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Abstract

The atmospheric Green’s function method is a technique for modeling the response of the atmosphere to changes in the spatial

field of surface temperature. While early studies applied this method to changes in atmospheric circulation, it has also become

an important tool to understand changes in radiative feedbacks due to evolving patterns of warming, a phenomenon called the

“pattern effect.” To better study this method, this paper presents a protocol for creating atmospheric Green’s functions to

serve as the basis for a model intercomparison project, GFMIP. The protocol has been developed using a series of sensitivity

tests performed with the HadAM3 atmosphere-only general circulation model, along with existing and new simulations from

other models. Our preliminary results have uncovered nonlinearities in the response of the atmosphere to surface temperature

changes, including an asymmetrical response to warming vs. cooling patch perturbations, and a change in the dependence of

the response on the magnitude and size of the patches. These nonlinearities suggest that the pattern effect may depend on the

heterogeneity of warming as well as its location. These experiments have also revealed tradeoffs in experimental design between

patch size, perturbation strength, and the length of control and patch simulations. The protocol chosen on the basis of these

experiments balances scientific utility with the simulation time and setup required by the Green’s function approach. Running

these simulations will further our understanding of many aspects of atmospheric response, from the pattern effect and radiative

feedbacks to changes in circulation, cloudiness, and precipitation.
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Key Points:22

• The Green’s Function Model Intercomparison Project (GFMIP) explores the at-23

mospheric response to surface temperature patch perturbations.24
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Abstract29

The atmospheric Green’s function method is a technique for modeling the response30

of the atmosphere to changes in the spatial field of surface temperature. While early stud-31

ies applied this method to changes in atmospheric circulation, it has also become an im-32

portant tool to understand changes in radiative feedbacks due to evolving patterns of33

warming, a phenomenon called the “pattern effect.” To better study this method, this34

paper presents a protocol for creating atmospheric Green’s functions to serve as the ba-35

sis for a model intercomparison project, GFMIP. The protocol has been developed us-36

ing a series of sensitivity tests performed with the HadAM3 atmosphere-only general cir-37

culation model, along with existing and new simulations from other models. Our pre-38

liminary results have uncovered nonlinearities in the response of the atmosphere to sur-39

face temperature changes, including an asymmetrical response to warming vs. cooling40

patch perturbations, and a change in the dependence of the response on the magnitude41

and size of the patches. These nonlinearities suggest that the pattern effect may depend42

on the heterogeneity of warming as well as its location. These experiments have also re-43

vealed tradeoffs in experimental design between patch size, perturbation strength, and44

the length of control and patch simulations. The protocol chosen on the basis of these45

experiments balances scientific utility with the simulation time and setup required by46

the Green’s function approach. Running these simulations will further our understand-47

ing of many aspects of atmospheric response, from the pattern effect and radiative feed-48

backs to changes in circulation, cloudiness, and precipitation.49

Plain Language Summary50

Many properties of the atmosphere are affected by the temperature of the ocean51

surface. Knowing how strong these effects are would help us to better predict global warm-52

ing. The response to a given surface warming depends on where the warming occurs. To53

account for this, researchers sometimes simulate the response to individual patches of54

warming and then assume the response to an arbitrary warming pattern can be summed55

together from these patch responses. This is sometimes called the atmospheric Green’s56

function method, and it works well at recreating the atmospheric response to historical57

temperature changes.58

We are organizing a Green’s Function Model Intercomparison Project (GFMIP),59

in which participants will apply the method consistently for many climate models. This60

paper presents the GFMIP protocol. In the course of developing this protocol, we found61

that the atmospheric response to warming is not proportional in all cases: the response62

to surface warming is not the opposite of the response to surface cooling; warming twice63

as much doesn’t cause twice as much of a response; and making a patch of warming twice64

as large doesn’t cause twice as large a response. GFMIP will help us figure out how to65

account for this nonlinearity.66

1 Introduction67

The response of the atmospheric state to changes in surface temperature is one of68

the most critical and extensively studied connections in the coupled climate system. For69

example, Arrhenius (1896), a seminal global warming study, argued that the amount of70

warming that occurs in response to a CO2 change is determined in part by how the net71

downward top-of-atmosphere (TOA) radiative flux, N , depends on the surface temper-72

ature, T . This dependence in turn depends on how numerous aspects of the atmosphere73

and surface, such as the spatial distribution of water in all its phases, respond to sur-74

face temperature changes (Hansen et al., 1984; Soden et al., 2008; Stevens and Bony ,75

2013).76
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The simplest way to model the dependence of some aspect of the atmospheric state77

on surface temperature is to assume that the quantity in question scales linearly with78

global-mean surface warming, so that the dependence can be summarized as a constant79

scalar. For example, suppose N and T are the global-mean values of N and T respec-80

tively. If we define the radiative feedback parameter λ to be the dependence of N on T ,81

∂N/∂T (where a negative value implies a stabilizing radiative feedback; the opposite-82

signed value is sometimes called the climate feedback parameter), then λ is often assumed83

to be constant (Gregory et al., 2004; Forster et al., 2021).84

Counter to this, λ in many coupled atmosphere-ocean model simulations with con-85

stant forcing evolves with time (e.g., Murphy , 1995; Senior and Mitchell , 2000; Williams86

et al., 2008; Andrews et al., 2015). Such a variation could be caused by a nonlinear re-87

sponse of N to global-mean surface temperature, for example due to feedback temper-88

ature dependence (Colman and McAvaney , 2009; Meraner et al., 2013; Bloch-Johnson89

et al., 2015, 2021). However, these changes in λ typically occur after a few decades (An-90

drews et al., 2015). This timing is consistent even under different amounts of CO2 forc-91

ing, so that the global-mean warming ∆T undergone during this time is different (e.g.,92

Figure S1 of Bloch-Johnson et al., 2021). As a result, this change in λ is likely not due93

to the total global-mean warming, but rather to some other aspect of the warming that94

varies similarly with time regardless of the level of CO2 forcing.95

Armour et al. (2013) proposed that temporal variations in λ are due to changes96

in the spatial pattern of surface temperature, with the shift in λ under constant CO2 forc-97

ing occurring when regions of deep ocean heat uptake begin to warm (Rose et al., 2014;98

Armour , 2017), which occurs at similar times under different constant CO2 forcings (Rohrschnei-99

der et al., 2019). Under this theory, surface temperature changes in different locations100

set off different atmospheric responses, and therefore different changes in N .101

This interpretation is supported by results with atmosphere-only models. A num-102

ber of studies have found that running such models with prescribed sea surface temper-103

ature and sea ice boundary conditions from a coupled simulation induces similar changes104

in radiative fluxes as the original coupled simulation (e.g., Ringer et al., 2014; Andrews105

et al., 2015; Haugstad et al., 2017; Qin et al., 2022). As a result, atmosphere-only mod-106

els can serve as useful tools for understanding the response of N to different patterns of107

warming. Studies in which these atmosphere-only models have been run with reconstruc-108

tions of historical temperatures and sea ice find that the value of λ has varied significantly109

across the last century (Gregory and Andrews, 2016; Andrews et al., 2022), having a much110

larger range of values than in simulations with constant CO2 forcing despite having a111

much smaller range of global-mean surface temperature.112

These papers have specifically suggested that changes in the radiative feedback can113

be explained by a linear spatial model, e.g. ∆N ∝ ∆T (ϕ, θ), where ϕ and θ are lati-114

tude and longitude respectively. A similar model has also been used in the dynamics lit-115

erature, in which various aspects of the atmosphere and its circulation are assumed to116

depend linearly on the spatial field of sea surface temperature (e.g., Branstator , 1985;117

Barsugli and Sardeshmukh, 2002; Schneider et al., 2003; Deser and Phillips, 2006; Bar-118

sugli et al., 2006; Zhou et al., 2020).119

The linear spatial assumption allows one to use a Green’s function method approach,120

in which the response of an atmospheric variable to the full pattern of surface temper-121

ature change can be thought of as the sum of the responses of that variable to the change122

in surface temperature in each location taken in isolation (Branstator , 1985; Holzer and123

Hall , 2000). Using this insight, Barsugli and Sardeshmukh (2002) and Barsugli et al. (2006)124

overlaid the surface of the tropical oceans with a lattice of patches, for each of which they125

ran an atmosphere-only model simulation in which the surface temperature in that patch126

was perturbed. They used the resulting output to estimate the sensitivity of various at-127

mospheric quantities to tropical surface temperature changes.128
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More recently, Zhou et al. (2017) adopted the approach of Barsugli and Sardesh-129

mukh (2002) to specifically understand the dependence of the cloud radiative effect (the130

contribution of cloudiness to net top-of-atmosphere radiative fluxes) on tropical surface131

temperature. Dong et al. (2019) expanded this approach to cover all top-of-atmosphere132

(TOA) fluxes and all regions of the Earth. Both studies found that the most distinct fea-133

ture of the response of TOA fluxes is that strong negative feedbacks occur in response134

to regions of tropical convection (in particular the western tropical Pacific), a finding that135

has been supported by subsequent studies (Zhang et al., 2023; Alessi and Rugenstein,136

submitted). Zhou et al. (2023) showed that these Green’s functions could be used to ex-137

plain the different efficacies associated with different forcing agents.138

Patch perturbations are not the only method for estimating the linear spatial de-139

pendence of atmospheric state on sea surface temperature. For example, Li et al. (2012)140

used random patterns of surface temperature change instead of patches to more efficiently141

estimate the most dominant aspects of this dependence. Li et al. (2012)’s random per-142

turbation method (RPM) has been used in dynamical studies (e.g., Li and Forest , 2014;143

Baker et al., 2019; Patterson et al., 2022), though we are not aware of any of that ap-144

plied it to radiative feedbacks. Liu et al. (2018a) showed using the fluctuation-dissipation145

theorem captues a climatic variable’s dependence on the field of surface fluxes from in-146

ternal variability. Bloch-Johnson et al. (2020) applied a similar method to find the de-147

pendence of TOA radiative fluxes on sea surface temperature, finding that five of six cou-148

pled climate models had strong negative radiative feedbacks in regions of tropical con-149

vection, as above.150

While these methods provide various advantages, patch simulations have the use-151

ful feature that they clearly demonstrate the physical, causal relationship between sur-152

face temperature changes and resulting atmospheric changes. As a result, many mod-153

eling groups have run or are planning on running these simulations. These simulations154

provide a simple way of comparing the diversity of atmospheric responses across mod-155

els, such as different responses to warming in tropical ascent regions in the Atlantic (e.g.156

Zhou et al., 2017; Dong et al., 2019) or generally (e.g., NASA GISS-E2-R in Bloch-Johnson157

et al., 2020). Dong et al. (2020) provides further evidence of this diversity, showing that158

Green’s functions from one model do not always show skill in explaining the feedbacks159

of other models. However, it is unclear if this diversity of behavior is due to true differ-160

ences in model physics, or simply differences in the experimental setups used to gener-161

ate the Green’s functions.162

In this paper, we present an experimental setup for constructing atmospheric Green’s163

functions to serve as the protocol for the Green’s Function Model Intercomparison Project164

(GFMIP). We have developed this setup using existing Green’s function setups, run with165

CAM4 (Gent et al., 2011), CAM5 (Neale et al., 2012), GFDL-AM4 (Zhao et al., 2018),166

