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Abstract

There are large uncertainties in our future projections of climate change at the regional scale, with spatial variabilities not

resolved adequately by coarse-grained Earth System Models (ESMs). In this study, we use pseudo global warming simulations

driven by end of the century upper end RCP (Representative Concentration Pathway) 8.5 projections from 11 state-of-the-

art ESMs to examine changes in summer heat stress extremes using physiologically relevant heat stress metrics (heat index

and wet bulb globe temperature) over the Great Lakes Region (GLR). These simulations, generated from a cloud-resolving

model, are at a fine spatiotemporal resolution to detect heterogeneities relevant for human heat exposure. These downscaled

climate projections are combined with gridded future population estimates to isolate population versus warming contributions

to population-adjusted heat stress in this region. Our results show that a significant portion of summer will be dominated by

critical outdoor heat stress levels within GLR for this scenario. Additionally, regions with higher heat stress generally have

disproportionately higher population densities. Humidity change generates positive feedback on future heat stress, generally

amplifying heat stress (by 24.2% to 79.5%) compared to changing air temperature alone, with the degree of control of humidity

depending on the heat stress metric used. The uncertainty of the results for future heat stress are quantified based on multiple

ESMs and heat stress metrics used in this study. Overall, our study shows the importance of dynamically resolving heat stress

at population-relevant scales to get more accurate estimates of future heat risk in the region.
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Key Points: 11 

• Pseudo global warming simulations used to dynamically downscale future climate 12 
projections over Great Lakes Region. 13 

• Future population growth can more than double population-adjusted heat stress above 14 
high heat stress thresholds. 15 

• Humidity change in the future amplified outdoor moist heat stress exposure in the region 16 
across models. 17 

Abstract 18 

There are large uncertainties in our future projections of climate change at the regional scale, 19 

with spatial variabilities not resolved adequately by coarse-grained Earth System Models 20 

(ESMs). In this study, we use pseudo global warming simulations driven by end of the century 21 

upper end RCP (Representative Concentration Pathway) 8.5 projections from 11 state-of-the-22 

art ESMs to examine changes in summer heat stress extremes using physiologically relevant 23 

heat stress metrics (heat index and wet bulb globe temperature) over the Great Lakes Region 24 

(GLR). These simulations, generated from a cloud-resolving model, are at a fine 25 

spatiotemporal resolution to detect heterogeneities relevant for human heat exposure. These 26 

downscaled climate projections are combined with gridded future population estimates to 27 

isolate population versus warming contributions to population-adjusted heat stress in this 28 

region. Our results show that a significant portion of summer will be dominated by critical 29 

outdoor heat stress levels within GLR for this scenario. Additionally, regions with higher heat 30 
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stress generally have disproportionately higher population densities. Humidity change 31 

generates positive feedback on future heat stress, generally amplifying heat stress (by 24.2% 32 

to 79.5%) compared to changing air temperature alone, with the degree of control of humidity 33 

depending on the heat stress metric used. The uncertainty of the results for future heat stress 34 

are quantified based on multiple ESMs and heat stress metrics used in this study. Overall, our 35 

study shows the importance of dynamically resolving heat stress at population-relevant scales 36 

to get more accurate estimates of future heat risk in the region. 37 

Plan Language Summary 38 

Global models used to predict future climate usually run over grids that are too large to 39 

examine regional variations. So, here we use a numerical model driven by several global 40 

models to predict future changes over the Great Lakes Region for smaller grids. These 41 

predictions are then combined with predictions of future population change to show that 42 

population growth will have a large impact on heat stress in the region. We also find that 43 

humidity change will make extreme heat worse than if there was only increase in air 44 

temperature. Our results show the importance of using smaller grid sizes to provide 45 

information about future heat stress that might be more relevant for people living in these 46 

regions than can be found from global models.  47 
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1. Introduction 48 

The Great Lakes Region (GLR) is the largest megalopolis in the world, home to almost 100 49 

million people, and an ecologically important area of both the United States and Canada (Lang 50 

& Knox, 2009; Wuebbles et al., 2019). It also plays a critical role in both country’s economies, 51 

with major industries such as manufacturing, agriculture, and tourism (Krantzberg & De Boer, 52 

