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Abstract

We deduce a new tropospheric error model for ground-based GNSS inter-
ferometric reflectometry (GNSS-IR), the NITE (New Interferometric Tropo-
spheric Error) model. This model contains two parts, a straight-line geo-
metric error and a path delay. The geometric error uses specular reflection,
taking into account the atmospheric bending and the earth curvature effects.
The path delay follows the definition of the mapping function. We validate
the NITE model together with two previously used models, the bending cor-
rection and the mapping function path delay (MPF delay) using raytracing
and radiosonde data. The raytracing results show that the newly-developed
NITE model is more accurate than the previous models. Numerically, for a
GNSS antenna with a 20 m height difference to the sea level, the geometric
tropospheric error is < 5 % of the path delay error. We further investi-
gate and compare six tropospheric error correction strategies for GNSS-IR
sea level monitoring using two sets of experiments. With an elevation an-
gle range test using GNSS stations with large height differences to the sea
level, we show that applying no troposphere error corrections and applying
the bending correction plus the MPF delay both introduce large elevation-
dependent biases. Analyzing time series of differences between GNSS-IR
derived sea level and corresponding results from co-located tide gauges, we
show that the bending correction with the widely used Bennett equation in-
troduces long-term (4 h to months) trends in the sea-level retrievals. This
is eliminated by using the Ulich equation in the bending correction. In our
experiment, the accuracy improvement due to the NITE model is not as clear
as in the raytracing simulations. We identify one station where the NITE
model produces better long-term (τ > 4 h) stability. In others situations, the
results from the NITE model have similar levels of random error. Finally,
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we give a theoretical deduction showing that, except for extreme situations,
both the bending correction and the MPF delay are approximations of the
rigorous NITE model. Unlike what is previously regarded, the bending cor-
rection and the MPF delay are not complementary but equivalent at low
elevation angles.

Keywords: GNSS-IR, tropospheric error, raytracing, sea level monitoring,
earth curvature

1. Introduction

The application of Global Navigation Satellites Systems (GNSS) has been
successfully extended from positioning, navigation and timing (PNT) (Dao
et al., 2002; Pham, 2011) to environmental remote sensing. GNSS is to-
day used, e.g., in meteorology (Duan et al., 2002), to study the atmosphere
(Sokolovskiy et al., 2006), soil moisture (Larson et al., 2008; Larson, 2019),
etc. GNSS reflectometry is one of these new applications which uses the
reflected GNSS signal as a remote sensing tool to study the surrounding en-
vironment. For positioning, only the direct GNSS signals are useful while
the reflected signals from nearby objects are regarded as an error source, re-
ferred to as the multipath error (Park et al., 2004). In GNSS reflectometry,
by investigating the reflected signal and its interaction with the direct signal,
we can measure snow depth and sea level, etc.

A typical GNSS-IR sea level monitoring setup is to install a GNSS an-
tenna on the coast near the water, so that the antenna is receiving the com-
bination of direct satellite signals and signals reflected off the ocean surface.
The reflected signals travel a longer distance to reach the antenna than the
direct ones. When a satellite ascends or descends, the phase lag between the
reflected and direct signal will change and thus the power of the received
signal at the antenna shows a periodic pattern. The power is recorded by
GNSS receivers as signal-noise-ratio (SNR), thus this method is also referred
to as the SNR-based GNSS-R. By determining the frequency of this varying
SNR as a function of elevation angle we can derive the reflector height Hr

from the GNSS antenna to the ocean surface. With a simplified (vacuum
and planar reflection) geometry, the relationship between reflector height Hr

and the reflected-versus-direct signal interferometric radio length τi can be
written as (Georgiadou and Kleusberg, 1988; Larson et al., 2013b)

τi = 2Hr sin eT , (1)
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where eT is the true elevation angle of the satellite seen from the GNSS
antenna.

GNSS-IR gives the height difference between the GNSS antenna and the
sea surface. In combination with the inherent positioning ability of GNSS,
GNSS-IR can provide sea level measurements (Larson et al., 2013a) with pre-
cision close to traditional tide gauges in a well-determined global terrestrial
reference frame. This is called absolute sea level monitoring. The tempo-
ral resolution of GNSS-IR sea level results is also improving thanks to the
development of multi-GNSS (Löfgren and Haas, 2014; Wang et al., 2019).
However, systematic biases were found between GNSS-IR and traditional
tide gauges (Geremia-Nievinski et al., 2020a; Strandberg, 2020), which im-
pairs the advantage of the absolute sea level monitoring ability of GNSS-IR.

In this work, we focus on the tropospheric error for GNSS-IR. Due to
the antenna design and physical surrounding limitations, GNSS-IR tends to
use very low elevation angle observations, down to 2°. This makes the tropo-
spheric error important. Several previous studies focused on the tropospheric
error in GNSS reflectometry. Santamaŕıa-Gómez and Watson (2017) studied
the elevation-(angle)-dependent error on GNSS reflectometry and proposed
to use an equation for astronomical refraction given by Bennett (1982) to
correct the elevation angle. The Bennett 1982 equation is now widely used
in GNSS-IR studies (Roesler and Larson, 2018). Williams and Nievinski
(2017) studied the impact of tropospheric path delay on sea-level retrievals
with a wide range of stations and found a scale error due to a lack of a proper
troposphere delay correction. However, angular refraction was neglected in
that work and the tropospheric delay was obtained directly using the map-
ping function products without further adaption. In previous studies (e.g.,
Treuhaft et al., 2001; Fabra et al., 2012; Williams and Nievinski, 2017), it is
usually assumed that the path delay taken by the direct and reflected signals
is equal from the satellite down to the height of the antenna. Nikolaidou
et al. (2020) quantitatively studied the tropospheric error for GNSS-IR us-
ing 3D raytracing together with a standard atmosphere model, and claimed
that the linear and angular refraction contributions to GNSS-IR have sim-
ilar magnitude and they both evolve linearly with the reflector height and
exponentially with satellite elevation angle.

However, the results from these previous investigations contradict each
other. Santamaŕıa-Gómez and Watson (2017) apply only the angular tropo-
spheric bending correction, while Williams and Nievinski (2017) apply only
the tropospheric path delay correction. These two corrections are differ-
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ent and both authors claim that the elevation dependence is removed from
the experiment results. On the other hand, the results by Nikolaidou et al.
(2020) suggest that using only one of the corrections alone is not sufficient.
In practice, some studies choose to correct both the bending and delay errors
(e.g., Peng et al., 2019; Ye et al., 2022). Some studies choose to not apply
tropospheric error correction at all (e.g., Roussel et al., 2015; Tabibi et al.,
2020; Geremia-Nievinski et al., 2020a; Wang et al., 2021a,b; Gravalon et al.,
2022), and some study chooses to apply only one of them (e.g., Xie, 2022;
Wang et al., 2022).

In the following we investigate the tropospheric geometric error and path
delay error in GNSS-IR sea level monitoring. In Section 2 we give the de-
duction of analytical equations for the troposphere geometric and path delay
suitable for GNSS-IR, with a focus on sea leveling monitoring. In Section 3,
the sub-component and total tropospheric error are validated using raytrac-
ing with radiosonde data. In Section 4 we present experimental assessment
results of tropospheric error models using stations with different reflector
heights. Section 5 discusses the relationship between the new GNSS-IR tro-
pospheric model and the previous ones. In Section 6 we summarize this work
and discuss the limitations of this new GNSS-IR tropospheric error model.

2. GNSS-IR tropospheric error model

2.1. Geometric interferometric tropospheric error

Figure 1 depicts the geometry of the GNSS-IR, considering atmospheric
refraction and the earth surface curvature. The space between the ocean
surface to the satellite is divided into 3 layers. The 1st layer starts from
the sea surface and ends at the GNSS antenna. Since we limit the model to
ground-based GNSS-IR, the 1st layer has a thickness of < 100 m. The 2nd
layer begins at the GNSS antenna and ends at the top of the atmosphere,
which is ≈ 100 km (Fleming et al., 1990). The area from the top of the atmo-
sphere to the satellite, which is > 20, 000 km, is described by the 3rd layer.
The large difference in magnitude allows us to apply some approximations
without losing much accuracy.