ECHAM6 (Stevens et al., 2013), CanESM5 (Swart et al., 2019), and ICON (Giorgetta167

et al., 2018), and a series of sensitivity tests, mostly conducted using the atmosphere com-168

ponent of the HadAM3 atmospheric model (Pope et al., 2000).169

The protocol is presented in Table 1, whose variables are defined as in Figure 1.170

In Section 2, we review the atmospheric Green’s function method, showing the choices171

that must be made in performing such an analysis. In Section 3, we present the proto-172

col in more detail, showing the reasoning behind the decisions made and explaining how173

readers can participate in the project. In Section 4, we present some nonlinear results174

found in the course of developing this protocol. Finally, in Section 5 we summarize the175

proposed project.176
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2 The atmospheric Green’s function method177

We now present the atmospheric Green’s function method. We write “atmospheric”178

to distinguish this method from the use of Green’s functions to understand the response179

of the ocean (Khatiwala et al., 2001; Zanna et al., 2019; Newsom et al., 2020) or a cou-180

pled system with an atmosphere and a slab ocean (Liu et al., 2018b) to sea surface per-181

turbations. While it is possible to use Green’s functions to understand the time evolu-182

tion of the atmospheric response (Holzer and Hall , 2000), we focus our discussion on monthly183

and longer time-scales, for which we assume that the response is effectively instantaneous.184

Let f represent some aspect of the atmosphere whose value depends in part on the185

spatial field of surface temperature. For simplicity, we assume f is a scalar, such as a global186

average (like N above) or a value at a fixed location (e.g., the net TOA radiative flux187

at (0◦, 0◦)), but similar ideas apply when f is a spatial variable itself (e.g., see Dong et al.,188

2019; Zhang et al., 2023).189

Suppose the response of f to perturbations in surface temperature around some190

initial state is proportional to the size of those perturbations, and that the response of191

f to multiple surface temperature perturbations is equal to the sum of the responses of192

f to the individual perturbations. This would then imply that the response of f to a full,193

global pattern of surface temperature can be found by subdividing this pattern into many194

individual, localized perturbations, and taking the sum of the responses of f to these per-195

turbations.196

The atmospheric Green’s function method builds on this insight by first estimat-197

ing the linear dependence of f on local changes in surface temperature, and then esti-198

mating the response of f to general patterns of surface temperature change by summing199

across the response to these local changes. The method is specifically applied to atmosphere-200

only general circulation models. Given that the dependence of f on surface temperature201

differs between models, in this explanation we assume that the same atmospheric model202

is used throughout.203

Since most atmospheric models can only prescribe surface temperature over the ice-204

free ocean (while they can set the sea surface temperature in ice-covered regions, they205

cannot directly set the temperature of the ice surface), we focus on the dependence of206

f on the surface temperature in these regions. Direct dependence of f on land and ice207

surface temperatures can be estimated using statistical techniques (e.g., Bloch-Johnson208

et al., 2020; Ceppi and Nowack , 2021), but in the atmospheric Green’s function litera-209

ture, land and ice surface temperatures are assumed to depend on ice-free ocean surface210

temperature and other boundary conditions, just like atmospheric variables.211

Although the sea surface temperature field, SST (ϕ, θ), is continuous for the real212

Earth, it is discretized for atmospheric models. We therefore express SST , and other spa-213

tial variables based on it, as vectors (e.g.,
#       »

SST ) whose elements correspond to the at-214

mospheric model’s surface grid cells, and estimate the dependence of f on
#       »

SST . For an215

alternate interpretation of the method in terms of continuous fields, see Appendix A.216

Figure 1 illustrates how we estimate the linear dependence of f on variations in
#       »

SST .217

First, we run a control simulation of the atmospheric model. We must choose bound-218

ary conditions for this run to serve as the base state for our method, specifically a set219

of twelve maps of
#       »

SST and sea ice fraction
#      »

SIC representing a repeating climatology220

of each variable (some models may also prescribe sea ice thickness). We write these as221

sets { #       »

SSTm}c and { #      »

SICm}c where m is an index representing the month and c indi-222

cates these respresent the control state. For plotting purposes, we define
#       »

SST c and
#      »

SICc223

to be annual averages of these two sets, respectively. We also must choose values for var-224

ious forcing agents (e.g., CO2 and other long-lived greenhouse gases, aerosols), which we225

keep constant across all experiments ({F}c). We run this control simulation for an ini-226
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tial spinup of sc years, followed by yc post-spinup years. We then take the average value227

of f during the post-spinup years as the control value, fc.228

In the second step, we cover the surface with a lattice of patches. Each patch p is229

a perturbation of the sea surface temperature field over a region of latitudinal width δϕp230

and longitudinal width δθp centered at (ϕp, θp). Suppose we have a grid cell i centered231

at (ϕi, θi). Patch p’s perturbation for grid cell i will then be:232

∆SSTp,i =

Apcos
2

(
π

2

ϕi − ϕp

δϕp/2

)
cos2

(
π

2

θi − θp
δθp/2

)
if

ϕi − ϕp ∈ (−δϕp/2, δϕp/2)
θi − θp ∈ (−δθp/2, δθp/2)

0 otherwise

(1)

such that the patch reaches an extreme amplitude of Ap at (ϕp, θp). Note that we as-233

sume the appropriate arithmetic is used in calculating θi−θp for cells that straddle the234

discontinuity in longitude. Negative values of Ap imply a cooling patch, while positive235

values imply a warming patch. We explore alternative patch shapes in Section 3.3.4.236

For each patch, we add the resulting perturbation ∆
#       »

SST p to { #       »

SSTm}c to get the237

perturbed climatology, { #       »

SSTm}p. We use this new climatology, as well as the control238

sea ice ({ #      »

SICm}c) and forcing agents ({F}c) as the boundary conditions of a new atmosphere-239

only simulation. For simplicity, we are not exploring sea ice changes in the first phase240

of GFMIP (for an example of incorporating sea ice changes in the Green’s functions method,241

see Dong et al., 2019). We run each patch simulation for an initial spinup period of sp242

years, and then an additional yp years. We then average f during the last years of yp243

of each patch simulation and subtract the control value, fc, to give the change in f caused244

by the patch warming, ∆fp.245

In the third step, we estimate the linear dependence of f on perturbations of
#       »

SST246

around the base state. There are different ways to formulate this dependence. For ex-247

ample, for each grid cell i, we could calculate ∂f/∂SSTi, the infinitesimal change in f248

caused by an infinitesimal change in the SST value of grid cell i. This derivative has a249

few disadvantages. First, ∂f/∂SSTi depends on the area of the grid cell (i.e., all else be-250

ing equal, bigger grid cells will cause a larger change in f). As a consequence of this, val-251

ues of ∂f/∂SSTi can significantly change under regridding. Second, we are ultimately252

interested in the response of f to the full pattern of warming, i.e. the global derivative,253

∂f/∂⟨ #       »

SST ⟩, where ⟨·⟩ is the area-weighted spatial average over the ice-free ocean. Since254

∂f/∂SSTi is typically orders of magnitude smaller than ∂f/∂⟨ #       »

SST ⟩, it is difficult to in-255

tuitively understand how a given value of ∂f/∂SSTi affects the overall response.256

To address these issues, we instead use the normalized derivative, ∂f/∂
#       »

SST ∗. For
a given grid cell i, we define the normalized derivative as

∂f

∂SST ∗
i

≡ atot
ai

∂f

∂SSTi
(2)

where ai is the area of the grid cell, and atot ≡
∑

i ai is the total area of the ice-free257

ocean. The normalized derivative has the advantage that it is “intensive” – that is, its258

value does not depend on the area over which it is calculated, so that regridding a map259

of the normalized derivative does not affect its values (aside from the smoothing that gen-260

erally comes from regridding).261

The factor of atot ensures that normalized derivative values have the same order
of magnitude as the global derivative; specifically, assuming linearity,

∂f

∂⟨ #       »

SST ⟩
=

∑
i(∂f/∂SSTi)∆SSTi

∆⟨ #       »

SST ⟩
=

∑
i(∂f/∂SST

∗
i )ai∆SSTi∑

i ai∆SSTi

so that the global derivative is simply the weighted average of the normalized derivative,262

where the weights are given by each grid cell’s size and SST perturbation. In this sense,263
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a grid cell’s normalized derivative gives the value the global derivative would have if that264

grid cell were representative of the whole ice-free ocean.265

Put another way, if we perturb the SST in a given grid cell, we change both f and266

⟨SST ⟩, and the normalized derivative is the ratio of these changes. This follows from Equa-267

tion 2, in that if we perturb the cell’s SST by an infinitesimal amount ∂SSTi, the ice-268

free ocean-mean perturbation will be (ai/atot)∂SSTi. This implies that we can estimate269

the normalized derivative in a grid cell by considering the response of f to the ice-free270

ocean mean SST change caused by patches that include that cell. For example, if patch271

p includes grid cell i, then we could estimate ∂f/∂SST ∗
i as ∆fp/⟨∆

#         »

SSTp⟩, where we know272

⟨∆ #         »

SSTp⟩ by construction, and we estimated ∆fp above.273

However, multiple patches will typically include grid cell i. As a result, we can es-
timate ∂f/∂SST ∗

i by taking a weighted average across all patches (third step of Figure 1),

∂f

∂SST ∗
i

≈
∑

p(∆fp/⟨∆
#       »

SST p⟩)∆SSTp,i∑
p ∆SSTp,i

. (3)

where the weights are ∆SSTp,i, which is patch p’s SST perturbation in grid cell i. ∆SSTp,i =
0 for all patches that do not include grid cell i, so these patches do not contribute to this
average, while patches whose centers are close to the grid cell i’s center contribute the
most (because of the shape of the patch perturbation given in Equation 1). Note that
in the absence of land and sea ice, patches of the form in Equation 1 have

⟨∆ #         »

SSTp⟩ = (ap/atot)Ap/4 (4)

where ap is the area of the patch. However, most patches overlap land and sea ice, so274

that this approximation cannot be generally applied.275

Various steps can then be taken to improve our estimate of ∂f/∂SST ∗
i :276

• One can make two estimates, one using warming patches with Ap > 0 (e.g., those277

in the “+” row of Figure 2) and the other using cooling patches with negative Ap <278

0 (e.g., the “-” row of Figure 2), and then take the average of the two (e.g., the279

“±” row of Figure 2). While these derivatives should be identical under linear-280

ity, they typically are not, as discussed in Section 4.281

• One can construct derivatives for different times of year (Dong et al., 2019; Bloch-282

Johnson et al., 2020; Alessi and Rugenstein, submitted), such as for different sea-283

sons or months, by considering only the patch anomalies for the relevant time pe-284

riods.285

• One can perform significance tests on ∂f/∂
#          »

SST ∗, removing values that are not286

statistically significantly different from zero (Dong et al., 2019; Zhang et al., 2023;287

Alessi and Rugenstein, submitted), on the grounds that such values may arise from288

noise rather than representing the forced response. Zhang et al. (2023) find ev-289

idence that doing so can improve the method’s accuracy, but also caution that per-290

forming such tests on individual flux components of N causes their derivatives to291

no longer sum to N itself. To keep our analysis simple, we do not consider the util-292

ity of such tests in this paper.293

In the final step in Figure 1, we use the normalized derivative to estimate the changes
in f that would be caused by an arbitrary pattern of temperature change ∆

#       »

SST :

