
P
os
te
d
on

9
M
ar

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
83
97
05
.5
92
99
82
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Volcanic Eruption Forecasting Using Shannon Entropy: Multiple

Cases of Study
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Abstract

The search for pre-eruptive observables that can be used for short-term volcanic early warning remains a scientific challenge. Pre-

eruptive patterns in seismic data are usually identified by analyzing seismic catalogues (e.g., the number and types of recorded

seismic events), the evolution of seismic energy, or changes in the tensional state of the volcanic medium as a consequence of

changes in the volume of the volcano. However, although successful volcanic predictions have been achieved, there is still no

generally valid model suitable for a large range of eruptive scenarios. In this study, we evaluate the potential successful use of

Shannon entropy as short-term volcanic eruption forecasting extracted from seismic signals at five well studied volcanoes (Etna,

Mount St. Helens, Kilauea, Augustine, and Bezymianny). We identified temporal patterns that can be used as short-term

eruptive precursors. We quantified how the Shannon entropy drops several hours before the eruptions analyzed, between 4

days and 12 h before. When Shannon entropy is combined with the temporal evolution of other features (i.e., energy, kurtosis,

and the frequency index) and complementary information on types of seismic sources, the meaning of physical changes in

the volcanic system could be obtained. Our results show that pre-eruptive variation in Shannon entropy offers is a confident

short-term volcanic eruption forecasting tool.
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Key Points: 24 

• While successful volcanic predictions have been achieved, there is no generally valid 25 

model suitable for large range of eruptive scenarios. 26 

• We used signal processing techniques to analyze seismic data from five well studied 27 

volcanoes to identify short-term eruptive precursors. 28 

• Shannon entropy has a uniform temporal pattern of pre-eruptive change and is a 29 

recurrent, transferable and differentiable feature for short-term eruption forecasting. 30 

 31 

Abstract 32 

The search for pre-eruptive observables that can be used for short-term volcanic early warning 33 

remains a scientific challenge. Pre-eruptive patterns in seismic data are usually identified by 34 

analyzing seismic catalogues (e.g., the number and types of recorded seismic events), the 35 

evolution of seismic energy, or changes in the tensional state of the volcanic medium as a 36 

consequence of changes in the volume of the volcano. However, although successful volcanic 37 

predictions have been achieved, there is still no generally valid model suitable for a large range 38 

of eruptive scenarios. In this study, we evaluate the potential successful use of Shannon entropy 39 

as short-term volcanic eruption forecasting extracted from seismic signals at five well studied 40 

volcanoes (Etna, Mount St. Helens, Kilauea, Augustine, and Bezymianny). We identified 41 

temporal patterns that can be used as short-term eruptive precursors. We quantified how the 42 

Shannon entropy drops several hours before the eruptions analyzed, between 4 days and 12 h 43 

before. When Shannon entropy is combined with the temporal evolution of other features (i.e., 44 

energy, kurtosis, and the frequency index) and complementary information on types of seismic 45 

sources, the meaning of physical changes in the volcanic system could be obtained. Our results 46 

show that pre-eruptive variation in Shannon entropy offers is a confident short-term volcanic 47 

eruption forecasting tool. 48 

 49 

 50 

 51 
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Plain Language Summary 53 
Volcanic eruptions represent a major natural hazard. Despite decades of research, the prediction 54 

of volcanic eruptions remains a scientific challenge. Subsurface volcanic processes generate 55 

seismic waves, which can be measured at the surface using seismometers. To date, the most 56 

successful examples of eruption prediction have been based on seismic data. However, we still 57 

lack a prediction model that can be applied across the wide range of eruption styles seen around 58 

the world. In this study, we implemented a new approach for the analysis of seismo-volcanic 59 

data aimed at forecasting eruptions. We used advanced signal processing algorithms to analyze 60 

continuous seismic signals from a suite of well-studied volcanoes (Mount St. Helens, Mt. Etna, 61 

Kilauea, Augustine, and Bezymianny) in order to create a new and innovative database of 62 

features found within the seismic signals. We found that pre-eruptive variation in the Shannon 63 

entropy (a statistical parameter associated to the coherence of the seismic sources) of seismic 64 

signals offers a successfully feature for short-term volcanic eruption forecasting. The relationship 65 

between pre-eruptive seismic signals and Shannon entropy is based on changes in the probability 66 

distributions of the type of seismic waves, independent of the signal source. If this information is 67 

combined with other seismic features (e.g., energy, kurtosis, and the frequency index), the actual 68 

physical changes in the volcanic system can be identified. 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 
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1 Introduction 82 

Volcanic eruptions impact significantly on the Earth and, in particular, on humanity. Although 83 
more than 20% of the world population lives under the direct threat of the consequences of volcanic 84 
eruptions, currently the advances of the scientific community allow efficient early warning protocols that 85 
can save thousands of lives. These advances are based on efficiently interpreting how before an eruption, 86 
interactions within the medium cause measurable physical and chemical changes (e.g., Sparks et al., 87 
2012; Girona et al., 2021; Power et al., 2020; Pyle, 2015). Forecasting volcanic eruptions relies on the 88 
ability to identify such changes based on the analysis of geophysical and geochemical time series, and in 89 
the successful implementation of such data analysis frameworks for pattern recognition in real- or quasi-90 
real-time (e.g., Manga et al., 2017; Dempsey et al., 2020; Girona et al., 2019; Kilburn, 2018; Ardid et al., 91 
2022; Caudron et al., 2020; McKee et al., 2021 a,b). After decades of research, the scientific community 92 
is currently having certain degree of success in providing volcanic early warnings to the relevant 93 
authorities. However, due to the variety of eruptive styles and the fact that not every unrest episode ends 94 
in eruption, forecasting volcanic eruptions remains a challenge (e.g., Jolly et al., 2020; Manley et al., 95 
2021).  96 