We first look at the direct signal path. Due to the atmospheric refraction,
the true signal path is curved, instead of a straight line. The major part of
the bending occurs in the 2nd layer, as the 1st layer is a lot smaller and
the 3rd layer is almost vacuum. We start our deduction by first introducing
the atmospheric bending angle. The bending angle is the angular difference
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between the apparent elevation angle eA and true elevation angle eT for the
direct signal path:

∆e = eA − eT (2)

This bending angle is well studied in astronomy since angular observables
are widely used in optical astronomy (Saastamoinen, 1973; Stone, 1996).
Santamaŕıa-Gómez and Watson (2017) studied this bending angular error on
GNSS reflectometry and adopted an equation given by Bennett (1982)

∆e =
510

9
5
T + 492

P

1010.16
cot(eT +

7.31

eT + 4.4
) , (3)

where T is the temperature in ℃, P the pressure in hPa at the GNSS antenna
and eT is the true elevation angle. Notice that Equation (3) does not require
the input of water vapor pressure, because the impact of water vapor at
optical wavelength is small (Boisits et al., 2020). However, tropospheric
water vapor is a major error contributor to GNSS signal propagation (e.g.,
Niell, 1996; Landskron and Böhm, 2018), and the basis of GNSS meteorology
(e.g., Bevis et al., 1992; Elgered et al., 1997). For radio frequencies, studies
show that the bending angle is proportional to the ground refractivity index
(Meeks, 1976; Stone, 1996). Together with the elevation angle dependence,
a model for radio telescope pointing error correction given by Ulich (1981) is

∆e = 10−6N0
cos eT

sin eT + 0.00175 tan(87.5° − eT )
, (4)

where N0 is the ground refractivity. The refractivity N = 106(n − 1) and
n is the frequency-dependent atmospheric refractive index. N and n are
physically equivalent. We will refer to N as refractivity and n as refractive
index. For GNSS, the latest development of atmosphere refractivity is given
by Rüeger (2002):

N0 = K1
Pd

T
+K2

Pw

T
+K3

Pw

T 2
(5)

Here, Pd is the dry pressure and Pw is the water vapor pressure, both in
hPa, and T is the temperature in kelvin. The constant coefficients are K1 =
77.6890 (K/hPa), K2 = 71.2952 (K/hPa), and K3 = 375463 (K2/hPa),
respectively. We will always use the Ulich equation (Eq. (4)) to calculate the
bending angle in the following deductions, except for the experiment part
where we include the Bennett equation for comparison.
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Figure 1: Geometry of coastal GNSS-IR with atmospheric refraction and earth curvature
(not to scale).

We then look at the reflected signal path. The reflected signal path can be
divided at the reflection point into a down-leg and an up-leg part. The down-
leg denotes the signal from the satellite to the reflection point. The up-leg
denotes the signal from the reflection point to the GNSS antenna. The true
elevation angle erT and the apparent elevation angle erA of the reflected down-
leg signal are slightly different from that of the direct signal. This is due to
the finite distance of the satellite and the earth curvature. The finite distance
of the satellite means that the direct and reflected signal form a small angle,
marked as θS in Fig. 1. The earth center angle from the reflection point to
the antenna is marked as θE. As shown in Table 1, these two angles are
about 2 orders of magnitude smaller than ∆e and 4 orders smaller than eT .
We can derive approximate expressions for θE and θS as

θE =
Hr

R tan eA

θS =
2Hr cos eT

L

, (6)

where R is the mean radius of the earth. The unit of θE and θS are radian and
L is the geometrical distance from the antenna to the satellite. Some studies
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showed that the impact of a finite satellite distance on signal propagation
is small for GNSS (Zus et al., 2015). Comparing θE and θS, the former
is significantly larger, especially at low elevation angles (see Table 1). By
including θS, the reflected and the direct signal will actually intersect at the
satellite. Then the interferometric radio length can be clearly and precisely
defined. If θS is ignored, i.e. the reflected and direct signal are parallel to each
other, one will have to find a starting point to calculate the interferometric
radio length. The choice of starting point can introduce an uncertainty.
For GNSS satellites, the orbit radius is about 26,000 km thus L is about
23,700 km (eT = 20°) to 25,600 km (eT = 2°). The angle θE is 22 times the
angle θS at 5°, and 49 times of θS at 2°. We keep the angle θS for completeness
but we will use a rough approximation as L ≈ 4R for current GNSS satellites.

Table 1: Magnitude of true elevation angle eT , apparent elevation angle eA, earth center
angle θE and satellite angle θS , for different reflector heights Hr, with N0 = 320 ppm.

eT (eA)
2°(2.30°) 3°(3.24°) 5°(5.17°) 10°(10.09°)

Hr (m) θE θS θE θS θE θS θE θS
10 2.2e−3 4.5e−5 1.5e−3 4.5e−5 9.9e−4 4.5e−5 5.0e−4 4.4e−5

20 4.5e−3 9.0e−5 3.2e−3 9.0e−5 2.0e−3 8.9e−5 1.0e−3 8.8e−5

40 8.9e−3 1.8e−4 6.3e−3 1.8e−4 4.0e−3 1.8e−4 2.0e−3 1.8e−4

60 1.3e−2 2.7e−4 9.5e−3 2.7e−4 6.0e−3 2.7e−4 3.0e−3 2.7e−4

100 2.2e−2 4.5e−4 1.6e−2 4.5e−4 9.9e−3 4.5e−4 5.0e−3 4.4e−4

The true elevation angle erT and the apparent elevation angle erA of the
reflected signal down-leg are:{

erT = eT + θE + θS

erA ≈ eA + θE + θS
(7)

Except for the rotation of the local vertical expressed by θE, the earth
curvature has a more direct effect. The reflection point is slightly lower than
that of the “plane reflection” (Kwok, 2017). We define a vertical height Hv

as the vertical distance between the reflection point and the antenna in the
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local earth center coordinate of the antenna (see Fig. 1):

Hv = Hr +R(1− cos θE) ≈ Hr +
H2

r

2R tan2 eA
(8)

In Table 2 we list the approximate value of the effect (Hv −Hr) caused
by the earth curvature. This reflection point vertical displacement is about
1 cm for Hr = 20 m, eT = 3°, and close to 0.5 m for Hr = 100 m, eT = 2°.

Table 2: Reflection point vertical displacement (Hv −Hr) in cm, N0 = 320 ppm.

Hr (m) 2° 3° 5° 7° 10° 20° 30° 80°

10 0.5 0.2 0.1 <0.1 <01 <01 <0.1 <0.1
20 1.9 1.0 0.4 0.2 0.1 <0.1 <0.1 <0.1
40 7.8 3.9 1.5 0.8 0.4 0.1 <0.1 <0.1
60 17.5 8.8 3.5 1.8 0.9 0.2 0.1 <0.1
100 48.6 24.4 9.6 5.0 2.5 0.6 0.2 <0.1

The up-leg, which is the signal path from the reflection point to the GNSS
antenna, is treated as a straight line with length:

Lup =
Hv

sin(erA + θE)
(9)

We can now write the interferometric radio length for GNSS-IR as:

τi = Hv
1− cos(eT + erA + θE)

sin(erA + θE)
+ (Sr −Gr)− (S −G) (10)

The first term in Eq. (10) is obtained in the triangle formed by the satel-
lite, the antenna, and the reflection point. The difference between Eq. (10)
and Eq. (1) is the geometric tropospheric error of the NITE model.

When the reflection point is close, its vertical displacement can be ne-

glected. For example, for Hr = 10 m and eT = 2°, H2
r

2R tan2 eA
≈ 5 mm. Then

Eq. (10) will thus simplify to:

τi = Hr
1− cos(eT + erA + θE)

sin(erA + θE)
+ (Sr −Gr)− (S −G) (11)
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When the true elevation angle is large, the atmospheric bending angle ∆e
will be small thus we have eA ≈ eT and θE ≈ 0, and Eq. (10) will simplify
to:

τi = 2Hv sin eT + (Sr −Gr)− (S −G) (12)

When the antenna is close to the sea surface and the satellite elevation
angle is large, Eq. (10) becomes Eq. (1), adding an interferometric curve
path error. In Eq. (10), (S − G) and (Sr − Gr) are the differential length
between the straight line and the true curved propagation path, for the direct
and reflected down-leg signal, respectively. The curve path error can not be
obtained without knowing the refractivity distribution along the signal path.
Fortunately, this curve path effect is identical in GNSS positioning and is
included in the generation of mapping functions (Möller and Landskron,
2019). In the next section when we derive the interferometric tropospheric
path delay, this term will be covered.

