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Abstract

In this paper, we present a novel approach to improve the accuracy of TEC prediction through data augmentation. Prior works

that adopt various deep-learning-based approaches suffer from two major problems. First, from a deep model perspective: LSTM

models exhibit low performance on long-term data dependency, while self-attention-based methods ignore the temporal nature of

time series, which results in an information utilization bottleneck. Second, the existing TEC actual data is limited and existing

generative models fail to generate sufficient high-quality datasets. Our work leverages a two-stage deep learning framework for

TEC prediction, stage 1: a time series generative model synthesis of sufficient data close to real data distribution, and stage

2: an Anto-correlation-based transformer to model temporal dependencies by presenting series-wise connections. Experiment

on the 2018 TEC testing benchmark demonstrates that our method improves the accuracy by a large margin. The models

trained on synthetic data had a notably lower RMSE of 1.17 TECU, while the RMSE for the IRI2016 model was 2.88 TECU.

Our results show that the model significantly reduces monthly RMSE, displaying higher reliability in mid, high, low latitudes.

Our model shows higher reliability and significantly reduces monthly RMSE and latitude RMSE. However, although our model

performs better than IRI2016, low latitudes RMSE needs improvement, as values are generally above 2.5 TECU. This finding

has important implications for the development of advanced TEC prediction models and highlights the potential of transformer

models trained on synthetic data for a range of applications in ionospheric research and satellite communication systems.
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Key Points:6

• TEC Data augmentation: synthesizing TEC samples by feeding selected original7
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Abstract13

In this paper, we present a novel approach to improve the accuracy of TEC prediction14

through data augmentation. Prior works that adopt various deep-learning-based approaches15

suffer from two major problems. First, from a deep model perspective: LSTM models16

exhibit low performance on long-term data dependency, while self-attention-based meth-17

ods ignore the temporal nature of time series, which results in an information utiliza-18

tion bottleneck. Second, the existing TEC actual data is limited and existing generative19

models fail to generate sufficient high-quality datasets. Our work leverages a two-stage20

deep learning framework for TEC prediction, stage 1: a time series generative model syn-21

thesis of sufficient data close to real data distribution, and stage 2: an Anto-correlation-22

based transformer to model temporal dependencies by presenting series-wise connections.23

Experiment on the 2018 TEC testing benchmark demonstrates that our method improves24

the accuracy by a large margin. The models trained on synthetic data had a notably lower25

RMSE of 1.17 TECU, while the RMSE for the IRI2016 model was 2.88 TECU. Our re-26

sults show that the model significantly reduces monthly RMSE, displaying higher reli-27

ability in mid, high, low latitudes. Our model shows higher reliability and significantly28

reduces monthly RMSE and latitude RMSE. However, although our model performs bet-29

ter than IRI2016, low latitudes RMSE needs improvement, as values are generally above30

2.5 TECU. This finding has important implications for the development of advanced TEC31

prediction models and highlights the potential of transformer models trained on synthetic32

data for a range of applications in ionospheric research and satellite communication sys-33

tems.34

Plain Language Summary35

In this paper, we tackle the challenge of accurately predicting the changes in the36

Ionospheric total electron content, which is a critical aspect of the Earth’s space envi-37

ronment affecting communication and satellite positioning. To achieve this, we gener-38

ate additional TEC datasets that allow the model to better capture the underlying pat-39

terns in the TEC data, and build an Anto-correlation-based transformer to model the40

temporal dependencies by presenting series-wise connections. The results demonstrate41

that our proposed model is highly effective in predicting TEC on a global scale compared42

with the Transformer model and IRI2016 model.43

1 Introduction44

Ionospheric total electron content (TEC) is one of the significant elements among45

STEC (The slant total electron content which refers to the total number of electrons along46

a path between the radio transmitter to the receiver) for Global Navigation Satellite Ser-47

vice (GNSS), GPS signal propagation and applications, and their applications. Addi-48

tionally, L1 frequency acts as marginal sensitivity for 1 TECU causing a 0.163 range de-49

lay (Lastovicka et al., 2017). Industrial applications rely on good modeling and predic-50

tion of TEC including satellite navigation (Ratnam et al., 2018), precise point position-51

ing (Prol et al., 2018; Z. Li et al., 2019), and time-frequency transmission (Béniguel &52

Hamel, 2011). For the above, despite modeling long-term dependency for TEC is hard,53

researchers in different societies i.e. space physics and remote sensing proposed various54

works of literature for TEC forecasting(Feng et al., 2019).55

Recently there are mainly two directions of work for forecasting global TEC maps56

by the learning-based method. One direction works by following the pipeline that first57

predicts the spherical harmonic (SH) coefficients and then expands them to complete TEC58

maps. For example, (C. Wang et al., 2018) proposed an adaptive autoregressive model59

to predict the SH coefficients used in TEC map fitting, while (Iyer & Mahajan, 2023)60

uses both linear and polynomial autoregression coefficients of recent past data to fore-61

cast TEC over equatorial regions. (Liu et al., 2022) adopt a long short-term memory (LSTM)62
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network to forecast the SH coefficient to further predict the TEC maps. In (C. Wang63

et al., 2018) (SH) coefficients are predicted based on the autoregressive model, and the64

order of the autoregressive model is determined adaptively using the F-test method.65

Another stream of work lies in forecasting a sequence of global TEC maps follow-66

ing past given TEC maps without introducing any prior information. (Monte-Moreno67

et al., 2022) uses a nearest-neighbor algorithm to search the historical database for the68

dates of the maps closest to the current map and uses a prediction of the maps in the69

database. (Liu et al., 2020) adopt a convolutional neural network to extract features from70

past TEC maps, then predict the future TEC maps based on the extracted features. (Q. Li71

et al., 2022; Chen et al., 2019; Yang & Liu, 2022) proposes a generative adversarial net-72

work for TEC forecasting, which compose a generator to generate maps that are indis-73

tinguishable from real TEC maps and a discriminator trying to distinguish between the74

generated maps and real maps. This deep learning method can generate satisfactory iono-75

spheric peak structures at different times and geomagnetic conditions and can be used76

to predict the regional TEC over China two hours in advance(Q. Li et al., 2022). (H. Wang77

et al., 2022; X. Lin et al., 2022) adopt the spatiotemporal network model as a source for78

forecasting Total Electron Content (TEC) maps, this model is used to correct ionospheric79

delay and improve the accuracy of satellite navigation positioning, and forecast TEC at80

a global scale 24 hours in advance(Cesaroni et al., 2020). LSTM can also as an end-to-81

end TEC forecasting model, (Xia, Zhang, et al., 2022; Cherrier et al., 2017), near real-82

time TEC maps can be provided no more than 5 minutes after the observation time(Mendoza83

et al., 2019), and these maps can be used to estimate the GPS signal delay due to the84

ionospheric electron content between a receiver and a GPS satellite. The recent transformer-85

based method(M. Lin et al., 2022) uses the self-attention mechanism of the transformer86

structure is utilized to capture the long-term characteristics of the TEC in China.87

However, despite flourishing progress in the deep model for TEC forecasting, there88

are still challenges remaining. From the data perspective: First, to train a very deep model,89

for example, (Vaswani et al., 2017) needs a large-scale training dataset, and insufficient90

training data always causes over-fitting and further leads to lower performance on out-91

of-distribution testing samples. Second, VAE as a usual backbone for anomaly detection(Ha92

& Schmidhuber, 2018; Desai et al., 2021) scenarios has better abilities at synthesizing93

exceptional cases or creating datasets for cases such as the presence of outliers of change-94

points are necessary. From the backbone prediction model perspective: 1. recent RNN95

and LSTM-based model(Ruwali et al., 2020; Liu et al., 2022) exhibit unsatisfactory per-96

formance on modeling TEC maps’ long-term dependency, gradients of RNN models prop-97

agated over many stages tend to either vanish or explode so that the distance between98

relevant information and the point where it is needed becomes very large, and the ca-99

pacity of LSTM is limited that each unit of memory can affect every other unit in the100

memory with a learnable weight, this results in a number of learnable parameters in the101

model grow quadratically with the memory size, e.g. an LSTM with a memory of size102

64KB results in parameters of size 8GB. 2. Although transformer-based method(Xia, Liu,103

et al., 2022) adopting point-wise self-attention module can model long-term dependency104

without regard for the distance in either input or output sequences, point-wise self-attention105

only calculating the relation between scattered points lead to ignorance of the tempo-106

ral series dependencies, further causes information utilization bottleneck. We therefore107

ask, can we design a generative module such that we can synthesize inexhaustible sam-108

ples that are high-quality enough to be regarded as ”equal” as possible to a real distri-109

bution dataset? And can we design a prediction model which is expert in modeling both110

long-term dependencies and temporal series dependencies for long-time TEC series fore-111

casting? And ultimately, is pretrianed-model strong enough to outperform the over-fitting112

deep model on the TEC training set even when zero-shot?113

In our work, we proposed a novel two-stage approach for the TEC maps forecast-114

ing method by leveraging a generative model(Desai et al., 2021) with auto-correlation115
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transformer network(Vaswani et al., 2017) as the prediction model. In the first stage,116

The VAE model captures both the distribution of the features and the temporal rela-117

tionships in the data to generate the imitation samples. In the second stage, we use the118

auto-correlation transformer network as the prediction model to forecast the TEC maps.119

