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Abstract

Preparing for environmental risks requires estimating the frequencies of extreme events, often from data records that are too

short to confirm them directly. This requires fitting a statistical distribution to the data. To improve precision, investigators

often pool data from neighboring sites into single samples, referred to as “superstations,” before fitting. We demonstrate that

this technique can introduce unexpected biases in typical situations, using wind and rainfall extremes as case studies. When

the combined locations have even small differences in the underlying statistics, the regionalization approach gives a fit that

may tend toward the highest levels suggested by any of the individual sites. This bias may be large or small compared to

the sampling error, for realistic record lengths, depending on the distribution of the quantity analysed. The results of this

analysis indicate that previous analyses could potentially have overestimated the likelihood of extreme events arising from

natural weather variability.
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Key Points:9

• Grouping data of nearby locations into one larger sample or ”superstation” can10
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Abstract16

Preparing for environmental risks requires estimating the frequencies of extreme events,17

often from data records that are too short to confirm them directly. This requires fit-18

ting a statistical distribution to the data. To improve precision, investigators often pool19

data from neighboring sites into single samples, referred to as ”superstations,” before fit-20

ting. We demonstrate that this technique can introduce unexpected biases in typical sit-21

uations, using wind and rainfall extremes as case studies. When the combined locations22

have even small differences in the underlying statistics, the regionalization approach gives23

a fit that may tend toward the highest levels suggested by any of the individual sites.24

This bias may be large or small compared to the sampling error, for realistic record lengths,25

depending on the distribution of the quantity analysed. The results of this analysis in-26

dicate that previous analyses could potentially have overestimated the likelihood of ex-27

treme events arising from natural weather variability.28

Plain Language Summary29

We report a previously unknown bias in a common method for estimating how of-30

ten extremely rare events such as extreme wind bursts or rain events will occur, when31

return periods are longer than the available data record. The method analysed is one32

where an investigator combines data from nearby locations to reduce sampling error. We33

find by looking at new, high-resolution data that variations in behavior across sites can34

sometimes produce biases much larger than the sampling error. The implication is that35

some observed extreme events are even less likely to have occurred than previously thought,36

assuming the underlying distribution hasn’t changed over the period of observation.37

1 Introduction38

The statistical analysis of extreme-event frequencies and intensities is important39

to many risk management problems. For example, estimating the appropriate design wind40

speed requires the statistical analysis of historical wind data to estimate the strongest41

wind that might occur over a long time interval (AS/NZS1170.2:2021, 2021; Holmes, 2002;42

El Rafei et al., 2022). The design of offshore and coastal marine structures is governed43

by statistical estimates of extreme waves (Gulev & Grigorieva, 2004; Meucci et al., 2020).44

Similarly, statistical estimates of extreme rainfall values are essential for calculating flood45

risk and designing stormwater infrastructure (Green et al., 2012; Johnson & Green, 2018).46

To meet this need, extreme value theory has been widely used to estimate the proba-47

bility of events larger than any on record so far (Brabson & Palutikof, 2000; Coles, 2001;48

Church et al., 2006; Wang et al., 2013).49

The two usual approaches of extreme value theory are the generalized extreme value50

distribution (GEV) and the generalized Pareto distribution (GPD). The GEV approach,51

which combines three different statistical families (Weibull, Gumbel and Frechet), uses52

block maxima in which the dataset is divided into blocks and the maximum over each53

block is modelled (Gumbel, 1958; Palutikof et al., 1999; Coles, 2001). The GPD approach54

is instead based on the peaks-over-threshold method for which a threshold value is spec-55

ified and all the values above this chosen threshold are used to fit the model (Pickands,56

1975; Coles, 2001; Holmes & Moriarty, 1999). No matter which approach is used, the ex-57

trapolation to very rare events is subject to significant sampling errors when using short58

data ranges and uncertainties are unavoidable as accurate observational records are com-59

monly short and/or geographically sparse.60

To reduce statistical uncertainty, regionalization techniques have been used, whereby61

a larger sample is created by combining independent records of neighboring stations (J. Pe-62

terka, 1992; J. A. Peterka & Shahid, 1998; Holmes, 2002; Wang et al., 2013; Holmes, 2019)63

into what is sometimes called a ”superstation”. For example, regionalization has been64
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used for extreme wind assessment in the United States (J. A. Peterka & Shahid, 1998;65

ANSI/AS CE 7-98, 1998; ASCE/SE I 7-16, 2016) and Australia (Holmes, 2002; AS/NZS1170.2:2021,66

2021) to specify single design wind speed by compositing data from multiple stations;67

for regional flood frequency estimates (Haddad & Rahman, 2012); and for Intensity-Frequency-68

Duration (IFD) rainfall relationships (Wallis et al., 2007; Norbiato et al., 2007; Green69

et al., 2012; Johnson & Green, 2018). For IFD applications, nearby stations are pooled70

together assuming they share a common distribution of rainfall and are independent. An-71

other place where this approach has been used is for so-called ”regional frequency anal-72

ysis” of extreme wave heights, where data from sites with similar wave statistics are used73

to estimate the distribution for a presumed homogeneous region (Van Gelder et al., 2001;74