Today, society is increasingly demanding efficient short-term early warning protocols (e.g., 97 
Thelen et al., 2022) that are sufficiently long to allow for evacuations and/or other defense protocols, but 98 
short enough to not lose effectiveness and credibility (Whitehead & Bebbington, 2021). However, 99 
identifying short-term volcanic precursors based on broadly-accepted parameters and criteria is a 100 
challenging, and as-yet unresolved task. Volcano seismology is one of the most important tools for 101 
volcano monitoring and short-term forecasting (McNutt & Roman, 2015; Saccorotti & Lockmet, 2021). 102 
Volcanic activity generates a variety of seismic signals that reflect multiple complex processes acting 103 
within the volcanic system (e.g., Chouet & Matoza, 2013; Ibáñez et al., 2000), including ground 104 
deformations, opening of fractures and conduits, fluids transport and finally a possible eruption. As such, 105 
seismic signals contain crucial information for deciphering processes that control the occurrence, timing, 106 
and magnitude of eruptions. 107 

 Because each process energetically interacts with the environment, generating different energy 108 
transients, the result is the presence of a series of seismic-volcanic signals that can be associated with a 109 
type of source and a potential evolution of the volcanic system, and even with the possible eruption that 110 
we wish to forecast. For this reason, majority forecast models are based on the use of seismic data and the 111 
search of the relationship between seismo-volcanic signals, the assessment of their source mechanisms, 112 
and volcanic activity models. In this sense, the Generic Swarm Model (McNutt & Roman, 2015) is one of 113 
the broadly adopted models to forecasting eruptions using seismic data. However, this is a conceptual 114 
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model based on a limited observational database and in where stochastic processes and nonlinear or 115 
quasi-stable volcanic behaviors are not considered. In this model the main assumption is volcanic 116 
eruptions are preceded by swarms of earthquakes, long period or hybrid event sequences, and tremor. But 117 
this model helps forecast volcanic eruptions, and that is why research efforts in recent years have focused 118 
on improving our ability to efficiently process large volumes of seismic data. The use of Machine 119 
Learning (ML) to study seismo-volcanic signals offers a unique opportunity to obtain maximum 120 
information in the shortest time (e.g., Carniel & Guzman, 2021; Malfante et al., 2018 a,b; Manley et al., 121 
2020; Ren et al., 2020). However, the use of ML suffers from a number of limitations when applied to the 122 
study of seismic signals: it requires large training datasets of labelled data (e.g., Benítez et al., 2006; 123 
Cortés et al., 2019; Di Luccio et al., 2021; Gutiérrez et al., 2009; Ibáñez et al., 2009); several processes 124 
can occur simultaneously at the same location, producing a suite of overlapping signals (e.g.,  Martínez et 125 
al., 2021; Titos et al., 2019, 2018a); the non-uniform application of labelling criteria frequently causes 126 
confusion when different volcanic scenarios are compared (e.g., Titos et al., 2018b); new advances need 127 
to be confirmed using data from dense, permanent, and high-quality seismic networks (e.g., Arámbula-128 
Mendoza et al., 2011; Bueno et al., 2021a; Power et al., 2020; Spampinato et al., 2019). 129 

Contemporaneously, other widely used forecasting models are fundamentally based on the 130 
assumption that an acceleration of energy represents an eruption forecast (e.g., Boué et al., 2015, 2016; 131 
Power et al., 2013). This idea permitted to include variations of these aspects, such as implementing 132 
seismic ratios based on analyzing the energy measured in different frequency bands (Bueno et al., 2019; 133 
Caudron et al., 2021; Ardid et al., 2022). Despite their widespread adoption during volcanic crises, 134 
significant shortcomings lie in the fact that these models are based on the evaluation of very few 135 
parameters (e.g., signal type, number of events). Regardless of these limitations, a number of recent 136 
studies have used ML techniques for multi-parametric interpretation of changes in the eruptive states of 137 
volcanoes in order to find predictive patterns (e.g., Manley et al., 2021). Bueno et al. (2019) applied 138 
Bayesian Neural Network (BNN) methods to frequency analysis of seismic signals at three different 139 
volcanoes: Bezymianny, Mount St. Helens, and Mt. Etna and found that the evolution of the uncertainty 140 
offers effective eruption short-term early warning that is exportable between volcanic systems. 141 
Furthermore, these authors highlighted the importance of analyzing the temporal evolution of seismic 142 
features instead of focusing only on the classification of isolated seismic events. Until now, the study of 143 
seismic feature evolution has mainly focused on seismic energy (i.e., the real-time seismic amplitude 144 
measurement, RSAM; (e.g., Chardot et al., 2015; Endo & Murray, 1991; Ardid et al., 2022) or calculating 145 
the energy of earthquakes using their magnitude, their stress release, or the Material Failure Forecasting 146 
Method (e.g., Boué et al., 2015, 2016; Cornelius & Voight, 1995; Massa et al., 2016). Satisfactory results 147 
have been obtained when applied together with ML methods to obtain the completeness of seismic 148 
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catalogues (e.g., Alparone et al., 2015; Cortés et al., 2009; Trujillo-Castrillón et al., 2018); however, the 149 
resulting models are not exportable to other volcanic systems. 150 

