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Abstract

Fluids with different densities often coexist in subsurface fractures and lead to variable-density flows that control subsurface

processes such as seawater intrusion, contaminant transport, and geologic carbon sequestration. In nature, fractures have dip

angles relative to gravity, and density effects are maximized in vertical fractures. However, most studies on flow and transport

through fractures are often limited to horizontal fractures. Here, we study the mixing and transport of variable density fluids in

vertical fractures by combining three-dimensional (3D) pore-scale numerical simulations and visual laboratory experiments. Two

miscible fluids with different densities are injected through two inlets at the bottom of a fracture and exit from an outlet at the

top of the fracture. Laboratory experiments show the emergence of an unstable focused flow path, which we term a “runlet.” We

successfully reproduce an unstable runlet using 3D numerical simulations, and elucidate the underlying mechanisms triggering

the runlet. Dimensionless number analysis shows that the runlet instability arises due to the Rayleigh-Taylor instability, and

flow topology analysis is applied to identify 3D vortices that are caused by the Rayleigh-Taylor instability. Even under laminar

flow regimes, fluid inertia is shown to control the runlet instability by affecting the size and movement of vortices. Finally, we

confirm the emergence of a runlet in rough-walled fractures. Since a runlet dramatically affects fluid distribution, residence time,

and mixing, the findings in this study have direct implications for the management of groundwater resources and subsurface

applications.
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ABSTRACT (<250 words) 11 

Fluids with different densities often coexist in subsurface fractures and lead to variable-density 12 

flows that control subsurface processes such as seawater intrusion, contaminant transport, and 13 

geologic carbon sequestration. In nature, fractures have dip angles relative to gravity, and density 14 

effects are maximized in vertical fractures. However, most studies on flow and transport through 15 

fractures are often limited to horizontal fractures. Here, we study the mixing and transport of 16 

variable density fluids in vertical fractures by combining three-dimensional (3D) pore-scale 17 

numerical simulations and visual laboratory experiments. Two miscible fluids with different 18 

densities are injected through two inlets at the bottom of a fracture and exit from an outlet at the 19 

top of the fracture. Laboratory experiments show the emergence of an unstable focused flow path, 20 

which we term a “runlet.” We successfully reproduce an unstable runlet using 3D numerical 21 

simulations, and elucidate the underlying mechanisms triggering the runlet. Dimensionless number 22 

analysis shows that the runlet instability arises due to the Rayleigh-Taylor instability, and flow 23 

topology analysis is applied to identify 3D vortices that are caused by the Rayleigh-Taylor 24 

instability. Even under laminar flow regimes, fluid inertia is shown to control the runlet instability 25 

by affecting the size and movement of vortices. Finally, we confirm the emergence of a runlet in 26 

rough-walled fractures. Since a runlet dramatically affects fluid distribution, residence time, and 27 

mixing, the findings in this study have direct implications for the management of groundwater 28 

resources and subsurface applications. 29 

 30 
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 33 

Key points 34 

1. The density difference between injected and ambient fluids induces unstable focused flow in 35 

vertical fractures 36 

2. Flow topology analysis is used to identify vortices that are caused by Rayleigh-Taylor 37 

instability 38 

3. Fluid inertia controls the instability of the focused flow by affecting the size and movement of 39 

vortices, even in laminar flow regimes 40 

 41 

Plain Language Summary 42 

Groundwater systems are often composed of fractured rocks, and the fractures provide major 43 

pathways for groundwater flow and mass transport. Fractured rock aquifers account for about 44 

75% of the Earth’s near-surface aquifer systems, and fluids with different densities often coexist 45 

in subsurface fractures. Thus, understanding the role of variable-density fluids on fracture flows 46 

is essential for managing groundwater resources and predicting, designing, and operating many 47 

subsurface applications. The effects of density are strongest in vertical fractures; however, most 48 

previous studies on flow and transport through fractures are limited to horizontal fractures, and 49 

few have investigated the density effects on flow through vertical fractures. In this study, we 50 

report both experimental and numerical evidence of an intriguing, focused flow path caused by a 51 

density contrast between two fluids and elucidate the underlying mechanisms triggering the 52 

resulting unstable focused flow in vertical fractures, which we name a “runlet.” Further, rotating 53 

flow patterns are shown to emerge and control the instability of the runlet. Since the runlet 54 

dramatically affects fluid distribution, residence time, and mixing, the findings in this study have 55 

direct implications for managing groundwater resources and subsurface applications. 56 

 57 

 58 

 59 
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1. Introduction 60 

Fractured rock aquifers compose about 75 percent of the Earth’s near-surface aquifer systems 61 

(Dietrich et al., 2005), and often contain coexisting fluids with different densities in the fractures. 62 

Understanding the role of variable-density fluids on flow, transport, and mixing in fractures is 63 

essential to predict, design, and operate many subsurface activities because fractures are the main 64 

flow paths in subsurface rocks. For example, in coastal fractured aquifers, the denser seawater 65 

can preferentially intrude through fractures saturated with freshwater (Park et al., 2012). Thus, 66 

understanding variable-density flows in fractures is important for managing water resources in 67 

coastal aquifers. Further, magma flow in dykes often involves variable density flows (Yamato et 68 

al., 2012), and variable-density fluid flows also occur during geologic CO2 or H2 sequestration, 69 

in which, injected less dense CO2 or H2 tends to migrate upwards and can leak through fractures 70 

(Tongwa et al., 2013). The leakage of CO2 or H2 can lead to serious consequences such as jet 71 

fire, unconfined vapor cloud explosion, and toxic chemical release (Portarapillo & di Benedetto, 72 

2021). Variable-density flows in channels are not limited to geophysical flows; they are also very 73 

common in various industrial applications in the field of biochemical and materials engineering. 74 

Chemical samples and biological materials with different densities are often transported in 75 

channel flows in applications of these fields (Günther & Jensen, 2006; Morijiri et al., 2011). 76 

Therefore, understanding density effects on transport and mixing in channel flows is critical for 77 

the prediction, design, and operation of various applications. 78 

 79 

Many previous studies have shown that density contrast has a significant impact on flow and 80 

solute transport in fractures (Graf & Therrien, 2005, 2007; Shikaze et al., 1998). An 81 

experimental study by Tenchine and Gouze (2005) showed that even a weak density contrast 82 

between two fluids, coupled with fracture wall roughness effects, can create preferential solute 83 

transport paths and stagnation zones that result in anomalously long tails in breakthrough curves. 84 

Even without fracture wall roughness, density contrasts have been shown to impact the flow and 85 

transport of solutes in a horizontal straight channel (Bouquain et al., 2011). Such density effects 86 

on flow and solute transport may dramatically increase when a fracture is inclined or vertical, 87 

which is common in nature. For example, Ronen et al. (1995) showed that a slight density 88 

contrast can dramatically change tracer breakthrough curves in vertical conduit flows. However, 89 
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few studies have investigated density effects on the flow and transport of variable density fluids 90 

in vertical fractures.  91 

 92 

Further, variable-density fluid flow affects fluid mixing, which can in turn affect dissolution and 93 

precipitation patterns (Chaudhuri et al., 2009; Simmons, 2005; Tsang & Neretnieks, 1998). For 94 

example, in CO2-brine injection experiments conducted by Ott & Oedai (2015), the mixing of 95 

CO2 and brine formed carbonic acid that dissolved carbonate minerals. The study found that the 96 

dissolution occurred preferentially in the lower part of the horizontally oriented rock sample. 97 

Snippe et al. (2017) explained that in Ott and Oedai’s experiments, gravity effects played an 98 

important role in determining the zone of preferential mixing and dissolution. Other studies, such 99 

as Oltéan et al. (2013), investigated buoyancy-driven dissolution in a vertical fracture and 100 

reported the geometrical changes of dissolution patterns over a wide range of Péclet, Damköhler, 101 

and Richardson numbers. A follow up study (Ahoulou et al., 2020) elucidated that the 102 

dissolution patterns were controlled by the level of density contrast. The density effects on 103 

mixing, dissolution, and precipitation would be much stronger in vertical fractures. However, 104 

most previous studies focused on variable-density fluid flow in porous media or horizontal 105 

fractures, and density effects on mixing and transport in vertical fractures have been elusive.  106 

 107 

In particular, density effects may induce flow instability, which affects fluid flow, transport, and 108 

mixing. For example, the experiment on dissolution in inclined rectangular blocks showed that 109 

the dissolution patterns were affected by flow instability due to density stratification (Cohen et 110 

al., 2020). This example highlights that flow instability caused by density contrast can be critical 111 

in fracture flows. Different mechanisms have been proposed to explain the origin of instability in 112 

variable-density flows (Almarcha et al., 2010; Fernandez et al., 2002; Kneafsey & Pruess, 2010; 113 

Trevelyan et al., 2011; Wooding et al., 1997; Zalts et al., 2008). The most common explanation 114 

is Rayleigh-Taylor instability (RTI). In RTI, the displacement at the interface between two 115 

miscible fluids of different densities can lead to unstable density stratifications and fingering 116 

patterns due to gravity and buoyancy effects generated by concentration gradients. Another well-117 

known situation that can lead to flow instability is Kelvin-Helmholtz instability (KHI). KHI 118 

occurs when there is a sufficient velocity difference across the interface between two fluids. 119 
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However, the leading mechanisms triggering flow instability in vertical fractures with variable-120 

density fluids remain unclear. 121 

 122 

In this study, we report both experimental and numerical evidence of an intriguing, focused flow 123 

path caused by a density contrast between two fluids and investigate the underlying mechanisms 124 

triggering the resulting unstable focused flow in vertical fractures. 3D numerical simulations are 125 

conducted for a wide range of controlling factors, including density contrast, flow rate, solute 126 

diffusivity, and fracture roughness. Flow topology analysis is conducted to analyze the complex 127 

3D flow fields and to identify the locations and number of vortices that control the instability of 128 

focused flow. Further, dimensionless number analysis is used to elucidate the underlying 129 

mechanisms triggering the observed instability, and we extend the findings to a rough fracture. 130 

 131 

The remainder of this article is organized as follows. The experiment and simulation setups are 132 

detailed in Section 2. The results are given and discussed in Section 3. In Section 4, we 133 

summarize our key findings and conclusions. 134 

 135 

2. Methods 136 

2.1 Experimental and numerical simulation setup 137 

Fracture flow is often simplified as the flow between two parallel flat plates, known as Hele-138 

Shaw flow (Al-Bahlani & Babadagli, 2012; Chen, 1989; Saffman & Taylor, 1958). In this study, 139 

we start with a vertical flow cell with parallel flat plates and then extend the findings to rough 140 

fractures. A Hele-Shaw cell is an idealized but good proxy for identifying critical flow and fluid 141 

related factors that affect variable-density flow and solute transport in a vertical fracture. For 142 

visual laboratory experiments, we used two flat transparent polycarbonate sheets (100 mm by 143 

100 mm by 12.7 mm) separated by spacers to form a fracture with a uniform aperture of 4 mm. 144 

Two nonreactive miscible fluids with different densities (Fluid 1 and Fluid 2) were introduced 145 

through two inlets at the bottom of the fracture and exited through a single, elongated outlet at 146 

the top of the fracture (Figure 1(a, b)). The size of the two inlet ports was 3 mm × 3 mm, and the 147 

rectangular outlet port was 3 mm × 60 mm. The two inlets were placed 38 mm apart at the 148 

bottom of the system. The fluid and flow related conditions used in the laboratory experiment 149 
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(case 1) are listed in Table 1. The denser fluid (Fluid 1) contained a dye (Brocresol green) to 150 

enable the imaging of fluid distributions. Readers are referred to Xu (2020) for additional 151 

experimental details. 152 

 153 

Numerical simulations were used to investigate the effects of density contrasts, injection rates, 154 

diffusion, and fracture roughness on variable-density flows in a vertical fracture. Figure 1 (c) 155 

shows the simulation setup that is based on the laboratory experimental setup, and Figure 1 (d) 156 

provides a simulated image of the concentration distribution, in which the concentration value is 157 

proportional to Fluid 1 concentration. The entire domain was discretized into 400×400×16 cells. 158 

All boundaries were set to no-slip boundaries except for the inlets and outlet. We simulated a 159 

total of ten cases to study the effects of density contrasts, injection rates, diffusion, and 160 

roughness. Table 1 lists the fluid and flow-related parameters for all the numerical cases. The 161 

reference case (case 1) refers to the case in which the conditions were identical to those in the 162 

laboratory experiment. The parameters that differ from the reference case are shown in boldface.  163 

 164 

Table 1. Fluid and flow related parameters used in the numerical study cases 165 

 
Density 

(!"
#!) 