Bernardara et al., 2011; Lucas et al., 2017).75

While regionalization allows the estimation of distribution parameters using a larger76

dataset, the biases of this strategy are not explicitly quantified in the literature. Here77

we report unexpected biases in estimating long-term recurrence intervals of extreme events78

via regionalization, considering wind and rainfall extremes as case studies.79

2 Data and Methods80

2.1 Wind Data and Distribution Parameters81

Wind data are obtained from the 1.5 km Bureau of Meteorology Atmospheric high-82

resolution Regional Reanalysis for Australia Sydney region (BARRA-SY) and cover the83

period from 1996 to 2019. This fine-scale reanalysis may provide better representation84

of storm systems and mesoscale phenomena, which can allow better modelling and higher85

accuracy of the wind field compared to lower resolution models. The reader is referred86

to (Jakob et al., 2017; Su et al., 2019; Su et al., 2021) for more details.87

The maximum hourly wind gust speed data was used to calculate the daily max-88

ima, which are then used to fit the GPD model. For computational tractability, we sub-89

sampled the BARRA-SY data to 5324 grid points covering New South Wales (NSW),90

with a spacing of approximately 10 km. This is judged to be justified because gusts at91

locations that are very close (i.e., 1.5 km apart) would capture the same gust events mul-92

tiple times hence not be independent. The domain is then decomposed into groups (su-93

perstations) of approximately 25 grid points (5×5 grid points neighborhood) such that94

approximately 575 station years are obtained for each superstation.95

The fully heterogeneous numerical experiment (Fig. 2B) considers threshold val-96

ues between 15 and 23 m/s, shape factors between -0.2 to -0.1 and scale parameters rang-97

ing from 2 to 3. These ranges are representative of wind gust GPD distributions obtained98

using the BARRA-SY dataset. The partially heterogeneous case (Fig. 2B) considers a99

pre-fixed shape factor of -0.1 (similarly to what is used in the Australian standards) and100

a threshold value of 20 m/s. The range of scale factor values (between 3 and 4) was ar-101

bitrarily selected to represent a gradient of this parameter between the pseudo-stations.102

2.2 Rainfall Parameters103

To provide parameter values for rainfall tests, 30 years (1992-2021) of daily rain-104

fall data were obtained from the Australian Bureau of Meteorology for five locations in105

the Sydney area (Sydney Airport, Sans Suci, Randwick, Rose Bay and Peakhurst) pro-106

viding good data quality, using only low elevation stations (≤ 100 m). Incorrect values107

(flagged as wrong via the quality checks) were removed, and the annual maxima were108

used to fit a GEV model at each station. The GEV analysis suggests threshold values109

ranging from 66.2 to 77.3, shape factors ranging from 0.08 to 0.27 and scale factors rang-110

ing from 22.7 to 25.3. These ranges were then used to generate synthetic random sam-111

ples for the fully heterogeneous scenario (Fig. 4B). The partially heterogeneous scenario112
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considers pre-fixed threshold and shape factor (u0 = 77.3 and ξ = 0.19), which are113

selected from one of the stations distributions, and a range of scale factors from 17 to114

25. The range of scale factors is randomly selected for this scenario to represent a gra-115

dient of this parameter.116

2.3 Extreme Value Theory117

The GEV approach uses the block maxima technique where the maximum yearly
value is considered for the fit. The GEV cumulative distribution function can be expressed
as follows:

G(ug) =

e
−
[
1+ξg

(
ug−u0g

σg

)]−1/ξg

, for ξg ̸= 0

e−e(ug−u0g)/σg
, for ξg = 0

where u0g, ξg and σg are the location, shape and scale parameters respectively. The re-
turn levels are given in terms of ARI as:

URg = u0g −
σg

ξg
[1− (R)ξg ] (1)

where R is the ARI.118

The GPD model is based on the peaks-over-threshold approach (Palutikof et al.,
1999; Coles, 2001) where all the data above a specified threshold are modelled. The GPD
distribution can be expressed as:

H(up) =

1−
(
1 + ξp

up−u0p

σp

)−1/ξp
, for ξp ̸= 0

1− e
up−u0p

σp , for ξp = 0

where u0p, ξp and σp are the threshold, shape and scale parameters respectively.119

This expression is defined on {up − u0p > 0 and (1 + ξp(up − u0p)/σ̃p) > 0} where120

σ̃p = σp + ξp(up − u0p).121

The return levels are given in terms of the average recurrence interval using:

URp = u0p −
σp

ξp
[1− (λR)ξp ] (2)

where λ is the number of crossings of the threshold per year.122

The rainfall estimates calculated using the GPD approach use the 99th percentile123

as a threshold value (Lazoglou & Anagnostopoulou, 2017). For the wind analysis, we used124

a threshold selection algorithm that selects an optimal threshold value at each location.125