2008; Bhavsar et al., 2010). The region is facing several challenges due to climate change, 53 

including the threat of future extreme heat (Byun & Hamlet, 2018; Wuebbles et al., 2019). As 54 

global temperatures continue to rise, the region is expected to experience more heat wave 55 

days (Lopez et al., 2018). These heat waves can have serious consequences for human 56 

health, as they can lead to heat stroke, dehydration, and other heat-related illnesses (Ebi et al., 57 

2021). They can also have negative impacts on the environment, such as through increased 58 

droughts and wildfire (Kerr et al., 2018; Brown et al., 2021; Gamelin et al., 2022).  59 

In addition to direct health and environmental risks, extreme heat can have indirect negative 60 

impacts. Extreme heat can harm the region's agriculture industry by reducing crop yields and 61 

by harming livestock (Tubiello et al., 2007; Jin et al., 2017). It can also affect tourism, as high 62 

heat stress can make outdoor activities unpleasant and can lead to the closure of beaches and 63 

other attractions (Matthews et al., 2021). Additionally, warming can put a strain on the region's 64 

energy infrastructure, as increased air conditioning use can lead to higher demand for 65 

electricity (Obringer et al., 2022; Tan et al., 2022). 66 

To address these challenges and become resilient to future warming, it is important to develop 67 

strategies for mitigating and adapting to future heat stress. This involves both improving heat 68 

warning systems and emergency response plans, as well as implementing measures to reduce 69 

heat-related health risks. It could also involve investing in technologies and infrastructure that 70 

can help to reduce the impact of extreme heat. Planning relevant mitigation and adaptation 71 

strategies require accurate estimates of future extreme heat. However, projections of extreme 72 

heat from Earth System Model (ESMs) are frequently too coarse to appropriately resolve 73 

regional warming signals (Pierce et al., 2009; Lloyd et al., 2021). For instance, populations in 74 

the GLR are concentrated around the Great Lakes, but the coarse resolution at which ESMs 75 

are run cannot isolate climate change at those relevant scales (Byun & Hamlet, 2018).  76 
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While statistical downscaling is often used to get regional warming signals from coarse ESM 77 

outputs (Hayhoe et al., 2010; Byun & Hamlet, 2018), these methods presuppose an 78 

unchanged distribution of the underlying data under different climate conditions (Spak et al., 79 

2007; Dixon et al., 2016; Lanzante et al., 2018), which is not useful for examining 80 

discontinuous climatology, as often seen near water bodies, or for dealing with weather 81 

extremes. Additionally, most future projections focus on air temperature, even though heat 82 

stress depends on multiple additional factors, including humidity, wind speed, and radiation 83 

(Anderson et al., 2013; Heo et al., 2019). To address these gaps, we use a pseudo global 84 

warming (PGW) approach to estimate the range of end-of-the-century extreme heat stress 85 

over the GLR for the shared socio-economic pathway 5 (SSP5), which is the worst-case 86 

scenario equivalent to fossil fueled Representative Concentration Pathways (RCP) 8.5 87 

scenario (Riahi et al., 2011). Our PGW approach uses data from 11 Coupled Model 88 

Intercomparison Project phase 6 (CMIP6) ESMs to provide future projected changes to the 89 

initial and boundary conditions (derived from reanalysis data) to the Weather Research and 90 

Forecasting (WRF) model, which can be run at spatiotemporal scales relevant for isolating 91 

regional climate change. We then combine these dynamically downscaled model outputs with 92 

corresponding population projections to examine population-level heat stress exposure over 93 

this region. The manuscript is divided into three main sections, with section 2 describing the 94 

methods, section 3 presenting the main results, and section 4 discussing some of the 95 

implications and limitations of the study. 96 

2. Methods 97 

2.1 Pseudo global warming simulations over the Great Lakes Region 98 

The WRF model (version 4.2.2) with the Advanced Research WRF dynamic core (Skamarock 99 

& Klemp, 2008) is used for both historical and future scenarios at a spatial resolution of 4 km 100 

(J. Wang et al., 2022). For the historical scenario, WRF uses initial and boundary conditions 101 

derived from the 3-hourly 0.25° European Centre for Medium-Range Weather Forecasts 102 

atmospheric reanalysis of the global climate, version 5 (ERA5; Hersbach et al., 2020). The 103 

lake surface temperature (LST) is derived from the National Oceanic and Atmospheric 104 