Dynamic 

viscosity 

(𝑃𝑎 ∙ 𝑠) 

Injection rate 

( #$
#%&

) 

Diffusion 

coefficient (#
"

'
) 

Case 1 

(Reference case) 

Fluid 1 1111 1.20 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 2 
Fluid 1 1031.8 1.20 × 10()	 0.17 

10(*	
Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 3 
Fluid 1 1111 1.20 × 10()	 0.17 

𝟏𝟎(𝟔	
Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 4	
Fluid 1 1111 1.20 × 10()	 0.17 

𝟏𝟎(𝟕	
Fluid 2 1031.8 1.11 × 10()	 1.36 
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Case 5 
Fluid 1 1111 1.20 × 10()	 0.17 

𝟏𝟎(𝟖	
Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 6 

(non-inertial) 

Fluid 1 1111 1.20 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 7 
Fluid 1 1111 1.20 × 10()	 0.17 

10(*	
Fluid 2 1031.8 1.11 × 10()	 0.17 

Case 8 

(rough fracture) 

Fluid 1 1031.8 1.11 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 9 & 10 

(rough fracture) 

Fluid 1 1111 1.20 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

 166 

  167 

Figure 1. (a) Experimental setup used in the laboratory experiment. (b) A snapshot from a 168 

laboratory experiment. The fracture aperture is 4 mm, injection rate is 0.17 ml/min for lighter 169 
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fluid, 1.36 ml/min for denser fluid, and density ratio is 1111/1031.8. (c) Setup and boundary 170 

conditions of the numerical model. (d) A snapshot of depth averaged concentration distribution 171 

obtained from the numerical simulation. Concentration values represent the relative 172 

concentration of Fluid 1. The injection rates and the fluid densities are identical to the laboratory 173 

experiment. 174 

 175 

2.2 Governing equations and numerical solution 176 

Three-dimensional pore-scale numerical simulations are conducted to study the variable-density 177 

flow and transport of miscible fluids of different densities in a vertical fracture. We used 178 

OpenFOAM (Weller et al., 1998), an open-source CFD software developed by OpenCFD Ltd to 179 

perform the simulations. Fluid flow in a fracture can be described by the Navier-Stokes (N-S) 180 

equations that consider the mass and momentum conservations:  181 

./

.0
+ 𝛻 ∙ (𝜌𝑢) = 0      (1) 182 

.(/2)
.0

+ 𝛻 ∙ (𝜌𝑢𝑢) = −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢    (2) 183 

where 𝑢 is the velocity field, 𝑝 is the pressure field, 𝜌 is the fluid density, 𝑔 is the gravitational 184 

acceleration, and 𝜈 is the kinematic viscosity. Solute transport in a fracture is described by the 185 

advection-diffusion equation (ADE): 186 

.5

.0
+ 𝛻 ∙ (𝑢𝐶) − 𝐷𝛻4(𝐶) = 0     (3) 187 

where 𝐶 is the passive solute concentration that is injected with Fluid 1 (denser fluid), and 𝐷 is 188 

the diffusion coefficient. Thus, the concentration is one when the fluid is composed purely of 189 

Fluid 1 (denser fluid) and the concentration is zero when the fluid is composed purely of Fluid 2 190 

(lighter fluid).  191 

 192 

Since the density variability in our system arises due to the two miscible fluids with different 193 

densities, the fluid density 𝜌 can be expressed as a linear function of concentration 𝐶: 194 

𝜌 = 𝜌6 +
./
.5
(𝐶 − 𝐶6)     (4) 195 

where 𝐶6 is the reference concentration of the lighter fluid which we set to be zero, and 𝜌6 is the 196 

reference density at the reference concentration. Thus, equation (2) and equation (3) are coupled 197 
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through equation (4) in a nonlinear way: the change of concentration distribution affects the fluid 198 

density, which in turn affects the flow field. In our system, we can make the Boussinesq 199 

approximation (Gartling & Hickox, 1985; Gray & Giorgini, 1976) that simplifies the flow 200 

equations. The Boussinesq approximation is valid when the density variability is small and when 201 

the gravity force term in the momentum equation is significantly larger than the inertia term, 202 

which is the case of this study (Hamimid et al., 2021; Huang et al., 2020). The maximum 203 

Reynolds number (𝑅𝑒 = 2$
7

) considered in this study is around 10, which is obtained using the 204 

fracture aperture as 𝑙 and the maximum injection velocity as 𝑢. This indicates that the flow is in 205 

the laminar regime (Wood et al., 2020). With the Boussinesq approximation, the equations (1) 206 

and (2) can be simplified to	207 

𝛻 ∙ 𝑢 = 0      (5) 208 

𝜌6 =
.2
.0
+ 𝑢 ∙ 𝛻𝑢> = −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢     (6) 209 

We solve equations (5), (6) for fluid flow, equation (3) for transport, and flow and transport 210 

equations are coupled through equation (4). 211 

 212 

2.3 Flow topology analysis 213 

Various flow topologies can emerge in 3D velocity fields (Bakker & Berger, 1991; Perry & 214 

Chong, 1994; Délery, 2013; Romanò et al., 2017). In particular, the flow fields of variable-215 

density flows can be complex and thus challenging to characterize (Stein et al., 1989; Contreras 216 

et al., 2017; Hidalgo & Dentz, 2018; Bresciani et al., 2019; Lee & Kang, 2020). A powerful way 217 

to analyze complex 3D velocity fields is by identifying and tracking the essential structures of a 218 

flow field using the concept of vector field topology (Asimov, 1993; Globus et al., 1991; Helman 219 

& Hesselink, 1989; Perry & Fairlie, 1975; Theisel et al., 2008). Vector field topology reduces 220 

flow complexity through the identification of the topological features of the flow field (e.g., 221 

stagnation points, dividing stream surfaces), which constitutes the backbone of a flow field. 222 

Moreover, tracking these topological features over time or over a change in system parameters 223 

provides insight into the dynamics of the system (Theisel et al., 2005; Lester et al., 2009; Cirpka 224 

et al., 2015; de Barros et al., 2012).  225 

 226 
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Stagnation points constitute key information about a flow field and thus the identification of 227 

stagnation points is an important step in the topology analysis. For a 3D vector field 𝑣(𝑥), a 228 

stagnation point 𝑥6 is extracted by finding 𝑣(𝑥6) = 0 with 𝑣(𝑥6 ± 𝜀) ≠ 0 (where 𝜀 is an 229 

arbitrarily small quantity) and is classified based on the eigenvalues 𝜆% (𝑖 = 1. .3) of the Jacobian 230 

matrix of the 3D vector field 𝐽(𝑥6). Depending on the sign of the real parts of the eigenvalues 231 

𝑅𝑒(𝜆%), the stagnation points can be classified into four non-degenerate types: sources, sinks, 232 

repelling saddles, and attracting saddles: 233 

	𝑆𝑜𝑢𝑟𝑐𝑒𝑠:																									0 < 𝑅𝑒(𝜆8) ≤ 𝑅𝑒(𝜆4) ≤ 𝑅𝑒(𝜆))	234 

			𝑅𝑒𝑝𝑒𝑙𝑙𝑖𝑛𝑔	𝑠𝑎𝑑𝑑𝑙𝑒𝑠:							𝑅𝑒(𝜆8) < 0 < 𝑅𝑒(𝜆4) ≤ 𝑅𝑒(𝜆))	235 

			𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔	𝑠𝑎𝑑𝑑𝑙𝑒𝑠:					𝑅𝑒(𝜆8) ≤ 𝑅𝑒(𝜆4) < 0 < 𝑅𝑒(𝜆))	236 

𝑆𝑖𝑛𝑘𝑠:																													𝑅𝑒(𝜆8) ≤ 𝑅𝑒(𝜆4) ≤ 𝑅𝑒(𝜆)) < 0	237 

Degenerate types only arise rarely (Perko, 2001), and so they are disregarded. The flow patterns 238 

around the four types of stagnation points are fundamentally different. Sources and sinks consist 239 

of outflow and inflow, respectively. A repelling saddle has one direction of inflow and two 240 

directions of outflow, while an attracting saddle has one direction of outflow and two directions 241 

of inflow. Each of these types can be further divided into two types according to the imaginary 242 

parts of the eigenvalues 𝐼𝑚(𝜆%): 243 

𝐹𝑜𝑐𝑢𝑠:					𝐼𝑚(𝜆8) = 0	𝑎𝑛𝑑		𝐼𝑚(𝜆4) = −𝐼𝑚(𝜆)) ≠ 0	244 

𝑁𝑜𝑑𝑒𝑠:					𝐼𝑚(𝜆8) = 𝐼𝑚(𝜆4) = 𝐼𝑚(𝜆)) = 0																245 

Note that here and above, the numbering of the eigenvalues does not matter. For the focus type, 246 

there is a rotating pattern in the inflow or outflow plane, whereas for the node type, the flow lines 247 

are asymptotically straight when approaching the stagnation point. These eight types of 3D 248 

stagnation points are visualized in Figure 2. In this study, we identify focus saddle type 249 

stagnation points, which are associated with vortices (Figure 2(f, h)). We relied on a VTK-based 250 

open-source code to identify the stagnation points and their type (Bujack et al., 2021). 251 
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 252 

Figure 2. Eight common types of stagnation points in 3D vector fields (modified from Weinkauf 253 

& Tino, 2008). Repelling focus saddle (f) and attracting focus saddle (h) type stagnation points 254 

are associated with vortices, and thus we identify those stagnation points in this study. 255 

 256 

3. Results and discussion  257 

3.1 The origin of the runlet 258 

In the laboratory experiments, the fracture sample was initially filled with the lighter fluid. Then, 259 

simultaneously, the denser fluid was continuously injected from the left inlet and the lighter fluid 260 

was continuously injected from the right inlet. Experimental results show that the lighter fluid 261 

was confined to a narrow path in a vertical fracture. The narrow path is not straight and the shape 262 

of the narrow path continuously changes in time (Figure 1(b)). In this paper, we term the narrow 263 

path of the lighter fluid as a “runlet” and denote the continuous change (fluctuation) of runlet 264 

shape as the “runlet instability”. The numerical result of the reference case is shown in Figure 265 

1(d). The concentration values were averaged in the aperture direction to obtain the depth 266 

averaged concentration field. The simulation successfully reproduces the key features of the 267 

experimental results such as the formation of the runlet and the instability of the runlet (Figure 268 

1(d)). However, small-scale features such as the mushroom-shaped lighter fluid parcels observed 269 
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in the experiment (runlet in lighter blue region in Figure 1(b)) is not evident in the simulation 270 

results. This can be attributed to the grid resolution and numerical dispersion.  271 

 272 

In both the laboratory experiments and numerical simulations, the lighter fluid was confined by 273 

the denser fluid. We hypothesize that the density contrast between the two fluids causes the 274 

runlet. To test this hypothesis, we simulated case 2, where the experimental conditions are 275 

identical to the reference case but without the density contrast (Table 1). In other words, two 276 

fluids with different densities are injected in the reference case, while two fluids with the same 277 

density are injected in case 2, i.e.,  ./
.5
= 0. Figure 3 shows the concentration distributions and 278 

streamlines from the two simulation cases. From the concentration distribution of the reference 279 

case (Figure 3(a)), we can clearly observe that the lighter fluid is confined to an unstable runlet. 280 

Whereas in case 2, there is no runlet (Figure 3(c)), and the streamlines are smooth and relatively 281 

straight (Figure 3(d)). The larger injection rate of Fluid 2 causes Fluid 2 to occupy more space 282 

compared to Fluid 1, and there is limited mixing between the two fluids, as shown by the 283 

segregation of the fluids. This demonstrates that the density difference between the two injected 284 

fluids underpins the formation of the unstable runlet in the vertical fracture and also strongly 285 

affects the overall fluid mixing. 286 

 287 

Figure 3. (a) Depth averaged concentration distribution of case 1 (the two fluids have different 288 

densities). The lighter fluid is confined to a runlet. (b) Streamlines of case 1. The streamlines 289 
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clearly visualize the runlet and the emergence of vortices along the runlet. (c) Depth averaged 290 

concentration distribution of case 2 (the two fluids have the same density). (d) Streamlines of 291 

case 2. Note that in both cases the injection rate of Fluid 2 (right inlet) is larger than the injection 292 

rate of Fluid 1 (left inlet). 293 

 294 

From the concentration distribution shown in Figure 3(a), we find that the interface between the 295 

lighter and denser fluids is not sharp. The diffused interface of two fluids in the reference case 296 