The selection algorithm first classifies the gusts into convective (i.e., thunderstorms) and126

synoptic (e.g., east coast lows, frontal systems) events. This is because gusts produced127

by different mechanisms can have different statistical properties and distributions. A range128

of thresholds is then tested to select the best fit. The reader is referred to (El Rafei et129

al., 2022) for more details on the threshold selection algorithm and the storm classifi-130

cation technique. The current study only presents results of convective events, as the same131

bias occur with either type using the superstation technique.132

3 Results133

3.1 Extreme Wind Gust Example134

3.1.1 Reanalysis Data Study135

We begin by examining a high-resolution (1.5-km horizontal grid spacing) regional136

Australian reanalysis dataset (BARRA-SY) of 23 years length from Year 1996 to Year137
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Figure 1: 500-year return wind gust speeds from convective events estimated several
ways. Results are calculated using: A) the GPD algorithm applied at each grid point.
B) the ”superstation” approach to aggregate data from neighboring grid points. C) the
nearby 90th percentile and D) mean of values shown in panel A, computed in the same
neighborhood as the ”superstations”.

2019, using the GPD approach. The availability of this new high-resolution gridded dataset138

has motivated this study, since wind data are available at sufficient density to directly139

test the performance of the regionalization approach. The GPD method and reanaly-140

sis data are detailed in the Data and Methods section. Maps of 500-year convective (i.e.,141

thunderstorm) wind gust speeds calculated in several ways are shown in Fig. 1. We show142

the 500-year ARI as this is used for the design criteria of many buildings in Australia143

(Wang et al., 2013). Results of higher recurrence intervals (e.g. 1000- and 2000-year ARIs,144

not shown) present similar patterns.145

The results obtained by GPD fitting and calculating return levels independently146

at each grid cell (Fig. 1A) show speckling due to small differences in the estimated GPD147

parameters. We expect this is mainly from sampling error due to the short record length,148

as it looks random rather than geophysical. The regionalization approach (Fig. 1B), in149

which data from 25 adjacent grid cells are combined before fitting, yields smoother re-150

sults but they show higher wind gust levels everywhere by about 10% compared to Fig. 1A.151

They are also higher than when the grid-point results are instead spatially smoothed by152

taking neighborhood means (2-D boxcar mean smoother of 5×5 grid points), as shown153

in Fig. 1D. Indeed they are very close to the neighborhood 90th percentile results in Fig. 1C154

(calculated as the 90th percentile wind gust speed of 25 adjacent grid points). This is155

true even for regional maxima in neighborhood spread such as in the southeast corner156

of the state.157

This analysis suggests that the superstation technique gives a fit that is close to158

the highest levels suggested by any of the neighboring, noise-influenced, sites. We now159

examine two hypotheses for why this is happening: first, that we bias the return levels160

by using short data ranges; and second, that it is an effect of combining locations into161

a superstation.162

3.1.2 Simulation Experiments163

A set of numerical experiments have been carried out to test these hypotheses, by164

generating synthetic records from pseudo-stations. Five synthetic ”neighbor” data records165

are analytically generated from assumed GPD distributions with parameters based on166

wind gust distributions estimated using the BARRA-SY reanalysis, in two test scenar-167

ios. For the first, partially heterogeneous scenario (Fig. 2A,C), the five records are gen-168
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erated using the same threshold (u0 = 20 m/s) and shape factor (ξ = −0.1) but a range169

of scale factors from 3-4. Pre-fixing the threshold and shape factor is similar to to ap-170

proaches sometimes used in structural design standards (AS/NZS1170.2:2021, 2021). For171

the second, fully heterogeneous scenario (Fig. 2B,D), all the distribution parameters vary172

among the records.173

We first examine outcomes with long records (Figs. 2A and 2B), generating 1000174

years of data, with a total of 5000 data points used by the GPD model, for each record175

(i.e., five threshold exceedence events per year on average). Figs. 2A and B show that,176

even when differences in the underlying distributions between the locations are small,177

the superstation fit is higher than the mean and the median of the individual fits and178

tends to the highest levels suggested by the individual stations, which is consistent with179

the wind data results in Fig. 1. Furthermore, in both simulations the bias increases at180

longer recurrence intervals. The superstation bias in the fully heterogeneous scenario is181

more significant, even at short recurrence intervals, because some locations are contribut-182

ing a lot more events than others to the superstation. This is not seen in the partially183

homogeneous scenario where all station distributions have the same threshold and shape184

factor and hence contribute similarly.185

We next consider the effect of sample size by considering dataset lengths that range186

from 30 to 100000 years. For each length we repeated the test 1000 times to yield a PDF,187

the mean and 90th percentile of which is shown in Figs. 2C,D. The sampling uncertainty188

monotonically reduces for longer datasets and gradually converges to the true supersta-189

tion bias. At 30 and 50 year record lengths (typical of real-world datasets), the bias may190

be exceeded in magnitude by the random error as depicted by the large spread of the191