∆f ≈
∑

i(∂f/∂SST
∗
i )ai∆SSTi

atot
. (5)

We can repeat this for each entry in a time series of surface temperature change, ∆
#       »

SST (t),294

to estimate the associated time series of ∆f(t) (e.g., the orange line in Step 4 in Figure 1).295

Note that if monthly or seasonal derivatives of f are used, they can be cyclically applied296

to monthly or seasonal averages of ∆
#       »

SST (t) to create estimates of ∆f(t).297
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If we wish to test the accuracy of the method, we could then compare this estimate298

of ∆f(t) to the time series produced by running the atmosphere-only model with { #       »

SSTm}c+299

∆
#       »

SST (t) as its boundary condition, once more keeping sea ice and forcing agents fixed300

(the black line). The simulated value of ∆f(t) may exhibit variations due to internal vari-301

ability of the atmosphere and land, which may cause Green’s function reconstructions302

of ∆f(t) to differ from simulated values. We can reduce the influence of internal vari-303

ability by running an ensemble of simulations, each with different initial conditions. The304

time series of the simulated ensemble mean (black line) and Green’s function estimate305

(orange line) of ∆f(t) can then be compared, for instance by calculating the root mean306

square error (e.g., Equation 6 in the next section).307

2.1 Applying the method to N308

A number of recent papers have used this Green’s function method, or variations309

on it, to investigate the dependence of TOA radiative fluxes on sea surface temperatures310

(Zhou et al., 2017; Dong et al., 2019; Zhang et al., 2023; Alessi and Rugenstein, submit-311

ted). For example, Figure 2 shows the normalized derivative of the globally-averaged net312

TOA radiative flux, N , for a variety of atmosphere-only models. The top row shows the313

half-amplitudes of the patches used to construct these derivatives (that is, the contours314

within which the patch perturbation is at least Ap/2). Some patch layouts were designed315

to be regularly spaced in latitude and longitude, while others have patches with a con-316

sistent area over some or all of the Earth.317

The bottom rows show derivatives of N with respect to
#       »

SST (that is, the response318

of the global-mean net TOA radiative flux in a given location, not to be confused with319

the response of local values of N to local or global SST changes) constructed using a320

variety of Green’s function method setups. There is a fairly consistent picture across the321

derivatives: the most negative dependence N on local surface temperature occurs in ar-322

eas of tropical convection, especially over the western tropical Pacific. A similar pattern323

over the tropical Pacific is also seen for the ICON model (Figure S1).324

Figure 3 illustrates the cause of these common features using some example patches325

(see also Zhou et al., 2017; Ceppi and Gregory , 2017; Andrews and Webb, 2018; Dong326

et al., 2019). Panel a shows the surface temperature change, ∆
#       »

SST , associated with ap-327

plying an Ap = +2K warming patch to a region of the western equatorial Pacific, where328

deep convection occurs. Warming in this region propagates upwards and then outwards329

to broadly warm the free tropical troposphere, increasing lower tropospheric stability in330

subsiding regions, and thus promoting low cloudiness (Wood and Bretherton, 2006). The331

resulting change in net TOA radiative flux, ∆
#»

N , is shown in panel d. Thus, the more332

negative regions in Figure 2 are primarily a result of nonlocal low cloud feedbacks (i.e.,333

even though the cloud response occurs primarily in subsiding regions, this response is334

due to warming in convecting regions, so that convecting regions have negative values335

of ∂N/∂
#          »

SST ∗).336

This response is in contrast to the response to surface warming in the subsiding337

tropics and extratropics, which is mostly local. While warming in these regions can have338

large nonlocal responses, these responses are typically mediated by surface temperature339

changes elsewhere (that is, these teleconnections typically involve an oceanic response,340

and thus an atmosphere coupled to a slab or dynamic ocean, e.g. Kang et al., 2008; Feldl341

and Roe, 2013; Liu et al., 2018a; Kim et al., 2022; Luongo et al., 2023). Since the at-342

mospheric Green’s function method aims to capture the atmospheric response to a given343

region’s surface temperature changes independent of surface temperature changes any-344

where else, the ocean response is deliberately suppressed (i.e., SST is prescribed in patch345

simulations), and only direct atmospheric effects are captured.346

Keeping in mind that we are limiting our attention to the atmospheric response,347

surface temperature perturbations in the subsiding tropics typically cannot propagate348
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beyond the boundary layer (panel b), such that they mostly cause a local decrease in lower349

tropospheric stability and subsequent loss of low clouds (panel e). In the extratropics,350

surface warming is often balanced by local horizontal circulation changes which can be351

maintained via the Coriolis force (panel c; see all Hoskins and Karoly , 1981). This cir-352

culation further inhibits cloud formation through advection of colder, drier air to the warm-353

ing region (Williams et al., 2022a). In both cases, responses are mostly local. Given that354

the ∆N in panels e and f are of a similar order of magnitude as in panel d but cover a355

much smaller area, the resulting change in globally-averged N is smaller, so that the deriva-356

tive of N associated with SST changes in these regions is also smaller.357

In spite of the similarities between derivatives in Figure 2, substantial differences358

remain (e.g., the strength of negative feedbacks in the Caribbean). Some of these dif-359

ferences may reflect variations in the application of the Green’s function method. For360

example, the two HadAM3 derivatives (both created for this study) differ only in their361

patch layouts, but have differently sized negative regions in the tropical Pacific. Simi-362

lar differences are seen for the two CanESM5 derivatives over the tropical Pacific (Fig-363

ure S1). By proposing a common protocol, GFMIP ensures differences in derivatives are364

due only to the atmospheric models themselves.365

3 The GFMIP Protocol366

Table 1 summarizes the GFMIP protocol, where variables are defined as in Figure 1.367

The protocol consists of a control simulation, a set of patch simulations, and a pair of368

diagonstic simulations, as well as some optional simulations. Boundary conditions for369

all can be found at gfmip.org. We present the parameters for this protocol below, but370

first discuss the sensitivity tests used to inform our choices of these parameters.371

3.1 HadAM3 sensitivity tests372

Each element of the protocol was chosen by assessing existing setups and perform-373

ing sensitivity tests, most with the atmosphere-only component of the HadCM3 model,374

HadAM3 (Pope et al., 2000), which can be run inexpensively while still having a real-375

istic coupled control climatology (Gordon et al., 2000; Tett et al., 2022).376

For each sensitivity test with HadAM3, all experimental setups are as in Table 1377

unless otherwise mentioned, with the exception that we use preindustrial (as opposed378

to year 2000) values of all forcing agents. Note that we use annually-averaged deriva-379

tives for our Green’s functions, as using monthly or seasonal averages does not signif-380

icantly improve our results (Figure S2), though it can for other models (Dong et al., 2019;381

Bloch-Johnson et al., 2020; Alessi and Rugenstein, submitted).382

We evaluate each setup’s skill by seeing how well it reconstructs the response of383

HadAM3 to historical sea surface temperatures. We first run an ensemble of ne = 9384

simulations of HadAM3, each with the same time-evolving SST boundary conditions,385
#       »

SSThist(t), but different initial conditions (the ensemble helps remove the influence of386

internal variability on N). We construct
#       »

SSThist(t) by starting with a monthly clima-387

tological base state, {SSTm}c, and then adding the monthly anomalies of the AMIP dataset388

between 1871 and 2015 (Gates, 1992), ∆
#       »

SSThist(t). These anomalies are calculated rel-389

ative to the monthly climatology from 1971 to 2020 (the protocol’s { #       »

SSTm}c), so that390

with the exception of the sensitivity test in Section 3.2.1,
#       »

SSThist(t) is just the AMIP391

time series. We once more keep sea ice and forcing agents fixed to their control values.392

Each ensemble member produces a time series of the change in N , ∆Nhist,sim,e(t), and393

∆Nhist,sim(t) ≡
∑

e(∆Nhist,sim,e(t)/ne) is the ensemble-mean time series.394

For each Green’s function setup, we calculate the derivative of N with respect to
#       »

SST and then apply it to ∆
#       »

SSThist(t) as in Equation 5 to estimate the time series of
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the change in N , ∆Nhist,GF (t). The setup skill is then defined as the root mean square
error between this reconstruction and the ensemble-mean simulated response,

RMSEhist =

√√√√∑t

(
∆Nhist,GF (t)−∆Nhist,sim(t)

)2
nt

, (6)

where nt is the number of years in the historical time series, i.e. nt = 145. Generally,395

we seek experimental setups that balance minimizing RMSEhist with minimizing com-396

putational expense.397

3.2 Control simulation398

3.2.1 Boundary conditions ({ #       »

SSTm}c, { #      »

SICm}c)399

As shown in Step 1 in Figure 1, we must choose which monthly climatologies of sea400

surface temperature ({ #       »

SSTm}c) and sea ice fraction ({ #      »

SICm}c) to use as boundary con-401

ditions for our control simulation. Two options have been used for the climatology source402

in the past – the piControl simulation of the coupled GCM associated with the atmo-403

spheric model in question (e.g., the top row of Figure 4; this was also used for CanESM5404

and HadAM3 in Figure 2), or recent decades of the AMIP dataset (Gates, 1992), which405

is based on observations (bottom row of Figure 4, which specifically uses years 1971-2020;406

similar periods were used for the rest of the models in Figure 2).407

These two base states have different sea surface temperature (panels a and e in Fig-408

ure 4) and sea ice fraction (panels b and f in Figure 4) climatologies. When used to per-409

form the Green’s function method with HadAM3, they result in different derivatives of410

N (panels c and g in Figure 4). As mentioned above, we must also choose { #       »

SSTm}c and411

{ #      »

SICm}c when we run our ensemble of historical simulations, also leading to different412

values of ∆Nhist,sim(t) (black lines in panels d and h in Figure 4). The different deriva-413

tives of N lead to different Green’s function estimates of these time series, ∆Nhist,GF (t)414

(orange lines in panels d and h in Figure 4).415

Our results suggests that, as long as the same base state is used to make both ∆Nhist,sim(t)416

and ∆Nhist,GF (t), the RMSEhist will be similar, e.g. 0.27 and 0.23 Wm−2K−1 for the417

piControl and AMIP climatologies respectively. This skill decreases if we use different418

base states for the simulation and its Green’s function reconstruction, with an error of419

