301

3.2.1 Large-scale Modes of Variability302

To investigate model fidelity in representing large-scale variability pertinent to the303

storm track, we reconstruct spatial patterns by regressing model anomalies onto a ref-304

erence EOF to generate CBFs. The modes of variability studied include the A-SAM –305

identified by Zhang et al. (2022) to be an area of weakness in CMIP6 – the PSA1 and306

PSA2 patterns – closely related to the ENSO teleconnection – and ZW3, which plays307

a dominant role in SH circulation patterns and is expected to have a role in guiding baro-308

clinic eddies. Figure 5 presents the CBFs for the ensemble mean and the reference EOFs309

from the ERA-5 reanalysis. The MME mean displays high fidelity for all phenomena,310

as does each model, indicating improvements have been made from the CMIP5 gener-311

ation (Lee et al., 2019). Ensemble CBFs are provided as supplementary material (Fig-312

ures S1-S6, supplementary material).313

For the SAM, spatial correlation is high for all ensemble members, with a minimum314

of 0.96 (Figure S1, supplementary material). The ensemble mean has near perfect cor-315

relation at 0.99, and low E′. Some models tend to exaggerate the spatial coherence in316

the annulus surrounding the central polar region, with greater variance in the Pacific.317

The Atlantic mid-latitude maximum appears to be displaced eastward, which, combined318

with the more zonally symmetric polar region – both identifiable in the MME mean in319

Figure 5 – indicates models exaggerate zonal symmetry, or perhaps a summer-like pat-320

tern dominates. Those CBFs with a central region protruding over the ASR, similar to321

ERA-5, tend to have higher correlations.322

Zhang et al. (2022) find the A-SAM is poorly represented by CMIP6 models. Upon323

inspection of the ensemble SAM CBFs (Figure S1, supplementary material), the con-324

figuration over the ASR appears quite variable – some appear overly symmetrical, oth-325

ers with exaggerated asymmetry. However, this trend is not identified in the A-SAM CBFs,326

and correlations and RMSEs are universally strong (Figure S2, supplementary material),327

translating into a pattern correlation of 0.99 for the ensemble mean (Figure 5). We in-328

spect only annual data, whilst Zhang et al. (2022) subset into seasons. However, they329
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Figure 5. MME mean CBFs characterising circulation variability modes, paired with the

original ERA-5 EOFs for reference. Spatial correlation and centred RMSE between the two are

provided. Values below a specified magnitude are masked for: the SAM (|10m|); A-SAM (|10m|);
PSA1 (|15m|); PSA2 (|15m|); ZW3 EOFs (|0.5ms−1|).

apply an EOF analysis to each model and find the ensemble mean amplitude is consid-330

erably weaker, with comparatively lower pattern correlations. Maximum A-SAM mag-331

nitude for both ERA-5 and the ensemble mean, derived through the CBF method, is com-332

parable, 69.3m and 67.4m, respectively. Whether the CBF method finds similar results333

across seasonal data should be the subject of a future study.334

The PSA1 and PSA2 patterns are well simulated, with high correlations and low335

RMSE, although the spread is greater than SAM and A-SAM CBFs. There is some vari-336

ability in the location and extent of the wave train extrema in the ensemble CBFs (Fig-337

ures S3 and S4, supplementary material). This may be linked to several causes, includ-338

ing differences in source location. Quasi-stationary wave activity is less geographically339

locked in the SH, due to the minimal land mass, thus allowing for greater variability. This340

effect is smoothed over in the MME mean, whose extrema are effectively collocated with341

the reference EOF, retrieving correlations of 0.98 and 0.97 for PSA1 and PSA2, respec-342

tively. The EOFs related to ZW3 are simulated with similarly high fidelity, with the en-343

semble mean possessing a correlation of 1.00 to 2 s.f.344

3.2.2 Connections Between LF and HF Variability345

Leading annual CBFs of the mean Z500 and HF variance fields indicate CMIP6 mod-346

els are universally strong in capturing the dominant role of the SAM. Pattern correla-347

tion for each ensemble member is above 0.80 in both fields, although the Z500 CBFs gen-348

erally record higher correlation. This can be seen in the ensemble mean in Figure 6 (an-349

nual mode 1), with correlations of 0.87 and 0.82 for the Z500 and HF variance CBFs,350

respectively. Steep Z500 meridional gradients – where contours are densely populated351
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Figure 6. Leading three CBFs of mean Z500 and HF variance fields for the ensemble mean,

for annual data and by season, generated from rotated ERA-5 singular vectors. The mean Z500

field is indicated by the contours (10m intervals), positive contours are solid and negative dashed.