(case 1) is caused by the active mixing between the two fluids along the runlet. Mixing will 297 

reduce the density difference between the runlet and background fluid, and the runlet may 298 

disappear for enhanced mixing conditions. The mixing between two fluids is controlled by fluid 299 

stretching and diffusion (Dentz et al., 2011; le Borgne et al., 2013, Yoon et al., 2021). Fluid 300 

stretching due to velocity heterogeneity is known to control mixing by controlling the length 301 

elongation and width compression of mixing zone near the fluid interface. Vortices that appear 302 

near the runlet seem to enhance fluid stretching, and diffusion ultimately mixes the two fluids. If 303 

the diffusion coefficient is larger, the mixing of the two fluids will be enhanced and the density 304 

gradient between the runlet and background fluid will decrease, which may lead to the eventual 305 

disappearance of the runlet.  306 

 307 

To study the effects of mixing on the density contrast and the runlet formation, we considered 308 

three cases with different diffusion coefficients (cases 3 to 5 in Table 1) and compared the results 309 

with the reference case. If the density contrast is the origin of runlet formation, it is expected that 310 

the runlet will not form or will dissipate for high enough diffusion coefficients. The diffusion 311 

coefficient is 10-9 m2/s in the reference case and was varied from 10-6 to 10-8 m2/s in cases 3 to 5. 312 

The concentration distributions and streamlines of cases 3-5 are shown in Figure 4. For case 3 313 

with the highest diffusion coefficient of 10-6, the two fluids mix well, leading to the 314 

disappearance of the runlet. For case 4, in which the diffusion coefficient is 10-7, the runlet is 315 

visible near the inlet but it is relatively short and stable (Figure 4(c)). From the streamlines in 316 

Figure 4(d), we observe that the vortical flows are only present near the inlet and then the 317 

streamlines disperse rapidly. For case 5 (Figure 4(e-f)), in which the diffusion coefficient is 318 

smaller, we clearly observe an unstable runlet, but there are fewer vortical flow structures than in 319 

the reference case (Figure 4(g-h)) which has the smallest diffusion coefficient. These results 320 
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confirm that the formation of the runlet and the presence of vortical flows along it are strongly 321 

affected by the mixing of the two fluids. Only when the diffusion coefficient is small enough, the 322 

density contrast between the lighter fluid and the background fluid is large enough to sustain the 323 

narrow runlet and to induce vortical flows. 324 

 325 

Figure 4. (a) Depth averaged concentration distribution of case 3 (D=10-6 m2/s). (b) Streamlines 326 

of case 3. (c) Depth averaged concentration distribution of case 4 (D=10-7 m2/s). (d) Streamlines 327 

of case 4. (e) Depth averaged concentration distribution of case 5 (D=10-8 m2/s). (f) Streamlines 328 

of case 5. (g) Depth averaged concentration distribution of case 1 (D=10-9 m2/s; reference case). 329 

(h) Streamlines of case 1. 330 
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 331 

3.2 Runlet instability and flow topology analysis 332 

As defined in section 3.1, the runlet instability means the fluctuation and the continuous change 333 

of runlet shape in time. To quantify the level of fluctuation of the runlet, we identified the 334 

centerline along the runlet by identifying the location of the minimum concentration on each 335 

horizontal x-y plane and tracing those points in the vertical direction (the redlines in Figure 1(d) 336 

and Figure 5(b)). Note that we discretized the domain into 400 horizontal layers with a thickness 337 

of 0.25 mm. We define the traced line of minimum concentration as the centerline of the runlet, 338 

and the length of the centerline represents the length of the runlet. We can then track the length 339 

of the runlet in time. Figure 5(a) shows the change in the length of the centerline (runlet) in time. 340 

We observe that the length of the centerline increases roughly linearly in time and then 341 

asymptotes to a constant value. This indicates that the runlet becomes longer and unstable over 342 

time and eventually reaches a quasi-steady state where the instability does not intensify further 343 

nor dissipate. At the quasi-steady state, the runlet continues to fluctuate as shown in the 344 

supplementary video. 345 

 346 

Figure 5. (a) Number of focus saddles (repelling or attracting) and length of the centerline as a 347 

function of time. (b) Location of focus saddles at a snapshot of the reference case. Blue circles 348 

show the location of identified focus saddles, and the redline shows the centerline. 349 

 350 

From the streamlines of the reference case (Figure 3(b)), we observe that a number of vortices 351 

occur along the runlet. Critical stagnation points associated with the vortices were extracted 352 
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using a topology analysis tool (Bujack et al., 2021). We analyzed the focus saddles (Figure 2(f) 353 

(h)) because the spiral flow around these stagnation points has the same flow pattern as vortices. 354 

The identified focus saddles are shown with blue circles in Figure 5(b). Most of them are indeed 355 

located at the center of vortices or near the vortices. Thus, the number of focus saddles are an 356 

indicator of the number of vortices. The stagnation points are densely populated near the inlet, 357 

and the number decreases in the vertical (flow) direction. In other words, more vortices exist 358 

near the lower part of the system, which is also where the concentration gradients are higher. 359 

High concentration gradients at the lower part of the system may lead to RTI (Kull, 1991; Sharp, 360 

1984), and the vortices produced by RTI may be the origin of the runlet instability. The relation 361 

between RTI, vortices, and runlet instability will be further discussed in the following section.  362 

 363 

The spiral flows around vortices affect the flow pattern around the runlet, bending the runlet and 364 

leading to the instability of the runlet. To check if the vortices are playing a crucial role in 365 

causing the runlet instability, we calculated the total number of focus saddles and plot the total 366 

number of these stagnation points over time. The trends of the number of stagnation points and 367 

that of the length of the centerline are almost identical (Figure 5(a)). This result suggests that the 368 

number of stagnation points, especially the number of focus saddles, can be used to quantify the 369 

instability of the runlet, and the instability of the runlet is strongly affected by the vortices. 370 

 371 

3.3 Origin of runlet instability: Rayleigh-Taylor instability versus Kelvin-Helmholtz instability 372 

Here, we investigate the origin of the vortices that control the instability of the runlet over time. 373 

Vortical flows can be generated by either concentration gradients or velocity gradients in our 374 

system. The concentration and velocity distribution at multiple horizontal cross sections (at z = 375 

25 mm, 50mm, and 75 mm from the bottom of the domain) at three pore volume injection (PVI) 376 

are shown in Figure 6. One PVI is equivalent to the time required for the injected fluid volume to 377 

reach the total pore volume of the fracture domain (pore volume divided by injection rate). From 378 

the concentration maps (Figures 6(a),(c),(e)), a large concentration gradient around the runlet is 379 

evident. In particular, the concentration at the perimeter of the runlet is higher than that in other 380 

areas, showing the non-monotonic concentration profile. Note that during injection, the denser 381 

fluid sinks to the bottom of the fracture due to gravitational effects, displacing the lighter fluid 382 
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that initially filled the fracture. As both fluids are continuously pumped into the fracture, the 383 

denser fluid occupies most of the fracture near the inlet, except where the runlet is. The runlet is 384 

formed by the injected lighter fluid, thus having a low concentration. The runlet has a high 385 

velocity because the lighter fluid is flowing through a narrow runlet. Thus, the denser fluid near 386 

the runlet moves along with the lighter fluid due to shear drag exerted by the high-velocity runlet 387 

flow. This explains the maximum fluid concentration at the perimeter of the runlet.   388 

 389 

Figure 6. Concentration and velocity fields in cross sections at (a) (b) 25 mm, (c) (d) 50 mm, and 390 

(e) (f) 75 mm from the bottom of the domain. Concentration around the runlet is higher than in 391 

other areas. Velocity is greatest at the runlet center.  392 

 393 

The instability of the interface between two fluids caused by different densities is known as 394 

Rayleigh-Taylor instability (RTI) (Kull, 1991; Sharp, 1984; He et al., 1999; Tryggvason, 1988). 395 

Here, we qualitatively describe the overall process induced by RTI and quantitatively confirm 396 

the discussed processes in the following sections. The density contrast between the runlet and 397 
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surrounding fluid can lead to opposing flow directions between the denser and lighter fluids. At 398 

an early stage, the denser fluid at the bottom of the fracture and near the runlet is pulled along the 399 

runlet because of the injection force (Figure 7 I). This is due to the drag force exerted on the 400 

surrounding denser fluid by the fast-flowing lighter fluid. Then, due to the density effect, the 401 

denser fluid sinks to the bottom of the fracture and mixes with the surrounding fluid causing 402 

RTI. This is how a rotating flow pattern (vortex) emerges at the bottom of the fracture (Figure 7 403 

II). Subsequently, the vortex moves upward due to the drag force along the runlet, and the runlet 404 

bends due to the spiral flows (Figure 7 III). The upward movement of vortices are shown in the 405 

supplementary video. As the vortex rises, the same phenomenon occurs on the other side of the 406 

runlet and another vortical flow emerges. Thus, vortices emerge on either side of the runlet, 407 

leading to a the runlet bending in alternating directions (Figure 7 IV). Figure 7 is a schematic 408 

showing the step-by-step process. 409 

 410 

Figure 7. Developmental stages of vortices and unstable runlet. Blue arrows show the movement 411 

of the lighter fluid, black arrows show drag force exerted on the denser fluid by the runlet, and 412 

red arrows show the movement of the denser fluid. 413 

 414 

The Rayleigh (Ra) number is a dimensionless number that is commonly used to predict and 415 

describe the instability of variable-density flows. Ra is the ratio comparing the convective mass 416 

transfer and the diffusive mass transfer. When Ra is greater than some critical Rayleigh number, 417 

Rac, the density-driven convective transport is dominant, and the spiral vortical flows result from 418 

the RTI (Cengel et al., 2001; le Quere, 1990; Solano et al., 2022). The critical Rayleigh number 419 

allows us to predict the occurrence of RTI, and the value is dependent on a given experimental 420 
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setup. We quantify Ra using the following definition that is based on the concentration gradient 421 

(Hage & Tilgner, 2010; Ślezak et al., 2004): 422 

𝑅𝑎 = "9$#

:7
.5
.'

                   (7) 423 

where .5
.'

 is the concentration gradient and 𝛼 = − 8
/
./
.5

 describes the density change with regard to 424 

concentration. We estimated Ra along the z-direction for different diffusion coefficients (reference 425 

case and cases 3 to 5 in Table 1). The representative length 𝑙 of the fluid volume is taken to be half 426 

of the fracture aperture (2 mm). The entire domain is divided into 400 horizontal layers, and Ra is 427 

calculated for each layer. In each horizontal layer, the locations of the maximum and minimum 428 

concentration values are identified. Then, 𝜕𝐶 is obtained by taking the concentration difference 429 

between these two points, and 𝜕𝑠 is obtained by estimating the distance between the two points. 430 

Figure 8 shows the estimated Ra in the z-direction. 431 

 432 

As shown in Figure 8, Ra decreases as the diffusion coefficient increases because stronger 433 

diffusion leads to a reduced concentration difference. For the case in which the diffusion 434 

coefficient is 10-7 (red line), the maximum Ra is ~ 7 × 10;, and when the diffusion coefficient is 435 

10-8 (green line), the maximum Ra is ~ 1.3 × 10<. Considering that the runlet is relatively stable 436 

in the case with a diffusion coefficient of 10-7 (red line), and the runlet becomes unstable in the 437 

case for a diffusion coefficient of 10-8 (green line), we can infer that the instability emerges when 438 

Ra is somewhere between 7 × 10;	and 1.3 × 10< (the gray zone in Figure 8). Therefore, the 439 

critical Rayleigh number (at which the runlet becomes unstable) is in the order of 1 × 10<. For 440 

the cases with the diffusion coefficient of 10-8 and 10-9 (green and blue lines, respectively), Ra is 441 

larger than Rac only near the inlet. This implies that the vortices, which control the instability, 442 

can only originate near the lower part of the system. Indeed, it can be observed from Figure 5(a) 443 

that most of the vortices are indeed located near the injection port. Although the Ra at the upper 444 

part of the system is smaller than Rac, the vortices can travel upwards with the flow because of 445 

the injection force and lead to the bending and instability of the runlet. The supplementary video 446 

confirms that the instability in the upper part is governed by the vortices migrated from the 447 

bottom part.  448 
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 449 

Figure 8. Evolution of Rayleigh number (Ra) as a function of vertical location (z) for different 450 

diffusion coefficients. z = 0 mm at the bottom of the fracture (where the inlet is located). 451 

 452 

Another well-known mechanism that can lead to flow instability is the Kelvin-Helmholtz 453 

instability (KHI) (Funada & Joseph, 2001; Smyth & Moum, 2012). KHI occurs when there is a 454 

sufficient velocity difference across the interface between two fluids. The large velocity shear can 455 

induce instability along the interface. Therefore, the interface becomes an unstable vortex sheet. 456 

From the velocity fields at different cross sections (Figure 6(b),(d),(f)), we observe a rapid change 457 

in the velocity magnitude near the runlet, which may lead to KHI. For KHI, the Richardson number 458 

(Ri) is the dimensionless number that is used to predict the instability. Ri represents the ratio of 459 

the buoyancy term to the flow shear term: 460 

𝑅𝑖 = "
/

$%
$&

=$'$&>
" 	           (8) 461 

where .2
.'