2.2. Interferometric tropospheric path error

The radio signal is retarded due to the atmosphere refractivity and this is
usually referred to as the tropospheric delay in GNSS positioning. The tro-
pospheric delay is an important error source of GNSS and has been well-
studied in positioning applications. Thanks to the developments of numerical
weather models and high-performance computing, we now have state-of-art
mapping function products available for correcting tropospheric errors (La-
gler et al., 2013; Landskron and Böhm, 2018). With the predetermined value
of mapping functions and the ever-growing navigation constellations, GNSS
can estimate the troposphere-related zenith total delay (ZTD) and delay
gradient parameters and they in return contribute to environmental remote
sensing. We will use the mapping function developed for GNSS positioning
and we will also use the upper atmosphere information (ZTD) obtained by
the GNSS meteorology method to deduce the tropospheric path delay for
GNSS-IR.

We start the modeling of the path delay by first defining the interfero-
metric tropospheric path delay of GNSS-IR. The interferometric path delay
is the difference between the tropospheric delay experienced by the reflected
and direct GNSS signal,

Di = Dr −Dd , (13)
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where Di, Dr, and Dd, represent the interferometric, reflected and di-
rect tropospheric delay, respectively. The direct signal path delay caused by
the atmosphere is identical to that in GNSS positioning. According to the
definition

Dd =

sat∫
ant

(n(s)− 1)ds+ (S −G) , (14)

where n(s) is the refraction index along the curved signal path, and (S −G)
is the differential length between the straight line and the true curved signal
path, identical to the definition in Eq. (10). Eq. (14) can be used to calculate
accurate tropospheric delay via a raytracing method and generate mapping
functions. While in GNSS data processing, the tropospheric delay is then
modeled as (Herring et al., 2010; Dach et al., 2015):

Dd = ZTD ·mpf(eT ) (15)

Here, ZTD is the zenith total delay and mpf(eT ) is the elevation angle
dependent total mapping function.

Similar to the previous section, we consider the path delay separately
for the down-leg and the up-leg for the reflected signal. The up-leg path
is relatively small and the length is given in Eq. (9). Then we define an
average layer refractivity Nl, expressed in ppm (parts per million), which
is representative for the layer of atmosphere between the GNSS antenna to
the reflecting surface. For a not-so-high antenna (a few meters above sea
surface), we can simply use the refractivity at the antenna as the average
layer refractivity. For an antenna that is located at 10 m above the sea
surface, and assuming 300 ppm refractivity at the antenna, the refractivity
at the reflection surface is about 300.375 ppm with an exponential vertical
distribution. Besides, due to wind and atmospheric turbulence, in a layer of
about 10 m above the sea surface, it is more reasonable to assume a well-
mixed refractivity than an exponential decaying distribution. However, if
the antenna is located high enough (∼ 100 m), it is better to use the mean
refractivity, taking into account the vertical distribution as,

Nl = N0
1 + e

Hr
8000

2
, (16)

where N0 is the refractivity measured at the GNSS antenna. Eq. (16) simply
gives the average refractivity of the antenna and the reflecting surface with
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a fixed scale height of 8000 m, assuming a linear vertical distribution in the
small layer. Another choice would be averaging over integration, assuming an
exponential refractivity profile. For an antenna that is 100 m above the sea
surface, these two approaches differ by less than 0.004 ppm. The tropospheric
delay of the reflected signal up-leg can be expressed by multiplying Eq. (16)
and Eq. (9):

Dup = 10−6Nl
Hv

sin(erA + θE)
(17)

The tropospheric path delay of the reflected signal down-leg is evaluated
using the definition of the mapping function

Ddown = (ZTD + ZTDl) ·mpf(erT ) , (18)

where ZTDl is the “layer ZTD” between the GNSS antenna and the reflector
surface as ZTDl = 10−6NlHr. Comparing Eq. (18) and Eq. (15), they are
both applying the definition of the mapping function. The mapping function
value for the reflected down-leg signal is close to but not the same as that
of the direct signal. This is because of two reasons. Firstly, the mapping
function is a function of station height. Secondly, the true elevation angles
are not identical, i.e., erT ̸= eT . A height correction is needed for sites at
different altitudes when applying the mapping function (Yan et al., 2002;
Zus et al., 2015). A height correction for the hydrostatic mapping function
is given by Niell (1996) as

∂mpf

∂h
=

1

sineT
−

1 + a
1+ b

1+c

sineT + a
sineT+ b

sineT+c

, (19)

where a = 0.0000253, b = 0.00549, c = 0.00114. The accuracy of the map-
ping function height correction given by Eq. (19) has been questioned (Yan
et al., 2002; Zus et al., 2015). It is still the only available model for mapping
function height correction (Landskron, 2017). A more accurate height cor-
rection can be realized by numerical methods, which means using raytracing
to obtain mapping function at multiple altitudes at a global scale, with a fine
enough numerical weather model. That is out of the scope of this work and
a numerical weather model with a vertical resolution of about 10 m level is
currently not available. As we limit our model for ground-based GNSS reflec-
tometry applications with a maximum reflector height of 100 m, numerical
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results show that the height correction term is secondary compared to the
effects of the true elevation angle difference.

The difference between the true elevation angle of the direct and reflected
down-leg signal is given by Eq. (7). The mapping function is usually ex-
pressed as a parameterized continued fraction. The derivative of the mapping
function can be analytically expressed as

∂mpf

∂eT
=

(
a(cos eT − b cos eT

(c+sin eT )2
)

( b
c+sin eT

+ sin eT )2
− cos eT

)
·mpf(eT ) , (20)

with a, b and c being the mapping function products (Landskron, 2017).
Eq. (20) is complicated in form but the meaning is straightforward. It gives
the partial derivative of the mapping function with respect to the true el-
evation angle. In practice, this partial derivative can also be numerically
calculated by first calculating the mapping function at two slightly different
elevation angles. An implementation of Eq. (20) is included in the code to use
the GMF product available (see re3data.org). Now Eq. (18) can be written
as:

Ddown = (ZTD + ZTDl) ·
[
mpf(eT )− (

∂mpf

∂eT
∆eT +

∂mpf

∂h
Hr)

]
(21)

Considering that ZTDl is small compared to ZTD (for an antenna of
100 m distance to the sea surface, ZTDl ≈ ZTD

80
) and the same situation

stands for the mapping function and its differences. Combining Eqs. (17)
and (21) and substitute the direct signal tropospheric delay by Eq. (15), the
interferometric tropospheric path delay of GNSS-IR is:

Di =
10−6NlHv

sin (erA + θE)
+ZTDlmpf(eT )−ZTD

(
∂mpf

∂eT
∆eT +

∂mpf

∂h
Hr

)
(22)

Eq. (22) gives the interferometric tropospheric path delay of GNSS-IR as
a function of the reflector heightHr(Hv), the average layer refractivityNl, the
true elevation angle eT , the zenith total delay ZTD, the mapping function,
and the derivative of the mapping function. While Eq. (22) is complicated
the only required observable data is the refractivity at the antenna, i.e.,
meteorology data. ZTD can be estimated from the GNSS data processing
and all the partial derivatives of the mapping function are contained in the
mapping function products. Eq. (22) is the interferometric path delay of the
NITE model.
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While Eq. (22) gives the interferometric tropospheric path delay in the
form of forward modeling, it is challenging to directly apply it, especially
for the SNR-based GNSS-IR. The problem is that the earth curvature effect
given by Eq. (8) is dependent on reflector height Hr and has an Hr

2 term.
We adopt a simple first-order correction by introducing an Hv to Hr ratio K
expressed as

K =
Hv

Hr

≈ 1 +
H0

r

2R tan2 eA
, (23)

where H0
r is a prior value of Hr. This a priori value H0

r does not need to be
known very accurately for normal ground-based GNSS-IR. Or it can be solved
iteratively if Hr changes dramatically (Semmling et al., 2012). Combining
Eqs. (10) and (22) and insertingK, we can extract the relative reflector height
Hr term, to obtain an equation suitable to be applied to Eq. (1) directly at
the observable level using a variable substitute method (Strandberg, 2020)
as:

τi = Hr

[
K

1− cos(eT + erA + θE)

sin(erA + θE)
+K

10−6Nl

sin(erA + θE)

+ 10−6Nlmpf(eT )− ZTD(
∂mpf

∂eT

1

R tan eA
+

∂mpf

∂h
)

]
(24)

3. Raytracing Validation

3.1. Validating sub-components of the tropospheric error

In this section, we validate the two sub-components of the GNSS-IR tro-
pospheric error using raytracing. Due to the existence of the atmosphere, (a)
the position of the reflection point is changed, (b) the GNSS signal propagates
along a curved path and (c) the signal speed is slower. Theoretically, the first
two effects are combined to form the interferometric geometric tropospheric
error, and the third effect is defined as the interferometric tropospheric path
delay. In practice, the mapping function products for GNSS positioning are
used to calculate the path delay, thus the curve path effects are included.
In Section 2.1 we only modeled the effects of the reflection point change,
which is the straight-line part of the interferometric tropospheric geometric
error. And in Section 2.2 we gave the expression for interferometric tropo-
spheric path delay, with the curve path effects included.