0.36 Wm−2K−1 if AMIP is used for ∆Nhist,GF (t) and HadCM3 piControl is used for420

∆Nhist,sim(t). This implies that differences in base states may help explain differences421

in atmospheric response between models, rather than differences in model physics. For422

example, this could help explain the discrepancies between true and reconstructed CMIP6423

radiative feedbacks in Dong et al. (2020).424

Given the similar RMSEhist for these two base states, we have chosen the AMIP425

state, as it is model agnostic, allowing us to generate a common set of boundary con-426

ditions for the control, patch, and diagnostic experiments requested by the GFMIP pro-427

tocol. While we specifically have chosen a climatology over 1971 to 2020, we expect small428

changes in this range to have modest effects, so that existing simulations using roughly429

the same period will be considered as fitting the protocol.430

3.2.2 Forcing agents ({F}c)431

We must choose values for the various forcing agents (e.g., CO2 concentration, aerosol432

emissions). Prior studies have used values from the year 2000 (Zhou et al., 2017; Dong433

et al., 2019) or 2010 (Zhang et al., 2023). By contrast, our HadAM3 tests were run us-434

ing preindustrial conditions.435
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We have recalculated the HadAM3 derivative of N with a CO2 concentration four436

times the preindustrial level (panels d-f in Figure S3). The resulting derivative has only437

modest differences, and using it instead of the preindustrial derivative has a negligible438

effect on RMSEhist (panel k in Figure S3). While differences in aerosols may be more439

impactful, as they are more spatially heterogeneous, the version of HadAM3 used for this440

analysis does not allow us to test this. We ask that participants set forcing concentra-441

tions to year 2000 values so as to be close to existing setups, and will explore the impact442

of different background aerosol concentrations on atmospheric Green’s functions in fu-443

ture work.444

3.2.3 Spinup years (sc)445

It may be useful to exclude the initial years of the control simulation, since it takes446

time for the atmosphere and land to adjust to imposed boundary conditions. To test this,447

we recalculate the RMSEhist associated with the Green’s function method in panels d448

and h of Figure 4 using a spinup period, sc, for their respective control simulations rang-449

ing from 0 to 100 years (panel a of Figure 5; note that we use the same scale for the y-450

axis in all four panels). We use such a large range of values of sc to demonstrate that451

the variation in RMSEhist due to the initial atmospheric/land adjustment is much smaller452

than the subsequent variations due to internal variability alone. However, the value of453

N in the first year of the control simulation for the HadAM3 piControl base state is a454

clear outlier (Figure S4). To be conservative, we therefore propose including a year of455

spinup in control simulations.456

3.2.4 Post-spinup years (yc)457

Next, we consider how many years to run the control simulation beyond the spinup458

period. We considered potential control simulation lengths, yc, of 1 to 40 years. To test459

these values, we ran a control simulation for 120 years and discarded the first year as a460

spinup. For each value of yc, we constructed an ensemble by dividing the remaining 119461

years into an ensemble of floor(119/yc) members, each yc years long (e.g., for yc = 40,462

we had an ensemble of two intervals, one from year 1 to 40, the other year 41 to 80). For463

each ensemble member e, we averaged the value of N over this interval to give us our464

control value. We then proceeded with the Green’s function method, resulting in a value465

for RMSEhist,e. For each yc we then took the ensemble-mean RMSEhist, which we show466

in panel b of Figure 5.467

For both base states, there is a steady decay in error that saturates after about a468

decade. The general shape of this curve can be derived by considering the factors that469

contribute to the RMSEhist. Suppose we make the simplifying assumption that annual470

averages of natural variations in f are normally, identically, and independently distributed,471

with standard deviation σf , then:472

• the standard error of our estimate of fc will be σf

√
1/yc473

• the standard error of our estimate of fp will be σf

√
1/yp474

• the standard error of their difference, ∆f , will be σf

√
1/yc + 1/yp475

• the standard error of our estimate of a sinusoidal patch’s sensitivity of f to sur-
face temperature change, ∆f/⟨∆ #         »

SSTp⟩, which we denote by σp, will be

σp ≈ σf

(ap/atot)|Ap|/4

√
1

yp
+

1

yc
(7)

where we have used Equation 4, which assumes the patch is land and ice free.476

If we also assume that patches are roughly the same size (that is, that ap is the same477

for all patches), then σp is the same for all patches. In this case, the standard error of478
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the normalized derivative in a given cell ∂N/∂SST ∗
i will be proportional to σp (from con-479

sideration of Equation 3), as will the standard error of ∆Nhist,GF (t) (by Equation 5).480

For large historical simulation ensembles (i.e., large ne), the standard error of ∆Nhist,sim481

will approach 0, in which case RMSEhist will also be proportional to σp (by Equation 6).482

Therefore, Equation 7 implies that as we vary yc, RMSEhist should vary roughly lin-483

early with
√
1/yc + 1/10 (where we’ve set yp at 10 years), which it appears to do (left484

panel, Figure S5). As a result, RMSEhist decays roughly with the square root of the in-485

verse of yc in panel b of Figure 5.486

Equation 7 illustrates that the skill associated with a given experimental setup de-487

pends on σf , which can vary greatly with the variable in question, and to a lesser ex-488

tent on the model as well. As a result, experimental setups that work well for studying489

one variable may be insufficient for studying other variables.490

For example, for HadAM3, we estimate σN is 0.16 Wm−2. We estimate similar val-491

ues for other atmospheric models (e.g., 0.14 Wm−2 for CanESM5, 0.24 Wm−2 for ICON),492

and so given that the experimental setup in Table 1 is primarily calibrated using recon-493

structions of N with HadAM3, we expect it will work similarly well for reconstructions494

of N in other models.495

However, N is a global average. If one wanted to study the net TOA radiative flux496

in a specific location, this setup may not be sufficient. For example, let us refer to the497

net TOA radiative flux in the grid cell that includes the location (0◦, 0◦) as N0,0. For498

HadAM3, the standard deviation of annual averages of this value is 2.21 Wm−2. If we499

wanted to achieve the same skill at reconstructing N0,0 as N using parameters from the500

GFMIP protocol, Equation 7 implies we must have 1/yc+1/yp = 0.00078 years−1, which501

would require both yc and yp to be at least a thousand years. This is one of the reasons502

that Green’s function recreations of spatial maps of TOA radiative flux can have large503

errors (Zhang et al., 2023), although the nonlinearities we discuss in Section 4 may also504

play a role. While the random perturbation method mentioned above may more efficiently505

estimate the response of local values to sea surface temperature changes (Li et al., 2012),506

we note that this may have limitations due to these same nonlinearities, as we discuss507

below.508

Returning to panel b of Figure 5, ten years appears sufficient to reduce noise in our509

estimates of Nc. However, there is only one control simulation, while there are many patch510

simulations. We therefore feel the cost of being conservative with a control simulation511

is minimal (that is, increasing yc is much less costly than increasing yp), and so spec-512

ify that yc be twenty years.513

3.3 Patch simulations514

3.3.1 Spinup years (sp)515

We now recalculate RMSEhist with a patch simulation spinup period ranging from516

0 to 20 years (panel c of Figure 5), once more using a large range of values to show the517

effects of internal variability. Instead of considering different base states, we plot differ-518

ent values of the patch amplitude parameter, Ap. Note that we use the HadAM3 piCon-519

trol base state in panels c and d is the HadAM3 piControl, for which we calculated more520

values of the patch amplitude Ap. Due to the nonlinearities discussed in Section 4, we521

use averages of cooling and warming derivatives, specifically Ap = ±1K, ±2K, and ±4K.522

There appears to be little variation of RMSEhist with sp, suggesting a spinup pe-523

riod may not be needed. We believe this is because our patch experiments were branched524

directly from the end of the control simulation. We assume that if the patch simulations525

start with different enough initial conditions, they might still need a year of spinup. Our526

protocol recommendation is therefore to either branch patch simulations from the con-527
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trol simulation, or to leave out the first year of each patch simulation as a spinup year.528

We note that branching from the end of the control simulation allows the resulting ex-529

periment to be used to understand to the temporal response of the atmosphere (e.g., Holzer530

and Hall , 2000), which may be of interest to GFMIP participants, and so we encourage531

this option.532

3.3.2 Post-spinup years (yp) and maximum perturbation (Ap)533

Panel d of Figure 5 is analogous to panel b, except we consider the post-spinup length534

of patch simulations. For this test, we ran each patch simulation for a total 40 years. Since535

our patch simulations branched directly from our control simulations, we do not leave536

out a spinup year. As above, for each value of yp, we divided the length of the patch sim-537

ulation into an ensemble of floor(40/yp) intervals (e.g., for yp = 15, there were two in-538

tervals, one from years 1 to 15, the other from years 16 to 30). For each ensemble mem-539

ber e, we calculated each patch p’s ∆Np by taking its average over that interval, and then540

used these values to generate a derivative of N and subsequently an RMSEhist,e of the541

historical reconstruction. For each yp we then took the ensemble mean to create RMSEhist,542

which we show in panel d of Figure 5.543

Equation 7 suggests that using larger temperature perturbations and running longer544

patch experiments are both ways to improve the skill of the Green’s function reconstruc-545

tion, and so we consider the best values of yp and Ap simultaneously. As suggested by546

Figure 2, the derivatives of N associated with positive and negative values of Ap differ,547

with the latter typically being more positive than the former, and in fact the top panel548

of Figure S6 shows that cooling and warming derivatives by themselves both poorly re-549

construct ∆Nsim(t). While we save the discussion of the nonlinearity of these results for550

Section 4, for now we rule out using only one sign of Ap in the protocol.551

For yp = 1 years, the root mean square error in excess of the asymptotic value552

of ∼ 0.25Wm−2 is roughly inversely proportional to Ap (middle panel of Figure S5), in553

keeping with Eq. 7, which also successfully predicts the reduction in error proportional554

to
√
1/yp + 1/20 (where we’ve set yc to 20 years; right panel of Figure S5). However,555

the reduction in error associated with the Ap = ±4K asymptotes at a higher error than556

±1 and ±2K. We believe this is because the ±4K perturbations are large enough to cause557

nonlinear behavior not associated with the response to the more modest historical tem-558

perature perturbations.559

As a result, we face two tradeoffs when planning patch simulations – more years560

give more accurate reconstructions, but take more computing resources; and higher per-561

turbations have better signal-to-noise ratios, but can introduce nonlinear effects. For HadAM3,562

py = 10 years and Ap = ±2K appears to be an optimal spot for both tradeoffs. For GFDL-563

AM4, extending py from 10 years to 30 years with Ap = 1.5K does not significantly af-564

fect the reconstruction of the response to observed temperatures, at least when sensi-565

tivity tests are not applied (left column of Figure 12 in Zhang et al., 2023). We there-566

fore have chosen py = 10 years and Ap ± 2K for the protocol.567

3.3.3 Patch layout (ϕp, θp, δϕp, δθp)568

The choice of the placement and size of the patches used in the patch experiments569

presents us with another set of tradeoffs: patch layouts with smaller patches increase the570

total number of patches that must be run and decrease the signal associated with any571

given patch (i.e., decrease ap in Equation 7), thus increasing the error for a given exper-572

imental setup. However, patches that are too large may obscure the very spatial vari-573

ations in response to
#       »

SST that we wish to study with our Green’s functions.574

Figure 6 illustrates this tradeoff. We have performed a case study over the trop-575

ical Pacific (specifically 100◦W to 60◦E and 30◦S to 30◦N) in which we consider seven576
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patch layouts whose half-amplitudes (i.e., locations where the patches reach half of Ap)577

are shown in the top row of Figure 6 – the first consisting of a single, uniform patch across578

the entire study domain, and the rest consisting of sinusoidal patches using Equation 1579

(for full details on each setup, see Table S1). Note in this figure, we differ from the pro-580

tocol by using HadCM3 piControl boundary conditions, a 120-year control simulation581

with sc = 1 year and yc = 119 years, and 40-year patch simulations with sp = 0 and582

yp = 40 years.583

The second row shows the ±2K derivatives of N for each patch setup, and the bot-584

tom panel shows the resulting RMSEhist from using these derivatives (note that for this585

case study, the ∆
#       »