In this study, we implemented a new approach for the analysis of seismo-volcanic data aimed at 151 
forecasting volcanic eruptions. The previous experience of the study of the seismic features, analyzed on 152 
the continuous seismic signal, instead of working with isolated events, allows us to explore new features 153 
that could be used as an efficient tool to carry out short term volcanic forecasting. The optimal 154 
parametrization of a seismic signal is a crucial issue in seismic signal processing and data analysis. 155 
(Alvarez et al. 2011; Cortés et al., 2015; Malfante et al., 2018 a,b). Various methods have been used to 156 
transition from the original frame of reference (raw seismograms) to a feature frame. Authors extract 157 
parameters (features) from the data and use them to perform a classification of isolated seismic events 158 
(e.g., Bueno et al., 2018; Cortés et al., 2014; Titos et al., 2022). These features are mainly grouped into 159 
three types according to the information they represent: a) phenomenological features describe 160 
seismogram characteristics that are independent of the volcanic system; b) statistical features represent 161 
statistical parameters of the waveform and its frequency content; c) signal domain transforms that are 162 
determined by applying a transform to the waveform to characterize the signal in a different domain (e.g., 163 
in the frequency domain). 164 

Based on these results, we evaluated the potential the pre-eruptive temporal evolution of Shannon 165 
entropy for short-term volcanic eruption forecasting. Shannon entropy is a statistical parameter that 166 
reveals how similar the seismic signal is to itself in the frequency domain over time. Our starting 167 
hypothesis, based on the study of the evolution of energy, is that prior to an eruptive process, all the 168 
energy of the volcanic system is addressed to drive the eruption; therefore, the seismic signal should 169 
resemble itself, and each time more before the imminent eruption. We used signal processing techniques 170 
to analyze continuous seismic signals from five well-studied volcanoes (Mount St. Helens, Mt. Etna, 171 
Kilauea, Augustine, and Bezymianny) in order to study the evolution over time of the Shannon entropy to 172 
identify potential targets for short-term volcanic eruption forecasting.  173 

We believe that our study offer an interesting concept for short-term volcanic forecasting based 174 
exclusively on seismology because it is: (a) self-sustaining (it has the ability to carry out volcanic 175 
forecasting); (b) agnostic (it does not need established a priori physical models); (c) simple (it is 176 
successful with only one input, the seismic signal); (d) direct (it does not need specific previous training); 177 
(e) exportable (it can be generalized for different eruptive scenarios); and (f) flexible (it can be adapted to 178 
the development of new knowledge). The method presented here can be exported to other volcanoes 179 
around the world, offering the potential for high societal impact and widespread interest among the 180 
scientific community.  181 
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2. Feature extraction and model development 182 

When characterizing the seismic signal, and especially to apply ML studies on isolated seismic 183 
events, several authors have highlighted the possibility of using a large number of seismic features, even 184 
more than hundreds of them (e.g. Malfante et al., 2018a, b). Cortes et al., 2015, show that this large 185 
number of features can be reduced including a set of representative phenomenological, and statistical 186 
features in the time and frequency domains. Then, we could transform the original long-term series of 187 
seismograms into a multiparametric matrix with the selected extracted features in the time and frequency 188 
domain. Among all of them (see supplementary material) we choose the Shannon Entropy to be tested as 189 
short-term forecasting feature. 190 

We studied the temporal evolution of the Shannon Entropy to determine if it is evolving in a 191 
significant way comparing non-eruptive periods with pre-eruptive and eruptive episodes. It was calculated 192 
using the equation from below (Esmaili et al., 2004).  193 

 194 − ∑ 𝑃(𝑆௜)𝑙𝑜𝑔ଶ௜ ൫𝑃(𝑆௜)൯                                                     (1) 195 

 196 

From a statistical perspective, the Shannon entropy of seismic signals has been defined as the 197 
distribution of amplitude levels of a given signal (van Ruitenbeek et al., 2020) or a measure of uncertainty 198 
in probability distributions (Malfante et al., 2018a). van Ruitenbeek et al. (2020) suggested that amplitude 199 
levels of a periodic signal are equally likely and the entropy is high, while a single impulse within a 200 
continuous (constant amplitude) signal will have lower entropy. Malfante et al. (2018a) suggested that the 201 
maximum Shannon entropy (i.e., the maximum uncertainty) occurs where all possible outcomes have 202 
equal probabilities (i.e., a distribution characterized by maximum heterogeneity or randomness), while 203 
minimum uncertainty occurs when one possible outcome has a probability of one (i.e., there is no 204 
uncertainty and entropy is zero).  205 

In our seismic signals, Shannon entropy represents the uncertainty of the state of the volcanic 206 
system and is related to the type of seismic signal. When the seismic signal is composed of random 207 
signals originating from different sources (i.e., very broad spectral content), Shannon entropy is high, 208 
reflecting the high uncertainty in the types and sources of waves. As such, Shannon entropy provides a 209 
quantitative estimate of the homogeneity of the volcanic process. The rapid decrease towards zero reflects 210 
a single dominant process within the time and frequency domain that generates seismic waves before an 211 
eruption. The seismic source during the eruptive process can manifest in different ways. For example, 212 
multiple fractures induce VT earthquakes, bubbles or fluid resonance generate LP-type events, and a 213 
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source sustained over time causes volcanic tremor. Each of these source processes results in different 214 
energy behaviors (the occurrence of many low energetic events might not show an increase in the 215 
energy). However, the evolution of Shannon entropy is always in the same direction; it will decrease 216 
towards zero as the state of the volcano evolves towards an eruptive and energetic process. 217 

The detailed workflow developed in this study is shown in Figure 1. This procedure is conceived 218 
to extract a single parametric analysis (obtaining a vector) or a multi-parametric feature study (obtaining a 219 
matrix of features). We only used the vertical component of the seismic signal because at the present 220 
many volcanoes continue being seismically controlled by one component seismometer, and one of the 221 
scopes of this work is to generalize the results. The first step is to filter the signal using a bandpass filter 222 
from 1 to 16 Hz to reduce sources of noise. Below 1 Hz, the influence of the oceanic load over the 223 
seismic signal is too strong and must be removed according to the results of Almendros et al. (2007); at 224 
frequencies of > 15–20 Hz, climatic and anthropic conditions (wind, rain, traffic, etc.) affect the seismic 225 
signals. For each seismogram, selected an interval of time (1 or 10 min overlapped by 50%, according the 226 
volcano) over which the parametric transformation is computed.  227 