We use raytracing to validate the tropospheric straight-line geometric er-
ror and the path delay from the NITE model. The 2-step 2D raytracing
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method for GNSS-IR is documented in Appendix A. This raytracing algo-
rithm considers the curvature of the earth and the finite distance of GNSS
satellites. We use the refractivity profile from radiosonde observations (Durre
et al., 2006) as input for the raytracing. In the upper part of the atmosphere,
above the troposphere where radiosonde data is not available, we extend the
profile to 100 km with the standard atmosphere model (Minzner et al., 1976).
In total 14 globally distributed radiosonde stations were chosen following pre-
vious GNSS-IR studies (Geremia-Nievinski et al., 2020b), but also to cover
a wide range of climate regions like Antarctica (Xie, 2022). The radiosondes
profiles are used as realistic samples to evaluate the consistency between the
NITE model and numerical raytracing. Information of radiosonde stations
together with the 4-digit name of nearby GNSS stations are presented in
Table 3.

Table 3: Radiosonde stations for raytracing validation.

Radiosonde Latitude Longitude Height Nearby GNSS
station (°) (°) (m) station

FPM00091938 −17.5550 −149.6200 2.0 FAA1
ASM00094672 −34.9525 138.5203 6.1 SPRB
GRM00016754 35.3353 25.1819 35.0 NOMI
USM00072327 36.2472 −86.5631 180.2 KYDH
USM00072469 39.7675 −104.8694 1611.0 P041
ASM00094975 −42.8339 147.5033 4.0 BUR2
SPM00008023 43.4911 −3.8006 52.0 SCOA
USM00072797 47.9339 −124.5603 56.8 SC02
FRM00007110 48.4442 −4.4119 99.0 BRST
SWM00002527 57.6572 12.2911 164.0 OSOU
USM00070326 58.6811 −156.6514 8.4 PBAY
AYM00089571 −68.5740 77.9672 18.0 DAV1
AYM00089532 −69.0050 39.5811 18.4 SYOG
SVM00001004 78.9233 11.9222 15.5 NYA2

The interferometric radio length assuming a vacuum, plane reflection is
given by Eq. (1). We will use Eq. (1) as a base value and refer to it as the
sin eT model. Eq. (10) (NITE geometric model) differs from Eq. (1) as we
took the troposphere bending effect and the earth curvature into account.
The difference between Eq. (10) and Eq. (1) is the straight-line tropospheric
geometric error. In Fig. 2, the straight-line tropospheric geometric error from
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Figure 2: Straight-line interferometric tropospheric geometric error compared to raytracing
(zoom in part). The vacuum τi (sin eT ) was subtracted. The results are presented for two
reflector heightsHr = 20 m (top) andHr = 100 m (bottom), with a refractivity of 320 ppm
at the antenna. The black dashed line shows the tropospheric geometric error with curve
path effects included.

Eq. (10) is compared to raytracing values. The sin eT model was used as the
base and subtracted so its values are shown as zero in Fig. 2. Results for
reflector heights of 20 m and 100 m are presented and the ground refractivity
was chosen to be 320 ppm (average summer condition in Gothenburg, Swe-
den). The NITE geometric model gives a good estimation of the straight-line
tropospheric geometric error. For an antenna at 20 m height above the sea
surface, at 2° elevation, the straight-line tropospheric geometric error from

15



raytracing is ≈ 1 cm. The NITE geometric model given by Eq. (10) differs
from raytracing at the level of < 1 mm. For a reflector height Hr = 100 m
and eT = 2°, the straight-line tropospheric geometric error from raytrac-
ing is ≈ 8 cm and the NITE geometric model has an error of ≈ 3 mm.
The error of the NITE geometric model increases when the relative reflector
height increases or when the elevation decreases. The total interferometric
tropospheric geometric error, with the curve path effects included, is plotted
in Fig. 2 with a black dashed line. The curve path affects is about 3 mm
(Hr = 20 m, eT = 2°) to 1 cm (Hr = 100 m, eT = 2°). The fact that the sin eT
model and raytracing only have differences of about 1 cm for Hr = 20 m,
eT = 2° means the interferometric tropospheric geometric error is very small.

The geometric interferometric tropospheric error given by Eq. (10) might
be confused with the “bending correction” used in Santamaŕıa-Gómez and
Watson (2017), as they both use the input of the apparent elevation angle.
However, they are very different both in physical meaning and in magni-
tude. With the “bending correction”, the true elevation angle in Eq. (1) was
replaced by the apparent elevation angle as:

τi = 2Hr sin eA (25)

Thus, the value of the bending correction is ∆τi = 2Hr(sin eA − sin eT ),
which is also presented in Fig. 2 (orange line with solid dots). As we can
see, the bending correction gives a much larger correction value. Even if the
curve path effects are added, the bending correction will still not match the
total interferometric tropospheric geometric error. The bending correction
by Santamaŕıa-Gómez and Watson (2017) is not modeling the geometric part
of the tropospheric error.

On the other hand, the sin eT model, which is based on a vacuum me-
dian, plane reflector propagation performs surprisingly well on calculating
the interferometric radio length. However, the troposphere refraction does
impact the signal path and thus causes an interferometric geometric tropo-
spheric error. In Fig. 3, the straight-line interferometric radio length (not
just troposphere) from raytracing and model values for Hr = 20 m, eT = 2°
are plotted versus ground refractivity, using data from all the 14 sites. We
can see from the raytracing results that the straight-line interferometric radio
length does change with the ground refractivity, and that the NITE geomet-
ric model given by Eq. (10) fits the relation well. The sin eT model however
does not respond to ground refractivity variation. In our data set the ground
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Figure 3: GNSS-IR straight-line geometric interferometric radio length (τi) versus GNSS
antenna refractivity from raytracing (solid dots), the vacuum-based sin eT model (blue
crosses), and geometric part of the NITE model (green circles), for reflector height Hr =
20 m, elevation angle eT = 2°. The plot uses radiosonde data from 14 globally distributed
sites (in different colors).

refractivity ranges from 240 to 400 ppm, but ground refractivity for a specific
location only covers part of this range. Using the sin eT model to describe the
interferometric radio length will introduce inhomogeneous errors for different
locations.

For the interferometric tropospheric path delay, previously, some studies
used a model to correct the tropospheric path delay directly using a mapping
function (Williams and Nievinski, 2017) as the slant factor. This assumes
that the path delays for the direct and reflected signal cancel out above the
antenna and a mapping function is used to map the “layer ZTD” to different
elevation angles. We will refer to it as the “MPF” delay model:

Di = 2 · 10−6NlHrmpf(eT ) (26)

However, the “cancels out above the antenna” assumption to some de-

17



gree contradicts the use of a mapping function as the slant factor, because
a mapping function is determined for the whole atmosphere up to 80 km
(Landskron and Böhm, 2018).

Figure 4: Interferometric tropospheric path delay from raytracing and different models
using radiosonde refractivity profile with a ground refractivity of 320 ppm.

Fig. 4 depicts an example of interferometric tropospheric path delay over
elevation angle from the MPF delay model, the NITE delay model, and
the reference value from raytracing. The refractivity profile is derived from
radiosonde data on a summer day in Landvetter Airport, Sweden, with a
ground refractivity of 320 ppm. The bending correction is also plotted in
Fig. 4. For the MPF and NITE delay models, we use the GMF mapping
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function as input. For two reflector heights of 20 m (top) and 100 m (bot-
tom), the NITE delay model (Eq. (22)) gives almost identical path delay as
raytracing. The MPF model gives a slightly larger path delay than raytrac-
ing. For elevation angle > 15° the differences between the MPF and NITE
model path delay and the raytracing are very small. The bending correction
gives a correction that is overall very close to the interferometric tropospheric
path delay. However, in the zenith direction, the apparent and true elevation
angles are equal, which means no tropospheric correction with the bending
correction at a high elevation angle. Comparing Fig. 4 and Fig. 2, it is clear
that the path delay is the major part of the interferometric tropospheric er-
ror. For an antenna of 20 m height above the sea surface, the geometric part
is < 5 % of the path delay at 2°, and at high elevation angles the geometric
tropospheric error decreases to zero but not the path delay.