PDF. Importantly however, all PDFs are centred on the true bias, showing that short192

record lengths do not cause biases, only random sampling errors. The PDFs of error (Fig. 2C,D)193

are narrow in both simulations when datasets are longer than 1000 years, implying a con-194

sistent bias site to site (or realisation to realisation), as implied by the geographic uni-195

formity of the difference between Fig. 1B vs. D. Moreover, as seen before, the simulated196

superstation result is higher than the mean return level of the stations in the neighbor-197

hood. Hence we conclude from these tests that while the noise seen in the BARRA-SY198

return-period map is from sampling errors due to the short record, the ubiquitous bias199

toward high values is caused by regional pooling of data from nearby locations.200

To understand what gives rise to this systematic bias, we compared the PDFs of201

gust speed (Figs. 3A and B) corresponding to the exceedence curves shown in Fig. 2A,202

B. In both scenarios, the slope of the superstation gust PDF at high gust speed tends203

to be dictated by the stations that have the heaviest tail (i.e., where the most extremes204

are recorded hence contributing most heavily to the superstation sample). Moreover, this205

phenomenon increases as one goes farther out on the tail of the PDF; if for example a206

very high threshold is used, nearly all data meeting the threshold come from one station207

(open circles in Fig. 3B). This level-dependent bias imparts a shallower slope to the PDF208

tail, which means that when calculating very long recurrence intervals, the extrapola-209

tion would tend to levels suggested by the locations that experience the most extreme210

events, or possibly even higher.211

3.2 Rainfall Example212

We now repeat the above analysis for another type of natural hazard, extreme rain-213

fall, to explore the generality of the result. In this case rather than GPD we use GEV,214

since this is how published rainfall estimates are typically calculated, but this choice does215

not substantially affect results (Data and Methods section). The synthetic data records216

are generated as before, considering the same two scenarios except for the parameter val-217

ues. The range of rainfall scale factors varies from 17 to 25, based on distributions es-218

timated from observed daily accumulated rainfall from weather stations in Sydney area.219
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Figure 2: Simulated results for two different test cases: five pooled locations with (A,C)
common threshold and shape factor values but varying scale factors, (B,D) all GPD dis-
tribution parameters varying among locations. Panels (A,B) show value vs. return period
given 1000 years of data, and (C,D) show the PDF of the 1000-year return-period value
given different data record lengths indicated in the legend (and assuming five threshold
exceedences per year).

The return behavior of rainfall (Fig. 4A,B) is quite different from that of wind. Rain-220

fall is highly intermittent with a long tail on the PDF, and the fits are unbounded with221

upward curvature to very high rain rates at extremely long return periods, due to the222

positive shape factor of the distribution, unlike the case for wind which has a negative223

shape factor and appears to asymptote toward a maximum possible value. Nonetheless224

the rainfall superstation fit is again higher than the true mean and median, and tends225

toward the 90th percentile of the neighborhood, consistent with the results based on wind226

distributions. For dataset lengths less than 1000 years, however (Fig. 4C,D), this bias227

is significantly outweighed by the sampling error such that the observed error in a sin-228

gle realization can be of either sign. This was not the case for gust distributions, where229

the superstation bias stands out even with short records (Figs. 2C,D).230

The large sampling errors observed in the rainfall case are independent of the dis-231

tribution model, as shown in Fig. 5, where the results from Fig. 4D are compared be-232

tween the GPD and GEV approaches. Both show a similar level of bias for all record233

lengths, although the biases are slightly smaller if GPD is used instead of the usual (for234

rainfall) GEV. Sampling uncertainties exceed the superstation bias regardless of the model,235
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Figure 3: Probability density functions of the pseudo-station and superstation synthetic
data shown in Figs. 2A, 2B. Open symbols in panel B show PDFs for three different
threshold values.

for realistic dataset lengths. Thus, rainfall estimates are harder to constrain and the bias236

identified here is much less important compared to sampling error.237

4 Conclusion238

We demonstrate a previously unreported bias in estimating long-term recurrence239

intervals of extreme events that results from the common practice of regionalization or240

grouping data of nearby locations into one larger sample or ”superstation”. Wind gust241

and rainfall extremes have been considered for this analysis, but the results are also likely242

applicable to other types of weather extremes. Regionalisation assumes that all locations243

grouped have the same underlying distribution. According to newly available, high-resolution244

simulations of wind events in eastern Australia, differences in the underlying distribu-245

tion can be large enough to induce biases at long recurrence intervals that dominate sam-246

pling uncertainty. The superstation fit tends to the highest levels suggested by any of247

the pooled locations and this bias increases with longer recurrence intervals. The tail of248

the superstation distribution tends to get its slope from the locations that experienced249

the most extremes. Moreover, the superstation PDF slope in our calculations is shallower250

than the those of any of the contributing stations, such that extrapolation will result in251

increasingly biased estimates at longer recurrence intervals. Our analysis suggests that252

for highly intermittent processes with unbounded behavior at the extreme tail such as253

rainfall with positive skewness for large values, the bias may be outweighed by random254

uncertainty and so may not matter in some cases, but will become important for bounded255

distributions. Since the importance of this bias depends on the distribution of the vari-256

able examined, we suggest that researchers should test for this bias before applying any257

regionalization method.258
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Figure 4: Same as Fig. 2 but for rainfall estimates.
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Abstract16