SSThist(t) used to calculate both ∆Nhist,sim(t) and ∆Nhist,GF (t) is586

set to 0 outside of the case study domain). As expected, “low resolution” layouts (i.e.587

with a few, relatively large patches), have worse reconstruction skill. However, note that588

while the Zhou et al. setup uses smaller patches, it also uses fewer patches, as its patches589

overlap less than the Dong et al. setup. Having overlaps between patches does not seem590

to improve the skill score.591

We can also see this by comparing the full-domain HadAM3 derivatives of N from592

Figure 2 using the Zhou et al. and Dong et al. shifted layouts, which require 109 and593

147 patches respectively, and whose ±2K derivatives reconstruct historical N(t) with er-594

rors of 0.27 Wm−2K−1 and 0.26 Wm−2K−1 respectively (once more using the HadCM3595

piControl base state), compared to 0.4 Wm−2K−1 for a uniform perturbation. Based on596

these results, we recommend using the Zhou et al. patch layout for the tropics, which597

have a good balance of reconstruction skill and number of patches required.598

All of the patch layouts considered for the tropical Pacific case study were equally599

sized and spaced in terms of latitude and longitude. Patches with the same longitudi-600

nal width δθp can become vanishingly small close to the poles. As a result, for equal lat-601

itude/longitude layouts, many more patches are used to cover the same area at high lat-602

itudes, and since these patches cover smaller areas, they must be run for longer to achieve603

the same degree of signal (e.g., Eq. 7). Dong et al. (2019) addressed this issue by using604

a larger Ap and δϕp for extratropical patches, while Alessi and Rugenstein (submitted)605

adopted “equal-area” patches, in which δθp(ϕp) is a function of the latitude of the patch606

(Figure 2).607

Figure S7 shows a case study in which two different patch layouts are used around608

the Southern Ocean. The top row uses the equal-area patch layout from Alessi and Ru-609

genstein (submitted), while the bottom row shows an equal lat./lon. layout grid as in610

Dong et al. (2019), for which patches polewards of 50◦ have δϕp = 40◦ and δθp = 80◦.611

The equal-area layout uses only 14 patches to cover the area covered by 36 patches in612

the equal-lat/lon layout, greatly decreasing the number of simulations needed. Neither613

layout produces a derivative of N with particularly large values (note that the colorbar614

scale matches those used in other figures). As discussed above in relation to Figure 3,615

extratropical warming can have large effects on global climate, but these are typically616

mediated by the oceanic response, which is not included in the atmospheric Green’s func-617

tion method. We also note that there is more spatial variation in the equal lat./lon. grid,618

but it is unclear if this is physical or due to internal variability.619

Because of the lack of strong atmosphere-only feedbacks, we have opted for the com-620

putational savings and decreased error of using equal-area feedbacks to cover extratrop-621

ical regions. However, for the tropics, where area differences are minimal, we use an equal622

lat./lon. grid, as it is more intuitive and maximizes the use of existing experiments. The623

resulting hybrid patch layout is outlined in Table 1 and shown as the “Zhou et al. (equal-624

area extratropics)” layout in the top row, third column of Figure 2. Note that extrat-625

ropical patches have roughly the same size as patches at the equator.626
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3.3.4 Shape (∆SST (ϕ, θ))627

The sinusoidal patch shape (Eq. 1) avoids sharp, unphysical gradients of surface628

temperature (Barsugli and Sardeshmukh, 2002). To test the utility of doing so, we have629

run patches with two other shapes: a uniform rectangular perturbation with no smooth-630

ing at the edge (i.e., consisting of Heaviside step functions), and the same with smooth-631

ing at the edge, taking the form of tanh functions with e-folding scales of 1◦. We have632

performed this for three patch layouts defined in Table S1: 40◦ by 120◦, Dong et al. shifted,633

and 20◦ by 80◦. All other setup details are the same as the sinusoidal case study above.634

Note that a rectangular patch that is entirely over ice-free ocean has a globally-averaged635

temperature perturbation four times larger than a sinusoidal patch with the same patch636

size and Ap.637

Figure S8 shows the results. As with Figure 6, using smaller patches improves the638

skill at computational expense. The tanh smoothing has a minimal (or even deleterious)639

effect on the skill. None of the setups achieve a similar skill to the sinusoidal patches.640

Since sinusoidal patches are more strongly peaked at their centers, they may capture finer641

spatial detail in derivatives of N than rectangular patches. This may also explain why642

rectangular patches produce derivatives with smaller spatial variation. In any event, we643

see no advantage to abandoning what has become the conventional patch shape, and there-644

fore choose Equation 1 for the protocol.645

3.4 Diagnostic simulations646

Diagnostic simulations help us assess the skill of the Green’s function method. We647

request participants run two diagnostic simulations, each with sea ice { #      »

SICm}c and forc-648

ing agents {F}c as in the control and patch simulations, but with the SST boundary649

conditions set to the following time series:650

• historical : time-evolving SST using the AMIP time series, from 1871 up to 2020651

(Gates, 1992). This is the same as the ∆
#       »

SSThist(t) described above. The GFMIP652

historical experiment is similar to the CFMIP amip-piForcing experiment (Webb653

et al., 2017), but with fixed sea ice, and with forcing held at values from year 2000.654

• abrupt4x : time-evolving SST based on the CMIP6 ensemble average of the first655

150 years of the abrupt4x experiment.656

For both simulations, we ask that participants run ensembles with different initial con-657

ditions, if possible, to reduce uncertainty.658

3.5 Optional simulations659

We also suggest a series of optional, “Tier 2” experiments:660

• ±4K patches: same as the Ap = ±2K patch simulations, but with Ap = ±4K.661

• uniform perturbations: same as the patch simulations, except instead of patch per-662

turbations, there are uniform SST perturbations of either ±2K or ±4K.663

• modes of interannual variability : same as the patch simulations, but with SST664

patterns corresponding to the dominant modes of ENSO, PDO, IOD, and AMO.665

3.6 Requested variables666

Data submitted to GFMIP should follow CMIP6 conventions, and be CMOR-ized,667

with variable names and units consistent with their CMIP6 values. We request monthly668

averages of the 2D and 3D variables given in Tables 2 and 3 respectively for all control,669

patch, diagnostic, and optional simulations. We also welcome higher temporal resolu-670

tion data from the initial years of patch simulations branched from the control simula-671
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tion, which may be of use in constructing temporal Green’s functions to understand at-672

mospheric response at the sub-seasonal to seasonal time scale. The analogous CMIP6673

variables can be found at https://clipc-services.ceda.ac.uk/dreq/u/MIPtable::Amon.html.674

If an atmosphere model’s native grid is not along lines of latitude and longitude, we ask675

that output first be interpolated to a latitude-longitude grid. We ask participants to up-676

load data as netCDF files. (We acknowledge Wing et al., 2018, which we used as the ba-677

sis for this description.)678

3.7 Download & upload information679

The boundary conditions required for the control, patch, and diagnostic simula-680

tions are available for download at gfmip.org. This site also contains instructions for data681

upload and download. Upon publication of a paper summarizing results, uploaded data682

will become publicly available.683

4 Nonlinearity (∆N ̸∝ ∆
#        »

SST )684

In Figure 2, the derivatives of N with respect to
#       »

SST are generally more negative685

in experiments with warming than with cooling patches. This nonlinear result is con-686

sistent across models, suggesting that it is due to fundamental physics.687

The top row of Figure 7 shows derivatives of N for HadAM3 with a range of val-688

ues of Ap (these were calculated using the HadCM3 piControl base state, so that panel689

h of this figure is the same as panel c of Figure 4 above). The sign of Ap has a much larger690

effect on the derivative than the magnitude of Ap, and there is a jump in the global mean691

value (given in the title of each panel) of -1.82Wm−2 between Ap = −1K and Ap =692

+1K, so that the asymmetry between warming and cooling exists even for small per-693

turbations.694

The magnitude of Ap still has some effect, such that the negative regions of ∂N/∂
#       »

SST ∗
695

associated with areas of tropical convection get more negative and grow spatially as Ap696

increases from +1K to +4K. Figure 8 in Zhang et al. (2023) shows a similar intensifi-697

cation between Ap = 1.5K and 4K for GFDL-AM4. For HadAM3, these changes are not698

quite symmetric, such that the ±1K derivative of N (panel g of Figure 7) is different than699

the ±4K derivative (panel l of Figure 7 and panels c and d of Figure 5).700

In addition, there appears to be a nonlinearity associated with patch size. In Fig-701

ure 6, the third and fourth rows show the derivatives of N for Ap = +2 and −2K re-702

spectively. The title of each panel is the average value of the derivative of N over the703

case study region demarcated by the black rectangle. We note the following properties:704

• If warming (+2K) patches are used, smaller source patches cause more negative705

derivatives of N .706

• If cooling (−2K) patches are used, smaller source patches cause more positive deriva-707

tives of N .708

• Consequently, the smaller the source patches, the larger the asymmetry between709

warming and cooling. For example, the average derivative for a uniform warm-710

ing over the study region is 0.35 Wm−2K−1 more negative than for a uniform cool-711

ing (first column). However, for the Dong et al. shifted layout, the average deriva-712

tive is 3.37 Wm−2K−1 more negative (last column). Extending our perturbation713

to a larger domain, the average derivative for a uniform warming over the entire714

globe is actually 0.17 Wm−2K−1 more positive than for a uniform cooling (not715

shown), in keeping with this spatial trend.716

• Warming patches experience greater dependence on patch size than the cooling717

patches do, such that the average of the warming and cooling derivatives gets more718

negative as the size of the source patches gets smaller.719
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All of these nonlinearities may have a common explanation, proposed by Williams720

et al. (2022b), which documented similar nonlinearities with the ICON model. In order721

to set off deep convection, the surface conditions of tropical regions must reach a thresh-722

old in which their subcloud moist static energy is larger than the saturated moist static723

energy aloft (Williams and Pierrehumbert , 2017). Areas that can deeply convect will serve724

as sources of higher saturated moist static energy for the surrounding region, with val-725

ues falling off as one gets further from the convecting source. This is consistent with all726

three nonlinearities seen above:727

• Asymmetry : asymmetry between warming and cooling patches occurs because warm-728

ing a convecting region increases the moist static energy supplied to the tropical729

free troposphere, increasing lower tropospheric stability and thus low cloudiness730

in the manner depicted in the first column of Figure 3. Alternatively, cooling a731

small patch of a convecting region may drop that region below the convective thresh-732

old, removing the location in question as a source of moist static energy. This might733

not have large effects because other nearby regions might still convect and sup-734

ply moist static energy of a similar value.735

• Magnitude-dependence: larger values of Ap may cause regions that would not oth-736

erwise pass the threshold for convection to do so. In particular, notice how the map737

of Ap = +4K in panel f of Figure 7 has negative feedbacks over a much broader738

area than Ap = +1K in panel d. Such an effect could work symmetrically, so that739

under cooling, fewer and fewer regions would convect deeply if cooled in isolation,740

and thus fewer would be able to affect the full free troposphere (e.g., panel a vs.741

panel c in Figure 7).742

• Patch size-dependence: many of the arguments made in the previous two bullet743

points relied on the notion that small patches were being warmed in isolation, al-744

lowing them to exceed the surface moist static energy of other nearby regions. If745

we instead perturb these small patches in unison, then the relative values of the746

tropospheric moist static energy between them will stay fairly similar, and fewer747

regions will switch from convecting to not convecting and vice versa, so that the748

impact per total warming will be smaller. Not only would this explain the range749

of behavior seen in Figure 6, it would also explain the difference between it and750