Figure 5: 1-year time series of tropospheric path delay of different models versus raytracing,
with radiosonde refractivity profile from Landvetter Airport, Sweden, Hr = 20 m.

Fig. 5 gives 1-year long time series of GNSS-IR tropospheric path delay
from the bending correction, the MPF and NITE model with Hr = 20 m,
for eT = 2°, 3°, 5°, 8°, 20°. The NITE model gives the closest results to ray-
tracing. The MPF model has a small positive bias over the year, though this
radiosonde data comes from a place with an obvious seasonal phenomenon
(southern Sweden). Interestingly, at 2° the bending correction seems to com-
pensate for the tropospheric path delay better than the MPF delay model.
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3.2. Total tropospheric error validation

Regardless of the definition of each sub-components, in practice, it is the
total tropospheric error that impacts the observations. In this section, we
validate the total tropospheric error given by the bending correction, the
MPF delay model, and the NITE model. For the bending correction, the
GNSS-IR interferometric radio length τi is given by Eq. (25). For the MPF
model, the interferometric radio length is the sum of Eq. (1) and Eq. (26).
For the NITE model, the interferometric radio length is the sum of Eq. (10)
and Eq. (22).

Figure 6: Tropospheric total delay model error at different reflector heights, for eT = 2°
(left) and eT = 5° (right). Upper row, with GMF as model input. Middle row, with
corresponding mapping function from radiosonde as input. Lower row, with corresponding
mapping function and layer refractivity Nl from the radiosonde as input. Notice the
different x-axis range for eT = 2° (left column) and eT = 5° (right column).

The total tropospheric error from the above three models was validated
using raytracing. We used radiosonde balloon data as a realistic example of
atmospheric profiles. One year of radiosonde data from 14 global stations
(Table 3) was used in this simulation validation, but only two profiles were
used for every 30 days. The average model errors for the three models are
presented in Fig. 6. Detailed numerical values are given in Table 4. On the
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left side of Fig. 6, the total tropospheric delay model errors are given for
reflector height from 5 to 50 m for eT = 2°. The right side of Fig. 6 is for
eT = 5° and Hr from 10 to 100 m. In the upper row, the GMF (Boehm et al.,
2006) and Nl from Eq. (16) were used as model input. The model bias with
1 σ standard deviation is plotted. We can see that the NITE model performs
best, and the MPF model is next best. The MPF model tends to overestimate
the tropospheric error while the bending correction underestimates the total
tropospheric error. The NITE model also has smaller σ compared to the other
two models, which means the NITE model is able to capture the variation
of the total tropospheric error better, for different locations and times. For
eT = 5°, both MPF and NITE models have very small errors compared to
raytracing. The NITE model has a negative bias and the bias increases with
Hr almost linearly (see Table 4).

Both the MPF and NITE models require the input of mapping function
values and an average layer refractivity Nl. The accuracy of the mapping
functions and Nl will impact their accuracy. In the middle row, the mapping
function was generated from the corresponding radiosonde profile, i.e., an
ideal mapping function. In the lower row in Fig. 6, both the mapping function
and Nl are numerically obtained from the corresponding radiosonde profile.
Comparing the middle and upper rows, we can see that the bias of the NITE
model is almost removed with the “perfect” mapping function input, while
the MPF model does not benefit much from the better mapping function
values. Comparing the lower row and the middle row, we can see that the
NITE model now gives nearly identical values as raytracing. This means
the Nl given by Eq. (16) is the origin of random errors for the NITE model.
These random errors increase with reflector height Hr. This is not surprising
as Eq. (16) essentially solves the average layer refractivity below the GNSS
antenna with only the refractivity at the antenna. In the lower rows, with
the ideal Nl, the random errors (σ) of the MPF model are also reduced.
The lower row of Fig. 6 shows that the NITE model has very good formal
precision, but in practical applications, the NITE model will be limited by the
accuracy of existing mapping function products and the representativeness
of Nl.

The mapping function can be optimized at lower elevation angles for
GNSS-IR application, considering that the GMF products are designed to
be used for eT > 3°. We checked with 14 stations separately (not shown) and
the bias of NITE model with GMF as input is very similar at all the stations
though the weather conditions vary a lot. This is because the NITE model
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Table 4: Tropospheric total delay model error in mm (bias and standard deviation) com-
pare to raytracing, at different reflector heights Hr, for eT = 2° and eT = 5°.

eT = 2°

Input Hr 5 m 10 m 20 m 50 m

GMF
Bending −1.9(0.6) −4.1(1.2) −9.0(2.4) −29.1(6.0)
MPF +2.0(0.6) +3.8(1.2) +6.8(2.4) +11.6(5.9)
NITE −0.7(0.3) −1.4(0.7) −2.9(1.4) −8.0(3.6)

MPFradio

Bending −1.9(0.6) −4.1(1.2) −9.0(2.4) −29.1(6.0)
MPF +1.8(0.6) +3.4(1.1) +6.1(2.3) +9.7(5.6)
NITE <0.1(0.1) −0.1(0.3) −0.3(0.8) −0.9(2.3)

MPFradio

Nl

Bending −1.9(0.6) −4.1(1.2) −9.0(2.4) −29.1(6.0)
MPF +1.9(0.5) +3.6(1.0) +6.5(2.0) +10.9(5.0)
NITE <0.1(<0.1) <0.1(<0.1) +0.2(0.1) +0.5(0.2)

eT = 5°

Input Hr 10 m 20 m 50 m 100 m

GMF
Bending −1.3(0.3) −3.0(0.6) −7.7(1.5) −31.8(4.0)
MPF +0.7(0.3) +0.9(0.6) −0.3(1.4) −9.2(3.8)
NITE −0.2(0.2) −0.5(0.5) −1.5(1.3) −3.2(3.6)

MPFradio

Bending −1.3(0.3) −3.0(0.6) −7.7(1.5) −31.8(4.0)
MPF +0.6(0.2) +0.9(0.6) −0.5(1.4) −9.6(3.8)
NITE −0.1(0.1) −0.3(0.4) −0.8(1.2) −1.9(3.4)

MPFradio

Nl

Bending −1.3(0.3) −3.0(0.6) −7.7(1.5) −31.8(4.0)
MPF +0.7(0.2) +1.1(0.3) +0.2(0.8) −8.3(1.6)
NITE <0.1(<0.1) <0.1(<0.1) −0.2(<0.1) −0.6(<0.1)

is sensitive to the derivative of the mapping function. The mapping function
varies smoothly over time, location, and elevation angle. It is expected that
the derivative of the mapping function will be smooth. However, it is difficult
to have a much better equation than Eq. (16) for the average layer refractivity
when Hr increases. The suggestion would be, for the sake of more accurate
tropospheric error correction in GNSS-IR, that Hr should not be too large.
The fact that uncertainty in Nl leads to the major part of random errors also
suggests that there is a possibility to estimate the average layer refractivity
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together with the sea level, similar to the estimation of GNSS ZTD and
gradients (Davis et al., 1993).

4. Experimental Validation

In this section we test and compare the tropospheric error models dis-
cussed before with experiment data. We collected GNSS and meteorology
data for 5 stations from DOY (day of year) 1, 2021 to DOY 180, 2022.
The OSOU station with Hr ≈ 3.7 m is located at Onsala Space Observa-
tory, Sweden. The three stations SC02 (Hr ≈ 5.5 m), AT01 (Hr ≈ 13 m)
and ELLY (Hr ≈ 33 m) are all located in the USA. The NYA2 station is
located in Norway with a reflector height of Hr ≈ 48 m. These five stations
have almost complete 1-Hz data records from the beginning of 2021 till the
middle of 2022 and they also have usable SNR data for the GNSS-IR study
with relatively large elevation angle coverage. We also obtained high tem-
poral resolution (≈ 10 min) meteorology and tide gauge data for these five
sites (see Section 6 for data availability). Unfortunately, we found no nearby
tide gauge for AT01 with a good time resolution. We include AT01 because
it has very good elevation angle coverage for GNSS-IR application and the
first experiment does not require the use of tide gauge data. The SC02 has a
similar reflector height as OSOU but a less usable elevation angle coverage.
Thus SC02 was not used in the first experiment and AT01 was not used in
the second experiment. Information about these five GNSS-IR sites is listed
in Table 5.