Preparing for environmental risks requires estimating the frequencies of extreme events,17

often from data records that are too short to confirm them directly. This requires fit-18

ting a statistical distribution to the data. To improve precision, investigators often pool19

data from neighboring sites into single samples, referred to as ”superstations,” before fit-20

ting. We demonstrate that this technique can introduce unexpected biases in typical sit-21

uations, using wind and rainfall extremes as case studies. When the combined locations22

have even small differences in the underlying statistics, the regionalization approach gives23

a fit that may tend toward the highest levels suggested by any of the individual sites.24

This bias may be large or small compared to the sampling error, for realistic record lengths,25

depending on the distribution of the quantity analysed. The results of this analysis in-26

dicate that previous analyses could potentially have overestimated the likelihood of ex-27

treme events arising from natural weather variability.28

Plain Language Summary29

We report a previously unknown bias in a common method for estimating how of-30

ten extremely rare events such as extreme wind bursts or rain events will occur, when31

return periods are longer than the available data record. The method analysed is one32

where an investigator combines data from nearby locations to reduce sampling error. We33

find by looking at new, high-resolution data that variations in behavior across sites can34

sometimes produce biases much larger than the sampling error. The implication is that35

some observed extreme events are even less likely to have occurred than previously thought,36

assuming the underlying distribution hasn’t changed over the period of observation.37

1 Introduction38

The statistical analysis of extreme-event frequencies and intensities is important39

to many risk management problems. For example, estimating the appropriate design wind40

speed requires the statistical analysis of historical wind data to estimate the strongest41

wind that might occur over a long time interval (AS/NZS1170.2:2021, 2021; Holmes, 2002;42

El Rafei et al., 2022). The design of offshore and coastal marine structures is governed43

by statistical estimates of extreme waves (Gulev & Grigorieva, 2004; Meucci et al., 2020).44

Similarly, statistical estimates of extreme rainfall values are essential for calculating flood45

risk and designing stormwater infrastructure (Green et al., 2012; Johnson & Green, 2018).46

To meet this need, extreme value theory has been widely used to estimate the proba-47

bility of events larger than any on record so far (Brabson & Palutikof, 2000; Coles, 2001;48

Church et al., 2006; Wang et al., 2013).49

The two usual approaches of extreme value theory are the generalized extreme value50

distribution (GEV) and the generalized Pareto distribution (GPD). The GEV approach,51

which combines three different statistical families (Weibull, Gumbel and Frechet), uses52

block maxima in which the dataset is divided into blocks and the maximum over each53

block is modelled (Gumbel, 1958; Palutikof et al., 1999; Coles, 2001). The GPD approach54

is instead based on the peaks-over-threshold method for which a threshold value is spec-55

ified and all the values above this chosen threshold are used to fit the model (Pickands,56

1975; Coles, 2001; Holmes & Moriarty, 1999). No matter which approach is used, the ex-57

trapolation to very rare events is subject to significant sampling errors when using short58

data ranges and uncertainties are unavoidable as accurate observational records are com-59

monly short and/or geographically sparse.60

To reduce statistical uncertainty, regionalization techniques have been used, whereby61

a larger sample is created by combining independent records of neighboring stations (J. Pe-62

terka, 1992; J. A. Peterka & Shahid, 1998; Holmes, 2002; Wang et al., 2013; Holmes, 2019)63

into what is sometimes called a ”superstation”. For example, regionalization has been64
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used for extreme wind assessment in the United States (J. A. Peterka & Shahid, 1998;65

ANSI/AS CE 7-98, 1998; ASCE/SE I 7-16, 2016) and Australia (Holmes, 2002; AS/NZS1170.2:2021,66

2021) to specify single design wind speed by compositing data from multiple stations;67

for regional flood frequency estimates (Haddad & Rahman, 2012); and for Intensity-Frequency-68

Duration (IFD) rainfall relationships (Wallis et al., 2007; Norbiato et al., 2007; Green69

et al., 2012; Johnson & Green, 2018). For IFD applications, nearby stations are pooled70

together assuming they share a common distribution of rainfall and are independent. An-71

other place where this approach has been used is for so-called ”regional frequency anal-72

ysis” of extreme wave heights, where data from sites with similar wave statistics are used73

to estimate the distribution for a presumed homogeneous region (Van Gelder et al., 2001;74