As indicated above, we should expect that previous to an eruptive episode the Shannon Entropy 228 
must evolve towards zero, or reaching a minimum. In order to quantify the decay of this feature we used a 229 
widely accepted algorithm like STA/LTA. We estimated the mean value of the Shannon entropy for each 230 
volcano during resting periods (SE଴) and implemented small windows of analysis to calculate how the 231 
Shannon entropy was evolving (SE(i)) according to this resting value, using the formula from below. In 232 
average the LTA value was estimated in an interval of 20 days of volcanic repose for each volcano. The 233 
STA has the same duration of the window used to feature extraction analysis (from 1 to 10 minutes). We 234 
then established a threshold which allows us to forecast the eruption without having false alerts (equation 235 
2). When the value of the decay remains over the 70%, i.e. the STA is lower than 30% of the LTA value, 236 
we consider this is the starting of the potential short term forecast interval. The value of 70% of threshold 237 
is an experimental and compromise value based on the generic value used in many research works to 238 
determine the error interval of experimental results. It is clear that increasing this value of threshold the 239 
short-term forecasting period would be reduced, but reducing it we have the chance to have several false 240 
alarms. 241 

 242 𝐷𝑒𝑐𝑎𝑦 𝑅𝑎𝑡𝑖𝑜 ሾ%ሿ = 100 · ቀ1 − ௌா(௜)ௌாబ ቁ                                                   (2)243 

 244 
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3. Data and volcanic scenarios 245 

We selected data from five well-studied volcanoes (Mt. Etna, Mount St. Helens, Augustine, 246 
Bezymianny, and Kilauea); Table 1 represents a broad range of volcanic processes and eruption styles, as 247 
long as several eruptive mechanisms, showing different pre-eruptive seismic patterns with different kind 248 
of signals (volcano-tectonic, long period, volcanic tremor, etc.). This makes this comparison among them 249 
interesting to test the exportability of our hypothesis. For each volcanic scenario, if available, we analyzed 250 
several seismic stations but here will we only present results of one station per eruptive scenario, selected 251 
based on proximity to the eruptive center and/or the completeness of the seismic catalogue (Figure 2). We 252 
want to emphasize that the volcanoes Mt. Etna, Bezymianny and Mount St. Helen have been selected, in 253 
addition to their interest based on their eruptive history, because they were the volcanoes studied by 254 
Bueno et al., (2021 a,b) where it was observed how uncertainty could be used as a forecasting indicator. 255 

The selection of the databases was conditioned on the availability of public data available online 256 
in repositories such as IRIS, or based on data acquired by our work team in temporary field campaigns or 257 
through institutional agreements. The corresponding section presents the links to access all the data used 258 
for this analysis. The eruptive processes selected for study have been selected based on different reasons: 259 
a) relevance of the eruptions, as is the case of Augustine 2006, Mount St. Helens 2004, Kilauea, 2018; b) 260 
have been previously analyzed using uncertainty, such as Mt. Etna, 2013, Bezymianny 2007; c) have a 261 
long series of quality seismic records and have an eruptive event recorded on video and an eruptive 262 
column more than 11 km high, in the case of the Bezymianny 2017 volcano. Noteworthy, even if public 263 
repositories offer available volcanic seismic data, long time series of them are not always accessible and 264 
only short time intervals around some specific volcanic events are uploaded with enough quality to be 265 
successfully analyzed. 266 

The eruption of Mount St. Helens (2004) represents the reawakening of this volcano after more 267 
than 10 years of calm (Iverson et al, 2006). Itself the size of this eruption is not too large, but it was 268 
forecasted by intense seismicity of volcanic tectonic earthquakes and followed by an energetic volcanic 269 
tremor prior the explosion of the extruded dome. The eruption of Augustine volcano was a moderate 270 
explosion (VEI 3) with an unrest characterized by intense seismicity lasting at least 5 months prior the 271 
eruption of 11 of January, 2006 (Manley et al. (2021). This eruption is characterized by two explosions 272 
within 30 minutes detected by satellite observations Bailey et al., (2006), generating ash plumes to 273 
maximum heights of 6.5 and 10.2 km respectively. This eruptive phase lasted 17 days with at least 14 274 
representative explosions. The Kilauea volcano eruption of 2018 represents a special case within the 275 
eruptive mechanism of this volcanic system. The eruption is preceded by a collapse of part of the building 276 
that occurs on the night of April 30. Several days later, on May 3, the first fissures appear with the 277 
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emission of lava flows. Finally, on May 5, an earthquake of magnitude Mw 6.9 occurred on the flank of 278 
the building, which ended up opening more fissures and larger lava flows (Patrick et al., 2020). Since 279 
approximately the year 2000, the Mt Etna volcano has had a continuous eruptive activity, alternating lava 280 
flows, lava fountains and some moderate explosive episodes (Spampinato et al., 2019). In general, 281 
seismic activity is represented by the occurrence of shallow volcano tectonic earthquakes, long period 282 
events and continuous volcanic tremor (Zuccarello et al., 2022). For this analysis we have selected four 283 
episodes of lava fountains from 2013, previously studied by Bueno et al. (2021 a,b) and which were 284 
forecasted by a strong volcanic tremor and absence of VT earthquakes. For Bezymianny volcano we 285 
selected two eruptive phases. In the first one, in 2007, it was observed how the uncertainty always 286 
decreased prior to each of the three selected explosions, being the initial motivation of this work. In 2017 287 
the Institute of Volcanology and Seismology of the Russian Academic of Sciences (Koulakov et al, 2021) 288 
organized a temporary seismic experiment deploying several Broad Band stations around the volcano. On 289 
December 20, 2017 a large volcanic explosion occurred with an eruptive column at least 11 km high that 290 
will be analyzed in detail later. The advantage of this experiment is that we have a full year of data 291 
available, continuously, at various stations. This will allow us to study in depth if the Shannon Entropy 292 
can be considered as a recurrent and differentiable parameter as an element of short-term volcanic 293 
forecasting as Ardid et al., (2022) define to be used in a general way in early warning volcanic eruption 294 
protocols. 295 