We used the gnssrefl software by Roesler and Larson (2018) for data
processing. For generating the true elevation angle, the GMB precise orbit
products were used. We used 5 s SNR data for OSOU and SC02, 2 s SNR for

Table 5: Information for the five GNSS-IR stations.
Station Hr Lat Long Azimuth Elevation Range

(Country) (m) (°) (°) mask (°) Nodes (°)
OSOU(SWE) 3.7 57.393 11.914 70–260 2∼8∼15∼22.6∼32
SC02(USA) 5.5 48.546 -123.007 25–230 2∼7
AT01(USA) 13 63.484 -162.006 20–220 2∼5.4∼9∼13∼17
ELLY(USA) 33 33.583 -118.129 80–170

210–310
2∼4.2∼6.5∼8.7∼13

NYA2(NOR) 48 78.930 11.859 25–100 2∼4.2∼6.5∼8.7∼12
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AT01, and 1 s SNR for ELLY and NYA2. The gnssrefl software currently only
supports the bending correction with the Bennett 1982 equation. We turned
off the tropospheric correction in the software. Instead, tropospheric error
corrections were applied on the elevation angle of the SNR records using
a variable substitute method (Strandberg, 2020). Except for the pressure,
temperature and humidity data, the NITE model also takes the ZTD as in-
put. The 5-minute ZTDs together with daily coordinates for the five stations
were obtained using the Automatic Precise Positioning Service provided by
Jet Propulsion Laboratory (JPL). The height-rate correction proposed by
Larson et al. (2013b) was also applied. Fig. 7 gives the procedure of the
GNSS-IR processing with the NITE tropospheric error correction.

Figure 7: GNSS-IR sea level retrieval with the NITE tropospheric error correction.

We tested six tropospheric error correction strategies: (a) “Bending Ben-
nett”, applying the bending correction with the Bennett equation. (b) “MPF”,
applying only the path delay with the MPF model. (c) “Bending Ulich”, ap-
plying the bending correction with the Ulich equation. (d) “NITE”, applying
the geometric and path delay model given by Eq. (10) and Eq. (22). (e) “No
Troposphere”, no tropospheric error correction was applied. (f) “Bending +
MPF”, applying the bending angle correction using the Ulich equation to-
gether with the path delay correction with the MPF model. GMF products
were used when mapping function inputs were required.
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4.1. Elevation Angle Range Test
Firstly, we did an elevation angle range test. We cut the SNR data into

different elevation ranges. High-rate GNSS data were used to ensure that
sufficient SNR samples were provided. The periodogram algorithm needs
at least ≈ 3 cycles of data to stably retrieve the frequency. The elevation
range cutting nodes were obtained individually for each station by dividing
the elevation range between 2° to 30° into 2, 3, 4, 5, 6... average parts (sine
value). Then we chose the elevation angle cut strategy that has the most
nodes yet enough Hr solutions pass the quality check (Roesler and Larson,
2018). For example, for the OSOU station, we ran the GNSS-IR processing
with elevation ranges of 2–8°, 8–15°, 15–22.6°, and 22.6–32°. The elevation
angle cut strategy is listed in Table 5, together with the azimuth mask. This
method is similar to the elevation angle truncate test in Ping et al. (1997)
or the sliding window method used in Williams and Nievinski (2017). The
difference is that here there is no overlap between elevation angle ranges so
every solution is independent.

Fig. 8 gives a seven-day Hr time series of the elevation range cutting ex-
periment for NYA2. Hr from all 4 elevation ranges varies in similar patterns,
which confirms the effectiveness of this elevation cut strategy. An advantage
of this elevation range cutting is that in stations where elevation angle cov-
erage is good, the number of Hr retrievals can be improved by 3–4 times,
thus the temporal resolution is improved. For example, for AT01 we obtained
about 950 Hr estimates per day. Probably due to wave conditions, SNR data
from higher elevation angles for ELLY was of poor quality for the year 2021.
In total 180 days of data from DOY 1 of 2022 were used in this elevation
angle range experiment.

The GNSS-IR tropospheric error is elevation dependent and higher ele-
vation angle observations are less affected. The GNSS-IR tropospheric error
is proportional to the reflector height. NYA2 has a reflector height Hr ≈
48 m. In Fig. 8 we can see that applying strategy-e (No troposphere cor-
rection) leads to a very large elevation-dependent error. The Hr from low
elevation angle data are negatively biased to higher elevation angle results
by up to 2 m for NYA2. More importantly, applying strategy-f (Bending +
MPF) is creating an elevation-dependent bias but in reversed direction. The
Hr estimated from low elevation angle data are larger than higher elevation
angle results, with similar magnitudes. On the other hand, strategy-b (MPF
model), strategy-d (NITE model), and the bending corrections (strategy-a
and -c) all seem to successfully remove the elevation angle dependence.
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Figure 8: Seven-day reflector height time series of NYA2 using data at different elevation
angle ranges (in different colors), with six different tropospheric error correction strategies:
(a) Bending Bennett, (b) MPF, (c) Bending Ulich, (d) NITE, (e) No troposphere, (f)
Bending + MPF.

Fig. 9 summarizes the elevation range cutting experiment for all 4 sites
with data from the first 180 days of 2022. The average Hr retrieved with data
from different elevation angle ranges together with 1 σ error are plotted as a
function of elevation angle range. The 1 σ error was obtained by first fitting
a smooth B-spline trend of Hr and then solving the standard deviation of
the detrended residuals series. The results from strategy-e (No troposphere)
and strategy-f (Bending + MPF) almost lie symmetric below and above the
other results. Indeed we can see from Fig. 9 that the bending correction and
the MPF model give corrections very close to each other. The “Bending +
MPF” is almost like applying the bending correction (or MPF delay) twice.
The tropospheric error affects the Hr nonlinearly so the symmetric pattern in
Fig. 9 has a magnitude difference. For OSOU withHr of only 3.7 m and AT01
with Hr ≈ 13 m, we can see some strange elevation angle dependence at high
elevation angles (above 12°). For such high elevation angles, tropospheric
errors are quite small. The tropospheric error is an important contributor
to the elevation angle dependent error, but not the only one. Other factors
like wave height (Wang et al., 2021b) and antenna phase center (Dach et al.,
2015) are also elevation-dependent. The fact that the results from a higher
elevation angle range have larger σ also indicates that other errors exist.
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Figure 9: 180-day mean Hr and 1 σ errorbar from GNSS data at different elevation angle
ranges (indicated by the colored background), for 4 sites from DOY 1 to 180 of 2022.
The error bars are shifted in the x-axis direction to avoid overlapping. Notice that each
subFigure has different x- and y-axis ranges.

Thus we are careful not to interpret results at the centimeter level here. The
GNSS-IR tropospheric error is also almost linearly proportional to Hr. For
stations located higher above sea level, like NYA2 and ELLY, the bias from
the ”No troposphere” and ”Bending + MPF” can reach 1–3 m, well above
the level of uncertainty of this experiment.

The elevation angle range cutting experiment confirmed that applying a
combination of the bending correction and the path delay correction is over-
compensating for GNSS-IR tropospheric error. Applying no tropospheric
correction is also introducing a large elevation-dependent error, as expected.
The results correspond to the theory in Section 2 and simulation in Section 3,
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as we showed that the tropospheric geometric error is a lot small than the
path delay. In the raytracing simulation in Section 3, we also see that the
bending correction, the MPF delay model, and the NITE model are pro-
viding similar total tropospheric corrections, with subtle differences. In this
experiment, their differences are smaller than the noise level (1 σ). This is
also due to other unattended error sources. Therefore, we can not differen-
tiate between the bending correction, the MPF delay model, and the NITE
model with this elevation range cutting experiment.