Bernardara et al., 2011; Lucas et al., 2017).75

While regionalization allows the estimation of distribution parameters using a larger76

dataset, the biases of this strategy are not explicitly quantified in the literature. Here77

we report unexpected biases in estimating long-term recurrence intervals of extreme events78

via regionalization, considering wind and rainfall extremes as case studies.79

2 Data and Methods80

2.1 Wind Data and Distribution Parameters81

Wind data are obtained from the 1.5 km Bureau of Meteorology Atmospheric high-82

resolution Regional Reanalysis for Australia Sydney region (BARRA-SY) and cover the83

period from 1996 to 2019. This fine-scale reanalysis may provide better representation84

of storm systems and mesoscale phenomena, which can allow better modelling and higher85

accuracy of the wind field compared to lower resolution models. The reader is referred86

to (Jakob et al., 2017; Su et al., 2019; Su et al., 2021) for more details.87

The maximum hourly wind gust speed data was used to calculate the daily max-88

ima, which are then used to fit the GPD model. For computational tractability, we sub-89

sampled the BARRA-SY data to 5324 grid points covering New South Wales (NSW),90

with a spacing of approximately 10 km. This is judged to be justified because gusts at91

locations that are very close (i.e., 1.5 km apart) would capture the same gust events mul-92

tiple times hence not be independent. The domain is then decomposed into groups (su-93

perstations) of approximately 25 grid points (5×5 grid points neighborhood) such that94

approximately 575 station years are obtained for each superstation.95

The fully heterogeneous numerical experiment (Fig. 2B) considers threshold val-96

ues between 15 and 23 m/s, shape factors between -0.2 to -0.1 and scale parameters rang-97

ing from 2 to 3. These ranges are representative of wind gust GPD distributions obtained98

using the BARRA-SY dataset. The partially heterogeneous case (Fig. 2B) considers a99

pre-fixed shape factor of -0.1 (similarly to what is used in the Australian standards) and100

a threshold value of 20 m/s. The range of scale factor values (between 3 and 4) was ar-101

bitrarily selected to represent a gradient of this parameter between the pseudo-stations.102

2.2 Rainfall Parameters103

To provide parameter values for rainfall tests, 30 years (1992-2021) of daily rain-104

fall data were obtained from the Australian Bureau of Meteorology for five locations in105

the Sydney area (Sydney Airport, Sans Suci, Randwick, Rose Bay and Peakhurst) pro-106

viding good data quality, using only low elevation stations (≤ 100 m). Incorrect values107

(flagged as wrong via the quality checks) were removed, and the annual maxima were108

used to fit a GEV model at each station. The GEV analysis suggests threshold values109

ranging from 66.2 to 77.3, shape factors ranging from 0.08 to 0.27 and scale factors rang-110

ing from 22.7 to 25.3. These ranges were then used to generate synthetic random sam-111

ples for the fully heterogeneous scenario (Fig. 4B). The partially heterogeneous scenario112
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considers pre-fixed threshold and shape factor (u0 = 77.3 and ξ = 0.19), which are113

selected from one of the stations distributions, and a range of scale factors from 17 to114

25. The range of scale factors is randomly selected for this scenario to represent a gra-115

dient of this parameter.116

2.3 Extreme Value Theory117

The GEV approach uses the block maxima technique where the maximum yearly
value is considered for the fit. The GEV cumulative distribution function can be expressed
as follows:

G(ug) =

e
−
[
1+ξg

(
ug−u0g

σg

)]−1/ξg

, for ξg ̸= 0

e−e(ug−u0g)/σg
, for ξg = 0

where u0g, ξg and σg are the location, shape and scale parameters respectively. The re-
turn levels are given in terms of ARI as:

URg = u0g −
σg

ξg
[1− (R)ξg ] (1)

where R is the ARI.118

The GPD model is based on the peaks-over-threshold approach (Palutikof et al.,
1999; Coles, 2001) where all the data above a specified threshold are modelled. The GPD
distribution can be expressed as:

H(up) =

1−
(
1 + ξp

up−u0p

σp

)−1/ξp
, for ξp ̸= 0

1− e
up−u0p

σp , for ξp = 0

where u0p, ξp and σp are the threshold, shape and scale parameters respectively.119

This expression is defined on {up − u0p > 0 and (1 + ξp(up − u0p)/σ̃p) > 0} where120

σ̃p = σp + ξp(up − u0p).121

The return levels are given in terms of the average recurrence interval using:

URp = u0p −
σp

ξp
[1− (λR)ξp ] (2)

where λ is the number of crossings of the threshold per year.122

The rainfall estimates calculated using the GPD approach use the 99th percentile123

as a threshold value (Lazoglou & Anagnostopoulou, 2017). For the wind analysis, we used124

a threshold selection algorithm that selects an optimal threshold value at each location.125

The selection algorithm first classifies the gusts into convective (i.e., thunderstorms) and126

synoptic (e.g., east coast lows, frontal systems) events. This is because gusts produced127

by different mechanisms can have different statistical properties and distributions. A range128

of thresholds is then tested to select the best fit. The reader is referred to (El Rafei et129

al., 2022) for more details on the threshold selection algorithm and the storm classifi-130

cation technique. The current study only presents results of convective events, as the same131

bias occur with either type using the superstation technique.132

3 Results133

3.1 Extreme Wind Gust Example134

3.1.1 Reanalysis Data Study135

We begin by examining a high-resolution (1.5-km horizontal grid spacing) regional136

Australian reanalysis dataset (BARRA-SY) of 23 years length from Year 1996 to Year137
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Figure 1: 500-year return wind gust speeds from convective events estimated several
ways. Results are calculated using: A) the GPD algorithm applied at each grid point.
B) the ”superstation” approach to aggregate data from neighboring grid points. C) the
nearby 90th percentile and D) mean of values shown in panel A, computed in the same
neighborhood as the ”superstations”.