The auto-correlation transformer decomposes the time series into its trend-cyclical part120

and seasonal part to capture complex temporal patterns in long-context forecasting. The121

pre-trained auto-correlation transformer shows its robustness by outperforming other deep-122

learning models that suffer from overfitting. We summarize our contributions as follows:123

1. Firstly, by using the VAE model to synthesize imitation samples, we solve the124

dilemma of the insufficient high-quality training dataset for TEC forecasting.125

2. By using the auto-correlation transformer, our approach captures the complex126

temporal patterns in the TEC maps data, leading to more accurate forecasting results.127

3. By pre-training the auto-correlation transformer on the imitation samples, our128

approach improves the robustness and reduces overfitting, leading to better performance129

in the zero-shot testing scenario.130

The paper is organized as follows. The data source and preprocessing method are131

described in 3.1. The concrete method description is located at 2. The numerical exper-132

iment details, results, and analysis are demonstrated in 4. Finally, 5 exhibits the con-133

clusions, discussion, and future directions.134

2 Methods135

Our two-stage deep learning method mainly includes two steps. First, we synthe-136

size the sample efficiency by feeding the selected original TEC map dataset into a vari-137

ational auto-encoder(VAE) model(Desai et al., 2021). Second, we pre-train the auto-correlation-138

based transformer using the imitation samples without any further action on finetun-139

ing, and the empirical reference International Reference Ionosphere 2016 model (IRI2016)140

and 1-day BUAA model developed by (C. Wang et al., 2018) are chosen as the compar-141

ison model. In this section, we demonstrate the architecture of our generation model and142

prediction model, as well as their training processes. The pipeline of our method is shown143

in Figure 1.144

Figure 1. Overview of our pipeline. We introduce a two-stage synthesis and auto-correlation

method for TEC maps forecasting. The generation model TimeVAE takes the selected original

real dataset as input and captures both the distributions in features as well as the temporal re-

lationships to synthesize generated dataset. The prediction model is an auto-correlation-based

transformer that decomposes the series to learn complex temporal patterns in long-context fore-

casting. The pre-trained model shows its robustness by outperforming overfitting deep models in

a zero-shot testing manner.

Compared to RNN and LSTM, the Transformer and Auto-correlation-based Trans-145

former models have a lower computational complexity O(n2d), where n is the smaller146

sequence length and d is the dimensionality. Thus, we chose to utilize these models in-147

stead of RNN and LSTM models to achieve lower computational complexity. Consid-148
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ering sample efficiency, we generated the same amount of data as the original data, as149

we considered it to be an important factor. Additionally, we have also implemented data150

augmentation in our study, by generating original data twice. Instead of attempting to151

solve the model accuracy problem by generating an infinite amount of data, generating152

twice as much data gives us an attempt to improve the accuracy of the model on the data,153

and it turns out that this works actually. Therefore, an infinite multifold generation of154

data is not necessary and twice is enough for us.155

2.1 Generative model: TimeVAE156

TimeVAE Training Dataset. We consider each hourly TEC dataset to be an157

independent and identically distributed set of samples. The inputs consist of N i.i.d. sam-158

ples, where N represents the total number of hours in the TEC dataset. The spatial lon-159

gitude ranges from 180° west to 180° east with a resolution of 5° and the latitude ranges160

from 87.5° north to 87.5° south with a resolution of 2.5°. As a result, the global TEC map161

grid consists of 71 x 73 points, with 71 and 73 representing the latitude and longitude162

information of the TEC map at each hour, respectively, corresponding to different ge-163

ographical locations. The structure of the generation model is shown in Figure 2, where164

the input dataset array, represented as (N, 71, 73), is a 3-dimensional array. The lati-165

tude and longitude information of the TEC map at each hour, represented by 71 and 73,166

respectively, correspond to different geographic locations, while N represents the total167

number of samples.

Figure 2. The architecture of TimeVAE

168

TimeVAE Architecture. To adapt the generation model to the synthesis of iono-169

spheric TEC maps, we adopted an encoder-decoder VAE model. The encoder is to ex-170

tract the feature of the input i.e. a 3-dimensional array of size N×t×D, N for batch171

size, T for the number of time steps, and D for the number of feature dimensions, into172

a multivariate Gaussian distribution by passing the inputs through a series of convolu-173

tional layers with ReLU activation and a fully-connected linear layer. The encoder out-174

puts the parameters of the multivariate Gaussian which can be used to sample the la-175

tent vector z using the reparameterization trick. by taking the latent state vector z from176
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the multivariate Gaussian, The decoder first passes the latent vector through a fully-connected177

linear layer, then reshapes the data into a 3-dimensional array, and passes it through a178

series of transposed convolutional layers with ReLU activation. Finally, the data is passed179

through a time-distributed fully-connected layer to produce the final output, which should180

have the same shape as the original TEC map signal. The goal of the decoder is to gen-181

erate TEC maps that are as similar as possible to the original TEC maps, based on the182

information encoded in the latent vector ”z”.183

TimeVAE Loss Function. We train TimeVAE using the Evidence Lower Bound
loss(ELBO) function, which is written following:

ELBO = Eq(z|x;ϕ) [log(x | z; θ)]−DKL (q(z | x;ϕ)∥p(z; θ)) (1)

The process of BLBO loss actually is to reconstruct x given z sampled from q(z |184

x;ϕ). Specifically, the Right Hand Side is composed of two parts, and the first term is185

the log-likelihood of our data given z sampled from q(z | x;ϕ). The second term is the186

KL-Divergence loss between the encoded latent space distribution q(z | x;ϕ) and the187

prior distribution p(z; θ).188

2.2 Auto-correlation Based Transformer Architecture189

Modeling long-term time series forecasting for TEC maps is not easy: we have to190

handle the intricate temporal patterns. The original transformer architecture(Vaswani191

et al., 2017) adopts self-attention modules to calculate the correlation between scattered192

points but ignores the dependencies among sub-series. In contrast, our approach lever-193

ages an auto-correlation-based transformer(Wu et al., 2021) as a prediction model which194

enables series-wise connections to model dependencies between each sub-series and raises195

the information utilization. The architecture of the auto-correlation-based transformer196

is shown in Figure 3.197

Series Decomposition Block inherit the ideas from (Cleveland et al., 1990) sep-198

arate the long time series into two parts: trend-cyclical part and seasonal part, for the199

former reflects overall trend and fluctuations and the latter reflects the repeating pat-200

terns(seasonality) of the series respectively. The series decomposition block is deployed201

along the model as it goes deeper to capture complex patterns. For the input, TEC maps202

series X ∈ RI×d, where I is the length of the input series, and d is the number of fea-203

tures of the TEC map series. The concrete inner operation(Cleveland et al., 1990) for204

gathering two composed series is:205

Xt = AvgPool(Padding(X)) and Xs = X −Xt (2)

where Xt is the trend-clynical part, and Xs is the seasonal part. Within the inner op-206

eration, AvgPool(·) is a moving average pooling with the padding operation to keep the207

series length unchanged.208

Auto-correlation mechanism The auto-correlation mechanism is designed based
on the periodicity of the time series and aims to conduct the discovery and representa-
tion aggregation of dependencies at the sub-series level. The calculation of auto-correlation
involves shifting the time series by a certain tag and computing the correlation between
the original time series and the shifted time series. From stochastic process theory auto-
correlation Rxx(τ) is a time-delay similarity between original series {Xt} and its τ lagged
series {Xt−τ} which can be calculated by:

Rxx(τ) = lim
L→∞

L∑
t=1

XtXt−τ (3)

In the real-world application for TEC map predictions, we first project the embedding209

of TEC maps to get query Q, key K. A time delay aggregation block is then applied to210
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Figure 3. The architecture of auto-correlation-based transformer.
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roll the series based on the selected time delay, then we are able to aggregate the sub-211

series by softmax. Concretely we first get the arguments of TopK autocorrelations:212

τ1...τk = argTopkτ∈{1,...,L}(RQ,K(τ)) (4)

RQ,K is the autocorrelation between Q and K. After that, the series are fed into a soft-
max layer:

ˆRQ,K(τ1), ..., ˆRQ,K(τk) = SoftMax(RQ,K(τ1)...RQ,K(τk)) (5)

Then the Auto-correlation can be obtained by the relationship between the series213

and its time-delay shifted version. Roll(X, τ) the operation to shift the series {Xt} with214

time delay τ . The expression of auto-correlation is:215

Auto−correlation(Q,K, V ) =

k∑
i=1

Roll(V, τi)(R̂Q,K(τi)) (6)

2.3 Transformer Architecture216

The Transformer model consists of an encoder and a decoder. The encoder takes217

an input sequence and generates a sequence of hidden states, while the decoder takes the218

encoder output and generates a sequence of output tokens. Both the encoder and de-219

coder consist of multiple layers of self-attention and feedforward neural networks. The220

self-attention mechanism allows the model to attend to different parts of the input se-221

quence, while the feedforward neural networks enable the model to capture complex pat-222

terns in the data. We directly quote the model-building method mentioned in the ar-223

ticle (Vaswani et al., 2017) to build the Transformer model.224

Encoder: The encoder is composed of two sub-layers. The first is a multi-head225

self-attention mechanism, and the second is a simple, position-wise fully connected feed-226

forward network. The residual connection is around the two sub-layers, followed by layer227

normalization.228

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In229

addition to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer,230

which performs multi-head attention over the output of the encoder stack. Similar to231

the encoder, we employ residual connections around each of the sub-layers, followed by232

layer normalization. We also modify the self-attention sub-layer in the decoder stack to233

prevent positions from attending to subsequent positions. This masking, combined with234

the fact that the output embeddings are offset by one position, ensures that the predic-235

tions for position i can depend only on the known outputs at positions less than i.236