Administration’s GLSEA satellite estimates (Schwab et al., 1999), which is at a spatial 105 

resolution of 1.3 km and has been previously found to be a better source for the lake boundary 106 

conditions than ERA5 (J. Wang et al., 2022). The WRF model incorporates Thompson 107 
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microphysics (Thompson et al., 2004, 2008), the Rapid Radiative Transfer Model for GCMs 108 

longwave and shortwave schemes (Iacono et al., 2008), and the Unified Noah land surface 109 

model by Chen and Dudhia (2001). Multi-layer urban canopy model with building energy and 110 

building environment parameterizations (Martilli et al., 2002; Salamanca et al., 2010) are 111 

coupled with Noah and the Mellor–Yamada–Janjić scheme (Janjić, 1994) is used to simulate 112 

the planetary boundary layer. While incorporating the urban canopy model increases 113 

computational costs, this physics configuration has been found to better capture air 114 

temperature, skin temperature, and wind speed diurnal cycles compared to experiments using 115 

Noah LSM alone (J. Wang et al., 2023). 116 

For the future scenario, we use a PGW approach (Kimura, 2007) to estimate near end-of-the-117 

century climate over GLR for the SSP5 scenario. We use 11 ESMs from CMIP6 (see Table 1) 118 

to provide future projected changes in near surface and upper-level variables that are needed 119 

to drive the WRF simulations. These variables include 3-dimensional air temperature, specific 120 

humidity, geopotential height, as well as surface pressure, sea-level pressure, and skin 121 

temperature. The changes are calculated between past (1981-2010) and the future (2071-122 

2100) periods using monthly CMIP6 datasets. These changes are then added to the 123 

corresponding 3 hourly values from ERA5 to generate new boundary conditions for WRF for 124 

the future scenario. The new lower boundary conditions for lakes (that is the LST) is obtained 125 

by adding the changes in skin temperature from ESMs to the GLSEA satellite derived LST. 126 

Perturbations to wind patterns are not explicitly considered from the ESM data as they are 127 

calculated by WRF based on the thermodynamic changes due to the new boundary conditions 128 

of temperature, pressure, and specific humidity. While the lakes may not be accurately 129 

represented in ESMs (with different parameterizations in different ESMs), their subgrid 130 

changes in ESMs are the only available data source. Moreover, we mainly focus on the 131 

changes over land in the present study. All ESMs show increases in air temperature and 132 

specific humidity, with E3SM (Exascale Earth System Model; Golaz et al., 2019) being the 133 

warmest and FGOALS (Flexible Global Ocean-Atmosphere-Land System; Zhou et al., 2014) 134 

being the coolest when looking at the GLR regional temperature changes. 135 

In addition to running the WRF with each individual ESM, an ensemble mean (ENS) is 136 

generated by averaging the WRF outputs from the 11 simulations. We show results from WRF 137 
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driven by the ENS, E3SM and FGOALS to demonstrate a range of possibilities for the future 138 

scenarios. Our main region of interest for most of the analysis is the bounding box around the 139 

Great Lakes Basin (Fig. 1a), which we refer to as the GLR. Our model domain extends beyond 140 

this region. The smaller region of interest compared to the entire model domain helps minimize 141 

the boundary issues at the domain edges. 142 

Table 1. Overview of ESMs used to run PGW simulations in the present study. 143 

ESM name Spatial resolution Reference 
ACCESS-CM2 1.25x1.88 Bi et al., 2020 
CanESM5 2.79x2.81 Swart et al., 2019 
FGOALS-f3-L 2.79 x 2.81 Zhou et al., 2014 
MIROC6 1.40x1.41 Tatebe et al., 2019 
CESM-WACCM 1.88 x 2.5 Marsh et al., 2013 
E3SM-1-1 1 x 1 Golaz et al., 2019 
GFDL-CM4 2.00 x 2.50 Held et al., 2019 
MPI-ESM1-2-LR 1.86 x 1.88 Jungclaus et al., 2013 
CMCC-CM2-SR5 0.75x 0.75 Cherchi et al., 2019 
EC-Earth3 1.12x1.13 Döscher et al., 2022 
IPSL-CM6A-LR 1.89x3.75 Boucher et al., 2020 
NorESM2-LM 1.89x2.5 Seland et al., 2020 
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example of a few urban clusters surrounding and including Detroit and their corresponding 150 

normalized buffers. Basemap Source: Google  151 

2.2 Calculating heat stress indices and their sensitivities to input factors 152 

The human physiological response to heat depends on multiple factors, including air 153 