Figure S4: rectangular patches with perturbations over a broader area having less751

extreme and more linear responses than their sinusoidal equivalents.752

Alternatively, the patch size-dependence could also be explained by the “Laplacian753

of warming” mechanism, which finds changes in vertical velocity and surface convergence754

are proportional to both
#       »

SST and its Laplacian (Back and Bretherton, 2009; Duffy et al.,755

2020). Patch size has an especially large influence on the Laplacian of SST : for a given756

amplitude, smaller patches have a larger Laplacian of SST , and therefore may have larger757

vertical velocity anomalies. Therefore, small patches may have large artificial anoma-758

lies of vertical velocity, which could affect cloudiness, and therefore N . This mechanism759

may also explain why some models experience asymmetries in the extratropics (Figure 2).760

Asymmetry to cooling vs. warming may be stronger still if sea ice is allowed to vary (Liu761

et al., 2020). Further work is need to understand the importance and interaction of these762

mechanisms.763

These mechanisms may also help us understand why the Green’s function method764

often overestimates the magnitude of the change in N in response to the pattern of warm-765

ing found in abrupt4x simulations in some models. Though the method successfully recre-766

ates the response of CAM5 to a range of forcing-induced SST patterns (Zhou et al., 2023),767

it produces too strong a response to the abrupt4x pattern in CAM4 (Dong et al., 2019),768

HadAM3 (panel e of Figure 8), and GFDL-AM4 (Figure 12 in Zhang et al., 2023, though769

note that when sensitivity tests are used, the result is too weak a response, as in their770

Figure 2). The black solid line shows the ensemble-mean simulated ∆N(t) (again over771

nine simulations with different initial conditions) of HadAM3 run with ∆
#       »

SST (t) from772

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems

the first 150 years of an abrupt4x simulation of HadCM3, and the solid orange line shows773

the Green’s function estimate using the GFMIP protocol, which is increasingly lower than774

the black line over time. While we might not expect the Green’s function estimate to775

work during the initial years of rapid warming when the atmosphere is not equilibrated,776

the method overestimates the response for the entire simulation.777

A potential correction would be to use derivatives of N estimated using only warm-778

ing patches, since ∆
#       »

SST (t) is typically positive for abrupt4x simulations. However, us-779

ing a derivative derived from patches with Ap = +2K leads to an even worse underes-780

timate (e.g., see Figure 7 and Figure S6). Similar results hold for CanESM5 and ICON781

(Figure S9), such that using only warming patches results in large overestimates of the782

magnitude of the response of N to abrupt4x warming over the tropical Pacific.783

To understand better why the Green’s function method is successful in reproduc-784

ing the response of N to the historical pattern but unsuccessful for the abrupt4x pat-785

tern, we decompose these warming patterns, ∆
#       »

SST (t), into two components: a uniform786

perturbation, which has the same time-varying ocean-mean value as the full pattern, ⟨∆ #       »

SST (t)⟩,787

but perturbs the SST field uniformly (dotted lines in Figure 8), and a zero-mean term788

∆
#       »

SST (t)−⟨∆ #       »

SST (t)⟩, which is the anomaly in the full pattern when this uniform field789

is subtracted (dashed lines in Figure 8).790

If we perform ensembles of simulations with HadAM3 for the uniform perturba-791

tions and zero-mean patterns analogous to those we ran for the full patterns and calcu-792

late the resulting ensemble-mean time series of ∆N(t), the sum of the uniform pertur-793

bation ∆N(t) and the zero-mean pattern ∆N(t) is quite close to the ∆N(t) associated794

with the full warming pattern (Figure S10). This additivity suggests that as long as the795

Green’s function method can recreate the responses to the uniform perturbation and zero-796

mean pattern individually, it should be able to recreate the response to the full warm-797

ing pattern.798

We consider the uniform perturbation first. One way of interpreting the area-mean799

values of derivatives of N seen in the titles of many panels in Figures 6 and 7 is as the800

estimated change in N that would result from a uniform warming of a degree through-801

out the area being averaged over. In Figure 6, we can compare these estimates with the802

actual result of perturbing the region uniformly, which is given in the first column. Com-803

paring the resulting estimates across the ±2K row suggests that using patches smaller804

than the domain size results in an estimate of changes in N that is too negative. As a805

result, the Green’s function estimate of N is biased negatively for the abrupt4x uniform806

perturbation (dotted lines in panel e, Figure 8), although it does better with the response807

to the more modest uniform perturbations of the historical time series (panel b of Fig-808

ure 8). The negative bias for the abrupt4x uniform perturbation is even larger than for809

the full pattern itself (solid lines in panel e, Figure 8).810

As for the zero-mean pattern, while the Green’s function method successfully recre-811

ates the historical time series of N (dashed lines in panel c, Figure 8), it unsuccessfully812

recreates the response to the abrupt4x time series (dashed lines in panel e). However,813

in this case, its estimates are biased positively, not negatively. Panels d and f show the814

last years of the zero-mean patterns of the historical and abrupt4x time series, respec-815

tively. In this case, the abrupt4x pattern appears more, rather than less, spatially vary-816

ing than the patches used to construct our derivatives of N .817

These results form a coherent picture with the discussion of spatial nonlinearity818

in Figure 6 above, in that more heterogeneous warming tends to causes more of a de-819

crease in N : the patches used in the Green’s function method are more heterogeneous820

than the abrupt4x uniform perturbation, leading to a negative bias, but less heteroge-821

neous than the abrupt4x zero-mean pattern, leading to a positive bias. This suggests that822

in addition to a “pattern effect”, whereby warming in the tropical convecting regions makes823
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the radiative feedback more negative, there is a “patchiness effect,” whereby more het-824

erogenous warming makes the radiative feedback more negative as well (see also Rugen-825

stein et al., 2016, who found that surface flux heterogeneity affected the strength of the826

radiative feedback).827

The nonlinearities associated with patch simulations are therefore not an artifact828

of these simulations’ experimental setups. Instead, patchiness is a general feature of the829

response of the atmosphere to a given field of temperature change that must be accounted830

for in some way. For example, derivatives estimated using the random perturbation method831

(Li et al., 2012) will also depend on the heterogeneity of the random perturbations (de-832

termined perhaps both by the number and proximity of the patches), such that, just as833

with the Green’s functions method, the resulting derivatives may not apply directly to834

all warming patterns.835

Future work should extend the linear model of the atmospheric response to sea sur-836

face temperatures to account for the nonlinearities associated with the heterogeneity of837

the temperature pattern. We hope that GFMIP will not only standardize our analysis838

of the linear response to surface warming, but provide results that help in the develop-839

ment of this nonlinear extension. Such an extension may incorporate alternative sim-840

ple models of the time-evolution of the radiative feedback, such as those using SST#841

(Fueglistaler , 2019), lower-tropospheric stability S (Ceppi and Gregory , 2019), or 500hPa842

tropical temperature (Dessler et al., 2018).843

5 Conclusions844

The dependence of atmospheric state on the sea surface temperature is a matter845

of critical scientific interest. In particular, the “pattern effect” has emerged as a key source846

of uncertainty in our projections of global warming, and the atmospheric Green’s func-847

tion method is a uniquely helpful tool for studying it. It allows us to decompose an at-848

mospheric response to surface temperature changes into responses to changes in specific849

regions, making clear the local and nonlocal effects associated with these changes. The850

method has already reshaped our understanding of why the radiative feedback changes851

over time, both for the case of historical warming and under constant CO2 forcing. While852

the Green’s function results so far have pointed to certain qualitative similarities between853

models, it is unclear how much their differences are due to true differences in atmospheric854

model physics as opposed to differences in experimental setup.855

The Green’s Function Model Intercomparison Project will provide a standard for856

performing the atmospheric Green’s function method, so that differences in participants’857

results will reflect true model differences. The protocol has been developed such that ev-858

ery choice reflects experimental tests measuring the sensitivity of the process to the choice859

in question. The development of the protocol underscored some principles involved in860

making a Green’s function setup: the importance of using both warming and cooling patch861

experiments; the tradeoffs between the magnitude and size of patch perturbations and862

the length of the control and patch simulations; and the fact that different variables might863

require higher precision (and thus potentially longer simulations) than others.864

Our analysis joins a growing body of literature establishing that the Green’s func-865

tion method can successfully recreate the response of an atmospheric model’s net TOA866

radiation flux to historical changes in the surface temperature pattern. Not only does867

the method allow us to establish a causal relationship between surface temperature changes868

in different regions and an atmosphere response, it also allows us to trace the pathways869

and mechanisms by which the surface temperature changes cause those responses. More-870

over, the qualitative consistency in the derivatives seen in Figure 2 suggests that the ar-871

guments of Zhou et al. (2017) and Dong et al. (2019) are robust across models, giving872
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confidence that these studies provide fundamental physical insight into the pattern ef-873

fect.874

On other hand, the preliminary results and sensitivity tests compiled for this pa-875

per show that the response of the atmosphere to surface temperature perturbations has876

nonlinearities associated with the sign, magnitude, and size of the perturbation. Recent877

work suggests that this nonlinearity may arise from convective thresholds working in con-878

junction with the weak temperature gradient, as well as from influences of the Lapla-879

cian of SST on vertical velocity over the perturbation in question. As with some pre-880

vious studies, we find that for many models, the Green’s function method estimates a881

response of the global-mean net outgoing TOA radiative response, N , to the warming882

caused by large CO2 changes (such as in abrupt4x simulations) that is too negative. Our883

findings suggest the response of N to a pattern of SST change depends on the spatial884

heterogeneity of the pattern, with more heterogeneous patterns causing a more negative885

N .886

In conclusion, we think that the GFMIP results will be useful for analyzing the at-887

mospheric response to historical climate change and for accounting for nonlinearities in888

the response to warming under further CO2 increases. A refined understanding of the889

net TOA radiative response will help in improving our projections of both near and long-890

term warming. GFMIP could also provide insight into many other aspects of the atmo-891

sphere’s response to surface temperature changes, such as changes in atmospheric cir-892

culation and heat transport, precipitation, and land warming. For all of these reasons,893

we hope that other groups will join us in carrying out the GFMIP protocol.894
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Table 1. The GFMIP protocol. All symbols are defined as in Figure 1. All simulations are

run with atmosphere-only models, and with the same fixed climatological sea ice ({ #      »
SICm}c)

and forcing agents ({F}c) as the control simulation. Boundary conditions for all simulations are

available for download at gfmip.org.