Multi-headed Self-Attention (MSA): Multi-head self-attention allows the model
to jointly attend to information from different representation subspaces at different po-
sitions. With a single attention head, averaging inhibits this. The basic structure is the
same as self-attention, but when operating, it is divided into multiple heads, and then
the self-attention calculation is carried out in parallel, and then the output vectors are
finally spliced together, where different heads will learn different levels of knowledge.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (7)

Where head = Attention(QWQ
i ,KWK

i , V WV
i ), and the projections are parameter ma-237

trices WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel ×dk ,WV
i ∈ Rdmodel ×dv and WO ∈ Rhdv×dmodel . .238

Positional Encoding This part is used to inject some information about the rel-
ative or absolute position tokens from the TEC sequence. tokens in the sequence. To this
end, we add ”positional encodings” at the bottoms of the encoder and decoder stacks.
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The positional encodings have the same dimension dmodel as the embeddings so that the
two can be summed. There are many choices of positional encodings, learned and fixed
[9]. In this work, we use sine and cosine functions of different frequencies:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (8)

where pos is the position and i is the dimension. That is, each dimension of the239

positional encoding corresponds to a sinusoid.240

3 EXPERIMENTS241

Our aim is to achieve two primary objectives. Firstly, we employ TimeVAE to en-242

hance our capability of producing credible TEC time-series dataset samples when we have243

a shortage of actual TEC datasets for model training. Secondly, we seek to train advanced244

time forecasting models, specifically the Transformer and Auto-Correlation Transformer,245

using these generated samples. These two models, Transformer and Auto-Correlation246

Transformer are the most advanced models in long-series time forecasting. Finally, we247

will evaluate the accuracy of both prediction models and present our findings. To achieve248

this, we have prepared three different training datasets names ori data, gen once, and249

gen twice. The advantage of TimeVAE is that it learns the distribution of TEC datasets,250

allowing us to generate multiple TEC datasets. This enables us to produce theoretically251

unlimited datasets even in the absence of sufficient real data.252

3.1 Data Source and Processing253

In this paper, we use the dataset called global ionospheric TEC data, which is gen-254

erated by the standard Ionosphere map exchange format (IONEX) file format which is255

provided by International GNSS Service (IGS). TECU stands for ”Total Electron Con-256

tent Unit” and is a unit of measurement for the ionosphere TEC. TECU is defined as257

the number of free electrons that would be present in a one square meter column of unit258

cross section extending from the Earth’s surface to the top of the ionosphere if all the259

free electrons were concentrated in a single point. We conduct experiments with three260

distinct training datasets, namely ori data, gen once, and gen twice. Here is the descrip-261

tion of the experiment datasets:262

1) ori data: The global ionospheric TEC data is generated by the standard Iono-263

sphere map exchange format file format which is provided by IGS. We processed264

datasets into a 4-dimensional time series sequence (number, 24, 71, 73). The lon-265

gitude dimension consists of 73 points, spanning from 180° west longitude to 180°266

east longitude with a resolution of 5°. The latitude dimension consists of 71 points,267

ranging from 87.5° north latitude to 87.5° south latitude with a resolution of 2.5°.268

The scale of the global TEC map grid points is 71 × 73. 24 means the total amount269

hourly for the time resolution of 1 hr each day, and number represents the total270

number of days in the time range from January 1, 1998 to December 31, 2017.271

2) gen once: We generated synthetic data as the second dataset, which has been272

confirmed to have a high similarity to the original dataset ori data with an iden-273

tical size.274

3) gen twice: We generated ori data twice repeatedly, each time we obtained an iden-275

tical dataset with ori data. Finally, the gen data dataset consists of two synthetic276

data, which are twice the size of the original data ori data.277

During the real training model process, 90% of each of the above mentioned datasets are278

utilized for training while the remaining 10% is used for validation purposes.279
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3.2 Generated Samples280

T-SNE (t-Distributed Stochastic Neighbor Embedding) is a machine learning al-281

gorithm for non-linear dimensional reduction developed by Laurens van der Maaten and282

Geoffrey Hinton(Van der Maaten & Hinton, 2008). It is used to reduce high-dimensional283

data into a lower-dimensional space for visualization or machine learning. t-SNE works284

on the principle of minimizing the divergence between a distribution of actual data points285

in high dimensional space and a distribution of corresponding points in a lower dimen-286

sional space. This is done by mapping the data points to a probability distribution in287

the lower dimensional space.288

We use these comparison metrics proposed in (Yoon et al., 2019) to assess the qual-289

ity of the synthetic data. The lower the discriminative score, the better performance. The290

abscissa (x-axis) and ordinate (y-axis) of t-SNE represent the positions of data points291

in a low-dimensional space. The t-SNE algorithm is designed to map high-dimensional292

data to a low-dimensional space, typically two or three dimensions, for visualization pur-293

poses. In t-SNE, each data point in the input dataset is represented as a point in the294

low-dimensional space, and the similarity between data points in the high-dimensional295

space is preserved as the distance or closeness between points in the low-dimensional space.296

The discriminator score of generating the TEC dataset is 0.0035±0.007, which demon-297

strates the high correlation between synthetic data and original data and TimeVAE per-298

forms well in generating synthetic data. Figure 4 displays the t-SNE charts of data gen-299

erated from the generator TimeVAE. The TimeVAE generated data consistently shows300

heavy overlap with original data.301

Figure 5 and figure 6 present the comparison of the TEC provided by IGS and gen-302

erated by the model TimeVAE at six randomly selected time points. The top row dis-303

plays TEC maps provided by IGS, while the bottom row shows TEC maps generated304

by the TimeVAE model. Six randomly selected time points are labeled at the top of each305

map, highlighting the comparison between the two sources. The comparison showcases306

the accuracy of the TimeVAE model in TEC mapping, as well as its potential for use307

in ionosphere research and satellite-based communication systems.308

3.3 Forecasting deep learning models.309

Evaluation metric. Root-mean-square error (RMSE) and percentage deviation
(PD) following are used to estimate the forecasting performance of the model. The lower
the RMSE value, the better the model’s accuracy in prediction. In essence, RMSE rep-
resents the average magnitude of the errors in the predictions made by a model. The per-
centage deviation score is calculated by taking the absolute difference between the pre-
dicted value and the actual value, divided by the actual value, and multiplied by 100.

RMSE =

√√√√ 1

N

N∑
i=1

(TECori − TECpred )
2

(9)

PD =
1

N

N∑
i=1

|TECori − TECpred |
TECori

(10)

where N is the total number of data samples, TECori and TECpred are the ob-310

served value and forecasting value, respectively.311

4 Forecasting Models Performance and Results Analysis312

Our study trains two models, Auto-correlation-based Transformer and Transformer313

models, using three different datasets: original data, once-generated synthetic data, and314
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Figure 4. The visual t-SNE plots of generated and original data from 1998 to 2017. Red is

for original data and blue is for synthetic data. Higher overlap rates represent higher similarity.

The x-axis and y-axis of t-SNE represent the positions of data points(number, 24, 73, 71) in a

two-dimensional space.

twice-generated synthetic data (ori data, gen once, and gen twice). We evaluate the Root315

Mean Squared Error (RMSE) of the total of six trained models in the years 2018, 2019,316

and 2020, as well as the RMSE of the IRI2016 model in 2018. Furthermore, we assess317

the RMSE and percentage deviation (PD) scores of the models in high, low, and mid-318

dle latitudes to compare their predictive capabilities.319

4.1 Traning Set and Testing set Results Analysis320

In table 1, we compared the RMSE of IRI2016, 1-day BUAA, Transformer, and Auto-321

correlation-based transformer models during 2018. We find that our Transformer based322

models to be superior to the IRI2016 model and 1-day BUAA model. for example, the323

RMSE of the Auto-correlation-based transformer model is 1.55 TECU, which is 0.52 TECU324

less than 1-day BUAA and 1.33 TECU less than IRI2016 model. As presented in Ta-325

ble 2, the RMSE scores of all models (Auto-correlation-based Transformer, Transformer)326

trained on different datasets demonstrate that our models trained using synthetic data327

outperform the IRI2016 model and 1-day BUAA model. Additionally, it is observed that328

the more synthetic data used for model training, the better the model performance. For329
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Figure 5. Comparison between the global total electron content map provided by Interna-

tional GNSS Service and generated by TimeVAE model for three stochastic times.

Figure 6. Comparison between the global total electron content map provided by Interna-

tional GNSS Service and generated by TimeVAE model for three stochastic time.

instance, the Auto-correlation-based Transformer trained using twice-generated synthetic330

data increases the RMSE of the IRI2016 model from 2.88 to 1.17 in 2018. In compar-331

ison to the Auto-correlation-based Transformer trained with once-generated synthetic332

data, the model trained with twice-generated synthetic data has a better performance333

with RMSE scores of 0.86 and 1.21 in 2019 and 2020 respectively. The Auto-correlation-334

based Transformer model trained with gen twice data outperforms the other six mod-335

els in forecasting TEC from 2018 to 2020. Compared to the model trained with origi-336

nal data, the Auto-correlation-based Transformer model trained with generated data sig-337

nificantly improves its RMSE from 1.55 to 1.17 in 2018, 1.48 to 0.86 in 2019, and 1.58338

to 1.21 in 2020. Additionally, the Auto-correlation-based Transformer model demonstrates339

better performance than the Transformer model in certain years from 2018 to 2020.340

–12–



manuscript submitted to Enter journal name here

Table 1. The accuracy RMSE scores on four different training models (IRI2016 model, 1-day

BUAA, Auto-correlation-based transformer, Transformer) during 2018.