temperature and relative humidity (Anderson et al., 2013; Chakraborty et al., 2022). To 154 

estimate human-relevant heat stress exposure, here we consider two metrics of heat stress – 155 

namely heat index and the wet bulb globe temperature. The heat index, also known as 156 

apparent temperature, considers both temperature and moisture content of the air, with the 157 

later impacting the body's ability to dissipate heat through sweating. This index is calculated in 158 

multiple steps (Rothfusz, 1990). First, a simple formula (Eq. 1) is applied to calculate an initial 159 

heat index value consistent with the results from Steadman (1979).  160 

HI = 0.5 × [AT + 61 + [(AT-68) × 1.2] + (0.094RH)]      (1) 161 

where AT is in °F and RH is in percentage. If the average of this value and the air temperature 162 

is less than 80°F, this initial value is used as the final heat index. If the average is equal to or 163 

above 80°F, a more complex formula (Eq. 2), called the Rothfusz regression, is used instead.  164 HI = −42.379 + 2.04901523 × AT + 10.14333127 × RH − 0.22475541 × AT × RH − 6.83783× 10 × AT − 5.481717 × 10 × RH + 1.22874 × 10 × AT × RH + 8.5282× 10 × AT × RH − 1.99 × 10 × AT × RH (2) 
Additional adjustments are made for low and high values of humidity. The heat index is used 165 

by the U.S. National Weather Service (NWS) in operational heat warning systems.  166 

Wet bulb globe temperature is the second heat index we use to measure heat stress. It is a 167 

weighted average of air temperature, natural wet-bulb temperature, and black globe 168 

temperature. The black globe temperature considers radiant heat, air temperature, and wind 169 

speed, making this a more comprehensive index that considers the effects of radiation and 170 

wind on heat stress (Heo et al., 2019). In this study, wet bulb globe temperature is calculated 171 

using Eq. 3, where SR and WS are solar insolation (in kW m-2) and wind speed (in m s-1), 172 

respectively, and AT is in °C. 173 

WBGT = 0.735 × AT + 0.0374 × RH + 0.00292 × AT × RH + 7.619 × SR − 4.557 × SR2 − 174 

0.0572 × WS − 4.064             (3) 175 
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The heat indices are calculated for both the historical and future scenarios. In addition to 176 

calculating these indices using all input variables from each scenario, we examine sensitivities 177 

of the indices to their input factors through a perturbation analysis. This is done by keeping all 178 

factors but one the same as the historical values and changing one of them to its future values. 179 

Since air temperature and relative humidity are strongly correlated, to disentangle these 180 

interactions, when we isolate the impact of temperature change on future heat stress, we keep 181 

the specific humidity (not relative humidity) the same as the historical case. Taking the heat 182 

indiex as an example, the difference between the overall change (both temperature and 183 

relative humidity are from future scenarios) and the change due to only the increase in air 184 

temperature represents the humidity feedback.  185 

2.3 Estimating future population-adjusted heat stress extremes over land 186 

While heat stress extremes are important, the regional impacts of extreme heat would depend 187 

on the covariance of these extremes with populations. At coarse ESM resolutions, regional 188 

hotspots cannot be resolved, which is why we need these high spatial and temporal resolution 189 

regional climate simulations. We first subset our simulations to only consider values over land, 190 

where the majority of the population lives. Then, we combine (grid-wise multiplication, see 191 

below) our WRF simulations with downscaled 1 km population projections (Jones et al., 2020) 192 

for the SSP5 scenario. For historical scenarios, the SSP5 population projections for the year 193 

2020 are used, to represent present conditions, and for the future simulations, the average of 194 

the projections for 2070, 2080, 2090, and 2100 to match the years used to generate the future 195 

projected changes in the PGW approach. Although the WRF simulations are for the year 2018, 196 

the Jones et al. (2020) dataset is only available every 10 years, and here we attempt to use 197 

the same population dataset for consistency. Finally, we examine grid-wise population, heat 198 

stress above critical thresholds, and population-adjusted heat extremes (person-hours) by 199 

multiplying the WRF outputs with the spatially corresponding population estimates. All the 200 

geospatial analysis of the model outputs are done on the Google Earth Engine platform 201 