 is the velocity gradient. When the Richardson number is below the critical Richardson 462 

number Ric, the fluid becomes unstable. In other words, the fluid flow should be stable if Ri of the 463 

system has Ri that is significantly larger than Ric. Therefore, we estimate the minimum Ri that our 464 

system can reach. If the minimum Ri is much larger than Ric, we can conclude that the KHI is not 465 

the cause of the instability. To obtain the smallest Ri that can occur in our system, we estimate the 466 

largest velocity difference 𝜕𝑢. The maximum velocity difference possible in our system is the 467 
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injection velocity. Thus, the maximum 𝜕𝑢 is taken as the injection velocity, which is around 2.5 468 

mm/s. 𝜌 is taken as the density of the lighter fluid, which is 1031.8 kg/m3. 𝜕𝑠 is taken as half of 469 

the fracture aperture, which is 2 mm, and 𝜕𝜌 is taken as the density difference between the lighter 470 

and denser fluid, which is 79.2 kg/m3. Using these numbers, the smallest Ri in the system is 471 

estimated to be about 240. The values of Ric from previous studies range from 0.2 to 1.0 472 

(Abarbanel et al., 1984; Galperin et al., 2007; Howard, 1961). Considering the Ri calculated in our 473 

system is two orders-of-magnitude larger than the Ric, the RTI appears to be the main mechanism 474 

that makes the runlet unstable. 475 

 476 

3.4 Influence of inertial force  477 

From Figure 5(b), we observe that more stagnation points are present near the inlet and the 478 

number decreases in the flow (vertical) direction. This is because more vortices appear at the 479 

lower part of the system due to the high concentration gradient near the inlet. As we discussed 480 

before, the spiral flow around vortices makes the runlet unstable. Intuitively, more vortices 481 

should lead to more unstable runlet. However, in both experiment and simulation results (Figure 482 

1(b)(d)), we observed that runlets are stable and straight near the injection point (lower part) and 483 

become unstable as the distance from the inlet increases. One reason for the stability may be due 484 

to the high inertial force of lighter fluid near the inlet, suppressing the effects of vortical flows. 485 

To investigate the influence of inertial force on the stability of the runlet, we considered case 6 486 

that solves Stokes equations instead of Navier-Stokes equations to simulate non-inertial flow. 487 

Stokes equations can be obtained by removing the inertial terms in the momentum balance 488 

equation (2): 489 

.(/2)
.0

= −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢     (9) 490 

After applying the Boussinesq approximation, Equation (9) can be written as: 491 

𝜌6
.2
.0
= −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢     (10) 492 

 493 

The parameters of the fluid used in this case are the same as the reference case in Table 1. We 494 

compare this case (case 6) with the reference case (case 1) where we account for the inertial 495 

force. The concentration distributions and streamlines of the case that neglect inertial force are 496 
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shown in Figure 9 (a)(b). Results show that in both cases, the upper half part of the runlet is 497 

unstable, and the wavelengths are similar. However, in the case that the inertial force is 498 

neglected, the instability initiates near the inlet and the upward movement of vortices are limited, 499 

which is clearly different from the case considering the inertia (supplementary video). The 500 

results are consistent with the hypothesis that in the case considering the inertial force, although 501 

vortices emerge at the lower part of the system as predicted by the high Rayleigh number, the 502 

large inertial force caused by the fast runlet flow maintains the straightness of the runlet near the 503 

inlet. As we discussed in section 3.3, the vortices travel up along with the flow because of the 504 

injection force. In the upper part, due to the decrease in inertial force, the vortical flow effect 505 

dominates over injection force, so the runlet shows enhanced fluctuations. In the case that 506 

neglects the inertial force, the vortices appearing at the lower part can lead to the fluctuation of 507 

the entire runlet, but the vortices show limited upward movement due to the lack of inertia force.  508 

 509 

To further study the effects of inertial force on the runlet stability, we simulated case 7 with a 510 

smaller injection rate of the lighter fluid than the reference case (case 1). The inertial force 511 

increases as the injection rate increases. In case 7 shown in Table 1, the injection rate of the 512 

lighter fluid is the same as the injection rate of the denser fluid, which is 0.17 ml/min, an order of 513 

magnitude smaller than the lighter fluid injection rate in the reference case. From the 514 

concentration distributions (Figure 9(f)) of case 7, although the inertial force is smaller, the lower 515 

part of the runlet is still straight due to the inertial force. Further, the upper part of the runlet is 516 

unstable in both cases but the wavelength in case 7 is significantly shorter than that in the 517 

reference case, which is consistent with what is observed in laboratory experiments (Xu et al., 518 

2022). Studies on confined laminar impinging slot-jets also reported that the size of a vortex 519 

increases with increasing Reynolds number (Sexton et al., 2018; Sivasamy et al., 2007). From 520 

case 7, we can conclude that the increase in injection rate of lighter fluid increases the 521 

wavelength of the runlet, which is associated with the size of vortices. These findings highlight 522 

that the inertia effect can be critical for fracture flows even in the laminar flow regimes. 523 
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 524 

Figure 9. (a) Depth averaged concentration distribution of the case 6 that neglects inertial force. 525 

(b) Streamlines of the case 6 that neglects inertial force. (c) Depth averaged concentration 526 

distribution of the reference case. (d) Streamlines of the reference case. (e) Depth averaged 527 

concentration distribution of the case 7, in which the injection rate of lighter fluid is 0.17 ml/min. 528 

(f) Streamlines of the case 7, in which the injection rate of lighter fluid is 0.17 ml/min. 529 

 530 

3.5 Effects of fracture roughness and aperture variability 531 

Fracture surfaces are rough in nature, and fracture roughness is known to significantly affect 532 

fluid flow and transport. For example, aperture variability due to surface roughness can lead to 533 

preferential flow paths and stagnation zones (Kang et al., 2016; Tsang & Neretnieks, 1998; Yoon 534 

& Kang, 2021). To study the effects of surface roughness on runlet, we conducted 3D numerical 535 

simulations on a real rock fracture geometry (case 8, 9, 10). The surface topography data 536 

obtained by scanning a natural fracture (Sawayama et al., 2021) and was used to generate a 537 
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rough fracture. We chose an area of 100	mm	 × 100	mm from the dataset. Figure 10 (a) shows 538 

the aperture map between the two rough fracture surfaces. The mechanical aperture (the average 539 

distance between the two fractures surfaces) is fixed to be 4 mm such that it is consistent with the 540 

cases with parallel plates. Figure 10 (b) shows the cross sections of the rough fracture at four 541 

different locations. Generally, the lower half of the fracture has larger aperture than the upper 542 

half.  543 

 544 

To investigate density effects on runlet formation in rough fractures, we first simulated the case 545 

in which the two fluids have the same density (case 8). The fluid properties we used in this case 546 

are the same as case 2 (Table 1). No runlet is formed in the rough fracture without density 547 

contrast (Figure 10 (c-d)), which confirms that the density contrast between two fluids injected is 548 

critical to the formation of the runlet also in a rough fracture. We then considered the case in 549 

which the two fluids have the density difference (case 9). The injection position of the lighter 550 

fluid is indicated by the blue arrow in Figure 10 (a). The concentration distribution (Figure 10 551 

(e)) clearly shows that the runlet of lighter fluid is present and unstable in the rough fracture 552 

case. The streamlines (Figure 10 (f)) show that there are vortices along the runlet, and they make 553 

the runlet to be unstable, similar to that observed in the uniform aperture fracture (i.e., parallel 554 

plates). 555 

 556 

To further study the effects of fracture roughness on the formation and instability of the runlet, 557 

we simulated an additional case (case 10) by rotating the fracture. The injection location of 558 

lighter fluid for the case 10 is indicated with the red arrow in Figure 10 (a). The result (Figure 10 559 

(g-h)) shows that the runlet formation is significantly different from case 8. The concentration 560 

distribution (Figure 10 (g)) shows that the width of the runlet is larger in case 10. The increase in 561 

runlet width and area is attributed to the aperture variability. In case 10, the right half of the 562 

fracture where the lighter fluid is injected has relatively smaller apertures, while the left half of 563 

the fracture where the denser fluid is injected has larger apertures. When the lighter fluid flows 564 

through the zone with narrower apertures, due to the mass conservation, the flow cross-sectional 565 

area of lighter fluid will likely increase. Therefore, in case 10, the runlet width is larger. This is 566 

evident from the streamlines (Figure 10 (h)), in which we can observe how the streamlines are 567 

dispersed and tend to flow to the area with larger fracture aperture. Furthermore, the streamlines 568 
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show that there is only one large stable vortex near the inlet that does not travel upwards. This 569 

indicates that the aperture variability can affect the movement of vortices.  Results from this 570 

section confirms that runlet still appears in rough fractures, but the shape and instability of runlet 571 

is sensitive to a given aperture field. In nature, fracture roughness and aperture can vary widely, 572 

and thus a more comprehensive study on runlet formation in rough fractures should be an 573 

important topic of future study. 574 

 575 
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Figure 10. (a) Aperture map formed by two rough fracture surfaces. Dashed lines show cross 576 

sectional locations. Blue arrow shows the injection position of lighter fluid in the case 9. Red 577 

arrow shows the injection position of lighter fluid in the case 10. For the case 10, we rotate the 578 

fracture to place the injection position at the bottom. (b) Cross sections of the rough fracture. (c) 579 

Depth averaged concentration distribution of the rough fracture case in which the two fluids have 580 

same density at three PVI. (d) Streamlines in the rough fracture case in which the two fluids have 581 

same density at three PVI. (e) Depth averaged concentration distribution of the case 9 at three 582 

PVI. The unstable runlet is still evident in rough fracture. (f) Streamlines of the case 9 at three 583 

PVI. Note the vortices along the runlet. (g)  Depth averaged concentration distribution of the 584 

case 10 at three PVI. The runlet is wider. (h) Streamlines of the case 10 at three PVI. The 585 

streamlines are dispersed due to aperture variability. Cases 9 and 10 are based on the same rough 586 

fracture but the injection location is different. 587 

 588 

4. Summary and Conclusions 589 

In this study, we investigated variable-density flows in vertical fractures and elucidated the 590 

formation and origin of the unstable runlet based on a visual laboratory experiment and direct 3D 591 

numerical simulations. Results show that when two fluids with different densities are injected at 592 

the bottom of a vertical fracture, the lighter fluid is confined to a narrow runlet which could be 593 

unstable. The formation of the runlet requires a sufficient density difference between the fluids, 594 

and the mixing of the two fluids is demonstrated to play an important role. If there is no density 595 

difference between the two fluids, or if the two fluids are well-mixed, the runlet does not appear. 596 

 597 

We identified RTI as the origin of vortices that control the instability of the runlet. The large 598 

concentration gradient between the runlet and surrounding fluid, especially at the lower part of 599 

the fracture, leads to the emergence of vortices due to the RTI. The estimation of the critical 600 

Rayleigh number further confirmed that the instability arises due to the RTI: the estimated 601 

Rayleigh number near the inlet is larger than the critical Rayleigh number. Further, flow 602 

topology analysis of the velocity field identified vortices, which are shown to be strongly 603 

correlated with runlet instability. Vortices emerge due to the RTI near the inlet, and they are 604 
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shown to travel along the runlet, controlling the runlet instability. The number of vortices over 605 

time showed a very similar trend to the time evolution of the runlet length. 606 

 607 

Inertial force is shown to control the effect of vortices on runlet instability. Vortices emerge near 608 

the inlet but high local inertial force near the inlet keeps the runlet straight. Due to the injection 609 

force, the vortices travel upwards with the flow. In the upper part, where the inertial (injection) 610 

force decreases, the vortical flows dominate the shaping of the runlet, making the runlet to be 611 

unstable. In the case without inertial force, the instability not only occurs in the upper part of the 612 

fracture, but also near the inlet. The vortices that appear near the inlet makes the entire runlet to 613 

be unstable due to the lack of inertia. The upward movement of vortices are limited due to the 614 

lack of inertia force, but their effects near the inlet affects the entire runlet. The injection rate of 615 

the lighter fluid is also shown to control the wavelength of the unstable runlet and size of the 616 

vortices. When the injection rate is smaller, which means the inertial force is smaller, the 617 

wavelength and size of vortices are smaller. Our results highlight that even in laminar fracture 618 

flow conditions, inertia can play a critical role. Finally, we confirmed the formation of unstable 619 

runlets in rough fractures, and aperture variability is demonstrated to play an important role in 620 

shaping the runlet and its instability. 621 

 622 

In this study, various factors affecting the formation and instability of a runlet in a vertical 623 

fracture were explored. The results of this study elucidate the underlying mechanisms triggering 624 

the instability in variable-density fracture flows and provide insights into the complex interplay 625 

between transport, mixing, and runlet instability in a vertical fracture. This study has important 626 

implications for the prediction, design, and operation of subsurface processes and applications 627 

that involve variable-density fluids in channel flows. For example, the unstable runlet may have 628 

strong impact on the extent of seawater intrusion in coastal aquifers. Further, runlet may have 629 

even more dramatic effects if dissolution and precipitation reactions are present. The locations of 630 

dissolution and precipitation will be a strong function of runlet characteristics, which may 631 

control the efficiency of geologic carbon mineralization. The effects of the runlet on dissolution 632 

and precipitation reactions in rough fractures is an important topic for future study. 633 