Models IRI2016 model 1-day BUAA Auto-correlation-based transformer Transformer

RMSE 2.88 2.07 1.55 1.37

Table 2. Multivariate accuracy RMSE scores on three different training datasets with the pre-

trained models. Training datasets include ori data, gen once, and gen twice, and ori data means

IGS TEC datasets from 1998 to 2017, gen once means the generated datasets from 1998 to 2017

and gen twice means generated dataset twice from 1998 to 2017. The best performances are in

bold, a lower RMSE score indicates a better prediction.

Models Training datasets
RMSE (TECU)
2018 2019 2020

Anto-correlation-based transformerr
ori data 1.55 1.48 1.58
gen once 1.22 0.91 1.25
gen twice 1.17 0.86 1.21

Transformer
ori data 1.37 1.08 1.96
gen once 1.31 1.00 1.75
gen twice 1.29 1.00 1.73

4.2 Comparison of Predictional TEC Maps341

We train the Auto-correlation-based transformer model and the Transformer model342

on multivariate training datasets and also evaluated their monthly root mean squared343

error (RMSE) during 2018 and 2020. As shown in Fig 8, we plotted the predicted TEC344

map and the original TEC map for January 3, 2020, with the top half coming from the345

original IGS data and the bottom half coming from our best-performing model Autoformer-346

correlation-based transformer. Fig 7 shows the TEC map on Five points in time on Jan-347

uary 3, 2019, which also compared the original real TEC map with the predicted TEC348

map. We assessed the monthly RMSE of the IRI2016 model in 2018 and compared it349

with the original data trained Transformer model and the original data trained Auto-350

correlation-based Transformer model in figure 9. The results indicate that both the Auto-351

correlation-based Transformer model and the Transformer model offer improved predic-352

tive capabilities when compared to the IRI2016 model.353

Figure 10 displays the monthly root mean squared error (RMSE) of the Auto-correlation-354

based Transformer model and the Transformer model trained on three different datasets355

in 2018. A ori data, A gen once and A gen twice represent Auto-correlation-based Trans-356

former model trained on ori data, gen once and gen twice respectively. And T ori data,357

T gen once, and T gen twice represent the Transformer model trained on ori data, gen once,358

and gen twice respectively. The results presented in Figure 10 demonstrate that the model359

trained with twice the amount of synthetic data performed better than the model trained360

with only the original data in 2018. Specifically, the Auto-correlation-based transformer361

model trained with gen twice performed more accurately than other models trained with362

only original data or gen once for all 12 months in 2018, with the best predictions oc-363

curring in June and October, and the biggest RMSE value being 1.175 occurring in month364

1. The worst model is the Transformer model trained by original data with an RMSE365

over 1.5 TECU but less than 2.0 TECU in every month of 2018.366
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Figure 7. The comparison between the TEC map of Auto-correlation-based transformer

trained by gen twice dataset and the TEC map of the real IGS on January 3, 2019.

Figure 8. The comparison between the TEC map of Auto-correlation-based transformer

trained by gen twice dataset and the TEC map of the real IGS on January 3, 2020.

Figure 9. The monthly averaged RMSE scores of two different models(Auto-Correlation

Transformer, Transformer) compared with the IRI2016 model with the same training datasets

during 2018.

The results from the comparison of prediction accuracy in 2020, as shown in Fig-367

ure 11, indicates that the Transformer model trained on the gen twice dataset achieved368
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the highest accuracy in predicting monthly TEC values. The RMSE values for all three369

models varied between approximately 1.4 TECU and 2.5 TECU throughout the year,370

with the best predictions occurring in October and November and the worst predictions371

occurring in July and August. In contrast, the Transformer model trained on the ori data372

is expected to perform poorly in every month of 2020 when compared to the other two373

dataset training models, having a high level of RMSE error. Additionally, in each month374

of 2020, the performance of the Transformer model trained on the gen twice dataset was375

slightly better than the model trained on the gen once dataset. Overall, the Transformer376

models performed best in October and November, with the lowest RMSE values among377

the 12 months in 2020.378

Figure 10. The monthly average RMSE scores for the Auto-Correlation Transformer models

and Transformer models trained on three different datasets (ori data, gen once, gen twice) during

2018. The labels for the figures begin with the letter ’A’ to represent the Auto-correlation-based

transformer model, while the letter ’T’ is used to represent the Transformer model.

Figure 11. The monthly RMSE values of the Tramsformer model trained on 3 dataset

(ori data, gen once, and gen twice) in 2020.
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Figure 12. The comparison of monthly RMSE values of the Auto-correlation-based trans-

former models trained on 3 datasets (ori data, gen once, and gen twice) in 2020.

The comparison of the prediction accuracy of the Auto-correlation-based transformer379

model in 2020 on three different training datasets in figure 12 shows that, similar to that380

of the Transformer model, the Auto-correlation-based transformer model trained on the381

gen twice dataset has the highest accuracy in predicting monthly TEC values. The RMSE382

values of the three models fluctuate between approximately 0.9 and 1.3 TECU through-383

out the year, with the best predictions in April and March. On the other hand, the Auto-384

correlation-based transformer model trained on the ori data performed the worst in ev-385

ery month of 2020, with slightly lower performance than gen once every month, with the386

RMSE values fluctuating between approximately 1.3 and 1.7 TECU throughout the year.387

4.3 Latitude Results Analysis388

Figure 13 illustrates the comparison of RMSE scores in different latitudes of two389

different models trained on three datasets (ori data, gen once, gen twice) during 2018,390

The first three models are Auto-correlation-based transformer models trained on ori data,391

gen once, and gen twice, while the next three are Transformer models trained on the same392

three datasets. The last model represented is the IRI2016 model. Our analysis reveals393

that all six training models outperform the IRI2016 model, as they exhibit lower RMSE394

scores in high, low, and middle latitudes. In low latitudes, we have achieved a signifi-395

cant improvement in RMSE from around 4 TECU to approximately 2.5 TECU. Out of396

the six training models, five of them achieved a lower RMSE score of about 2.5 TECU397

in low latitude, with the remaining Auto-correlation-based transformer model trained398

on twice synthetic data presenting the lowest RMSE score of around 0.8 TECU. The RMSE399

scores of the six training models in high and middle latitudes are consistently around400

1 TECU. It is noteworthy that the accuracy in high latitudes tends to be lower compared401

to that in middle latitudes for each of the models. The percentage deviation score is a402

measure of the deviation of a model’s predictions from the actual values in percentage.403

A lower percentage deviation score indicates more accurate predictions. Figure 14 dis-404

plays these results. As can be seen, all of the models perform best in the middle latitude,405

with a percentage deviation score of around 8% to 10%. This suggests that the models406

are generally more accurate in this latitude range Furthermore, Figure 14 indicates that407

the Auto-correlation-based Transformer model performed best in the middle latitude,408

with a percentage deviation score of 8.4%. In contrast, the Transformer model did not409

perform as well, with percentage deviation scores in the high latitude exceeding 17%. These410
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Figure 13. The averaged RMSE scores of all models with three different latitudes (high lati-

tude, middle latitude, low latitude) during 2018.

results demonstrate that the Auto-correlation-based Transformer model may be a bet-411

ter choice for predicting TEC values in certain latitude ranges.412

Figure 14. The DP scores of all models with three different latitudes (high latitude, middle

latitude, low latitude) during 2018.

5 Conclusion413

The Total Electron Content of the Earth’s ionosphere plays a critical role in the414

satellite-based communications system. In this study, we compare the performance of415

two transformer models trained on synthetic data with the widely used IRI2016 model416

and BUAA model in TEC prediction. We applied data enhancement to TEC forecast-417

ing and found that it was effective in improving the quality of predictions.418
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Our model has shown significant improvement in predicting TEC at mid and high419

latitudes. However, at low latitudes, the RMSE accuracy of our model is still above the420

desired value of 2.5 TECU, indicating the need for further improvement in this area. On421

the other hand, both the monthly RMSE and Latitude RMSE of our model outperforms422

the IRI2016 model. Our results show that the transformer model trained on synthetic423

data achieves higher accuracy and reliability in TEC prediction, with a significant RMSE424

reduction of 1.17 compared to 2.88 for the IRI2016 model. This finding has important425

implications for the development of advanced TEC prediction models and highlights the426

potential of transformer models trained on synthetic data for a range of applications in427

ionospheric research and satellite communication systems.428

Furthermore, when tested on 2018 prediction data, the Auto-correlation-based trans-429

former model using synthetic data exhibits an RMSE reduction of 0.38 TECU compared430

to the model trained on original data. We demonstrate that utilizing synthetic data can431

effectively enhance the prediction efficiency of the model, providing another avenue for432

enhancing the model’s accuracy. Moreover, with the same amount of data, models trained433

on synthetic data offer more accurate predictions than those solely using actual data.434