(Gorelick et al., 2017). 202 

2.4 Separating the urban signal from the background climate 203 

Urban areas are important hotspots of human-relevant heat impacts since they have higher 204 

populations than nearby rural areas as well as local-scale warming (urban heat island effect; 205 
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Qian et al., 2022). To estimate this urban signal, we first generate urban clusters based on 206 

groups of contiguous urban grids, as used in the WRF surface dataset (Fig. 1b). For each 207 

cluster, a normalized buffer area is defined such that this buffered area is approximately equal 208 

to the area of the cluster it is associated with. We use an iterative method implemented on 209 

Google Earth Engine (Gorelick et al., 2017) using a step size of 4 km to create these buffers. 210 

Similar methods have often been used to determine the surface urban heat island intensity 211 

using satellite observations (Chakraborty et al., 2021). Urban heat index and wet bulb globe 212 

temperature islands are calculated for the GLR as the difference in the heat stress metrics 213 

over land between the urban clusters and their buffered areas. Since urban clusters may 214 

sometimes be within the buffer of another nearby cluster (see Fig. 1c), all urban grids are 215 

masked out from the rural reference before calculating the background heat stress values.  216 

3. Results 217 

3.1 Heat stress extremes in the present and future 218 

We first examine the distributions of hourly domain-averaged air temperature, heat index, and 219 

wet bulb globe temperature over the entire model domain to provide baselines from these 220 

simulations (Fig. 2). The mean summer air temperature increases from 19.2 °C in HIST to 29.2 221 

°C in E3SM. The ensemble mean domain-averaged air temperature at the end of the century 222 

is 25.9 °C (Fig. 2a). Similarly, the domain-averaged heat index increases from 19.4 °C in HIST 223 

to 33.3 °C in E3SM. The U.S. NWS places heat risk into four main categories based on heat 224 

index, namely “Caution” (>=80 °F and <90 °F or >=26.7 °C and <32.2 °C), “Extreme Caution” 225 

(>=90 °F and <103 °F or >=32.2 °C and <39.4 °C), “Danger” (>=103 °F and <125 °F or >=39.4 226 

°C and <51.7 °C), and “Extreme Danger” (>=51.7 °F).  Although there are slight regional 227 

differences in these thresholds, we choose the most common thresholds over the US. Based 228 

on the model simulations, the mean domain-average heat index will cross into the “Danger” 229 

territory in E3SM and into the “Extreme Caution” territory from ENS (Fig. 2b). Similarly, wet 230 

bulb globe temperature can be categorized into “Low” (>=80 °F and <85 °F or >=26.7 °C and 231 

<29.4 °C), “Moderate” (>=85 °F and <88 °F or >=29.4 °C and <31.1 °C), “High” (>=88 °F and 232 

<90 °F or >=31.1 °C and <32.2 °C), and “Extreme” (>=90 °F or >=32..2 °C) (Mullin, 2022). 233 

Although wet bulb globe temperature has not been an operational metric from the NWS, that 234 

changed in June of 2022. The mean wet bulb globe temperature increases from 18.2 °C in 235 

HIST to 26.3 °C for E3SM (23.9 °C for ENS). Although domain-averaged value does not cross 236 
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4. Discussion 443 

A large majority of studies on future warming have focused on air temperature (Pörtner et al., 444 

2022), which ignores the impact of humidity and other factors on heat stress and how these 445 

physical changes covary with demographic shifts. Additionally, many projections of future heat 446 

stress use statistical downscaling techniques that cannot resolve real climate signals beyond 447 

their assumed statistical distributions (Byun & Hamlet, 2018; Jang & Kavvas, 2015). Using 448 

PGW simulations based on multiple ESM projections, we dynamically downscale future 449 

climate projections, isolate the role of humidity on future summertime heat stress, and examine 450 

spatial covariance between the heat hazard and population over GLR. Overall, major 451 

increases in heat stress are projected under SSP5 in GLR towards the end of the century, with 452 

a large percentage of summer hours exceeding critical heat risk thresholds defined by the U.S. 453 