 634 
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 10 

ABSTRACT (<250 words) 11 

Fluids with different densities often coexist in subsurface fractures and lead to variable-density 12 

flows that control subsurface processes such as seawater intrusion, contaminant transport, and 13 

geologic carbon sequestration. In nature, fractures have dip angles relative to gravity, and density 14 

effects are maximized in vertical fractures. However, most studies on flow and transport through 15 

fractures are often limited to horizontal fractures. Here, we study the mixing and transport of 16 

variable density fluids in vertical fractures by combining three-dimensional (3D) pore-scale 17 

numerical simulations and visual laboratory experiments. Two miscible fluids with different 18 

densities are injected through two inlets at the bottom of a fracture and exit from an outlet at the 19 

top of the fracture. Laboratory experiments show the emergence of an unstable focused flow path, 20 

which we term a “runlet.” We successfully reproduce an unstable runlet using 3D numerical 21 

simulations, and elucidate the underlying mechanisms triggering the runlet. Dimensionless number 22 

analysis shows that the runlet instability arises due to the Rayleigh-Taylor instability, and flow 23 

topology analysis is applied to identify 3D vortices that are caused by the Rayleigh-Taylor 24 

instability. Even under laminar flow regimes, fluid inertia is shown to control the runlet instability 25 

by affecting the size and movement of vortices. Finally, we confirm the emergence of a runlet in 26 

rough-walled fractures. Since a runlet dramatically affects fluid distribution, residence time, and 27 

mixing, the findings in this study have direct implications for the management of groundwater 28 

resources and subsurface applications. 29 

 30 



 2 

Keywords: vertical fracture; mixing; Rayleigh-Taylor instability; vortices; density-driven 31 

flow; focused flow 32 

 33 

Key points 34 

1. The density difference between injected and ambient fluids induces unstable focused flow in 35 

vertical fractures 36 

2. Flow topology analysis is used to identify vortices that are caused by Rayleigh-Taylor 37 

instability 38 

3. Fluid inertia controls the instability of the focused flow by affecting the size and movement of 39 

vortices, even in laminar flow regimes 40 

 41 

Plain Language Summary 42 

Groundwater systems are often composed of fractured rocks, and the fractures provide major 43 

pathways for groundwater flow and mass transport. Fractured rock aquifers account for about 44 

75% of the Earth’s near-surface aquifer systems, and fluids with different densities often coexist 45 

in subsurface fractures. Thus, understanding the role of variable-density fluids on fracture flows 46 

is essential for managing groundwater resources and predicting, designing, and operating many 47 

subsurface applications. The effects of density are strongest in vertical fractures; however, most 48 

previous studies on flow and transport through fractures are limited to horizontal fractures, and 49 

few have investigated the density effects on flow through vertical fractures. In this study, we 50 

report both experimental and numerical evidence of an intriguing, focused flow path caused by a 51 

density contrast between two fluids and elucidate the underlying mechanisms triggering the 52 

resulting unstable focused flow in vertical fractures, which we name a “runlet.” Further, rotating 53 

flow patterns are shown to emerge and control the instability of the runlet. Since the runlet 54 

dramatically affects fluid distribution, residence time, and mixing, the findings in this study have 55 

direct implications for managing groundwater resources and subsurface applications. 56 

 57 

 58 

 59 
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1. Introduction 60 

Fractured rock aquifers compose about 75 percent of the Earth’s near-surface aquifer systems 61 

(Dietrich et al., 2005), and often contain coexisting fluids with different densities in the fractures. 62 

Understanding the role of variable-density fluids on flow, transport, and mixing in fractures is 63 

essential to predict, design, and operate many subsurface activities because fractures are the main 64 

flow paths in subsurface rocks. For example, in coastal fractured aquifers, the denser seawater 65 

can preferentially intrude through fractures saturated with freshwater (Park et al., 2012). Thus, 66 

understanding variable-density flows in fractures is important for managing water resources in 67 

coastal aquifers. Further, magma flow in dykes often involves variable density flows (Yamato et 68 

al., 2012), and variable-density fluid flows also occur during geologic CO2 or H2 sequestration, 69 

in which, injected less dense CO2 or H2 tends to migrate upwards and can leak through fractures 70 

(Tongwa et al., 2013). The leakage of CO2 or H2 can lead to serious consequences such as jet 71 

fire, unconfined vapor cloud explosion, and toxic chemical release (Portarapillo & di Benedetto, 72 

2021). Variable-density flows in channels are not limited to geophysical flows; they are also very 73 

common in various industrial applications in the field of biochemical and materials engineering. 74 

Chemical samples and biological materials with different densities are often transported in 75 

channel flows in applications of these fields (Günther & Jensen, 2006; Morijiri et al., 2011). 76 

Therefore, understanding density effects on transport and mixing in channel flows is critical for 77 

the prediction, design, and operation of various applications. 78 

 79 

Many previous studies have shown that density contrast has a significant impact on flow and 80 

solute transport in fractures (Graf & Therrien, 2005, 2007; Shikaze et al., 1998). An 81 

experimental study by Tenchine and Gouze (2005) showed that even a weak density contrast 82 

between two fluids, coupled with fracture wall roughness effects, can create preferential solute 83 

transport paths and stagnation zones that result in anomalously long tails in breakthrough curves. 84 

Even without fracture wall roughness, density contrasts have been shown to impact the flow and 85 

transport of solutes in a horizontal straight channel (Bouquain et al., 2011). Such density effects 86 

on flow and solute transport may dramatically increase when a fracture is inclined or vertical, 87 

which is common in nature. For example, Ronen et al. (1995) showed that a slight density 88 

contrast can dramatically change tracer breakthrough curves in vertical conduit flows. However, 89 



 4 

few studies have investigated density effects on the flow and transport of variable density fluids 90 

in vertical fractures.  91 

 92 

Further, variable-density fluid flow affects fluid mixing, which can in turn affect dissolution and 93 

precipitation patterns (Chaudhuri et al., 2009; Simmons, 2005; Tsang & Neretnieks, 1998). For 94 

example, in CO2-brine injection experiments conducted by Ott & Oedai (2015), the mixing of 95 

CO2 and brine formed carbonic acid that dissolved carbonate minerals. The study found that the 96 

dissolution occurred preferentially in the lower part of the horizontally oriented rock sample. 97 

Snippe et al. (2017) explained that in Ott and Oedai’s experiments, gravity effects played an 98 

important role in determining the zone of preferential mixing and dissolution. Other studies, such 99 

as Oltéan et al. (2013), investigated buoyancy-driven dissolution in a vertical fracture and 100 

reported the geometrical changes of dissolution patterns over a wide range of Péclet, Damköhler, 101 

and Richardson numbers. A follow up study (Ahoulou et al., 2020) elucidated that the 102 

dissolution patterns were controlled by the level of density contrast. The density effects on 103 

mixing, dissolution, and precipitation would be much stronger in vertical fractures. However, 104 

most previous studies focused on variable-density fluid flow in porous media or horizontal 105 

fractures, and density effects on mixing and transport in vertical fractures have been elusive.  106 

 107 

In particular, density effects may induce flow instability, which affects fluid flow, transport, and 108 

mixing. For example, the experiment on dissolution in inclined rectangular blocks showed that 109 

the dissolution patterns were affected by flow instability due to density stratification (Cohen et 110 

al., 2020). This example highlights that flow instability caused by density contrast can be critical 111 

in fracture flows. Different mechanisms have been proposed to explain the origin of instability in 112 

variable-density flows (Almarcha et al., 2010; Fernandez et al., 2002; Kneafsey & Pruess, 2010; 113 

Trevelyan et al., 2011; Wooding et al., 1997; Zalts et al., 2008). The most common explanation 114 

is Rayleigh-Taylor instability (RTI). In RTI, the displacement at the interface between two 115 

miscible fluids of different densities can lead to unstable density stratifications and fingering 116 

patterns due to gravity and buoyancy effects generated by concentration gradients. Another well-117 

known situation that can lead to flow instability is Kelvin-Helmholtz instability (KHI). KHI 118 

occurs when there is a sufficient velocity difference across the interface between two fluids. 119 
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However, the leading mechanisms triggering flow instability in vertical fractures with variable-120 

density fluids remain unclear. 121 

 122 

In this study, we report both experimental and numerical evidence of an intriguing, focused flow 123 

path caused by a density contrast between two fluids and investigate the underlying mechanisms 124 

triggering the resulting unstable focused flow in vertical fractures. 3D numerical simulations are 125 

conducted for a wide range of controlling factors, including density contrast, flow rate, solute 126 

diffusivity, and fracture roughness. Flow topology analysis is conducted to analyze the complex 127 

3D flow fields and to identify the locations and number of vortices that control the instability of 128 

focused flow. Further, dimensionless number analysis is used to elucidate the underlying 129 

mechanisms triggering the observed instability, and we extend the findings to a rough fracture. 130 

 131 

The remainder of this article is organized as follows. The experiment and simulation setups are 132 

detailed in Section 2. The results are given and discussed in Section 3. In Section 4, we 133 

summarize our key findings and conclusions. 134 

 135 

2. Methods 136 

2.1 Experimental and numerical simulation setup 137 

Fracture flow is often simplified as the flow between two parallel flat plates, known as Hele-138 

Shaw flow (Al-Bahlani & Babadagli, 2012; Chen, 1989; Saffman & Taylor, 1958). In this study, 139 

we start with a vertical flow cell with parallel flat plates and then extend the findings to rough 140 

fractures. A Hele-Shaw cell is an idealized but good proxy for identifying critical flow and fluid 141 

related factors that affect variable-density flow and solute transport in a vertical fracture. For 142 

visual laboratory experiments, we used two flat transparent polycarbonate sheets (100 mm by 143 

100 mm by 12.7 mm) separated by spacers to form a fracture with a uniform aperture of 4 mm. 144 

Two nonreactive miscible fluids with different densities (Fluid 1 and Fluid 2) were introduced 145 

through two inlets at the bottom of the fracture and exited through a single, elongated outlet at 146 

the top of the fracture (Figure 1(a, b)). The size of the two inlet ports was 3 mm × 3 mm, and the 147 

rectangular outlet port was 3 mm × 60 mm. The two inlets were placed 38 mm apart at the 148 

bottom of the system. The fluid and flow related conditions used in the laboratory experiment 149 
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(case 1) are listed in Table 1. The denser fluid (Fluid 1) contained a dye (Brocresol green) to 150 

enable the imaging of fluid distributions. Readers are referred to Xu (2020) for additional 151 

experimental details. 152 

 153 

Numerical simulations were used to investigate the effects of density contrasts, injection rates, 154 

diffusion, and fracture roughness on variable-density flows in a vertical fracture. Figure 1 (c) 155 

shows the simulation setup that is based on the laboratory experimental setup, and Figure 1 (d) 156 

provides a simulated image of the concentration distribution, in which the concentration value is 157 

proportional to Fluid 1 concentration. The entire domain was discretized into 400×400×16 cells. 158 

All boundaries were set to no-slip boundaries except for the inlets and outlet. We simulated a 159 

total of ten cases to study the effects of density contrasts, injection rates, diffusion, and 160 

roughness. Table 1 lists the fluid and flow-related parameters for all the numerical cases. The 161 

reference case (case 1) refers to the case in which the conditions were identical to those in the 162 

laboratory experiment. The parameters that differ from the reference case are shown in boldface.  163 

 164 

Table 1. Fluid and flow related parameters used in the numerical study cases 165 

 
Density 

(!"
#!) 