4. Results. 296 

The first step to ensure that the idea that the Shannon Entropy is used as a reliable parameter as a 297 
forecast of volcanic eruption is to check if it meets the requirements indicated by Ardid et al., (2022). 298 
These authors define an eruption precursor as a common pattern that has to be recurrent (occurs prior to 299 
multiple events), transferable (occurs prior to eruptions at different volcanoes) and differentiable (absent 300 
during non-eruptive unrest and volcanic repose). In advance, we explain why we consider Shannon 301 
entropy a differentiable parameter. 302 

 For this, it is necessary to study long time series. It is evident that the longer the time series, even 303 
years, the better, but the continuous availability of data, without interruptions and with the same recording 304 
system is a complex task. On the base of the advantage of the seismic experiment performed in 305 
Bezymianny volcano we have the capability to analyze a whole year of high-quality data from continuous 306 
seismic signals. In this period, we can identify both resting periods and pre-eruptive activity before the 307 
energetic explosion of December 20, 2017. We considered these data reliable enough to trust the results 308 
obtained and proceed to test the method in different eruptive episodes of this volcano, and also in 309 
different volcanoes. 310 
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 Systematic analysis of Shannon entropy at Bezymianny from August 2017 to July 2018 (Figure 311 
3) revealed that generally, the mean values obtained remain high. However, we observed some intervals 312 
in which this trend decays to lower values. As described above we defined a significant decrease of the 313 
values of the Shannon Entropy when the STA value decays until more than the 70% of the LTA value. 314 
Following this rule, we detected few intervals with this pattern. The biggest decay occurred in the instant 315 
of the largest volcanic explosion of December, 20th 2017 (the STA value 98.3% lower than the LTA one). 316 
In addition, low Shannon entropy values were observed on other intervals with decays lower than 70 %. 317 
Analyzing data from the KBGS (Kamchatka Branch Geophysical Survey) institution two important 318 
explosions were reported at the neighboring Kliuchevskoy volcano (August 2017 and May 2018). Both 319 
eruptions are clearly aligned with the first and last drops in Shannon entropy (marked as a red shadow 320 
area in figure 3). We suggest that these low Shannon entropy anomalies are potential forecasting 321 
evidences of the explosions at Kliuchevskoy volcano. The relatively lower value reached for the 322 
Bezymianny event likely reflects the closer distance to the seismic station (BZ01 is < 2 km from the 323 
summit of Bezymianny and ~10 km from the summit of Kliuchevskoy; Figure 2). The recorded 324 
Kliuchevskoy signals at BZ01 station likely suffered seismic attenuation effects and interference by local 325 
signals and other sources of noise.  There is a minimum of short duration located on September 2017 326 
associated with a local earthquake of magnitude Mw 4.3 as reported in IRIS institution. The decrease 327 
observed in March 2018 is associated to an intense volcanic tremor recorded in the volcanic area triggered 328 
by another local earthquake of Mw 4.5 (reported in IRIS). We have no evidences of potential volcanic 329 
eruptions or lava dome growth that could be associated with this activity, but the presence of this intense 330 
volcanic tremor confirms its volcanic source. Finally, during April 2018 an intense volcano-tectonic 331 
earthquake swarm was recorded, associated with a set of three minimum values of the Shannon Entropy. 332 
According to these observations, and at least for the period of time analyzed, the significant decreases in 333 
the Shannon Entropy values seem to be exclusively associated with eruptive processes. 334 

The next step is determining if this decrease in Shannon entropy values can be quantified as a 335 
promising evidence of short-term volcanic forecasting tool. In figure 4 we show the evolution of the 336 
Shannon Entropy a week prior to the explosion of December 20, 2017. The STA/LTA ratio was computed 337 
and in shadow green we highlight the instant in which the decay is continuously lower than the 70% (the 338 
vertical red line marks the instant of the eruptive process). Notice that its continuous decay appears two 339 
days before the eruption, reaching values close to zero in the moment of the explosion (as indicated above 340 
a decay of 98.3%). However, as marked in figure 4, at least 5 days before we can consider potential 341 
forecasting evidences.  342 
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Referring to the three explosions of the Bezymianny volcano in 2007, this same procedure for 343 
estimating the decay of the STA/LTA ratio of the Shannon Entropy was repeated. In figure 5 we plot 344 
these results. As observed in all cases there were a minimum value of the Shannon Entropy at the instant 345 
of the volcanic explosion (marked with a red line). These decays were of 99.5%, 99.5% and 100% 346 
respectively. Notice as the pre-eruptive forecasting interval change according each explosion, from 1 hour 347 
to a day. According the analysis of Bueno et al. (2021 a,b) it seems to be an inverse relationship pre-348 
eruptive forecasting interval duration and energy of the explosion, since the larger explosion occurred on 349 
October 14, 2007 and it has the largest pre-eruptive evidences. 350 