HF variance is shown as the colour fill, blue indicating increased HF variance and brown de-

creased variance. HF variance below |150m2| is masked.

– align with the storm track, suggesting the relationship between baroclinicity and height-352

ened storm activity is well-captured.353

This picture is consistent across seasons, with SAM seasonality relatively well-captured354

in the Z500 field, particularly the varying asymmetrical component. However, the storm355
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track undergoes minimal seasonal variation, and remains broad and coherent even in JJA356

(see Figure 6, JJA mode 2), when the storm track has a broken appearance according357

to canonical seasonality (Hoskins & Hodges, 2005). This is expressed by the markedly358

lower pattern correlation in seasons where storm track asymmetry is pronounced: 0.71359

and 0.66 in MAM and JJA, respectively. Note that the ENSO teleconnection- and SAM-360

like modes are reversed in order in JJA, in accordance with the retrieved modes in Fig-361

ure 2 in Campbell and Renwick (2023, under review).362

The ENSO teleconnection in the second CBFs is similarly well-captured, with the363

broad-scale pattern present in all ensemble members (Figure S7, supplementary mate-364

rial). This pattern – a wave train pattern across the Pacific with a low centred over the365

ASR, and leading and trailing highs – persists in the ensemble mean, with high pattern366

correlations (see Figure 6, annual mode 2). Correlations are weaker than the leading CBFs,367

though the regional nature of the teleconnection likely contributes. Alignment of the ASL368

with heightened storm activity in the Pacific mid-latitudes is captured across ensemble369

members; however, the response of the HF variance field is much wider than ERA-5 sug-370

gests, with a weak HF variance pervading the rest of the hemisphere, collocated with the371

storm track.372

Teleconnection seasonality is reasonably well represented in the Z500 field, with a373

clear SAM-like response in both fields in DJF, and more wave train-like patterns in other374

seasons. Across the seasons, a ring of HF variance is present, unlike in ERA-5. This ring375

is particularly strong in DJF, and the correlation drops as low as 0.44. Despite this fea-376

ture being part of canonical seasonality, it seems to be exaggerated by CMIP6 models,377

so too is the depth of the ASL.378

Ensemble members tend to capture the ZW3 patterns in the third seasonal CBFs379

(see, for example, SON mode 3 in Figure 6), and pattern correlations remain high. The380

weaker ZW3 signal in DJF is representative of ERA-5, likely linked to weakened Rossby381

wave propagation during these months. Note, there is no physical reason for the sign of382

the HF variance to reverse between seasonal and annual data, but is arbitrarily assigned383

when singular vectors are retrieved from the ERA-5 MCA. The HF variance ring encir-384

cling the pole is visible in all CBFs, and is not found in ERA-5 modes.385

The explained variance (EV) of HF variance singular vectors, derived through the386

CBF method, is fairly stable – around 10% for the first three CBFs – suggesting the im-387

portance of HF variance modes of co-variability does not diminish, in direct contrast to388

ERA-5. On the other hand, the EV of Z500 CBFs decreases from an average 28% in the389

leading CBF, 16% in the second, and 5% in the third CBF.390

4 Conclusion391

We have considered output from the CMIP6 programme to assess model perfor-392

mance in representing the SH storm track and associated large-scale variability. We char-393

acterised model base state, and applied the CBF method to EOFs and MCA modes to394

assess fidelity in representing pertinent modes of variability, and connections between395

the Z500 and HF variance fields. We find CMIP6 models are generally of high fidelity396

to the ERA-5 reanalysis in capturing Z500 climatology and large-scale variability. The397

baroclinic connection between the fields – alignment of steep meridional Z500 gradients398

with increased storm activity – is broadly replicated, so too the organising roles of the399