4.2. Comparison with tide gauge

We processed 1 year of GNSS data from 4 stations and compared the sea
level results with corresponding results from nearby tide gauges. The eleva-
tion angle ranges were set to 2 ∼ 6° for ELLY, 2.5 ∼ 6° for NYA2, 2 ∼ 8°
for OSOU and 2 ∼ 7° for SC02. The purpose was to obtain stable Hr so-
lutions but also to maximally expose the impact of tropospheric errors for
investigation. Unfortunately, it is still difficult to compare absolute sea level
from GNSS-IR and tide gauges. Firstly because different geodetic datums
of the GNSS and the tide gauge might introduce uncertainties. Secondly,
we did not apply antenna phase center corrections for GNSS-IR as this op-
tion was not available yet in the gnssrefl software. Instead, the sea level
from the tide gauges was subtracted from the GNSS-IR Hr results to create
a zero-mean residual series. We compared the different tropospheric error
models using only the random error evolution over time of the zero-mean
residuals. We tested 4 of the previously used 6 analysis strategies. The “No
troposphere” and “Bending + MPF” were not included.

Fig. 10 depicts the zero-mean residuals of GNSS-IR Hr using a nearby
tide gauge as a reference for the ELLY station. One can see that the bending
correction with Bennett equation (a) is creating a non-stationary residual
series during this one-year period. The ELLY station is located on the west
coast of North America. In the middle of the year it is the summer season
in North America with higher amount of atmospheric water vapor than in
the winter season. This proves that by neglecting water vapor effects the
Bennett equation is introducing a seasonal error. Similar results are seen for
NYA2 with Hr ≈ 48 m. The summer-winter bias is about 10 cm for NYA2
and ELLY. For OSOU with Hr ≈ 3.7 m, this effect is barely visible.

The winter-summer differences in the results with the Bennett bending
equation (a) become even more clear when using daily average residuals (red
dots in Fig. 10). Visually we can see that the daily average residuals from the
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Figure 10: Residuals and daily average residuals at ELLY of GNSS-IR Hr retrievals using
tide gauge as reference. (a) Bending Bennett, (b) MPF, (c) Bending Ulich, (d) NITE.

NITE model (d) are less scattered than the MPF delay model (b) and the
bending correction with Ulich equation (c). This is confirmed by the standard
deviation of the daily average residuals. The standard deviation of the daily
average residuals of the NITE model (d) is 0.045 m, while it is 0.056 m for
the Ulich bending model (c) and 0.062 m for the MPF delay model (b). Even
though the original residual series (≈ 200 values per day) have a similar level
of standard deviation (0.211 m for the MPF model, 0.210 m for the Ulich
bending model, and 0.207 m for the NITE model).

We used the Allan Deviation to further quantify the random error pattern
of the residual series. The Allan Deviation σADEV is defined as

σ2
ADEV (τ) =

1

2(M − 1)

M−1∑
i=1

[yi+1 − yi]
2 , (27)

where yi is the ith fractional residual values averaged over the measurement
interval, τ . The Allan Deviation is widely used to study signal stability over
different time scales. The challenges to using the Allan Deviation to the
GNSS-IR sea level residuals are the data gaps and non-uniform sampling
time. For the 4 stations used we have very few data gaps. The residual series
were linearly interpolated to generate uniform time series. For ELLY, with
data from 2–6°, we obtained ≈ 200 Hr retrievals per day (1 every 7.5 min but
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Figure 11: Allan Deviation of 1 year water level residuals for OSOU (Hr ≈ 3.7 m), SC02
(Hr ≈ 5.5 m) ELLY (Hr ≈ 33 m) and NYA2 (Hr ≈ 48 m).

unevenly sampled) and each SNR series contains ≈ 15 min of observations.
Thus we used 10 min as the interpolation step.

The Allan Deviation σ-τ diagram for the 4 stations is presented in Fig. 11.
Due to the fact that the residual series were interpolated to 10 min temporal
resolution and the tide gauge data were also with about 10 min temporal
resolution (1 min for OSOU, 6 min for SC02/ELLY and 10 min for NYA2),
the σADEV for τ <1 h may contain errors. Since we only have 1 year of data,
the σADEV with τ > 2 months is also not reliable. From the results we can
see that the Allan Deviation of all four models is the same for τ < 4 h. For all
4 stations, the long-term trend caused by the Bennett equation is now clear.
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The results from the Bennet bending correction (plotted yellow in Fig. 11)
have a larger σADEV for the time scale from a few hours to a few months,
this corresponds to the variation of water vapor. Better long-term (τ > 4 h)
stability from the NITE model is observed at the ELLY station, but not the
other three stations. This makes sense for the OSOU and SC02 station with
Hr < 10 m where the reflection point is close to the antenna. NYA2 has a
largerHr than ELLY but the difference between the NITE model, MPF delay,
and bending correction (with Ulich equation) is not noticeable. Comparing
NYA2 and ELLY in Fig. 11, NYA2 also has a smaller σADEV . This might
be caused by differences in the local atmospheric conditions. NYA2 lies very
north in the Arctic region (latitude ≈ 78.9°) while ELLY is located on an oil
platform at North America’s west coast.

From this analysis, we conclude that the bending correction with the
Bennett equation should not be used in GNSS-IR analysis, as it introduces
long-term (from a few hours to half a year) errors in the sea-level retrievals.
The NITE model seems to outperform the other models in some cases but
more experiments are needed to draw a firm conclusion.

5. Discussion

We have deduced a rigorous tropospheric error model and validated this
model using raytracing simulation and experiments with real data. Previ-
ously, Santamaŕıa-Gómez and Watson (2017) proposed a bending correction
and Williams and Nievinski (2017) used the direct mapping function delay
model (MPF delay) for GNSS-IR tropospheric error corrections. From our
raytracing simulation and experiment, we showed that numerically the bend-
ing correction and the MPF delay correction give very similar results to the
rigorous NITE model. For the MPF delay, it is logical because the path delay
is the dominating part in the NITE model (the first two terms in Eq. (22)).
Physically, the MPF delay correction can also be interpreted as the “inter-
ferometric tropospheric path delay by neglecting the earth curvature effects
and the small-angle mapping function difference”. In this essence, the NITE
model can be regarded as a more rigorous version of the MPF delay correc-
tion. When Hr is small and/or eT is large, the difference between the two
becomes negligible.

It is surprising that the bending correction (using the Ulich equation),
which only uses the atmospheric bending angle, performs so close to the
MPF delay and the NITE model. This can probably be explained by that
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the atmospheric bending angle is highly correlated to the ground refractivity
and the mapping function (Yan and Ping, 1995; Yan, 1998; Feng et al., 2022).
In a series of works, Yan (1998) demonstrated that the atmospheric bending
angle can be modeled as ∆e = N0mpf cos eT , withmpf being the commonly
used mapping function. With the help of this relation (3rd line in Eq. (28)),
we can rewrite the bending correction by Eq. (25) as

τi = 2Hr sin eA

= 2Hr(sin eT cos∆e+ sin∆e cos eT )

≈ 2Hr sin eT + 2Hr∆e cos eT

= 2Hr sin eT + 2HrN0mpf cos eT . (28)

At low elevation angles cos eT ≈ 1, thus the bending correction becomes
the MPF delay given by Eq. (26). We emphasize that the bending correction
is theoretically problematic. In the zenith direction, cos eT = 0 and the
bending correction is 0, which violates the facts. Both the atmosphere and
bending correction are continuous, a violation at eT = 90° means that the
bending correction is incorrect for all high elevation angles. We have observed
this effect in the raytracing simulation (low-right part in Fig. 4). In the
experiment in Section 4.1, for the higher elevation data in OSOU, we also
see that the MPF and NITE models give almost the same results but the
results from the bending correction are slightly different.

With Eq. (28) we provide theoretical justification to the bending correc-
tion but it is necessary to adopt a better equation to calculate the bending
angle, like the Ulich (1981) equation. In Fig. 12 we plotted the bending angle
model error of the Bennett and Ulich equations (model value minus raytrac-
ing) w.r.t. the zenith wet delay (ZWD) for all the 14 radiosonde stations.
The Ulich equation performs better and is more consistent in different ZWD
situations. Experimental results presented in Section 4.2 showed the time-
varying error introduced by the Bennett equation. The water vapor contents
are also location dependent thus the Bennett equation will also introduce
different errors in different places.

The mpf in Eq. (28) has an average symbol because we are using the
Ulich equation in the experiments which implicitly contains a mapping func-
tion (elevation angle dependence) but is fixed over time and location (aver-
aged). Comparing the results from the (b) MPF and (c) Bending Ulich in
Section 4.2, the bending correction performs not worse than the MPF delay
in the time domain random errors. This indicates that the GNSS-IR results
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Figure 12: Bending angle model errors over zenith wet delay at eT = 2° for 14 globally
distributed radiosonde stations.

are not very sensitive to the variation of the mapping function over time in
the MPF delay correction. This corresponds to our discussion about the bias
and random error of the total delay in Section 3.2, where we showed that
the error in the mapping function is mainly introducing a bias to the NITE
model.