The analysis of the 4 lava fountain episodes recorded at Mt. Etna in November 2013 is plotted in 351 
Figure 6. As noticed in the precedent analysis we observed a significant decrease (below the marked 352 
threshold) prior every paroxysm. In all cases, as in Bezymianny, just when the Shannon Entropy start to 353 
decrease below the threshold, this is a stable decreasing tendency marking without doubts that some 354 
volcanic energetic process will happen, reaching its minimum at the moment of every eruptive episode (in 355 
this case lava fountains, marked in red), 98.4%, 98.9%, 97.4% and 95.1% respectively. The short-term 356 
pre-eruptive intervals were 12h, 18h, 3 h and 2 h respectively and according again with the size of each 357 
volcanic episode. 358 

Finally, we applied the procedure to the rest of the volcanic scenarios (Mount St. Helens, 359 
Augustine and Kilauea), plotted in Figure 7. In the case of Mount St. Helens and Augustine the decay of 360 
the Shannon Entropy is 100% and 96.8% respectively. Noteworthy, as indicated above, the analyzed 361 
Augustine eruption is characterized by two moderate/large explosions (marked in Figure 7 with two red 362 
lines). The proposed approach identifies well the instant of the first explosion with the highest decay of 363 
the Shannon Entropy value. Their respective short-term forecasting intervals were 4 days and 12 hours. 364 
The case of Kilauea is much more complex, observing different decays according the three different 365 
processes described above. The decay of the Shannon Entropy reaches 99.1% when the summit collapsed, 366 
80.7% when the first fissure and lava flow appeared, and 98.0% when the 6.9 Mw earthquake occurred. 367 
There is no measurable forecasting interval for the collapse of the summit and the potential failure of this 368 
decay will be discussed in next section. 369 

Thus, we propose, according to Ardid et al., (2022), Shannon entropy is a short-term eruptive 370 
precursor, and demonstrated to be recurrent (occurs prior to every eruption studied), transferable (occurs 371 
in different volcanoes with different pre-eruptive behavior) and differentiable, as it only changes 372 
whenever an eruption occurs, as we conclude after analyzing a year of data recorded continuously.  373 
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5. Discussion. 374 

After studying 5 different volcanoes with different eruptive sources, lava types and pre-eruptive 375 
behavior we demonstrated the Shannon entropy approach works efficiently as short-term volcanic 376 
eruption forecasting tool independently of the eruptive mechanism. In addition, it is interesting to notice 377 
each volcanic process is dominated for different pre-eruptive type of seismic signals. We have examples 378 
of eruptions driven by volcano-tectonic events, like Bezymianny 2017 (Koulakov et al., 2021); others by 379 
mainly volcanic tremor like Mt. Etna (Spampinato et al., 2019) or another like Mount St. Helens with the 380 
presence of mixed seismicity, first intense swarm of volcano-tectonic events and later by volcanic tremor 381 
(Lehto et al., 2010). In order to quantify objectively the evolution of the Shannon Entropy and therefore to 382 
use it as an accurate short-term forecast volcanic eruptions tool we used an STA/LTA algorithm 383 
quantifying the decay ratio. This procedure permits to objectively identify the time intervals in which we 384 
can consider we are a pre-eruptive period. As we indicated above the developed approach has some 385 
important advantages as a powerful tool: it is agnostic (it does not need established a priori physical 386 
models); it is simple (it is successful with only one input, the seismic signal); it is direct (it does not need 387 
specific previous training). That is, we can obtain a pre-eruptive indicator without knowing what is the 388 
physical mechanism that dominates the eruption, without having previously trained the system for each 389 
different eruptive scenario and of easy integration in the procedures of surveillance in real time. 390 

It is interesting to combine our results with another pre-eruptive seismic evidences to better 391 
understand their physical meaning. As Kilburn (2018) indicated ground deformation, volcanic seismicity 392 
(mainly VT events) and their associated energy release could be considered one of the most reliable pre-393 
eruptive evidences. As is broadly known, scientific community has been using the energy of the seismic 394 
signal to forecast volcanic eruptions (Ortiz et al. 2003; Boue et al., 2016; Power et al., 2013) and recently 395 
some variations of the use of the energy have obtained promising results (Caudron et al., 2021; Dempsey 396 
et al., 2020; 2022). Despite of several successfully results, some limitations were found. For example, the 397 
energy reflects the size of the seismicity prior to an eruption; more energetic events will display bigger 398 
energy values independently if they are directly linked with the eruptive process. In addition, the energy is 399 
a growing parameter and to determine its maximum or its exactly timing relationship when the eruption 400 
will happen is a complex task.  401 

In some volcanoes it is possible to access to seismic catalogs and perform additional analysis on 402 
the registered seismicity. We have evidences that some seismic features (see supplementary material) are 403 
directly related to the type of seismicity, and therefore to the earthquake-volcanic source. These features 404 
can reflect changes in the seismic signal patterns, and they could be associated with possible physical 405 
models. Thus, to analyze these patters we transform the original features vector into a features matrix, as 406 
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highlighted in Figure 1. As Cortés et al. (2015) and Bueno et al., (2021 a,b) indicated, the Kurtosis and 407 
the Frequency Index can be used as indicators of the type of recorded seismic events and their evolution 408 
according changes in the volcanic system. The Kurtosis (eq. 3) evaluates how the frequencies of the 409 
signal are distributed, and the Frequency Index (eq. 4) takes into consideration the ratio of the energy 410 
content between high and low frequencies of the signal (we considered low frequencies between 1-6 Hz, 411 
and high frequencies between 6-16 Hz). Therefore, their changes can be directly associated to changes or 412 
evolution in the seismic sources. 413 

𝐾𝑈𝑅 = ଵ௡ ∑ ቀௌሾ௜ሿିఓೞఙೞ ቁସ௜                                                 (3) 414 