Control simulation (21 total simulation years)

Boundary conditions

({ #       »

SSTm}c, {
#      »

SICm}c):
AMIP climatology (average of 1971-2020)

Forcing agents ({F}c): year 2000 values

Spinup: sc = 1 year

Post-spinup: yc = 20 years

Patch simulations (2180 total simulation years w/o spinup, 2398 w/ spinup)

Spinup: sp = 0 years if branching from end of control simulation, 1 year otherwise

Post-spinup: yp = 10 years

Maximum
perturbation:

Ap = ±2K

Size: δϕp = 20◦; δθp(ϕp) =
80◦ |ϕp| ≤ 30◦

80◦/ cos(ϕp) |ϕp| > 30◦

Locations
(109 total):

|ϕp| ∈ {0◦, 20◦}, θp ∈ {180◦W, then every 40◦}
|ϕp| ∈ {10◦, 30◦}, θp ∈ {160◦W, then every 40◦}
|ϕp| ∈ {40◦, 60◦, 80◦}, θp ∈ {180◦W, then every 40◦/ cos(ϕp)}
|ϕp| ∈ {50◦, 70◦}, θp ∈ {160◦W, then every 40◦/ cos(ϕp)}

Patch shape: sinusoidal (see Equation 1)

Diagnostic simulations (300 total simulation years per ensemble member; multiple members encouraged)

historical: ∆
#       »

SST (t) from the AMIP time series, from 1871 to 2020

abrupt4x: ∆
#       »

SST (t) from the CMIP6 multi-model-mean of abrupt4x (first 150 years)

Optional simulations

±4K patches: same as patch simulations, but with Ap = ±4K

uniform perturbations: same as patch simulations, but with uniform of ∆
#       »

SST = ±2K and ±4K

modes of variability: same as patch simulations, but with ∆
#       »

SST of modes of ENSO, PDO, IOD, and AMO
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Table 2. Requested 2D monthly variables, defined as for CMIP6 (see https://clipc-

services.ceda.ac.uk/dreq/u/MIPtable::Amon.html)

Variable Description Units

cl total cloud fraction of grid column %
clivi ice water path kg m−2

clwvi condensed water path kg m−2

evspsbl evaporation flux kg m−2 m−1

hfls surface upward latent heat flux W m−2

hfss surface upward sensible heat flux W m−2

pr surface precipitation rate kg m−2 m−1

prc surface convective precipitation rate kg m−2 m−1

prw water vapor path kg m−2

psl sea level pressure Pa
rlds surface downwelling longwave flux W m−2

rlus surface upwelling longwave flux W m−2

rldscs surface downwelling longwave flux – clear sky W m−2

rluscs surface upwelling longwave flux – clear sky W m−2

rlut TOA outgoing longwave flux W m−2

rlutcs TOA outgoing longwave flux – clear sky W m−2

rsds surface downwelling shortwave flux W m−2

rsdt TOA incoming shortwave flux W m−2

rsus surface upwelling shortwave flux W m−2

rsdscs surface downwelling shortwave flux – clear sky W m−2

rsuscs surface upwelling shortwave flux – clear sky W m−2

rsut TOA outgoing shortwave flux W m−2

rsutcs TOA outgoing shortwave flux – clear sky W m−2

tas 2 m air temperature K
uas 10 m eastward wind m m−1

vas 10 m northward wind m m−1

Table 3. Requested 3D monthly variables, defined as for CMIP6 (see https://clipc-

services.ceda.ac.uk/dreq/u/MIPtable::Amon.html)

Variable Description Units

cli mass fraction of cloud ice g g−1

clw mass fraction of cloud liquid water g g−1

hur relative humidity %
hus specific humidity g g−1

mc convective mass flux kg m−2 m−1

ta air temperature K
ua eastward wind m m−1

va northward wind m m−1

wap omega Pa m−1

zg geopotential height m
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ΔSSTi(t))/∑

i
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∑p

Δfp

⟨Δ ⃗SST p⟩ ΔSSTp,i

∑p ΔSSTp,i

∂f/∂SST*i =

atm. 
model

sc + yc

Green’s functions

atm. model

⃗SST c ⃗SIC c

{F}c

δθp

δϕp

ϕp, θp

Ap ×

 exampleΔ ⃗SST p

patch’s Δfp/⟨Δ ⃗SST p⟩

(some scalar  
of interest)

example

 (years)t  (years)t

∂f/∂ ⃗SST*

boundary conditions and forcing agents

Figure 1. A schematic illustrating the Green’s function method for modeling the dependence

of an atmospheric variable, f , on the sea surface temperature field,
#       »
SST . Step 1. Run a control

simulation of an atmospheric model with fixed climatologies of sea surface temperature (
#       »
SST c),

sea ice fraction (
#      »
SICc), and forcing agents {F}c, with a spinup of sc years and a post-spinup pe-

riod of yc years, to estimate fc. Step 2. For each patch in a lattice overlaying the ocean surface,

run the atmospheric model with that patch as a perturbation to the
#       »
SST field with a spinup

period of sp years and a post-spinup period of yp years to estimate the resulting change in f ,

∆fp. Each patch has amplitude, shape, and position parameters (Ap, δϕp, δθp, ϕp, θp in Equa-

tion 1). Step 3. Define the normalized derivative of f with respect to SST in a given grid cell

i, ∂f/∂SST ∗
i , as the average of each patch’s dependence of f on its ocean-averaged SST per-

turbation, ⟨ #       »
SST p⟩, weighted by how strong the patch perturbation is in that cell. Step 4. The

response of f to a given pattern of surface temperature change ∆
#       »
SST can be estimated using

the normalized derivative, ∂f/∂
#          »

SST ∗ and the area in each grid cell, ai. A Green’s function setup

can be evaluated by comparing the response to a surface temperature time series simulated by an

atmospheric model (black line) and estimated by the Green’s function method (orange line).
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Figure 2. Normalized derivatives of N with respect to
#       »
SST , ∂N/∂

#       »
SST ∗, estimated using

the Green’s function method. The black ellipses in the top row show the half-amplitudes (the

contours within which the patch perturbation is at least Ap/2) for the patches used to estimate

that column’s derivatives. The bottom three rows shows the resulting derivatives. The third row

shows derivatives estimated using positive values of Ap (warming patches), the fourth row shows

derivatives estimated using negative values of Ap (cooling patches), and the second row shows

their average. Data attribution is given by the names underneath each atmospheric model name

in each of the column’s titles. Note that there are two HadAM3 derivatives shown that differ

only in patch layout.
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a b c

d e f

Figure 3. Three examples of patch warming and resulting changes in
#»
N , modeled on Figure

2 in Zhou et al. (2017). Black ellipses show half-amplitudes of the patch perturbation, as in the

first row of Figure 2. Surface warming in a region of tropical ascent warms the entire tropical

troposphere (panel a), increasing lower tropospheric stability elsewhere, which promotes low

cloudiness and leads to broad decreases in N⃗ (panel d). This causes the ubiquitous negative

values associated with tropical convecting regions in Figure 2 of this paper. Subsidence inhibits

warming from propagating upwards (panel b), while warming in the extratropics can be balanced

by local circulation via the Coriolis force (panel c), such that warming in these regions mostly

results in a destabilization of the local boundary layer and a loss of low clouds (and therefore an

increase in local N , panels e and f).
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Figure 4. A comparison of using two base states to generate Green’s functions: a climatol-

ogy of HadCM3’s piControl simulation (panels a-d), and the most recent decades of the AMIP

(observational) time series (panels e-h). Differences in the sea surface temperature (panels a and

e) and sea ice fraction (panels b and f) climatologies can lead to differences in the normalized

derivative of N with respect to
#       »
SST (panels c and g). Panels d and h show time series of ∆N

for ensemble means of 9 simulations of HadAM3 run with a time series of historical temperature

anomalies added to each row’s respective base state (black lines). Applying the Green’s function

method results in time series estimates (gold lines) with root mean square errors as calculated by

Equation 6.
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b)a)

c) d)

Figure 5. Root mean square error in reconstructing historical ∆N , RMSEhist, calculated

with Equation 6 using different values of spinup and post-spinup length for control and patch

simulations. Panel a shows the dependence of RMSEhist on control simulation spinup length, sc,

where large values of sc are included to show how RMSEhist can vary due to internal variability.

Aside from the changing values of sc, the Green’s function setup follows the GFMIP protocol

(Table 1) except that the brown values use the HadCM3 piControl base state, as in the top row

of Figure 4. Panel b shows the same, but for variations in the post-spinup simulation length, yc.

Panels c and d shows the dependence of RMSEhist on patch simulation spinup length, sp, and

patch simulation post-spinup length, yp, respectively, calculated with different magnitudes of Ap.

Note that the Green’s function setups in this row use the HadCM3 piControl base state. Figure

S5 shows rescalings of panels b and d using Equation 7.
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Figure 6. Normalized derivatives of N over the tropical Pacific (100◦W to 60◦E and 30◦S

to 30◦N, as shown by the black rectangles in the maps above) calculated for HadAM3 using a

variety of patch layouts and values of Ap. First row shows patch half-amplitudes for each column

as in Figure 2, where the first column has a uniform perturbation over the study region and the

rest have patches as defined by Equation 1. The next three rows show derivatives of N estimated

with Ap = +2K (third row), −2K (fourth row), and their average (second row). Each panel’s

title gives the study region’s ocean-mean value of the derivative. The bottom panel shows the

scatterplot of the root mean square error in reconstructing historical ∆N , RMSEhist, calculated

with Equation 6 using the ±2K derivatives in the second row, against the number of patches

associated with each setup.
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a b c d e f

g h i j k l

Figure 7. Normalized derivatives of N for HadAM3, calculated using a range of values of

Ap. Derivatives in the top row were calculated using cooling (panels a-c) or warming (panels

d-f) patch perturbations. Panels g-i show averages of the cooling and warming derivatives, while

panels j-l show their differences. Numbers at the end of each panel’s title give the ocean-mean

value of the derivative. Note that the HadCM3 piControl base state was used to estimate these

derivatives.
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Figure 8. HadAM3’s ensemble-mean response of N to historical (top row) and abrupt4x

(bottom row) surface warming patterns (∆
#       »
SST (t); black solid lines in panels a and e), as well

as the ensemble-mean response of N to ∆
#       »
SST (t)’s decomposition into a uniform perturba-

tion (⟨∆ #       »
SST (t)⟩; black dotted lines in panels b and e) and a zero-mean pattern (∆

#       »
SST (t) −

⟨∆ #       »
SST (t)⟩; black dashed lines in panels c and e). Orange lines show the reconstruction of these

time series using the Green’s function method, following the GFMIP protocol. Panels d and f

show the zero-mean patterns in the final year of each simulation, tf .
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Appendix A Continuous vs. discrete derivatives with respect to SST895

fields896

Section 2 is concerned with deriving the dependence of a given scalar value f on897

the SST field. In the main text, this derivation is discussed in terms of a discretized sur-898

face, such that the SST field is represented by a vector,
#       »

SST . In this Appendix, we in-899

stead perform this derivation with respect to a continuous field, SST (ϕ, θ) (where ϕ and900

θ are latitude and longitude respectively), and discuss how this relates to the normal-901

ized derivative, ∂f/∂
#          »

SST ∗.902

Suppose we have a continuous field SST (ϕ, θ), defined over the ice-free ocean. We903

can then define a field ∂2f/∂SST∂a|(ϕ,θ), which is the infinitesimal change in f due to904

an infinitesimal change in SST over an infinitesimal area a around the point (ϕ, θ). We905

call this the continuous derivative of f with respect to SST , and it has units of f divided906

by K and m2.907

The change in f associated with perturbing a cell’s temperature, ∂f/∂SSTi, can
then be calculated as an integration over the cell as follows:

∂f

∂SSTi
=

∫ ϕi+δϕi/2

ϕi−δϕi/2

(∫ θi+δθi/2

θi−δθi/2

∂2f

∂SST∂a
(ϕ, θ)r cos(

2π

360◦
ϕ)