With the experiments we rule out three tropospheric error correction
strategies, the “No Troposphere”, the “Bending + MPF” and the bending
correction with the Bennett equation. The bending correction with the Ulich
equation, the MPF delay model and the NITE model overall perform closely
in the essence of random errors. The bending correction (with Ulich equa-
tion), though not theoretically strict, is very convenient to apply for SNR-
based GNSS-IR application. The MPF delay model is more complicated
to apply than the bending correction and performs similarly at low eleva-
tion angles, but at higher elevation angles it performs better. The NITE
model proposed in this work is more complicated than the MPF model and
the bending correction but it is more rigorous, e.g. concerning the earth
curvature effects. In Section 4.2 we only compared the random error perfor-
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mance but not the bias. One reason is that both the bending correction and
the MPF delay model assume a flat reflective surface. In the NITE model,
the earth curvature effects (magnitudes in Table 2) are tightly integrated.
At NYA2 with Hr ≈ 48 m, with data from 2.5 ∼ 6°, the 1-year average Hr

for the bending correction is 46.605 m, 46.647 m for the MPF delay model
and 46.616 m for the NITE model.

Data from higher elevation angles are less impacted by the tropospheric
error, but at many locations, due to the surrounding environment, high el-
evation data are not available for GNSS-IR applications. Data from high
elevation angles are also more sensitive to ocean roughness (Purnell et al.,
2020; Wang et al., 2021b). In Fig. 9 we can see that the error bar of Hr using
high elevation angle data is usually larger than that from the low elevation
data. This is caused by the GNSS antenna gain pattern. Interferometric
fringes are cleaner at low elevation angles. The closer the antenna is to the
ocean surface, the smaller the tropospheric error. On the other hand, an
antenna located higher, observes more interferometric cycles and thus the
temporal resolution is improved. Besides, in places where tidal changes are
large (Garrett, 1972), it is impossible to continuously have a GNSS antenna
very close to the ocean surface. The NITE tropospheric error model de-
scribed in this work performs better in those challenging situations. Thus,
the application of GNSS-IR sea-level monitoring is expanded.

6. Conclusion

We deduced a tropospheric error model for GNSS-IR. The model takes
into account earth curvature effects and the small-angle mapping function
difference. This model contains two parts, a straight-line geometric error
and a path delay. The geometric error is derived using the specular reflection
with curved signal path and curved earth surface. The path delay is derived
following the definition of the mapping function. We call this GNSS-IR
tropospheric error model the NITE (New Interferometric Tropospheric Error)
model.

We validated the NITE model using raytracing with radiosonde atmo-
sphere profiles, together with two previously proposed models, the bending
correction and the MPF delay. We found that, numerically, the geometric
part of GNSS-IR tropospheric error is a lot smaller than the path delay. For
a 20 m antenna, the geometric part is less than 5 % of the delay part at 2°and
even smaller at higher elevation angles. The NITE model outperforms previ-
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ous models in both sub-components and total tropospheric error. We found
that the inaccuracy in mapping function products is introducing a system-
atic bias to the NITE model total tropospheric error and the random error
is limited by the representativeness of the average layer refractivity.

We tested six tropospheric error correction strategies with two sets of ex-
periments. Three of them, the “No troposphere”, “Bending + MPF delay”
and the “Bending with Bennett equation” are ruled out using elevation de-
pendence and season trend criterion. The NITE model seems to outperform
other models in one station but more experiments will be needed to draw a
conclusion. Finally, we discussed the link between the bending correction,
the MPF delay, and the NITE model. We showed that at low elevation an-
gles the bending correction and the MPF delay are more equivalent to each
other, not complementary.

A major approximation of the NITE model is that we only considered
the vertical distribution of the atmosphere, while in GNSS positioning it
is widely accepted that the horizontal structure of the atmosphere has an
impact on signal propagation (Elgered et al., 2019). In the future, we should
consider applying a similar concept to GNSS-IR. We tested the NITE model
with experiments using the SNR-based GNSS-IR. The phase-based GNSS-
IR, though more complicated and less robust, can reach higher accuracy and
temporal resolution. Experiments with phase-based GNSS-IR can be used
to assess the NITE model in a different way.
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Appendix A. A two-step 2D raytracing for GNSS-IR

To validate the interferometric tropospheric error model, we need to carry
out raytracing for both the direct and reflected signal. Raytracing for direct
GNSS signals has been well studied in space geodesy (Hobiger et al., 2008;
Nafisi et al., 2012). Here we adapt a 2D raytracing tool we develop and
validated in a previous study (Feng et al., 2020) to do the raytracing for
the reflected signal. This direct 2D raytracing is very similar to what was
used to generate the Vienna Mapping Function (Boehm and Schuh, 2003).
With a given refractivity profile, the direct raytracing algorithm starts with
an initial apparent elevation angle and calculates the signal path layer by
layer. Usually, it was regarded that assuming an infinite satellite distance
will cause a negligible error for GNSS. So the raytracing iteration stops when
the out-going elevation angle at the top of the atmosphere is close enough
to the true elevation angle (Boehm and Schuh, 2003). A major change we
made here is that the true elevation angle instead of the “out-going” elevation
angle is used. The true elevation angle is calculated by extending a straight
ray from the top of the atmosphere to the satellite assuming a 20,000 km
GNSS orbit height. Numerically it only makes a very small difference but it
is theoretically more rigorous. In this way, the geometric signal path for the
direct and reflected signal can be clearly defined.
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We simplified the raytracing for the reflected signal using the specular
reflection assumption. Firstly, since we are using a layered atmosphere, the
reflected signal is symmetric at two sides of the reflection point below the
antenna. Secondly, we used a spherical approximation for earth instead of
an ellipsoid.

Figure A.13: Demonstration of step 2 and 3 of the reflected signal raytracing

The procedures of raytracing are:

1. Direct signal raytracing at the antenna with a given true elevation an-
gle. The direct signal path is obtained. The satellite coordinate in the
earth-centered 2D Cartesian coordinate system is calculated using the true
elevation angle and GNSS orbit radius.

2. Calculate the true elevation angle for the reflected signal erT with a priori
Lc, where Lc is the curvature distance from the reflection point to the
projection of the antenna on the big circle of the sea surface. With an
initial Lc, the coordinate of the refraction point, the earth center angle
θE, and the satellite angle θS can be analytically calculated. The true
elevation angle erT for the reflected signal is obtained for this given Lc.

3. Raytracing the down-leg path of the reflected signal using erT and the
refractivity profile down to the ocean surface. Mirror the down-leg sig-
nal over the perpendicular line at the reflection point, the up-leg path
is obtained. The up-leg ray will intersect with the earth-centered circle
crossing the GNSS antenna, with a curvature distance La. By comparing
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this intersection point and the positioning of the GNSS antenna in this
circle, we know Lc is too large or too small. Iterate until the up-leg ray
intersects the circle with a distance < 0.1 mm to the antenna. Since the
reflector height is 100 m at maximum, the circle through the antenna and
the circle through the ocean surface are close to parallel locally. Iteration
of Lc is done by subtracting La (can be negative) from Lc.

4. Calculate interferometric delay and tropospheric error by definition using
the direct and reflected signal path.

References

Bennett, G.G., 1982. The Calculation of Astronomical Refrac-
tion in Marine Navigation. Journal of Navigation 35, 255–259.
doi:10.1017/S0373463300022037.

Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., Ware,
R.H., 1992. GPS meteorology: remote sensing of atmospheric water vapor
using the global positioning system. Journal of Geophysical Research 97,
15787. doi:10.1029/92jd01517.

Boehm, J., Schuh, H., 2003. Vienna Mapping Functions, in: Proceedings of
the 16thWorking Meeting on European VLBI for Geodesy and Astrometry,
May 9-10, 2003, Leipzig, Germany. pp. 131–143.

Boehm, J., Werl, B., Schuh, H., 2006. Troposphere mapping functions
for GPS and very long baseline interferometry from European Centre for
Medium-Range Weather Forecasts operational analysis data. Journal of
Geophysical Research: Solid Earth 111, 1–9. doi:10.1029/2005JB003629.
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