𝐹𝐼 = 𝑙𝑜𝑔ଵ଴ ൬ா೓೔೒೓ ೑ೝ೐೜ೠ೐೙೎೔೐ೞா೗೚ೢ ೑ೝ೐೜ೠ೐೙೎೔೐ೞ ൰                                        (4) 415 

VT events recorded in a near field have high frequency contains in confront to the background 416 
signal, making increase the obtained value of the Kurtosis, as observed by Bueno et al., (2021a). In 417 
addition, a shift of the seismic foci from depth to the surface will include an enrichment of the high 418 
frequency contains of the signals (since the seismic attenuation will be less effective) showing again 419 
increases in the value of the Kurtosis. On the other hand, volcanic tremor is dominated by lower 420 
frequency signals (Konstantinou and Schlindwein, 2003; Zuccarello et al., 2022). Therefore, the 421 
increasing of the volcanic tremor should move the Frequency Index toward negative values in comparison 422 
to the background signal. In other word, the kurtosis is more sensitive to the occurrence of VTs and the 423 
Frequency Index to the occurrence of volcanic tremor. 424 

To show the relationship between Kurtosis and occurrence of VTs we will study the case of the 425 
Bezymianny eruption of December 20th, 2017. Koulakov et al, (2021) indicated the occurrence of an 426 
intense seismic swarm prior the eruption, however there is no a complete seismic catalogue of this period. 427 
Using Hidden Markov Model (HMM) we were able to obtain a VT seismic catalogue of Bezymianny for 428 
the whole month of December 2017 (Benítez et al., 2006; Ibáñez et al., 2009; Cortés et al., 2021). 429 
Simultaneously we computed the Kurtosis using the same window length as for the Shannon Entropy. In 430 
Figure 8 we compare the variations of the Kurtosis and the cumulative number of VTs for intervals 1 h 431 
long. As observed, both evolve in parallel in the days before the eruption. The green shadow area 432 
represents the pre-eruptive short-term forecasting interval predicted by the Shannon Entropy with the 433 
70% of decay threshold. Notice as these three parameters seem to evolve in a similar way. The advantage 434 
to use the seismic features in confront to the identification of seismic events is the faster evaluation 435 
procedure and the absence of previous training process (the application of the HMM to obtain a realizable 436 
seismic catalog takes longer time). On the other hand, a seismic catalogue itself is not a direct eruptive 437 
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precursor, since it is the input of different precursory algorithms that evaluate the probability of an 438 
eruption. However, the evolution of the seismic features could be used directly as precursors. 439 

However, not all eruptions have VT swarms as precursory activity, as it was the case of the lava 440 
fountains of Mt. Etna occurred in 2013. The Frequency Index reflects the temporal variation of the 441 
spectral relationship between certain frequency bands, even if it has a complex interpretation. These 442 
changes may reflect different volcanic dynamics, both in terms of source and medium; for example, the 443 
appearance of VTs, LPs, or tremor could be linked with an increase in the frequency index, and 444 
sometimes with a decrease. As the volcano deforms (inflates) prior to an eruption, the increase in system 445 
stress will shift the spectral content of the signal towards high frequencies; deflation would shift the 446 
spectral content of the signal towards low frequencies. A change in the impedance contrast at the source, 447 
or in the volcanic system, would also cause changes in spectral content. Impedance is the ratio between 448 
the elastic properties of confining (volcanic fluids) and confined, the volcanic edifice (Chouet & Matoza, 449 
2013). Thus, evolution of a resonant system from a "dry" or pure gas to ash-rich content would lead to a 450 
shift towards low frequencies, and vice versa. The geometry of the system affects the frequency index, as 451 
does magma ascent, which is associated lower frequencies of tremor. In summary, changes in the 452 
frequency index are a common pre-eruptive observation, but the style of variation depends on many 453 
factors that cannot be controlled a priori, precluding its use in early warning. However, there are “easier” 454 
situations as was the case of Mt. Etna in 2013. The volcanic tremor of Mt. Etna uses to appear at 455 
frequencies between 1 to 3 Hz (Zuccarello et al., 2022) and the background seismic signal is over 6 Hz 456 
(seismic noise). Therefore, it is expected that the Frequency Index must be shifted towards negative 457 
values as the volcanic tremor is increasing. In parallel the energy of the seismic signal should increase 458 
too. To confirm this hypothesis, we evaluated the temporal evolution of the Frequency Index and the 459 
Energy for the Mt. Etna lava fountains and compared them with the evolution of the Shannon Entropy 460 
(Figure 9). 461 

  Notice as when the volcanic tremor appeared we observed a sudden change in both, Shannon 462 
Entropy (moving toward zero), the Frequency Index (moving toward negative values) and Energy 463 
(growing significantly). All used parameters marked a clear pre-event time. However, the Shannon 464 
Entropy is the only one feature which trend could be associated with the timing of the eruption (marked in 465 
the moment of the lower value, 98.4% lower than the LTA). The energy continues growing until the 466 
paroxysmal moment of high energetic lava fountain; meanwhile the Frequency Index reveals the different 467 
mechanism associated to the eruption and timing of the tremor appearance, with a non-homogeneous 468 
pattern. 469 
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The two previous examples were dominated by a single type of seismicity, VT events for 470 
Bezymianny and volcanic tremor of Mt. Etna.  The Mount St. Helens eruption of 2004 is an example of 471 
multiple pre-event seismicity, as indicated above. In Figure 10 we plot the temporal evolution of the three 472 
features introduced in this section. Green region represents the moment when the Shannon entropy decays 473 
over the 70%. The energy starts its growth more than a day and a half later than the instant the Shannon 474 
entropy works as short-term forecast indicator. In addition, the energy reaches a maximum and then 475 
decrease, without erupting yet. Notice the high values of the cumulative Kurtosis between the days 25 and 476 
28 reflects the high number of VT events detected. Later, the pre-eruptive process starts to be dominated 477 
by the volcanic tremor, as reflected by the negative values of the Frequency Index and the decrease of the 478 
Kurtosis. 479 