The use of synthetic data has several contributions to the study. First, it can effectively435

enhance the prediction efficiency of the model, improving the accuracy of TEC predic-436

tion, but would gradually saturate as the amount of data increases. Second, it offers a437

way to generate more data without the need for additional data collection, which is par-438

ticularly useful in cases where obtaining real data is difficult or expensive. Third, the439

study shows that models trained on synthetic data can outperform those trained on real440

data in terms of accuracy, indicating that synthetic data can provide a valuable alter-441

native for training machine learning models. The results demonstrate the great poten-442

tial of transformer models trained on synthetic data for a range of applications in iono-443

spheric research and satellite communication systems.444

6 Open Research445

The TEC GIMs provided by IGS is available from the website at "http://pub.ionosphere446

.cn/products/daily/" and the BUAA 1-day prediction data can be obtained from the447

website ("http://pub.ionosphere.cn/prediction/daily/").448
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TEC Series Forecasting3
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Key Points:6

• TEC Data augmentation: synthesizing TEC samples by feeding selected original7

TEC map datasets into a variational auto-encoder model.8

• Pre-train auto-correlation-based transformer and Transformer models using the9

imitation samples without any further action on fine-tuning.10

• Improved the accuracy of the predictive auto-correlation-based transformer mod-11

els through data augmentation.12
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Abstract13

In this paper, we present a novel approach to improve the accuracy of TEC prediction14

through data augmentation. Prior works that adopt various deep-learning-based approaches15

suffer from two major problems. First, from a deep model perspective: LSTM models16

exhibit low performance on long-term data dependency, while self-attention-based meth-17

ods ignore the temporal nature of time series, which results in an information utiliza-18

tion bottleneck. Second, the existing TEC actual data is limited and existing generative19

models fail to generate sufficient high-quality datasets. Our work leverages a two-stage20

deep learning framework for TEC prediction, stage 1: a time series generative model syn-21

thesis of sufficient data close to real data distribution, and stage 2: an Anto-correlation-22

based transformer to model temporal dependencies by presenting series-wise connections.23

Experiment on the 2018 TEC testing benchmark demonstrates that our method improves24

the accuracy by a large margin. The models trained on synthetic data had a notably lower25

RMSE of 1.17 TECU, while the RMSE for the IRI2016 model was 2.88 TECU. Our re-26

sults show that the model significantly reduces monthly RMSE, displaying higher reli-27

ability in mid, high, low latitudes. Our model shows higher reliability and significantly28

reduces monthly RMSE and latitude RMSE. However, although our model performs bet-29

ter than IRI2016, low latitudes RMSE needs improvement, as values are generally above30

2.5 TECU. This finding has important implications for the development of advanced TEC31

prediction models and highlights the potential of transformer models trained on synthetic32

data for a range of applications in ionospheric research and satellite communication sys-33

tems.34

Plain Language Summary35

In this paper, we tackle the challenge of accurately predicting the changes in the36

Ionospheric total electron content, which is a critical aspect of the Earth’s space envi-37

ronment affecting communication and satellite positioning. To achieve this, we gener-38

ate additional TEC datasets that allow the model to better capture the underlying pat-39

terns in the TEC data, and build an Anto-correlation-based transformer to model the40

temporal dependencies by presenting series-wise connections. The results demonstrate41

that our proposed model is highly effective in predicting TEC on a global scale compared42

with the Transformer model and IRI2016 model.43

1 Introduction44

Ionospheric total electron content (TEC) is one of the significant elements among45

STEC (The slant total electron content which refers to the total number of electrons along46

a path between the radio transmitter to the receiver) for Global Navigation Satellite Ser-47

vice (GNSS), GPS signal propagation and applications, and their applications. Addi-48

tionally, L1 frequency acts as marginal sensitivity for 1 TECU causing a 0.163 range de-49

lay (Lastovicka et al., 2017). Industrial applications rely on good modeling and predic-50

tion of TEC including satellite navigation (Ratnam et al., 2018), precise point position-51

ing (Prol et al., 2018; Z. Li et al., 2019), and time-frequency transmission (Béniguel &52

Hamel, 2011). For the above, despite modeling long-term dependency for TEC is hard,53

researchers in different societies i.e. space physics and remote sensing proposed various54

works of literature for TEC forecasting(Feng et al., 2019).55

Recently there are mainly two directions of work for forecasting global TEC maps56

by the learning-based method. One direction works by following the pipeline that first57

predicts the spherical harmonic (SH) coefficients and then expands them to complete TEC58

maps. For example, (C. Wang et al., 2018) proposed an adaptive autoregressive model59

to predict the SH coefficients used in TEC map fitting, while (Iyer & Mahajan, 2023)60

uses both linear and polynomial autoregression coefficients of recent past data to fore-61

cast TEC over equatorial regions. (Liu et al., 2022) adopt a long short-term memory (LSTM)62
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network to forecast the SH coefficient to further predict the TEC maps. In (C. Wang63

et al., 2018) (SH) coefficients are predicted based on the autoregressive model, and the64

order of the autoregressive model is determined adaptively using the F-test method.65

Another stream of work lies in forecasting a sequence of global TEC maps follow-66

ing past given TEC maps without introducing any prior information. (Monte-Moreno67

et al., 2022) uses a nearest-neighbor algorithm to search the historical database for the68

dates of the maps closest to the current map and uses a prediction of the maps in the69

database. (Liu et al., 2020) adopt a convolutional neural network to extract features from70

past TEC maps, then predict the future TEC maps based on the extracted features. (Q. Li71

et al., 2022; Chen et al., 2019; Yang & Liu, 2022) proposes a generative adversarial net-72

work for TEC forecasting, which compose a generator to generate maps that are indis-73

tinguishable from real TEC maps and a discriminator trying to distinguish between the74

generated maps and real maps. This deep learning method can generate satisfactory iono-75

spheric peak structures at different times and geomagnetic conditions and can be used76

to predict the regional TEC over China two hours in advance(Q. Li et al., 2022). (H. Wang77

et al., 2022; X. Lin et al., 2022) adopt the spatiotemporal network model as a source for78

forecasting Total Electron Content (TEC) maps, this model is used to correct ionospheric79

delay and improve the accuracy of satellite navigation positioning, and forecast TEC at80

a global scale 24 hours in advance(Cesaroni et al., 2020). LSTM can also as an end-to-81

end TEC forecasting model, (Xia, Zhang, et al., 2022; Cherrier et al., 2017), near real-82

time TEC maps can be provided no more than 5 minutes after the observation time(Mendoza83

et al., 2019), and these maps can be used to estimate the GPS signal delay due to the84

ionospheric electron content between a receiver and a GPS satellite. The recent transformer-85

based method(M. Lin et al., 2022) uses the self-attention mechanism of the transformer86

structure is utilized to capture the long-term characteristics of the TEC in China.87

However, despite flourishing progress in the deep model for TEC forecasting, there88

are still challenges remaining. From the data perspective: First, to train a very deep model,89

for example, (Vaswani et al., 2017) needs a large-scale training dataset, and insufficient90

training data always causes over-fitting and further leads to lower performance on out-91

of-distribution testing samples. Second, VAE as a usual backbone for anomaly detection(Ha92

& Schmidhuber, 2018; Desai et al., 2021) scenarios has better abilities at synthesizing93

exceptional cases or creating datasets for cases such as the presence of outliers of change-94

points are necessary. From the backbone prediction model perspective: 1. recent RNN95

and LSTM-based model(Ruwali et al., 2020; Liu et al., 2022) exhibit unsatisfactory per-96

formance on modeling TEC maps’ long-term dependency, gradients of RNN models prop-97

agated over many stages tend to either vanish or explode so that the distance between98

relevant information and the point where it is needed becomes very large, and the ca-99

pacity of LSTM is limited that each unit of memory can affect every other unit in the100

memory with a learnable weight, this results in a number of learnable parameters in the101

model grow quadratically with the memory size, e.g. an LSTM with a memory of size102

64KB results in parameters of size 8GB. 2. Although transformer-based method(Xia, Liu,103

et al., 2022) adopting point-wise self-attention module can model long-term dependency104

without regard for the distance in either input or output sequences, point-wise self-attention105

only calculating the relation between scattered points lead to ignorance of the tempo-106

ral series dependencies, further causes information utilization bottleneck. We therefore107

ask, can we design a generative module such that we can synthesize inexhaustible sam-108

ples that are high-quality enough to be regarded as ”equal” as possible to a real distri-109

bution dataset? And can we design a prediction model which is expert in modeling both110

long-term dependencies and temporal series dependencies for long-time TEC series fore-111

casting? And ultimately, is pretrianed-model strong enough to outperform the over-fitting112

deep model on the TEC training set even when zero-shot?113

In our work, we proposed a novel two-stage approach for the TEC maps forecast-114

ing method by leveraging a generative model(Desai et al., 2021) with auto-correlation115
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transformer network(Vaswani et al., 2017) as the prediction model. In the first stage,116

The VAE model captures both the distribution of the features and the temporal rela-117

tionships in the data to generate the imitation samples. In the second stage, we use the118

auto-correlation transformer network as the prediction model to forecast the TEC maps.119

The auto-correlation transformer decomposes the time series into its trend-cyclical part120

and seasonal part to capture complex temporal patterns in long-context forecasting. The121

pre-trained auto-correlation transformer shows its robustness by outperforming other deep-122

learning models that suffer from overfitting. We summarize our contributions as follows:123

1. Firstly, by using the VAE model to synthesize imitation samples, we solve the124

dilemma of the insufficient high-quality training dataset for TEC forecasting.125

2. By using the auto-correlation transformer, our approach captures the complex126

temporal patterns in the TEC maps data, leading to more accurate forecasting results.127