SAM and ENSO teleconnection. However, a considerable failure of CMIP6 models is in400

capturing the magnitude and variability of the storm track, particularly the asymmet-401

rically strong activity in the Indian Ocean. Our results indicate the importance of the402

storm track is widely underestimated.403

The ensemble mean is markedly superior to ensemble members in capturing Z500404

climatology, performing at well above the median in all relevant metrics (see Figure 7).405
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This suggests model-specific errors are compensated for by the ensemble mean. No sig-406

nificant biases were found in storm track position, in agreement with Priestley et al. (2020)407

and Bracegirdle et al. (2020). Meridional profiles are almost exactly alike, although max-408

imum zonal-mean HF variance is considerably underestimated. CBFs of large-scale vari-409

ability show universal strong correlation with EOFs derived from the ERA-5 reanaly-410

sis, suggesting models successfully capture patterns of LF variability. One caveat with411

the CBF method is the potential positive bias introduced by using metrics quantifying412

spatial likeness and variability, when the derivation spatially constrains patterns by re-413

gressing onto a reference field, but this effect is not explored in detail here.414

Figure 7. Portrait plot of relative model error for the climatological Z500 and HF variance

climatological fields, as well as CBFs for the large-scale variability. Relative error is derived by

dividing by median model bias. The error from the two ZW3 CBFs are averaged and presented

here as a single value. A negative (red) value indicates better than median performance.

High pattern correlations of leading CBFs suggest all model-derived field anoma-415

lies strongly map onto the modes derived from the ERA-5 MCA (Figure 6). This indi-416

cates the SAM retains its role in organising HF variability on a hemispheric scale. This417

result is reinforced by the appearance of the SAM as the leading mode in an MCA ap-418

plied directly to model output (Figure S8, supplementary material). However, the sta-419

ble EV in HF variance CBFs suggests its relative importance does not diminish through-420

out the first three modes. This may be linked to the reduced temporal variability, as seen421

in Figure 4, perhaps implying storm activity manifests in an overly consistent and sym-422

metrical fashion, in spite of LF variability, and the growth and cessation of passing storms423

is not well-captured.424

The second CBFs (Figures 6 and S7, supplementary material) indicate Rossby wave425

activity over the Pacific is fairly well-captured. Results from the direct MCA (Figure S8,426
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supplementary material) shows considerable variability in the location of Rossby wave427

trains over the Pacific; however, considering the strong mapping of model anomalies onto428

the ERA-5 Z500 singular vectors, this may be a consequence of the dependence of an MCA429

on sample size, rather than representative of principal locations of the ENSO telecon-430

nection. Given the Pacific sector is a particularly active region for propagating Rossby431

waves, it is uncertain whether the high pattern correlations in the second CBFs are en-432

tirely due to the ENSO teleconnection.433

Performance is relatively poor across the ensemble in HF variance spatial and tem-434

poral variability, and climatological field biases. This appears to be linked to a hemispheric435

underestimation of HF variance, particularly over the Indian Ocean. Two models with-436

out large HF variance biases, BCC-CSM2-MR and NESM3, are similarly unique in over-437

estimating HF variance spatial variability. Likewise, models with diminished spatial vari-438

ability are also those with the largest bias in the Indian Ocean, greater than |4000m2|.439

Why it is that the BCC-CSM2-MR and NESM3 models simulate greater HF variance440

is unclear, but it seems to have no relation to nominal resolution; this might be the sub-441

ject of future study.442

The zonal asymmetry of the storm track, as described in Hoskins and Hodges (2005),443

is not well-captured. Figure 2 shows HF variance spatial variability is much lower than444

the reanalysis, and the asymmetrical biases – a stronger bias in the Indian Ocean rel-445

ative to the Pacific (Figure 3) – serve to homogenise the storm track, hence smaller spa-446

tial SDs, as well as generally underestimating storm activity. Temporal SD biases sim-447

ilarly indicate the amplitude of eddy activity is underestimated. The poor performance448

in these metrics strongly suggests there is a systematic bias in underrepresenting the role449

of the storm track, which could have severe consequences for global circulation patterns450

in ESMs, including the poleward transport of heat and momentum. The impact of this451

bias on energy transport and circulation patterns will be the subject of a future study.452