2019, using the GPD approach. The availability of this new high-resolution gridded dataset138

has motivated this study, since wind data are available at sufficient density to directly139

test the performance of the regionalization approach. The GPD method and reanaly-140

sis data are detailed in the Data and Methods section. Maps of 500-year convective (i.e.,141

thunderstorm) wind gust speeds calculated in several ways are shown in Fig. 1. We show142

the 500-year ARI as this is used for the design criteria of many buildings in Australia143

(Wang et al., 2013). Results of higher recurrence intervals (e.g. 1000- and 2000-year ARIs,144

not shown) present similar patterns.145

The results obtained by GPD fitting and calculating return levels independently146

at each grid cell (Fig. 1A) show speckling due to small differences in the estimated GPD147

parameters. We expect this is mainly from sampling error due to the short record length,148

as it looks random rather than geophysical. The regionalization approach (Fig. 1B), in149

which data from 25 adjacent grid cells are combined before fitting, yields smoother re-150

sults but they show higher wind gust levels everywhere by about 10% compared to Fig. 1A.151

They are also higher than when the grid-point results are instead spatially smoothed by152

taking neighborhood means (2-D boxcar mean smoother of 5×5 grid points), as shown153

in Fig. 1D. Indeed they are very close to the neighborhood 90th percentile results in Fig. 1C154

(calculated as the 90th percentile wind gust speed of 25 adjacent grid points). This is155

true even for regional maxima in neighborhood spread such as in the southeast corner156

of the state.157

This analysis suggests that the superstation technique gives a fit that is close to158

the highest levels suggested by any of the neighboring, noise-influenced, sites. We now159

examine two hypotheses for why this is happening: first, that we bias the return levels160

by using short data ranges; and second, that it is an effect of combining locations into161

a superstation.162

3.1.2 Simulation Experiments163

A set of numerical experiments have been carried out to test these hypotheses, by164

generating synthetic records from pseudo-stations. Five synthetic ”neighbor” data records165

are analytically generated from assumed GPD distributions with parameters based on166

wind gust distributions estimated using the BARRA-SY reanalysis, in two test scenar-167

ios. For the first, partially heterogeneous scenario (Fig. 2A,C), the five records are gen-168
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erated using the same threshold (u0 = 20 m/s) and shape factor (ξ = −0.1) but a range169

of scale factors from 3-4. Pre-fixing the threshold and shape factor is similar to to ap-170

proaches sometimes used in structural design standards (AS/NZS1170.2:2021, 2021). For171

the second, fully heterogeneous scenario (Fig. 2B,D), all the distribution parameters vary172

among the records.173

We first examine outcomes with long records (Figs. 2A and 2B), generating 1000174

years of data, with a total of 5000 data points used by the GPD model, for each record175

(i.e., five threshold exceedence events per year on average). Figs. 2A and B show that,176

even when differences in the underlying distributions between the locations are small,177

the superstation fit is higher than the mean and the median of the individual fits and178

tends to the highest levels suggested by the individual stations, which is consistent with179

the wind data results in Fig. 1. Furthermore, in both simulations the bias increases at180

longer recurrence intervals. The superstation bias in the fully heterogeneous scenario is181

more significant, even at short recurrence intervals, because some locations are contribut-182

ing a lot more events than others to the superstation. This is not seen in the partially183

homogeneous scenario where all station distributions have the same threshold and shape184

factor and hence contribute similarly.185

We next consider the effect of sample size by considering dataset lengths that range186

from 30 to 100000 years. For each length we repeated the test 1000 times to yield a PDF,187

the mean and 90th percentile of which is shown in Figs. 2C,D. The sampling uncertainty188

monotonically reduces for longer datasets and gradually converges to the true supersta-189

tion bias. At 30 and 50 year record lengths (typical of real-world datasets), the bias may190

be exceeded in magnitude by the random error as depicted by the large spread of the191

PDF. Importantly however, all PDFs are centred on the true bias, showing that short192

record lengths do not cause biases, only random sampling errors. The PDFs of error (Fig. 2C,D)193

are narrow in both simulations when datasets are longer than 1000 years, implying a con-194

sistent bias site to site (or realisation to realisation), as implied by the geographic uni-195

formity of the difference between Fig. 1B vs. D. Moreover, as seen before, the simulated196

superstation result is higher than the mean return level of the stations in the neighbor-197

hood. Hence we conclude from these tests that while the noise seen in the BARRA-SY198

return-period map is from sampling errors due to the short record, the ubiquitous bias199

toward high values is caused by regional pooling of data from nearby locations.200