3. By pre-training the auto-correlation transformer on the imitation samples, our128

approach improves the robustness and reduces overfitting, leading to better performance129

in the zero-shot testing scenario.130

The paper is organized as follows. The data source and preprocessing method are131

described in 3.1. The concrete method description is located at 2. The numerical exper-132

iment details, results, and analysis are demonstrated in 4. Finally, 5 exhibits the con-133

clusions, discussion, and future directions.134

2 Methods135

Our two-stage deep learning method mainly includes two steps. First, we synthe-136

size the sample efficiency by feeding the selected original TEC map dataset into a vari-137

ational auto-encoder(VAE) model(Desai et al., 2021). Second, we pre-train the auto-correlation-138

based transformer using the imitation samples without any further action on finetun-139

ing, and the empirical reference International Reference Ionosphere 2016 model (IRI2016)140

and 1-day BUAA model developed by (C. Wang et al., 2018) are chosen as the compar-141

ison model. In this section, we demonstrate the architecture of our generation model and142

prediction model, as well as their training processes. The pipeline of our method is shown143

in Figure 1.144

Figure 1. Overview of our pipeline. We introduce a two-stage synthesis and auto-correlation

method for TEC maps forecasting. The generation model TimeVAE takes the selected original

real dataset as input and captures both the distributions in features as well as the temporal re-

lationships to synthesize generated dataset. The prediction model is an auto-correlation-based

transformer that decomposes the series to learn complex temporal patterns in long-context fore-

casting. The pre-trained model shows its robustness by outperforming overfitting deep models in

a zero-shot testing manner.

Compared to RNN and LSTM, the Transformer and Auto-correlation-based Trans-145

former models have a lower computational complexity O(n2d), where n is the smaller146

sequence length and d is the dimensionality. Thus, we chose to utilize these models in-147

stead of RNN and LSTM models to achieve lower computational complexity. Consid-148
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ering sample efficiency, we generated the same amount of data as the original data, as149

we considered it to be an important factor. Additionally, we have also implemented data150

augmentation in our study, by generating original data twice. Instead of attempting to151

solve the model accuracy problem by generating an infinite amount of data, generating152

twice as much data gives us an attempt to improve the accuracy of the model on the data,153

and it turns out that this works actually. Therefore, an infinite multifold generation of154

data is not necessary and twice is enough for us.155

2.1 Generative model: TimeVAE156

TimeVAE Training Dataset. We consider each hourly TEC dataset to be an157

independent and identically distributed set of samples. The inputs consist of N i.i.d. sam-158

ples, where N represents the total number of hours in the TEC dataset. The spatial lon-159

gitude ranges from 180° west to 180° east with a resolution of 5° and the latitude ranges160

from 87.5° north to 87.5° south with a resolution of 2.5°. As a result, the global TEC map161

grid consists of 71 x 73 points, with 71 and 73 representing the latitude and longitude162

information of the TEC map at each hour, respectively, corresponding to different ge-163

ographical locations. The structure of the generation model is shown in Figure 2, where164

the input dataset array, represented as (N, 71, 73), is a 3-dimensional array. The lati-165

tude and longitude information of the TEC map at each hour, represented by 71 and 73,166

respectively, correspond to different geographic locations, while N represents the total167

number of samples.

Figure 2. The architecture of TimeVAE

168

TimeVAE Architecture. To adapt the generation model to the synthesis of iono-169

spheric TEC maps, we adopted an encoder-decoder VAE model. The encoder is to ex-170

tract the feature of the input i.e. a 3-dimensional array of size N×t×D, N for batch171

size, T for the number of time steps, and D for the number of feature dimensions, into172

a multivariate Gaussian distribution by passing the inputs through a series of convolu-173

tional layers with ReLU activation and a fully-connected linear layer. The encoder out-174

puts the parameters of the multivariate Gaussian which can be used to sample the la-175

tent vector z using the reparameterization trick. by taking the latent state vector z from176
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the multivariate Gaussian, The decoder first passes the latent vector through a fully-connected177

linear layer, then reshapes the data into a 3-dimensional array, and passes it through a178

series of transposed convolutional layers with ReLU activation. Finally, the data is passed179

through a time-distributed fully-connected layer to produce the final output, which should180

have the same shape as the original TEC map signal. The goal of the decoder is to gen-181

erate TEC maps that are as similar as possible to the original TEC maps, based on the182

information encoded in the latent vector ”z”.183

TimeVAE Loss Function. We train TimeVAE using the Evidence Lower Bound
loss(ELBO) function, which is written following:

ELBO = Eq(z|x;ϕ) [log(x | z; θ)]−DKL (q(z | x;ϕ)∥p(z; θ)) (1)

The process of BLBO loss actually is to reconstruct x given z sampled from q(z |184

x;ϕ). Specifically, the Right Hand Side is composed of two parts, and the first term is185

the log-likelihood of our data given z sampled from q(z | x;ϕ). The second term is the186

KL-Divergence loss between the encoded latent space distribution q(z | x;ϕ) and the187

prior distribution p(z; θ).188

2.2 Auto-correlation Based Transformer Architecture189

Modeling long-term time series forecasting for TEC maps is not easy: we have to190

handle the intricate temporal patterns. The original transformer architecture(Vaswani191

et al., 2017) adopts self-attention modules to calculate the correlation between scattered192

points but ignores the dependencies among sub-series. In contrast, our approach lever-193

ages an auto-correlation-based transformer(Wu et al., 2021) as a prediction model which194

enables series-wise connections to model dependencies between each sub-series and raises195

the information utilization. The architecture of the auto-correlation-based transformer196

is shown in Figure 3.197

Series Decomposition Block inherit the ideas from (Cleveland et al., 1990) sep-198

arate the long time series into two parts: trend-cyclical part and seasonal part, for the199

former reflects overall trend and fluctuations and the latter reflects the repeating pat-200

terns(seasonality) of the series respectively. The series decomposition block is deployed201

along the model as it goes deeper to capture complex patterns. For the input, TEC maps202

series X ∈ RI×d, where I is the length of the input series, and d is the number of fea-203

tures of the TEC map series. The concrete inner operation(Cleveland et al., 1990) for204

gathering two composed series is:205

Xt = AvgPool(Padding(X)) and Xs = X −Xt (2)

where Xt is the trend-clynical part, and Xs is the seasonal part. Within the inner op-206

eration, AvgPool(·) is a moving average pooling with the padding operation to keep the207

series length unchanged.208

Auto-correlation mechanism The auto-correlation mechanism is designed based
on the periodicity of the time series and aims to conduct the discovery and representa-
tion aggregation of dependencies at the sub-series level. The calculation of auto-correlation
involves shifting the time series by a certain tag and computing the correlation between
the original time series and the shifted time series. From stochastic process theory auto-
correlation Rxx(τ) is a time-delay similarity between original series {Xt} and its τ lagged
series {Xt−τ} which can be calculated by:

Rxx(τ) = lim
L→∞

L∑
t=1

XtXt−τ (3)

In the real-world application for TEC map predictions, we first project the embedding209

of TEC maps to get query Q, key K. A time delay aggregation block is then applied to210
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Figure 3. The architecture of auto-correlation-based transformer.
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roll the series based on the selected time delay, then we are able to aggregate the sub-211

series by softmax. Concretely we first get the arguments of TopK autocorrelations:212

τ1...τk = argTopkτ∈{1,...,L}(RQ,K(τ)) (4)

RQ,K is the autocorrelation between Q and K. After that, the series are fed into a soft-
max layer:

ˆRQ,K(τ1), ..., ˆRQ,K(τk) = SoftMax(RQ,K(τ1)...RQ,K(τk)) (5)

Then the Auto-correlation can be obtained by the relationship between the series213

and its time-delay shifted version. Roll(X, τ) the operation to shift the series {Xt} with214

time delay τ . The expression of auto-correlation is:215

Auto−correlation(Q,K, V ) =

k∑
i=1

Roll(V, τi)(R̂Q,K(τi)) (6)

2.3 Transformer Architecture216

The Transformer model consists of an encoder and a decoder. The encoder takes217

an input sequence and generates a sequence of hidden states, while the decoder takes the218

encoder output and generates a sequence of output tokens. Both the encoder and de-219

coder consist of multiple layers of self-attention and feedforward neural networks. The220

self-attention mechanism allows the model to attend to different parts of the input se-221

quence, while the feedforward neural networks enable the model to capture complex pat-222

terns in the data. We directly quote the model-building method mentioned in the ar-223

ticle (Vaswani et al., 2017) to build the Transformer model.224

Encoder: The encoder is composed of two sub-layers. The first is a multi-head225

self-attention mechanism, and the second is a simple, position-wise fully connected feed-226

forward network. The residual connection is around the two sub-layers, followed by layer227

normalization.228

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In229

addition to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer,230

which performs multi-head attention over the output of the encoder stack. Similar to231

the encoder, we employ residual connections around each of the sub-layers, followed by232

layer normalization. We also modify the self-attention sub-layer in the decoder stack to233

prevent positions from attending to subsequent positions. This masking, combined with234

the fact that the output embeddings are offset by one position, ensures that the predic-235

tions for position i can depend only on the known outputs at positions less than i.236

Multi-headed Self-Attention (MSA): Multi-head self-attention allows the model
to jointly attend to information from different representation subspaces at different po-
sitions. With a single attention head, averaging inhibits this. The basic structure is the
same as self-attention, but when operating, it is divided into multiple heads, and then
the self-attention calculation is carried out in parallel, and then the output vectors are
finally spliced together, where different heads will learn different levels of knowledge.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (7)