Dynamic 

viscosity 

(𝑃𝑎 ∙ 𝑠) 

Injection rate 

( #$
#%&

) 

Diffusion 

coefficient (#
"

'
) 

Case 1 

(Reference case) 

Fluid 1 1111 1.20 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 2 
Fluid 1 1031.8 1.20 × 10()	 0.17 

10(*	
Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 3 
Fluid 1 1111 1.20 × 10()	 0.17 

𝟏𝟎(𝟔	
Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 4	
Fluid 1 1111 1.20 × 10()	 0.17 

𝟏𝟎(𝟕	
Fluid 2 1031.8 1.11 × 10()	 1.36 
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Case 5 
Fluid 1 1111 1.20 × 10()	 0.17 

𝟏𝟎(𝟖	
Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 6 

(non-inertial) 

Fluid 1 1111 1.20 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 7 
Fluid 1 1111 1.20 × 10()	 0.17 

10(*	
Fluid 2 1031.8 1.11 × 10()	 0.17 

Case 8 

(rough fracture) 

Fluid 1 1031.8 1.11 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

Case 9 & 10 

(rough fracture) 

Fluid 1 1111 1.20 × 10()	 0.17 
10(*	

Fluid 2 1031.8 1.11 × 10()	 1.36 

 166 

  167 

Figure 1. (a) Experimental setup used in the laboratory experiment. (b) A snapshot from a 168 

laboratory experiment. The fracture aperture is 4 mm, injection rate is 0.17 ml/min for lighter 169 
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fluid, 1.36 ml/min for denser fluid, and density ratio is 1111/1031.8. (c) Setup and boundary 170 

conditions of the numerical model. (d) A snapshot of depth averaged concentration distribution 171 

obtained from the numerical simulation. Concentration values represent the relative 172 

concentration of Fluid 1. The injection rates and the fluid densities are identical to the laboratory 173 

experiment. 174 

 175 

2.2 Governing equations and numerical solution 176 

Three-dimensional pore-scale numerical simulations are conducted to study the variable-density 177 

flow and transport of miscible fluids of different densities in a vertical fracture. We used 178 

OpenFOAM (Weller et al., 1998), an open-source CFD software developed by OpenCFD Ltd to 179 

perform the simulations. Fluid flow in a fracture can be described by the Navier-Stokes (N-S) 180 

equations that consider the mass and momentum conservations:  181 

./

.0
+ 𝛻 ∙ (𝜌𝑢) = 0      (1) 182 

.(/2)
.0

+ 𝛻 ∙ (𝜌𝑢𝑢) = −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢    (2) 183 

where 𝑢 is the velocity field, 𝑝 is the pressure field, 𝜌 is the fluid density, 𝑔 is the gravitational 184 

acceleration, and 𝜈 is the kinematic viscosity. Solute transport in a fracture is described by the 185 

advection-diffusion equation (ADE): 186 

.5

.0
+ 𝛻 ∙ (𝑢𝐶) − 𝐷𝛻4(𝐶) = 0     (3) 187 

where 𝐶 is the passive solute concentration that is injected with Fluid 1 (denser fluid), and 𝐷 is 188 

the diffusion coefficient. Thus, the concentration is one when the fluid is composed purely of 189 

Fluid 1 (denser fluid) and the concentration is zero when the fluid is composed purely of Fluid 2 190 

(lighter fluid).  191 

 192 

Since the density variability in our system arises due to the two miscible fluids with different 193 

densities, the fluid density 𝜌 can be expressed as a linear function of concentration 𝐶: 194 

𝜌 = 𝜌6 +
./
.5
(𝐶 − 𝐶6)     (4) 195 

where 𝐶6 is the reference concentration of the lighter fluid which we set to be zero, and 𝜌6 is the 196 

reference density at the reference concentration. Thus, equation (2) and equation (3) are coupled 197 
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through equation (4) in a nonlinear way: the change of concentration distribution affects the fluid 198 

density, which in turn affects the flow field. In our system, we can make the Boussinesq 199 

approximation (Gartling & Hickox, 1985; Gray & Giorgini, 1976) that simplifies the flow 200 

equations. The Boussinesq approximation is valid when the density variability is small and when 201 

the gravity force term in the momentum equation is significantly larger than the inertia term, 202 

which is the case of this study (Hamimid et al., 2021; Huang et al., 2020). The maximum 203 

Reynolds number (𝑅𝑒 = 2$
7

) considered in this study is around 10, which is obtained using the 204 

fracture aperture as 𝑙 and the maximum injection velocity as 𝑢. This indicates that the flow is in 205 

the laminar regime (Wood et al., 2020). With the Boussinesq approximation, the equations (1) 206 

and (2) can be simplified to	207 

𝛻 ∙ 𝑢 = 0      (5) 208 

𝜌6 =
.2
.0
+ 𝑢 ∙ 𝛻𝑢> = −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢     (6) 209 

We solve equations (5), (6) for fluid flow, equation (3) for transport, and flow and transport 210 

equations are coupled through equation (4). 211 

 212 

2.3 Flow topology analysis 213 

Various flow topologies can emerge in 3D velocity fields (Bakker & Berger, 1991; Perry & 214 

Chong, 1994; Délery, 2013; Romanò et al., 2017). In particular, the flow fields of variable-215 

density flows can be complex and thus challenging to characterize (Stein et al., 1989; Contreras 216 

et al., 2017; Hidalgo & Dentz, 2018; Bresciani et al., 2019; Lee & Kang, 2020). A powerful way 217 

to analyze complex 3D velocity fields is by identifying and tracking the essential structures of a 218 

flow field using the concept of vector field topology (Asimov, 1993; Globus et al., 1991; Helman 219 

& Hesselink, 1989; Perry & Fairlie, 1975; Theisel et al., 2008). Vector field topology reduces 220 

flow complexity through the identification of the topological features of the flow field (e.g., 221 

stagnation points, dividing stream surfaces), which constitutes the backbone of a flow field. 222 

Moreover, tracking these topological features over time or over a change in system parameters 223 

provides insight into the dynamics of the system (Theisel et al., 2005; Lester et al., 2009; Cirpka 224 

et al., 2015; de Barros et al., 2012).  225 

 226 
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Stagnation points constitute key information about a flow field and thus the identification of 227 

stagnation points is an important step in the topology analysis. For a 3D vector field 𝑣(𝑥), a 228 

stagnation point 𝑥6 is extracted by finding 𝑣(𝑥6) = 0 with 𝑣(𝑥6 ± 𝜀) ≠ 0 (where 𝜀 is an 229 

arbitrarily small quantity) and is classified based on the eigenvalues 𝜆% (𝑖 = 1. .3) of the Jacobian 230 

matrix of the 3D vector field 𝐽(𝑥6). Depending on the sign of the real parts of the eigenvalues 231 

𝑅𝑒(𝜆%), the stagnation points can be classified into four non-degenerate types: sources, sinks, 232 

repelling saddles, and attracting saddles: 233 

	𝑆𝑜𝑢𝑟𝑐𝑒𝑠:																									0 < 𝑅𝑒(𝜆8) ≤ 𝑅𝑒(𝜆4) ≤ 𝑅𝑒(𝜆))	234 

			𝑅𝑒𝑝𝑒𝑙𝑙𝑖𝑛𝑔	𝑠𝑎𝑑𝑑𝑙𝑒𝑠:							𝑅𝑒(𝜆8) < 0 < 𝑅𝑒(𝜆4) ≤ 𝑅𝑒(𝜆))	235 

			𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔	𝑠𝑎𝑑𝑑𝑙𝑒𝑠:					𝑅𝑒(𝜆8) ≤ 𝑅𝑒(𝜆4) < 0 < 𝑅𝑒(𝜆))	236 

𝑆𝑖𝑛𝑘𝑠:																													𝑅𝑒(𝜆8) ≤ 𝑅𝑒(𝜆4) ≤ 𝑅𝑒(𝜆)) < 0	237 

Degenerate types only arise rarely (Perko, 2001), and so they are disregarded. The flow patterns 238 

around the four types of stagnation points are fundamentally different. Sources and sinks consist 239 

of outflow and inflow, respectively. A repelling saddle has one direction of inflow and two 240 

directions of outflow, while an attracting saddle has one direction of outflow and two directions 241 

of inflow. Each of these types can be further divided into two types according to the imaginary 242 

parts of the eigenvalues 𝐼𝑚(𝜆%): 243 

𝐹𝑜𝑐𝑢𝑠:					𝐼𝑚(𝜆8) = 0	𝑎𝑛𝑑		𝐼𝑚(𝜆4) = −𝐼𝑚(𝜆)) ≠ 0	244 

𝑁𝑜𝑑𝑒𝑠:					𝐼𝑚(𝜆8) = 𝐼𝑚(𝜆4) = 𝐼𝑚(𝜆)) = 0																245 

Note that here and above, the numbering of the eigenvalues does not matter. For the focus type, 246 

there is a rotating pattern in the inflow or outflow plane, whereas for the node type, the flow lines 247 

are asymptotically straight when approaching the stagnation point. These eight types of 3D 248 

stagnation points are visualized in Figure 2. In this study, we identify focus saddle type 249 

stagnation points, which are associated with vortices (Figure 2(f, h)). We relied on a VTK-based 250 

open-source code to identify the stagnation points and their type (Bujack et al., 2021). 251 
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 252 

Figure 2. Eight common types of stagnation points in 3D vector fields (modified from Weinkauf 253 

& Tino, 2008). Repelling focus saddle (f) and attracting focus saddle (h) type stagnation points 254 

are associated with vortices, and thus we identify those stagnation points in this study. 255 

 256 

3. Results and discussion  257 

3.1 The origin of the runlet 258 

In the laboratory experiments, the fracture sample was initially filled with the lighter fluid. Then, 259 

simultaneously, the denser fluid was continuously injected from the left inlet and the lighter fluid 260 

was continuously injected from the right inlet. Experimental results show that the lighter fluid 261 

was confined to a narrow path in a vertical fracture. The narrow path is not straight and the shape 262 

of the narrow path continuously changes in time (Figure 1(b)). In this paper, we term the narrow 263 

path of the lighter fluid as a “runlet” and denote the continuous change (fluctuation) of runlet 264 

shape as the “runlet instability”. The numerical result of the reference case is shown in Figure 265 

1(d). The concentration values were averaged in the aperture direction to obtain the depth 266 

averaged concentration field. The simulation successfully reproduces the key features of the 267 

experimental results such as the formation of the runlet and the instability of the runlet (Figure 268 

1(d)). However, small-scale features such as the mushroom-shaped lighter fluid parcels observed 269 



 12 

in the experiment (runlet in lighter blue region in Figure 1(b)) is not evident in the simulation 270 

results. This can be attributed to the grid resolution and numerical dispersion.  271 

 272 

In both the laboratory experiments and numerical simulations, the lighter fluid was confined by 273 

the denser fluid. We hypothesize that the density contrast between the two fluids causes the 274 

runlet. To test this hypothesis, we simulated case 2, where the experimental conditions are 275 

identical to the reference case but without the density contrast (Table 1). In other words, two 276 

fluids with different densities are injected in the reference case, while two fluids with the same 277 

density are injected in case 2, i.e.,  ./
.5
= 0. Figure 3 shows the concentration distributions and 278 

streamlines from the two simulation cases. From the concentration distribution of the reference 279 

case (Figure 3(a)), we can clearly observe that the lighter fluid is confined to an unstable runlet. 280 

Whereas in case 2, there is no runlet (Figure 3(c)), and the streamlines are smooth and relatively 281 

straight (Figure 3(d)). The larger injection rate of Fluid 2 causes Fluid 2 to occupy more space 282 

compared to Fluid 1, and there is limited mixing between the two fluids, as shown by the 283 

segregation of the fluids. This demonstrates that the density difference between the two injected 284 

fluids underpins the formation of the unstable runlet in the vertical fracture and also strongly 285 

affects the overall fluid mixing. 286 

 287 

Figure 3. (a) Depth averaged concentration distribution of case 1 (the two fluids have different 288 

densities). The lighter fluid is confined to a runlet. (b) Streamlines of case 1. The streamlines 289 
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clearly visualize the runlet and the emergence of vortices along the runlet. (c) Depth averaged 290 

concentration distribution of case 2 (the two fluids have the same density). (d) Streamlines of 291 

case 2. Note that in both cases the injection rate of Fluid 2 (right inlet) is larger than the injection 292 

rate of Fluid 1 (left inlet). 293 

 294 

From the concentration distribution shown in Figure 3(a), we find that the interface between the 295 

lighter and denser fluids is not sharp. The diffused interface of two fluids in the reference case 296 

(case 1) is caused by the active mixing between the two fluids along the runlet. Mixing will 297 

reduce the density difference between the runlet and background fluid, and the runlet may 298 

disappear for enhanced mixing conditions. The mixing between two fluids is controlled by fluid 299 

stretching and diffusion (Dentz et al., 2011; le Borgne et al., 2013, Yoon et al., 2021). Fluid 300 

stretching due to velocity heterogeneity is known to control mixing by controlling the length 301 

elongation and width compression of mixing zone near the fluid interface. Vortices that appear 302 

near the runlet seem to enhance fluid stretching, and diffusion ultimately mixes the two fluids. If 303 

the diffusion coefficient is larger, the mixing of the two fluids will be enhanced and the density 304 

gradient between the runlet and background fluid will decrease, which may lead to the eventual 305 

disappearance of the runlet.  306 

 307 

To study the effects of mixing on the density contrast and the runlet formation, we considered 308 

three cases with different diffusion coefficients (cases 3 to 5 in Table 1) and compared the results 309 

with the reference case. If the density contrast is the origin of runlet formation, it is expected that 310 

the runlet will not form or will dissipate for high enough diffusion coefficients. The diffusion 311 

coefficient is 10-9 m2/s in the reference case and was varied from 10-6 to 10-8 m2/s in cases 3 to 5. 312 