To understand what gives rise to this systematic bias, we compared the PDFs of201

gust speed (Figs. 3A and B) corresponding to the exceedence curves shown in Fig. 2A,202

B. In both scenarios, the slope of the superstation gust PDF at high gust speed tends203

to be dictated by the stations that have the heaviest tail (i.e., where the most extremes204

are recorded hence contributing most heavily to the superstation sample). Moreover, this205

phenomenon increases as one goes farther out on the tail of the PDF; if for example a206

very high threshold is used, nearly all data meeting the threshold come from one station207

(open circles in Fig. 3B). This level-dependent bias imparts a shallower slope to the PDF208

tail, which means that when calculating very long recurrence intervals, the extrapola-209

tion would tend to levels suggested by the locations that experience the most extreme210

events, or possibly even higher.211

3.2 Rainfall Example212

We now repeat the above analysis for another type of natural hazard, extreme rain-213

fall, to explore the generality of the result. In this case rather than GPD we use GEV,214

since this is how published rainfall estimates are typically calculated, but this choice does215

not substantially affect results (Data and Methods section). The synthetic data records216

are generated as before, considering the same two scenarios except for the parameter val-217

ues. The range of rainfall scale factors varies from 17 to 25, based on distributions es-218

timated from observed daily accumulated rainfall from weather stations in Sydney area.219
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Figure 2: Simulated results for two different test cases: five pooled locations with (A,C)
common threshold and shape factor values but varying scale factors, (B,D) all GPD dis-
tribution parameters varying among locations. Panels (A,B) show value vs. return period
given 1000 years of data, and (C,D) show the PDF of the 1000-year return-period value
given different data record lengths indicated in the legend (and assuming five threshold
exceedences per year).

The return behavior of rainfall (Fig. 4A,B) is quite different from that of wind. Rain-220

fall is highly intermittent with a long tail on the PDF, and the fits are unbounded with221

upward curvature to very high rain rates at extremely long return periods, due to the222

positive shape factor of the distribution, unlike the case for wind which has a negative223

shape factor and appears to asymptote toward a maximum possible value. Nonetheless224

the rainfall superstation fit is again higher than the true mean and median, and tends225

toward the 90th percentile of the neighborhood, consistent with the results based on wind226

distributions. For dataset lengths less than 1000 years, however (Fig. 4C,D), this bias227

is significantly outweighed by the sampling error such that the observed error in a sin-228

gle realization can be of either sign. This was not the case for gust distributions, where229

the superstation bias stands out even with short records (Figs. 2C,D).230

The large sampling errors observed in the rainfall case are independent of the dis-231

tribution model, as shown in Fig. 5, where the results from Fig. 4D are compared be-232

tween the GPD and GEV approaches. Both show a similar level of bias for all record233

lengths, although the biases are slightly smaller if GPD is used instead of the usual (for234

rainfall) GEV. Sampling uncertainties exceed the superstation bias regardless of the model,235
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Figure 3: Probability density functions of the pseudo-station and superstation synthetic
data shown in Figs. 2A, 2B. Open symbols in panel B show PDFs for three different
threshold values.

for realistic dataset lengths. Thus, rainfall estimates are harder to constrain and the bias236

identified here is much less important compared to sampling error.237

4 Conclusion238

We demonstrate a previously unreported bias in estimating long-term recurrence239

intervals of extreme events that results from the common practice of regionalization or240

grouping data of nearby locations into one larger sample or ”superstation”. Wind gust241

and rainfall extremes have been considered for this analysis, but the results are also likely242

applicable to other types of weather extremes. Regionalisation assumes that all locations243

grouped have the same underlying distribution. According to newly available, high-resolution244

simulations of wind events in eastern Australia, differences in the underlying distribu-245

tion can be large enough to induce biases at long recurrence intervals that dominate sam-246

pling uncertainty. The superstation fit tends to the highest levels suggested by any of247

the pooled locations and this bias increases with longer recurrence intervals. The tail of248

the superstation distribution tends to get its slope from the locations that experienced249

the most extremes. Moreover, the superstation PDF slope in our calculations is shallower250

than the those of any of the contributing stations, such that extrapolation will result in251

increasingly biased estimates at longer recurrence intervals. Our analysis suggests that252

for highly intermittent processes with unbounded behavior at the extreme tail such as253

rainfall with positive skewness for large values, the bias may be outweighed by random254

uncertainty and so may not matter in some cases, but will become important for bounded255

distributions. Since the importance of this bias depends on the distribution of the vari-256

able examined, we suggest that researchers should test for this bias before applying any257

regionalization method.258
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Figure 4: Same as Fig. 2 but for rainfall estimates.
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