Where head = Attention(QWQ
i ,KWK

i , V WV
i ), and the projections are parameter ma-237

trices WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel ×dk ,WV
i ∈ Rdmodel ×dv and WO ∈ Rhdv×dmodel . .238

Positional Encoding This part is used to inject some information about the rel-
ative or absolute position tokens from the TEC sequence. tokens in the sequence. To this
end, we add ”positional encodings” at the bottoms of the encoder and decoder stacks.
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The positional encodings have the same dimension dmodel as the embeddings so that the
two can be summed. There are many choices of positional encodings, learned and fixed
[9]. In this work, we use sine and cosine functions of different frequencies:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (8)

where pos is the position and i is the dimension. That is, each dimension of the239

positional encoding corresponds to a sinusoid.240

3 EXPERIMENTS241

Our aim is to achieve two primary objectives. Firstly, we employ TimeVAE to en-242

hance our capability of producing credible TEC time-series dataset samples when we have243

a shortage of actual TEC datasets for model training. Secondly, we seek to train advanced244

time forecasting models, specifically the Transformer and Auto-Correlation Transformer,245

using these generated samples. These two models, Transformer and Auto-Correlation246

Transformer are the most advanced models in long-series time forecasting. Finally, we247

will evaluate the accuracy of both prediction models and present our findings. To achieve248

this, we have prepared three different training datasets names ori data, gen once, and249

gen twice. The advantage of TimeVAE is that it learns the distribution of TEC datasets,250

allowing us to generate multiple TEC datasets. This enables us to produce theoretically251

unlimited datasets even in the absence of sufficient real data.252

3.1 Data Source and Processing253

In this paper, we use the dataset called global ionospheric TEC data, which is gen-254

erated by the standard Ionosphere map exchange format (IONEX) file format which is255

provided by International GNSS Service (IGS). TECU stands for ”Total Electron Con-256

tent Unit” and is a unit of measurement for the ionosphere TEC. TECU is defined as257

the number of free electrons that would be present in a one square meter column of unit258

cross section extending from the Earth’s surface to the top of the ionosphere if all the259

free electrons were concentrated in a single point. We conduct experiments with three260

distinct training datasets, namely ori data, gen once, and gen twice. Here is the descrip-261

tion of the experiment datasets:262

1) ori data: The global ionospheric TEC data is generated by the standard Iono-263

sphere map exchange format file format which is provided by IGS. We processed264

datasets into a 4-dimensional time series sequence (number, 24, 71, 73). The lon-265

gitude dimension consists of 73 points, spanning from 180° west longitude to 180°266

east longitude with a resolution of 5°. The latitude dimension consists of 71 points,267

ranging from 87.5° north latitude to 87.5° south latitude with a resolution of 2.5°.268

The scale of the global TEC map grid points is 71 × 73. 24 means the total amount269

hourly for the time resolution of 1 hr each day, and number represents the total270

number of days in the time range from January 1, 1998 to December 31, 2017.271

2) gen once: We generated synthetic data as the second dataset, which has been272

confirmed to have a high similarity to the original dataset ori data with an iden-273

tical size.274

3) gen twice: We generated ori data twice repeatedly, each time we obtained an iden-275

tical dataset with ori data. Finally, the gen data dataset consists of two synthetic276

data, which are twice the size of the original data ori data.277

During the real training model process, 90% of each of the above mentioned datasets are278

utilized for training while the remaining 10% is used for validation purposes.279

–9–



manuscript submitted to Enter journal name here

3.2 Generated Samples280

T-SNE (t-Distributed Stochastic Neighbor Embedding) is a machine learning al-281

gorithm for non-linear dimensional reduction developed by Laurens van der Maaten and282

Geoffrey Hinton(Van der Maaten & Hinton, 2008). It is used to reduce high-dimensional283

data into a lower-dimensional space for visualization or machine learning. t-SNE works284

on the principle of minimizing the divergence between a distribution of actual data points285

in high dimensional space and a distribution of corresponding points in a lower dimen-286

sional space. This is done by mapping the data points to a probability distribution in287

the lower dimensional space.288

We use these comparison metrics proposed in (Yoon et al., 2019) to assess the qual-289

ity of the synthetic data. The lower the discriminative score, the better performance. The290

abscissa (x-axis) and ordinate (y-axis) of t-SNE represent the positions of data points291

in a low-dimensional space. The t-SNE algorithm is designed to map high-dimensional292

data to a low-dimensional space, typically two or three dimensions, for visualization pur-293

poses. In t-SNE, each data point in the input dataset is represented as a point in the294

low-dimensional space, and the similarity between data points in the high-dimensional295

space is preserved as the distance or closeness between points in the low-dimensional space.296

The discriminator score of generating the TEC dataset is 0.0035±0.007, which demon-297

strates the high correlation between synthetic data and original data and TimeVAE per-298

forms well in generating synthetic data. Figure 4 displays the t-SNE charts of data gen-299

erated from the generator TimeVAE. The TimeVAE generated data consistently shows300

heavy overlap with original data.301

Figure 5 and figure 6 present the comparison of the TEC provided by IGS and gen-302

erated by the model TimeVAE at six randomly selected time points. The top row dis-303

plays TEC maps provided by IGS, while the bottom row shows TEC maps generated304

by the TimeVAE model. Six randomly selected time points are labeled at the top of each305

map, highlighting the comparison between the two sources. The comparison showcases306

the accuracy of the TimeVAE model in TEC mapping, as well as its potential for use307

in ionosphere research and satellite-based communication systems.308

3.3 Forecasting deep learning models.309

Evaluation metric. Root-mean-square error (RMSE) and percentage deviation
(PD) following are used to estimate the forecasting performance of the model. The lower
the RMSE value, the better the model’s accuracy in prediction. In essence, RMSE rep-
resents the average magnitude of the errors in the predictions made by a model. The per-
centage deviation score is calculated by taking the absolute difference between the pre-
dicted value and the actual value, divided by the actual value, and multiplied by 100.

RMSE =

√√√√ 1

N

N∑
i=1

(TECori − TECpred )
2

(9)

PD =
1

N

N∑
i=1

|TECori − TECpred |
TECori

(10)

where N is the total number of data samples, TECori and TECpred are the ob-310

served value and forecasting value, respectively.311

4 Forecasting Models Performance and Results Analysis312

Our study trains two models, Auto-correlation-based Transformer and Transformer313

models, using three different datasets: original data, once-generated synthetic data, and314
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Figure 4. The visual t-SNE plots of generated and original data from 1998 to 2017. Red is

for original data and blue is for synthetic data. Higher overlap rates represent higher similarity.

The x-axis and y-axis of t-SNE represent the positions of data points(number, 24, 73, 71) in a

two-dimensional space.

twice-generated synthetic data (ori data, gen once, and gen twice). We evaluate the Root315

Mean Squared Error (RMSE) of the total of six trained models in the years 2018, 2019,316

and 2020, as well as the RMSE of the IRI2016 model in 2018. Furthermore, we assess317

the RMSE and percentage deviation (PD) scores of the models in high, low, and mid-318

dle latitudes to compare their predictive capabilities.319

4.1 Traning Set and Testing set Results Analysis320

In table 1, we compared the RMSE of IRI2016, 1-day BUAA, Transformer, and Auto-321

correlation-based transformer models during 2018. We find that our Transformer based322

models to be superior to the IRI2016 model and 1-day BUAA model. for example, the323

RMSE of the Auto-correlation-based transformer model is 1.55 TECU, which is 0.52 TECU324

less than 1-day BUAA and 1.33 TECU less than IRI2016 model. As presented in Ta-325

ble 2, the RMSE scores of all models (Auto-correlation-based Transformer, Transformer)326

trained on different datasets demonstrate that our models trained using synthetic data327

outperform the IRI2016 model and 1-day BUAA model. Additionally, it is observed that328

the more synthetic data used for model training, the better the model performance. For329
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Figure 5. Comparison between the global total electron content map provided by Interna-

tional GNSS Service and generated by TimeVAE model for three stochastic times.

Figure 6. Comparison between the global total electron content map provided by Interna-

tional GNSS Service and generated by TimeVAE model for three stochastic time.

instance, the Auto-correlation-based Transformer trained using twice-generated synthetic330

data increases the RMSE of the IRI2016 model from 2.88 to 1.17 in 2018. In compar-331

ison to the Auto-correlation-based Transformer trained with once-generated synthetic332

data, the model trained with twice-generated synthetic data has a better performance333

with RMSE scores of 0.86 and 1.21 in 2019 and 2020 respectively. The Auto-correlation-334

based Transformer model trained with gen twice data outperforms the other six mod-335

els in forecasting TEC from 2018 to 2020. Compared to the model trained with origi-336

nal data, the Auto-correlation-based Transformer model trained with generated data sig-337

nificantly improves its RMSE from 1.55 to 1.17 in 2018, 1.48 to 0.86 in 2019, and 1.58338

to 1.21 in 2020. Additionally, the Auto-correlation-based Transformer model demonstrates339

better performance than the Transformer model in certain years from 2018 to 2020.340
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Table 1. The accuracy RMSE scores on four different training models (IRI2016 model, 1-day

BUAA, Auto-correlation-based transformer, Transformer) during 2018.