The concentration distributions and streamlines of cases 3-5 are shown in Figure 4. For case 3 313 

with the highest diffusion coefficient of 10-6, the two fluids mix well, leading to the 314 

disappearance of the runlet. For case 4, in which the diffusion coefficient is 10-7, the runlet is 315 

visible near the inlet but it is relatively short and stable (Figure 4(c)). From the streamlines in 316 

Figure 4(d), we observe that the vortical flows are only present near the inlet and then the 317 

streamlines disperse rapidly. For case 5 (Figure 4(e-f)), in which the diffusion coefficient is 318 

smaller, we clearly observe an unstable runlet, but there are fewer vortical flow structures than in 319 

the reference case (Figure 4(g-h)) which has the smallest diffusion coefficient. These results 320 
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confirm that the formation of the runlet and the presence of vortical flows along it are strongly 321 

affected by the mixing of the two fluids. Only when the diffusion coefficient is small enough, the 322 

density contrast between the lighter fluid and the background fluid is large enough to sustain the 323 

narrow runlet and to induce vortical flows. 324 

 325 

Figure 4. (a) Depth averaged concentration distribution of case 3 (D=10-6 m2/s). (b) Streamlines 326 

of case 3. (c) Depth averaged concentration distribution of case 4 (D=10-7 m2/s). (d) Streamlines 327 

of case 4. (e) Depth averaged concentration distribution of case 5 (D=10-8 m2/s). (f) Streamlines 328 

of case 5. (g) Depth averaged concentration distribution of case 1 (D=10-9 m2/s; reference case). 329 

(h) Streamlines of case 1. 330 
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 331 

3.2 Runlet instability and flow topology analysis 332 

As defined in section 3.1, the runlet instability means the fluctuation and the continuous change 333 

of runlet shape in time. To quantify the level of fluctuation of the runlet, we identified the 334 

centerline along the runlet by identifying the location of the minimum concentration on each 335 

horizontal x-y plane and tracing those points in the vertical direction (the redlines in Figure 1(d) 336 

and Figure 5(b)). Note that we discretized the domain into 400 horizontal layers with a thickness 337 

of 0.25 mm. We define the traced line of minimum concentration as the centerline of the runlet, 338 

and the length of the centerline represents the length of the runlet. We can then track the length 339 

of the runlet in time. Figure 5(a) shows the change in the length of the centerline (runlet) in time. 340 

We observe that the length of the centerline increases roughly linearly in time and then 341 

asymptotes to a constant value. This indicates that the runlet becomes longer and unstable over 342 

time and eventually reaches a quasi-steady state where the instability does not intensify further 343 

nor dissipate. At the quasi-steady state, the runlet continues to fluctuate as shown in the 344 

supplementary video. 345 

 346 

Figure 5. (a) Number of focus saddles (repelling or attracting) and length of the centerline as a 347 

function of time. (b) Location of focus saddles at a snapshot of the reference case. Blue circles 348 

show the location of identified focus saddles, and the redline shows the centerline. 349 

 350 

From the streamlines of the reference case (Figure 3(b)), we observe that a number of vortices 351 

occur along the runlet. Critical stagnation points associated with the vortices were extracted 352 
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using a topology analysis tool (Bujack et al., 2021). We analyzed the focus saddles (Figure 2(f) 353 

(h)) because the spiral flow around these stagnation points has the same flow pattern as vortices. 354 

The identified focus saddles are shown with blue circles in Figure 5(b). Most of them are indeed 355 

located at the center of vortices or near the vortices. Thus, the number of focus saddles are an 356 

indicator of the number of vortices. The stagnation points are densely populated near the inlet, 357 

and the number decreases in the vertical (flow) direction. In other words, more vortices exist 358 

near the lower part of the system, which is also where the concentration gradients are higher. 359 

High concentration gradients at the lower part of the system may lead to RTI (Kull, 1991; Sharp, 360 

1984), and the vortices produced by RTI may be the origin of the runlet instability. The relation 361 

between RTI, vortices, and runlet instability will be further discussed in the following section.  362 

 363 

The spiral flows around vortices affect the flow pattern around the runlet, bending the runlet and 364 

leading to the instability of the runlet. To check if the vortices are playing a crucial role in 365 

causing the runlet instability, we calculated the total number of focus saddles and plot the total 366 

number of these stagnation points over time. The trends of the number of stagnation points and 367 

that of the length of the centerline are almost identical (Figure 5(a)). This result suggests that the 368 

number of stagnation points, especially the number of focus saddles, can be used to quantify the 369 

instability of the runlet, and the instability of the runlet is strongly affected by the vortices. 370 

 371 

3.3 Origin of runlet instability: Rayleigh-Taylor instability versus Kelvin-Helmholtz instability 372 

Here, we investigate the origin of the vortices that control the instability of the runlet over time. 373 

Vortical flows can be generated by either concentration gradients or velocity gradients in our 374 

system. The concentration and velocity distribution at multiple horizontal cross sections (at z = 375 

25 mm, 50mm, and 75 mm from the bottom of the domain) at three pore volume injection (PVI) 376 

are shown in Figure 6. One PVI is equivalent to the time required for the injected fluid volume to 377 

reach the total pore volume of the fracture domain (pore volume divided by injection rate). From 378 

the concentration maps (Figures 6(a),(c),(e)), a large concentration gradient around the runlet is 379 

evident. In particular, the concentration at the perimeter of the runlet is higher than that in other 380 

areas, showing the non-monotonic concentration profile. Note that during injection, the denser 381 

fluid sinks to the bottom of the fracture due to gravitational effects, displacing the lighter fluid 382 
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that initially filled the fracture. As both fluids are continuously pumped into the fracture, the 383 

denser fluid occupies most of the fracture near the inlet, except where the runlet is. The runlet is 384 

formed by the injected lighter fluid, thus having a low concentration. The runlet has a high 385 

velocity because the lighter fluid is flowing through a narrow runlet. Thus, the denser fluid near 386 

the runlet moves along with the lighter fluid due to shear drag exerted by the high-velocity runlet 387 

flow. This explains the maximum fluid concentration at the perimeter of the runlet.   388 

 389 

Figure 6. Concentration and velocity fields in cross sections at (a) (b) 25 mm, (c) (d) 50 mm, and 390 

(e) (f) 75 mm from the bottom of the domain. Concentration around the runlet is higher than in 391 

other areas. Velocity is greatest at the runlet center.  392 

 393 

The instability of the interface between two fluids caused by different densities is known as 394 

Rayleigh-Taylor instability (RTI) (Kull, 1991; Sharp, 1984; He et al., 1999; Tryggvason, 1988). 395 

Here, we qualitatively describe the overall process induced by RTI and quantitatively confirm 396 

the discussed processes in the following sections. The density contrast between the runlet and 397 
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surrounding fluid can lead to opposing flow directions between the denser and lighter fluids. At 398 

an early stage, the denser fluid at the bottom of the fracture and near the runlet is pulled along the 399 

runlet because of the injection force (Figure 7 I). This is due to the drag force exerted on the 400 

surrounding denser fluid by the fast-flowing lighter fluid. Then, due to the density effect, the 401 

denser fluid sinks to the bottom of the fracture and mixes with the surrounding fluid causing 402 

RTI. This is how a rotating flow pattern (vortex) emerges at the bottom of the fracture (Figure 7 403 

II). Subsequently, the vortex moves upward due to the drag force along the runlet, and the runlet 404 

bends due to the spiral flows (Figure 7 III). The upward movement of vortices are shown in the 405 

supplementary video. As the vortex rises, the same phenomenon occurs on the other side of the 406 

runlet and another vortical flow emerges. Thus, vortices emerge on either side of the runlet, 407 

leading to a the runlet bending in alternating directions (Figure 7 IV). Figure 7 is a schematic 408 

showing the step-by-step process. 409 

 410 

Figure 7. Developmental stages of vortices and unstable runlet. Blue arrows show the movement 411 

of the lighter fluid, black arrows show drag force exerted on the denser fluid by the runlet, and 412 

red arrows show the movement of the denser fluid. 413 

 414 

The Rayleigh (Ra) number is a dimensionless number that is commonly used to predict and 415 

describe the instability of variable-density flows. Ra is the ratio comparing the convective mass 416 

transfer and the diffusive mass transfer. When Ra is greater than some critical Rayleigh number, 417 

Rac, the density-driven convective transport is dominant, and the spiral vortical flows result from 418 

the RTI (Cengel et al., 2001; le Quere, 1990; Solano et al., 2022). The critical Rayleigh number 419 

allows us to predict the occurrence of RTI, and the value is dependent on a given experimental 420 
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setup. We quantify Ra using the following definition that is based on the concentration gradient 421 

(Hage & Tilgner, 2010; Ślezak et al., 2004): 422 

𝑅𝑎 = "9$#

:7
.5
.'

                   (7) 423 

where .5
.'

 is the concentration gradient and 𝛼 = − 8
/
./
.5

 describes the density change with regard to 424 

concentration. We estimated Ra along the z-direction for different diffusion coefficients (reference 425 

case and cases 3 to 5 in Table 1). The representative length 𝑙 of the fluid volume is taken to be half 426 

of the fracture aperture (2 mm). The entire domain is divided into 400 horizontal layers, and Ra is 427 

calculated for each layer. In each horizontal layer, the locations of the maximum and minimum 428 

concentration values are identified. Then, 𝜕𝐶 is obtained by taking the concentration difference 429 

between these two points, and 𝜕𝑠 is obtained by estimating the distance between the two points. 430 

Figure 8 shows the estimated Ra in the z-direction. 431 

 432 

As shown in Figure 8, Ra decreases as the diffusion coefficient increases because stronger 433 

diffusion leads to a reduced concentration difference. For the case in which the diffusion 434 

coefficient is 10-7 (red line), the maximum Ra is ~ 7 × 10;, and when the diffusion coefficient is 435 

10-8 (green line), the maximum Ra is ~ 1.3 × 10<. Considering that the runlet is relatively stable 436 

in the case with a diffusion coefficient of 10-7 (red line), and the runlet becomes unstable in the 437 

case for a diffusion coefficient of 10-8 (green line), we can infer that the instability emerges when 438 

Ra is somewhere between 7 × 10;	and 1.3 × 10< (the gray zone in Figure 8). Therefore, the 439 

critical Rayleigh number (at which the runlet becomes unstable) is in the order of 1 × 10<. For 440 

the cases with the diffusion coefficient of 10-8 and 10-9 (green and blue lines, respectively), Ra is 441 

larger than Rac only near the inlet. This implies that the vortices, which control the instability, 442 

can only originate near the lower part of the system. Indeed, it can be observed from Figure 5(a) 443 

that most of the vortices are indeed located near the injection port. Although the Ra at the upper 444 

part of the system is smaller than Rac, the vortices can travel upwards with the flow because of 445 

the injection force and lead to the bending and instability of the runlet. The supplementary video 446 

confirms that the instability in the upper part is governed by the vortices migrated from the 447 

bottom part.  448 
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 449 

Figure 8. Evolution of Rayleigh number (Ra) as a function of vertical location (z) for different 450 

diffusion coefficients. z = 0 mm at the bottom of the fracture (where the inlet is located). 451 

 452 

Another well-known mechanism that can lead to flow instability is the Kelvin-Helmholtz 453 

instability (KHI) (Funada & Joseph, 2001; Smyth & Moum, 2012). KHI occurs when there is a 454 

sufficient velocity difference across the interface between two fluids. The large velocity shear can 455 

induce instability along the interface. Therefore, the interface becomes an unstable vortex sheet. 456 

From the velocity fields at different cross sections (Figure 6(b),(d),(f)), we observe a rapid change 457 

in the velocity magnitude near the runlet, which may lead to KHI. For KHI, the Richardson number 458 

(Ri) is the dimensionless number that is used to predict the instability. Ri represents the ratio of 459 

the buoyancy term to the flow shear term: 460 

𝑅𝑖 = "
/

$%
$&

=$'$&>
" 	           (8) 461 

where .2
.'

 is the velocity gradient. When the Richardson number is below the critical Richardson 462 

number Ric, the fluid becomes unstable. In other words, the fluid flow should be stable if Ri of the 463 

system has Ri that is significantly larger than Ric. Therefore, we estimate the minimum Ri that our 464 

system can reach. If the minimum Ri is much larger than Ric, we can conclude that the KHI is not 465 

the cause of the instability. To obtain the smallest Ri that can occur in our system, we estimate the 466 

largest velocity difference 𝜕𝑢. The maximum velocity difference possible in our system is the 467 
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injection velocity. Thus, the maximum 𝜕𝑢 is taken as the injection velocity, which is around 2.5 468 

mm/s. 𝜌 is taken as the density of the lighter fluid, which is 1031.8 kg/m3. 𝜕𝑠 is taken as half of 469 

the fracture aperture, which is 2 mm, and 𝜕𝜌 is taken as the density difference between the lighter 470 

and denser fluid, which is 79.2 kg/m3. Using these numbers, the smallest Ri in the system is 471 

estimated to be about 240. The values of Ric from previous studies range from 0.2 to 1.0 472 