2π

360◦
dθ

)
r

2π

360◦
dϕ (A1)

where r is the radius of the Earth, (ϕi, θi) is the center of the cell, and δϕi and δθi are908

the latitude and longitude widths of the cell. (Note that we’re assuming that cells have909

rectangular shapes in lat-lon space, and also that the appropriate arithmetic is applied910

when dealing with cells that straddle the discontinuity in longitude.) Thus, ∂f/∂SSTi911

has the units of f divided by K.912

As discussed in the text, ∂f/∂SSTi is not an ideal metric, as it depends on the size913

of the grid cell (that is, it is an “extensive” variable). For instance, if we assume ∂2f/∂SST∂a|(ϕ,θ)914

is constant over a given grid cell i, then Equation A1 becomes ∂f/∂SSTi = ai∂
2f/∂SST∂a,915

where ai is the grid cell’s area.916

To remedy this, in the text we define a quantity called the normalized derivative.
For a given cell, we define it as follows:

∂f

∂SST ∗
i

≡ atot
ai

∂f

∂SSTi
(A2)

where atot ≡
∑

i ai is the total area of the ice-free ocean.917

The normalized derivative can be thought of as the value that the global deriva-918

tive ∂f/∂⟨SST ⟩ (the derivative of f with respect to the average SST value over the ice-919

free ocean) would have if grid cell i were representative of the whole globe. ∂f/∂SST ∗
i920

does not depend on grid cell size (that is, it is an “intensive” variable), it has the same921

units as the global and grid-cell derivatives (∂f/∂⟨SST ⟩ and ∂f/∂SSTi respectively),922

and it has a similar order of magnitude as the global derivative.923

However, there’s a simpler way of thinking about the normalized derivative. The924

units of the continuous derivative have an extra m2 in the denominator compared to the925

global derivative we are ultimately interested in studying. To make them comparable,926

we can multiply the continuous derivative by some characteristic area. Choosing the area927

of the whole ice-free ocean for this characteristic area will give a similar order of mag-928

nitude as the global feedback. Physically, choosing this area is the same as assuming that929

the given point at which the continuous derivative is being evaluated is representative930

of the whole ice-free ocean, and then calculating the global feedback under this assump-931

tion.932

As a result, the normalized derivative used throughout this paper is just a discretized
version of the continuous derivative multiplied by the area of the ice-free ocean; that is,
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a continuous version of the normalized derivative could be defined as:

∂f

∂SST ∗ (ϕ, θ) ≡ atot
∂2f

∂SST∂a
(ϕ, θ) (A3)

Since it is typically discretized, this means that the normalized derivative will only have933

the approximate value of the continuous derivative, but this approximation will get bet-934

ter the higher the resolution of the grid.935

Appendix B OPEN RESEARCH936

The software used in this study is available at https://doi.org/10.5281/zenodo.7697345,937

and the data this software uses is available at https://doi.org/10.5281/zenodo.7697353.938
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This document contains ten figures and one table:

• Figure S1 shows derivatives of N over the tropical Pacific case study region using the

CanESM5, HadAM3, and ICON models.

• Figure S2 shows the results of using monthly and seasonal averages as opposed to

annual averages when performing the Green’s function method.

• Figure S3 shows the results of using different CO2 concentrations as the background

concentration.

• Figure S4 shows the time series of N in the control simulation performed using the

HadCM3 piControl base state.

• Figure S5 rescales points in the paper’s Figure 5 to test relationships from the analytic

formula for uncertainty (Equation 7 in the main body of the paper).

• Figure S6 shows reconstructions of the response of N to historical and abrupt4x pat-

terns of
#       »

SST change with only warming or cooling patches, i.e. Ap ∈ {+4,+2,−2,−4}K.

• Figure S7 shows derivatives calculated for a case study to determine if equal-area

patches can be used around the Southern Ocean instead of equal-lat./lon. patches.

• Figure S8 shows results analogous to Figure 6 in the main body of the paper, except

using rectangular patches instead of sinusoidal ones.

• Figure S9 shows the results of using the derivatives from Figure S1 to reconstruct

the response of N to the historical and abrupt4x patterns of
#       »

SST change.

• Figure S10 tests whether HadAM3’s response of N to the full pattern of historical

and abrupt4x temperature changes is the sum of its responses to these patterns’ decom-

positions into uniform perturbation and zero-mean patterns.
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• Table S1 documents the patch layouts used in the tropical case study (i.e., Figure 6

in the main body of the paper and Figure S8 below).
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Figure S1. Derivatives of N over the tropical Pacific (100◦W to 60◦E and 30◦S to 30◦N) for

CanESM5 and ICON run using the “Dong et al. shifted” patch layout, along with the CanESM5

“Zhou et al.” layout from Figure 2 and the HadAM3 “Dong et al. shifted” layout from Figure

5 in the main body of the paper. The map in the last column shows the average of the rest

of the derivatives in a given row. The first two rows illustrates how differences in patch layout

can affect derivatives, while the last three rows show how differences in model physics can affect

derivatives. Note that ICON has qualitatively similar features over the tropical Pacific to the

models in Figure 2.
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Figure S2. Green’s function reconstructions of the response of HadAM3’s N to historical
#       »

SST

changes. The reconstructions use the GFMIP protocol but differ in that for the dashed orange

lines, a single, annually averaged derivative is used, while for the purple dot-dash lines, a seperate

derivative is estimated for each month of the year and applied in rotation to a monthly
#       »

SST

time series before an annual average is taken. For the green dotted lines, the same calculation

is made, but for seasonal values. There is little difference in RMSEhist, and so for simplicity in

this study we use annually averaged derivatives.
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a b c

d e f

g h i

j

k

Figure S3. Panels a-f show derivatives of N estimated for HadAM3, with a range of values of

Ap, and with CO2 concentrations of 280ppm (panels a-c) and 1120ppm (panels d-f). Derivatives

were calculated with respect to the AMIP base state, such that panel c in this figure is identical

to panel g in Figure 4 in the main body of the paper. Panels g-i show the effect of increasing the

CO2 concentration on the derivative of N . Panel j in this figure is identical to panel h in Figure

4 in the main body of the paper, while panel k shows the same except using the derivatives from

panel f in the Green’s function estimate.
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Figure S4. A time series of the HadAM3 control simulation performed with the “HadCM3

piControl” base state climatology. Note that the initial year is an outlier (red dot), suggesting

that the model may be out of equilibrium during this year due to initial conditions.
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Figure S5. Values from Figure 5 in the main body of the paper rescaled according to the

paper’s Equation 7, showing that the error roughly scales with the square root of the sum of the

inverses of the number of control simulation years, yc, and patch simulation years, yp (left panel

varies yc, right panel varies yp). The middle panel shows the variation of error with 1/Ap when

yp = 1 year (for higher values of yp, the nonlinearity associated with Ap = ±4K causes its error

to surpass the other values).
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Figure S6. HadAM3’s ensemble-mean response of N (black lines) to historical (top row)

and abrupt4x patterns of warming, as well as their reconstructions using the Green’s function

method with the GFMIP protocol, except only warming or cooling patches are used; i.e. Ap ∈

{+4,+2,−2,−4}K (colored lines). Derivatives using patches of a single sign result in much

poorer reconstructions of ∆N than those using averages (e.g., see Figure 8 in the main body of

the paper).
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Figure S7. Normalized derivatives of N with respect to sea surface temperatures around the

Southern Ocean made using an equal area (top row) and an equal latitude/longitude (bottom

row) patch layout. The left column shows the half-amplitude of the different patches as in the top

row of Figure 2, while the next three columns show the derivatives associated with Ap = +2K

(third column), −2K (fourth column), and their average (second column). The scale of the

colorbar is chosen to be consistent with the other figures in the main body of the paper.
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Figure S8. The same as Figure 6 in the main body of the paper, but with rectangular patches,

where “(rectangular)” in a layout name indicates patches consist of a uniform perturbation of

Ap over the whole patch area with a step function at the edge, and “(rect., smoothed)” is the

same but with a tanh function with e-folding scale of 1◦ at the patch edges. Note that sinusoidal

patches have much more strongly peaked warming in their centers, so that rectangular patches

behave similarly to sinusoidal patches with a larger size (e.g., they have less asymmetry with

respect to cooling vs. warming derivatives than patches with the same δφp and δθp).
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Figure S9. Like the full-pattern time series in Figure 8, except that the SST perturbations

only occur over the tropical Pacific case study region (100◦W to 60◦E and 30◦S to 30◦N), and the

Green’s function estimates are made using the non-HadAM3 derivatives in Figure S1. Note that

all of the Green’s functions estimates made using just warming patches (red lines) overestimate

the magnitude of the response to the abrupt4x pattern of warming.
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Figure S10. A test of the linearity of decomposing the response of N in HadAM3 to patterns

of
#       »

SST change into responses to uniform and zero-mean components. Black solid lines show the

response of N to the full pattern of warming; blue dotted lines show the responses of N to a

uniform perturbation with the same ice-free-ocean mean value as the full pattern; red dashed

lines show the response to the zero-mean pattern, which is the anomaly of the full pattern with

respect to its ocean mean; and the green lines with alternating dots and dashes show the sums

of the blue dotted lines and red dashed lines. Linearity holds fairly well (that is, the black and

green lines are similar), even for the the abrupt4x pattern.
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Table S1. Tropical Pacific patch setups (covering 100◦W to 60◦E, 30◦S to 30◦N) as shown in

Figure 6 in the main body of the paper and Figure S8 above.

Name Size Locations

60◦ by 160◦ δφp = 60◦

δθp = 160◦
|φp| ∈ {0◦, 30◦}, θp ∈ {80◦E, then every 80◦ eastwards}
|φp| = 15◦, θp ∈ {120◦E, then every 80◦ eastwards}

40◦ by 160◦ δφp = 40◦

δθp = 160◦
|φp| ∈ {0◦, 20◦}, θp ∈ {80◦E, then every 80◦ eastwards}
|φp| ∈ {10◦, 30◦}, θp ∈ {120◦E, then every 80◦ eastwards}

40◦ by 120◦ δφp = 40◦

δθp = 120◦
|φp| ∈ {0◦, 20◦}, θp ∈ {90◦E, then every 60◦ eastwards}
|φp| ∈ {10◦, 30◦}, θp ∈ {120◦E, then every 60◦ eastwards}

Zhou et al.
δφp = 20◦

δθp = 80◦
|φp| ∈ {0◦, 20◦}, θp ∈ {180◦W, then every 40◦ eastwards}
|φp| ∈ {10◦, 30◦}, θp ∈ {160◦W, then every 40◦ eastwards}

Dong et al.
δφp = 30◦

δθp = 80◦
|φp| ∈ {0◦, 15◦, 30◦}, θp ∈ {160◦W, then every 40◦ eastwards}
|φp| ∈ {7.5◦, 22.5◦, 37.5◦}, θp ∈ {180◦W, then every 40◦ eastwards}

Dong et al. shifted
δφp = 30◦

δθp = 80◦
|φp| ∈ {0◦, 15◦, 30◦}, θp ∈ {180◦W, then every 40◦ eastwards}
|φp| ∈ {7.5◦, 22.5◦, 37.5◦}, θp ∈ {160◦W, then every 40◦ eastwards}

20◦ by 80◦ δφp = 20◦

δθp = 80◦
|φp| ∈ {0◦, 10◦, 20◦}, θp ∈ {140◦E, then every 40◦ eastwards}
|φp| ∈ {5◦, 15◦, 25◦}, θp ∈ {120◦E, then every 40◦ eastwards}
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