Typical length-scales of the downstream development process would suggest the453

biases in the mean Z500 and HF variance fields (Figure 3) are unlikely to be connected,454

as they are well separated. More likely, the Z500 biases are connected with regional dy-455

namics. The HF variance bias is hemispheric, and likely caused by a failure to capture456

the relevant physics, such as intensification processes (Priestley et al., 2020). Consistent457

alignment between steep meridional gradients and increased storm activity indicates baro-458

clinic processes of the storm track are relatively well-captured in CMIP6. Chemke et al.459

(2022) suggest observations of increasing EKE is due to positive trends in barotropic growth460

rates caused by changes in meridional zonal-wind structure, which, they find, CMIP6461

models fail to capture. The momentum convergence around the flanks, caused by prop-462

agating eddies feeding momentum back into the storm track (Lorenz & Hartmann, 2001),463

is also poorly represented (Chemke et al., 2022), which likely contributes to reduced eddy464

activity. A critical systematic bias such as this casts considerable doubt as to the valid-465

ity of storm track projections.466

Open Research Section467

The ERA-5 data is freely available from the ECMWF Copernicus Online Data Store at468
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.gsfc.nasa.gov/datasets?project=MERRA-2. Model output is available at the the ESGF470
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. . . Tréguier, A.-M. (2021). Framing, Context and Methods. In V. Masson-500

Delmotte et al. (Eds.), Climate Change 2021: The Physical Science Basis.501

Contribution of Working Group I to the Sixth Assessment Report of the In-502

tergovernmental Panel on Climate Change (pp. 147–286). Cambridge, United503

Kingdom and New York, NY, USA: Cambridge University Press.504

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., . . .505

Rummukainen, M. (2013). Evaluation of Climate Models. In T. Stocker et506

al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution507

of Working Group I to the Fifth Assessment Report of the Intergovernmental508

Panel on Climate Change. Cambridge, United Kingdom and New York, NY,509

USA: Cambridge University Press.510

Fogt, R. L., & Bromwich, D. H. (2006, March). Decadal Variability of the ENSO511

Teleconnection to the High-Latitude South Pacific Governed by Coupling512

with the Southern Annular Mode. Journal of Climate, 19 (6), 979–997. doi:513

10.1175/JCLI3671.1514

Fogt, R. L., & Marshall, G. J. (2020). The Southern Annular Mode: Variability,515

trends, and climate impacts across the Southern Hemisphere. WIREs Climate516

Change, 11 (4), e652. doi: 10.1002/wcc.652517
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1. Ensemble Common Basis Functions

Figure S1. CBFs characterising the Southern Annular Mode (SAM) for all CMIP6 ensemble

members. Presented here as colour fill, values below a magnitude of |10m| are supressed.
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Figure S2. As with Figure S1, but for the asymmetrical SAM, values below a magnitude of

|10m| are supressed.
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Figure S3. As with Figure S1, but for the Pacific South American pattern 1; values below a

magnitude of |15m| are supressed.

March 9, 2023, 12:01pm



CAMPBELL AND RENWICK: CMIP6 FIDELITY IN CAPTURING THE SH ST X - 5

Figure S4. As with Figure S1, but for the Pacific South American pattern 2; values below a

magnitude of |15m| are supressed.
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Figure S5. As with Figure S1, but for the Zonal Wave 3, first EOF, values below a magnitude

of |0.5ms−1| are supressed.
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Figure S6. As with Figure S1, but for the Zonal Wave 3, second EOF, values below a

magnitude of |0.5ms−1| are supressed.
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Figure S7. Leading three CBFs of mean Z500 and HF variance fields for each ensemble

member for annual data, generated from rotated ERA-5 singular vectors. The mean Z500 field is

indicated by the contours (10m intervals), positive contours are solid and negative dashed. HF

variance is shown as the colour fill, blue indicating increased HF variance and brown decreased

variance. HF variance below |150m2| is masked.
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Figure S8. Leading three rotated singular vectors of mean Z500 and HF variance fields

from MCA on a monthly timescale, applied to each CMIP6 ensemble member. The mean Z500

field anomalies are indicated by the contours, positive contours are solid and negative dashed.

The associated storm track anomalies are shown as the colour fill, blue indicating increased HF

variance and brown decreased variance. Units are dimensionless so intervals indicate relative

magnitude only.
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