(Abarbanel et al., 1984; Galperin et al., 2007; Howard, 1961). Considering the Ri calculated in our 473 

system is two orders-of-magnitude larger than the Ric, the RTI appears to be the main mechanism 474 

that makes the runlet unstable. 475 

 476 

3.4 Influence of inertial force  477 

From Figure 5(b), we observe that more stagnation points are present near the inlet and the 478 

number decreases in the flow (vertical) direction. This is because more vortices appear at the 479 

lower part of the system due to the high concentration gradient near the inlet. As we discussed 480 

before, the spiral flow around vortices makes the runlet unstable. Intuitively, more vortices 481 

should lead to more unstable runlet. However, in both experiment and simulation results (Figure 482 

1(b)(d)), we observed that runlets are stable and straight near the injection point (lower part) and 483 

become unstable as the distance from the inlet increases. One reason for the stability may be due 484 

to the high inertial force of lighter fluid near the inlet, suppressing the effects of vortical flows. 485 

To investigate the influence of inertial force on the stability of the runlet, we considered case 6 486 

that solves Stokes equations instead of Navier-Stokes equations to simulate non-inertial flow. 487 

Stokes equations can be obtained by removing the inertial terms in the momentum balance 488 

equation (2): 489 

.(/2)
.0

= −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢     (9) 490 

After applying the Boussinesq approximation, Equation (9) can be written as: 491 

𝜌6
.2
.0
= −𝛻𝑝 + 𝜌𝑔 + 𝜈𝛻4𝑢     (10) 492 

 493 

The parameters of the fluid used in this case are the same as the reference case in Table 1. We 494 

compare this case (case 6) with the reference case (case 1) where we account for the inertial 495 

force. The concentration distributions and streamlines of the case that neglect inertial force are 496 
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shown in Figure 9 (a)(b). Results show that in both cases, the upper half part of the runlet is 497 

unstable, and the wavelengths are similar. However, in the case that the inertial force is 498 

neglected, the instability initiates near the inlet and the upward movement of vortices are limited, 499 

which is clearly different from the case considering the inertia (supplementary video). The 500 

results are consistent with the hypothesis that in the case considering the inertial force, although 501 

vortices emerge at the lower part of the system as predicted by the high Rayleigh number, the 502 

large inertial force caused by the fast runlet flow maintains the straightness of the runlet near the 503 

inlet. As we discussed in section 3.3, the vortices travel up along with the flow because of the 504 

injection force. In the upper part, due to the decrease in inertial force, the vortical flow effect 505 

dominates over injection force, so the runlet shows enhanced fluctuations. In the case that 506 

neglects the inertial force, the vortices appearing at the lower part can lead to the fluctuation of 507 

the entire runlet, but the vortices show limited upward movement due to the lack of inertia force.  508 

 509 

To further study the effects of inertial force on the runlet stability, we simulated case 7 with a 510 

smaller injection rate of the lighter fluid than the reference case (case 1). The inertial force 511 

increases as the injection rate increases. In case 7 shown in Table 1, the injection rate of the 512 

lighter fluid is the same as the injection rate of the denser fluid, which is 0.17 ml/min, an order of 513 

magnitude smaller than the lighter fluid injection rate in the reference case. From the 514 

concentration distributions (Figure 9(f)) of case 7, although the inertial force is smaller, the lower 515 

part of the runlet is still straight due to the inertial force. Further, the upper part of the runlet is 516 

unstable in both cases but the wavelength in case 7 is significantly shorter than that in the 517 

reference case, which is consistent with what is observed in laboratory experiments (Xu et al., 518 

2022). Studies on confined laminar impinging slot-jets also reported that the size of a vortex 519 

increases with increasing Reynolds number (Sexton et al., 2018; Sivasamy et al., 2007). From 520 

case 7, we can conclude that the increase in injection rate of lighter fluid increases the 521 

wavelength of the runlet, which is associated with the size of vortices. These findings highlight 522 

that the inertia effect can be critical for fracture flows even in the laminar flow regimes. 523 
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 524 

Figure 9. (a) Depth averaged concentration distribution of the case 6 that neglects inertial force. 525 

(b) Streamlines of the case 6 that neglects inertial force. (c) Depth averaged concentration 526 

distribution of the reference case. (d) Streamlines of the reference case. (e) Depth averaged 527 

concentration distribution of the case 7, in which the injection rate of lighter fluid is 0.17 ml/min. 528 

(f) Streamlines of the case 7, in which the injection rate of lighter fluid is 0.17 ml/min. 529 

 530 

3.5 Effects of fracture roughness and aperture variability 531 

Fracture surfaces are rough in nature, and fracture roughness is known to significantly affect 532 

fluid flow and transport. For example, aperture variability due to surface roughness can lead to 533 

preferential flow paths and stagnation zones (Kang et al., 2016; Tsang & Neretnieks, 1998; Yoon 534 

& Kang, 2021). To study the effects of surface roughness on runlet, we conducted 3D numerical 535 

simulations on a real rock fracture geometry (case 8, 9, 10). The surface topography data 536 

obtained by scanning a natural fracture (Sawayama et al., 2021) and was used to generate a 537 
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rough fracture. We chose an area of 100	mm	 × 100	mm from the dataset. Figure 10 (a) shows 538 

the aperture map between the two rough fracture surfaces. The mechanical aperture (the average 539 

distance between the two fractures surfaces) is fixed to be 4 mm such that it is consistent with the 540 

cases with parallel plates. Figure 10 (b) shows the cross sections of the rough fracture at four 541 

different locations. Generally, the lower half of the fracture has larger aperture than the upper 542 

half.  543 

 544 

To investigate density effects on runlet formation in rough fractures, we first simulated the case 545 

in which the two fluids have the same density (case 8). The fluid properties we used in this case 546 

are the same as case 2 (Table 1). No runlet is formed in the rough fracture without density 547 

contrast (Figure 10 (c-d)), which confirms that the density contrast between two fluids injected is 548 

critical to the formation of the runlet also in a rough fracture. We then considered the case in 549 

which the two fluids have the density difference (case 9). The injection position of the lighter 550 

fluid is indicated by the blue arrow in Figure 10 (a). The concentration distribution (Figure 10 551 

(e)) clearly shows that the runlet of lighter fluid is present and unstable in the rough fracture 552 

case. The streamlines (Figure 10 (f)) show that there are vortices along the runlet, and they make 553 

the runlet to be unstable, similar to that observed in the uniform aperture fracture (i.e., parallel 554 

plates). 555 

 556 

To further study the effects of fracture roughness on the formation and instability of the runlet, 557 

we simulated an additional case (case 10) by rotating the fracture. The injection location of 558 

lighter fluid for the case 10 is indicated with the red arrow in Figure 10 (a). The result (Figure 10 559 

(g-h)) shows that the runlet formation is significantly different from case 8. The concentration 560 

distribution (Figure 10 (g)) shows that the width of the runlet is larger in case 10. The increase in 561 

runlet width and area is attributed to the aperture variability. In case 10, the right half of the 562 

fracture where the lighter fluid is injected has relatively smaller apertures, while the left half of 563 

the fracture where the denser fluid is injected has larger apertures. When the lighter fluid flows 564 

through the zone with narrower apertures, due to the mass conservation, the flow cross-sectional 565 

area of lighter fluid will likely increase. Therefore, in case 10, the runlet width is larger. This is 566 

evident from the streamlines (Figure 10 (h)), in which we can observe how the streamlines are 567 

dispersed and tend to flow to the area with larger fracture aperture. Furthermore, the streamlines 568 
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show that there is only one large stable vortex near the inlet that does not travel upwards. This 569 

indicates that the aperture variability can affect the movement of vortices.  Results from this 570 

section confirms that runlet still appears in rough fractures, but the shape and instability of runlet 571 

is sensitive to a given aperture field. In nature, fracture roughness and aperture can vary widely, 572 

and thus a more comprehensive study on runlet formation in rough fractures should be an 573 

important topic of future study. 574 

 575 
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Figure 10. (a) Aperture map formed by two rough fracture surfaces. Dashed lines show cross 576 

sectional locations. Blue arrow shows the injection position of lighter fluid in the case 9. Red 577 

arrow shows the injection position of lighter fluid in the case 10. For the case 10, we rotate the 578 

fracture to place the injection position at the bottom. (b) Cross sections of the rough fracture. (c) 579 

Depth averaged concentration distribution of the rough fracture case in which the two fluids have 580 

same density at three PVI. (d) Streamlines in the rough fracture case in which the two fluids have 581 

same density at three PVI. (e) Depth averaged concentration distribution of the case 9 at three 582 

PVI. The unstable runlet is still evident in rough fracture. (f) Streamlines of the case 9 at three 583 

PVI. Note the vortices along the runlet. (g)  Depth averaged concentration distribution of the 584 

case 10 at three PVI. The runlet is wider. (h) Streamlines of the case 10 at three PVI. The 585 

streamlines are dispersed due to aperture variability. Cases 9 and 10 are based on the same rough 586 

fracture but the injection location is different. 587 

 588 

4. Summary and Conclusions 589 

In this study, we investigated variable-density flows in vertical fractures and elucidated the 590 

formation and origin of the unstable runlet based on a visual laboratory experiment and direct 3D 591 

numerical simulations. Results show that when two fluids with different densities are injected at 592 

the bottom of a vertical fracture, the lighter fluid is confined to a narrow runlet which could be 593 

unstable. The formation of the runlet requires a sufficient density difference between the fluids, 594 

and the mixing of the two fluids is demonstrated to play an important role. If there is no density 595 

difference between the two fluids, or if the two fluids are well-mixed, the runlet does not appear. 596 

 597 

We identified RTI as the origin of vortices that control the instability of the runlet. The large 598 

concentration gradient between the runlet and surrounding fluid, especially at the lower part of 599 

the fracture, leads to the emergence of vortices due to the RTI. The estimation of the critical 600 

Rayleigh number further confirmed that the instability arises due to the RTI: the estimated 601 

Rayleigh number near the inlet is larger than the critical Rayleigh number. Further, flow 602 

topology analysis of the velocity field identified vortices, which are shown to be strongly 603 

correlated with runlet instability. Vortices emerge due to the RTI near the inlet, and they are 604 
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shown to travel along the runlet, controlling the runlet instability. The number of vortices over 605 

time showed a very similar trend to the time evolution of the runlet length. 606 

 607 

Inertial force is shown to control the effect of vortices on runlet instability. Vortices emerge near 608 

the inlet but high local inertial force near the inlet keeps the runlet straight. Due to the injection 609 

force, the vortices travel upwards with the flow. In the upper part, where the inertial (injection) 610 

force decreases, the vortical flows dominate the shaping of the runlet, making the runlet to be 611 

unstable. In the case without inertial force, the instability not only occurs in the upper part of the 612 

fracture, but also near the inlet. The vortices that appear near the inlet makes the entire runlet to 613 

be unstable due to the lack of inertia. The upward movement of vortices are limited due to the 614 

lack of inertia force, but their effects near the inlet affects the entire runlet. The injection rate of 615 

the lighter fluid is also shown to control the wavelength of the unstable runlet and size of the 616 

vortices. When the injection rate is smaller, which means the inertial force is smaller, the 617 

wavelength and size of vortices are smaller. Our results highlight that even in laminar fracture 618 

flow conditions, inertia can play a critical role. Finally, we confirmed the formation of unstable 619 

runlets in rough fractures, and aperture variability is demonstrated to play an important role in 620 

shaping the runlet and its instability. 621 

 622 

In this study, various factors affecting the formation and instability of a runlet in a vertical 623 

fracture were explored. The results of this study elucidate the underlying mechanisms triggering 624 

the instability in variable-density fracture flows and provide insights into the complex interplay 625 

between transport, mixing, and runlet instability in a vertical fracture. This study has important 626 

implications for the prediction, design, and operation of subsurface processes and applications 627 

that involve variable-density fluids in channel flows. For example, the unstable runlet may have 628 

strong impact on the extent of seawater intrusion in coastal aquifers. Further, runlet may have 629 

even more dramatic effects if dissolution and precipitation reactions are present. The locations of 630 

dissolution and precipitation will be a strong function of runlet characteristics, which may 631 

control the efficiency of geologic carbon mineralization. The effects of the runlet on dissolution 632 

and precipitation reactions in rough fractures is an important topic for future study. 633 

 634 
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