NWS. The role of humidity on overall heat stress is also substantial and can account for up to 454 

half the future increase in heat stress, with regional variations. Of note, we find that the two 455 

heat stress metrics currently used by the NWS have largely different sensitivities to humidity, 456 

which can impact the magnitude of heat risk in future climate assessments. It is however 457 

important to stress that the separation of the contribution of humidity from air temperature is 458 

only done considering the direct effects. We assume that, while the water holding capacity 459 

increases with temperature due to thermodynamic constraints, the specific humidity would not 460 

change as a direct consequence of warming. However, higher temperatures can indirectly 461 

increase specific humidity by modifying the surface energy budget, particularly 462 

evapotranspiration, and strengthening the hydrological cycle. These impacts are harder to 463 

isolate quantitatively, have multiple competing effects, and are strongly dependent on model 464 

parameterizations. As such, our contribution estimates likely represent the upper bound for 465 

humidity and the lower bound for air temperature. 466 

The combined impact of high temperatures and humidity can have significant public health 467 

consequences, particularly for vulnerable populations such as the elderly and those with pre-468 

existing health conditions (Mora et al., 2017). Positive associations are seen between heat 469 

stress and population, suggesting disproportionate heat impacts when accounting for 470 

population-level risks. This population growth will likely bring both opportunities and challenges 471 

to the region, including the need for increased infrastructure, housing, and public services. It is 472 

important for policy makers and decision makers to consider the potential impacts of 473 
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population growth and take steps to manage and sustainably develop the region. For instance, 474 

population growth and rising temperatures are both expected to increase the demand for air 475 

conditioning (Obringer et al., 2022), which can further exacerbate heat stress events if 476 

increased energy demands are not met. This lack of access to air conditioning was a mortality 477 

factor during the 1999 Chicago heat wave (Naughton et al., 2002). Although urban areas do 478 

not show significant changes in the local urban heat stress signal in the future, they still 479 

support large population densities, leading to disproportionate impacts at the population scale. 480 

As such, urban adaptation strategies, such as increasing access to cooling centers and 481 

improving urban planning, will be important for optimizing adaptation to future heat stress 482 

events in GLR.  483 

It is important to discuss uncertainties in the present study that should be considered when 484 

contextualizing these results. These uncertainties rise from, among other things, the scenarios 485 

chosen, the model biases, and the population projections. Here we only focus on the RCP8.5 486 

scenario, even though it has become less likely based on present pathways (Pielke Jr et al., 487 

2022). This is designed as a worst-case estimate, and we do not expect the core results and 488 

insights to change for relatively cooler scenarios other than in terms of the numbers. Model 489 

biases are potentially the biggest source of uncertainty. Since ESMs show large variability in 490 

future climate estimates across models, we choose 11 ESMs to provide a range of possibilities 491 

instead of a single estimate. There are similarly large uncertainties in WRF that rise from 492 

representation of land cover, lakes, cloud parameterizations, and the model configuration 493 

chosen (Sharma et al., 2014; Qian et al., 2022; J. Wang et al., 2022), though these 494 

uncertainties are expected to be smaller in magnitude than the differences across ESMs. For 495 

instance, no transient land cover change is considered here, which may influence surface 496 

climate, though it is expected to be less important than the changes in atmospheric forcing in 497 

the future. Moreover, since projected urban expansion is not accounted for in these WRF 498 

simulations (Gao & O’Neill, 2020), we may be underestimating the urban heat stress islands. 499 

While the urban signal was a minor component of the present analysis, future urban heat 500 

stress estimates should consider urban growth. Finally, the population projections are 501 

somewhat dated and statistically downscaled, which may overestimate future population 502 

growth and insufficiently resolve local-scale demographic distributions.  503 
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Conclusions 504 

Uncertainties in regional-scale future climate change projections are prevalent, with coarse-505 

grained ESMs not resolving spatial variabilities sufficiently. This study uses pseudo global 506 

warming simulations at spatiotemporal resolutions relevant for human heat exposure based on 507 

11 state-of-the-art ESMs to examine changes in summer heat stress extremes in the GLR 508 

using both heat index and wet bulb globe temperature. Combining these downscaled climate 509 

projections with future population estimates reveals the population versus warming 510 

contributions to heat stress in the GLR, with population growth almost doubling population-511 

weighted outdoor heat stress exposure in the region. Our results show that significant parts of 512 

summer will experience critical outdoor heat stress in the GLR. Humidity change amplifies heat 513 

stress compared to changing air temperature alone, with the humidity control depending on the 514 

heat stress metric used. On the other hand, wind speed and shortwave radiation, which are 515 

required to compute wet bulb globe temperature are negative feedbacks for future heat stress. 516 

Overall, this study provides a range of future heat stress estimates based on multiple ESMs for 517 

the upper end SSP5 scenario and highlights the importance of dynamically resolving heat 518 

stress at population-relevant scales for more accurate regional heat risk assessments. 519 

  520 
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