Models IRI2016 model 1-day BUAA Auto-correlation-based transformer Transformer

RMSE 2.88 2.07 1.55 1.37

Table 2. Multivariate accuracy RMSE scores on three different training datasets with the pre-

trained models. Training datasets include ori data, gen once, and gen twice, and ori data means

IGS TEC datasets from 1998 to 2017, gen once means the generated datasets from 1998 to 2017

and gen twice means generated dataset twice from 1998 to 2017. The best performances are in

bold, a lower RMSE score indicates a better prediction.

Models Training datasets
RMSE (TECU)
2018 2019 2020

Anto-correlation-based transformerr
ori data 1.55 1.48 1.58
gen once 1.22 0.91 1.25
gen twice 1.17 0.86 1.21

Transformer
ori data 1.37 1.08 1.96
gen once 1.31 1.00 1.75
gen twice 1.29 1.00 1.73

4.2 Comparison of Predictional TEC Maps341

We train the Auto-correlation-based transformer model and the Transformer model342

on multivariate training datasets and also evaluated their monthly root mean squared343

error (RMSE) during 2018 and 2020. As shown in Fig 8, we plotted the predicted TEC344

map and the original TEC map for January 3, 2020, with the top half coming from the345

original IGS data and the bottom half coming from our best-performing model Autoformer-346

correlation-based transformer. Fig 7 shows the TEC map on Five points in time on Jan-347

uary 3, 2019, which also compared the original real TEC map with the predicted TEC348

map. We assessed the monthly RMSE of the IRI2016 model in 2018 and compared it349

with the original data trained Transformer model and the original data trained Auto-350

correlation-based Transformer model in figure 9. The results indicate that both the Auto-351

correlation-based Transformer model and the Transformer model offer improved predic-352

tive capabilities when compared to the IRI2016 model.353

Figure 10 displays the monthly root mean squared error (RMSE) of the Auto-correlation-354

based Transformer model and the Transformer model trained on three different datasets355

in 2018. A ori data, A gen once and A gen twice represent Auto-correlation-based Trans-356

former model trained on ori data, gen once and gen twice respectively. And T ori data,357

T gen once, and T gen twice represent the Transformer model trained on ori data, gen once,358

and gen twice respectively. The results presented in Figure 10 demonstrate that the model359

trained with twice the amount of synthetic data performed better than the model trained360

with only the original data in 2018. Specifically, the Auto-correlation-based transformer361

model trained with gen twice performed more accurately than other models trained with362

only original data or gen once for all 12 months in 2018, with the best predictions oc-363

curring in June and October, and the biggest RMSE value being 1.175 occurring in month364

1. The worst model is the Transformer model trained by original data with an RMSE365

over 1.5 TECU but less than 2.0 TECU in every month of 2018.366
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Figure 7. The comparison between the TEC map of Auto-correlation-based transformer

trained by gen twice dataset and the TEC map of the real IGS on January 3, 2019.

Figure 8. The comparison between the TEC map of Auto-correlation-based transformer

trained by gen twice dataset and the TEC map of the real IGS on January 3, 2020.

Figure 9. The monthly averaged RMSE scores of two different models(Auto-Correlation

Transformer, Transformer) compared with the IRI2016 model with the same training datasets

during 2018.

The results from the comparison of prediction accuracy in 2020, as shown in Fig-367

ure 11, indicates that the Transformer model trained on the gen twice dataset achieved368
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the highest accuracy in predicting monthly TEC values. The RMSE values for all three369

models varied between approximately 1.4 TECU and 2.5 TECU throughout the year,370

with the best predictions occurring in October and November and the worst predictions371

occurring in July and August. In contrast, the Transformer model trained on the ori data372

is expected to perform poorly in every month of 2020 when compared to the other two373

dataset training models, having a high level of RMSE error. Additionally, in each month374

of 2020, the performance of the Transformer model trained on the gen twice dataset was375

slightly better than the model trained on the gen once dataset. Overall, the Transformer376

models performed best in October and November, with the lowest RMSE values among377

the 12 months in 2020.378

Figure 10. The monthly average RMSE scores for the Auto-Correlation Transformer models

and Transformer models trained on three different datasets (ori data, gen once, gen twice) during

2018. The labels for the figures begin with the letter ’A’ to represent the Auto-correlation-based

transformer model, while the letter ’T’ is used to represent the Transformer model.

Figure 11. The monthly RMSE values of the Tramsformer model trained on 3 dataset

(ori data, gen once, and gen twice) in 2020.
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Figure 12. The comparison of monthly RMSE values of the Auto-correlation-based trans-

former models trained on 3 datasets (ori data, gen once, and gen twice) in 2020.

The comparison of the prediction accuracy of the Auto-correlation-based transformer379

model in 2020 on three different training datasets in figure 12 shows that, similar to that380

of the Transformer model, the Auto-correlation-based transformer model trained on the381

gen twice dataset has the highest accuracy in predicting monthly TEC values. The RMSE382

values of the three models fluctuate between approximately 0.9 and 1.3 TECU through-383

out the year, with the best predictions in April and March. On the other hand, the Auto-384

correlation-based transformer model trained on the ori data performed the worst in ev-385

ery month of 2020, with slightly lower performance than gen once every month, with the386

RMSE values fluctuating between approximately 1.3 and 1.7 TECU throughout the year.387

4.3 Latitude Results Analysis388

Figure 13 illustrates the comparison of RMSE scores in different latitudes of two389

different models trained on three datasets (ori data, gen once, gen twice) during 2018,390

The first three models are Auto-correlation-based transformer models trained on ori data,391

gen once, and gen twice, while the next three are Transformer models trained on the same392

three datasets. The last model represented is the IRI2016 model. Our analysis reveals393

that all six training models outperform the IRI2016 model, as they exhibit lower RMSE394

scores in high, low, and middle latitudes. In low latitudes, we have achieved a signifi-395

cant improvement in RMSE from around 4 TECU to approximately 2.5 TECU. Out of396

the six training models, five of them achieved a lower RMSE score of about 2.5 TECU397

in low latitude, with the remaining Auto-correlation-based transformer model trained398

on twice synthetic data presenting the lowest RMSE score of around 0.8 TECU. The RMSE399

scores of the six training models in high and middle latitudes are consistently around400

1 TECU. It is noteworthy that the accuracy in high latitudes tends to be lower compared401

to that in middle latitudes for each of the models. The percentage deviation score is a402

measure of the deviation of a model’s predictions from the actual values in percentage.403

A lower percentage deviation score indicates more accurate predictions. Figure 14 dis-404

plays these results. As can be seen, all of the models perform best in the middle latitude,405

with a percentage deviation score of around 8% to 10%. This suggests that the models406

are generally more accurate in this latitude range Furthermore, Figure 14 indicates that407

the Auto-correlation-based Transformer model performed best in the middle latitude,408

with a percentage deviation score of 8.4%. In contrast, the Transformer model did not409

perform as well, with percentage deviation scores in the high latitude exceeding 17%. These410
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Figure 13. The averaged RMSE scores of all models with three different latitudes (high lati-

tude, middle latitude, low latitude) during 2018.

results demonstrate that the Auto-correlation-based Transformer model may be a bet-411

ter choice for predicting TEC values in certain latitude ranges.412

Figure 14. The DP scores of all models with three different latitudes (high latitude, middle

latitude, low latitude) during 2018.

5 Conclusion413

The Total Electron Content of the Earth’s ionosphere plays a critical role in the414

satellite-based communications system. In this study, we compare the performance of415

two transformer models trained on synthetic data with the widely used IRI2016 model416

and BUAA model in TEC prediction. We applied data enhancement to TEC forecast-417

ing and found that it was effective in improving the quality of predictions.418
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Our model has shown significant improvement in predicting TEC at mid and high419

latitudes. However, at low latitudes, the RMSE accuracy of our model is still above the420

desired value of 2.5 TECU, indicating the need for further improvement in this area. On421

the other hand, both the monthly RMSE and Latitude RMSE of our model outperforms422

the IRI2016 model. Our results show that the transformer model trained on synthetic423

data achieves higher accuracy and reliability in TEC prediction, with a significant RMSE424

reduction of 1.17 compared to 2.88 for the IRI2016 model. This finding has important425

implications for the development of advanced TEC prediction models and highlights the426

potential of transformer models trained on synthetic data for a range of applications in427

ionospheric research and satellite communication systems.428

Furthermore, when tested on 2018 prediction data, the Auto-correlation-based trans-429

former model using synthetic data exhibits an RMSE reduction of 0.38 TECU compared430

to the model trained on original data. We demonstrate that utilizing synthetic data can431

effectively enhance the prediction efficiency of the model, providing another avenue for432

enhancing the model’s accuracy. Moreover, with the same amount of data, models trained433

on synthetic data offer more accurate predictions than those solely using actual data.434

The use of synthetic data has several contributions to the study. First, it can effectively435

enhance the prediction efficiency of the model, improving the accuracy of TEC predic-436

tion, but would gradually saturate as the amount of data increases. Second, it offers a437

way to generate more data without the need for additional data collection, which is par-438

ticularly useful in cases where obtaining real data is difficult or expensive. Third, the439

study shows that models trained on synthetic data can outperform those trained on real440

data in terms of accuracy, indicating that synthetic data can provide a valuable alter-441

native for training machine learning models. The results demonstrate the great poten-442

tial of transformer models trained on synthetic data for a range of applications in iono-443

spheric research and satellite communication systems.444

6 Open Research445

The TEC GIMs provided by IGS is available from the website at "http://pub.ionosphere446

.cn/products/daily/" and the BUAA 1-day prediction data can be obtained from the447

website ("http://pub.ionosphere.cn/prediction/daily/").448
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