It is noteworthy that kurtosis and the frequency index cannot be used individually as universal 480 
predictive elements. However, when combined with the Shannon Entropy, they provide information on 481 
the type of prevailing seismic activity, the medium, elastic properties, and more; they are therefore useful 482 
for investigating the mechanisms of the volcanic source. 483 

Previous studies have shown that Entropy can be used to characterize very energetic seismic 484 
series or catastrophic energetic events (e.g., Posadas et al., 2021). To identify potential external factors 485 
that could affect entropy, we selected a fifth volcanic scenario with completely characteristics—the 486 
April–May 2018 eruption of Kilauea. This eruption was preceded by a caldera collapse and subsequent 487 
Mw 6.9 earthquake. A proposed triggering mechanism was precipitation (Farquharson & Amelung, 488 
2020), which may have changed the pore pressure in the rift zone. Figure 7c shows Shannon entropy and 489 
seismic energy from April 29 to May 7, 2018. Sharp drops, with the values approaching zero, occurred at 490 
the same time as (but not before) the caldera collapse and earthquake. Then, during the eruptive episode, 491 
Shannon entropy remained very low. As such, Shannon entropy was not a precursory feature. 492 

If rainfall was the eruption trigger, the eruption was not a classic example of an inner-source 493 
driven volcanic system, but was a sudden eruptive phenomenon triggered by external factors. This could 494 
explain why pre-eruptive Shannon entropy was not a suitable precursory indicator for this unrest. Based 495 
on this example, we suggest that decreasing Shannon entropy towards zero can only be for short-term 496 
early warning in systems controlled by internal factors; those eruptions triggered by external events (e.g., 497 
heavy rainfall) cannot be predicted using this method. 498 
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As a resume:  499 

a) We observed that in all analyzed volcanic scenarios there is always a quantitatively evaluated 500 
decrease of the Shannon Entropy prior to different type of eruptions independently of the 501 
characteristics of pre-eruptive state and seismic sequences. Therefore, is a good “agnostic” short-502 
term volcanic eruption forecast indicator. 503 

b) The Shannon Entropy remains high and almost constant when the volcano is resting or when the 504 
activity is minor. 505 

c) In all cases the energy is a valuable feature to confirm this observation, but it does not always be 506 
used as short-term forecasting feature. 507 

d) The use of other seismic parameter, such as Kurtosis or Frequency Index, helps to constrain 508 
potential physical models driving the eruption. 509 

e) We suggest the use of this seismic feature since it is fast and easy to implement, works in real 510 
time, it does not need previous training and it is transferable among different volcanoes. 511 

6. Conclusions 512 

The results of this study suggest that the Shannon entropy of pre-eruptive seismic signals offers a 513 
robust and reliable feature for short-term volcanic eruption forecasting. Comparing the energy evolution 514 
and the Shannon entropy we can find some interesting features. The main observation is Shannon Entropy 515 
is inversely proportional to the log energy, entropy decays to zero when the system reorganizes itself and 516 
the signals are more similar between them, allowing us to easily identify changes in the volcanic system. 517 
The relationship between pre-eruptive seismic signals and Shannon entropy is direct and based on 518 
changes in the probability distributions of the type of seismic waves, independent of their source. As a 519 
uniform volcanic source processes towards an eruption there is high homogeneity of recorded seismic 520 
wave types, regardless of the energy and underlying source processes. This homogeneity can be measured 521 
quantitatively through the Shannon entropy and the trend towards zero will mark the imminent start of the 522 
volcanic eruption.  523 

Combining this with other features, such as energy, kurtosis, frequency index and interesting 524 
parameters selected in future works, offers even greater predictive certainty, along with insight into the 525 
types of seismic sources and physical changes in the volcanic system. In general, this approach is 526 
exportable from one volcanic system to another. However, it falls short of universality because eruptions 527 
triggered by external processes (e.g., rainfall) cannot be predicted in this way. Shannon entropy is simple 528 
and rapid to evaluate, and the relevant pre-eruptive changes (i.e., a decrease towards zero) occur over 529 
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intervals of between 4 days and 12 h prior to eruption, which is sufficient for the relevant authorities to 530 
implement alert and evacuation protocols. 531 
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Data availability statement 543 

Data of the five volcanoes analyzed in this work are publically accessible in the links that will be 544 
detailed below. The used software of this work (all programmed developed by us) are also publically 545 
accessible (link provided below) and are also presented with specific use examples to be able to 546 
independently reproduce all the results obtained in this work. The repository sites used are stable, 547 
publically accessible for free and recognized by the scientific community. 548 

1.- Agustine Volcano (2006) data were obtained by using the facilities of IRIS Data Services, and 549 
specifically the IRIS Data Management Center. Direct links to access to the data of this volcano are: 550 

https://ds.iris.edu/mda/AV/ 551 

https://ds.iris.edu/mda/HV/JOKA/?starttime=2012-09-17T00:00:00&endtime=2599-12-552 
31T23:59:59 553 

2.- Kilauea Volcano (2018) data were obtained by using the facilities of IRIS Data Services, and 554 
specifically the IRIS Data Management Center. Direct links to access to the data of this volcano are: 555 

https://ds.iris.edu/mda/HV/ 556 

https://ds.iris.edu/mda/HV/JOKA/?starttime=2012-09-17T00:00:00&endtime=2599-12-557 
31T23:59:59 558 
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3.- Mount St. Helens (2004) data were obtained by using the facilities of IRIS Data Services, and 559 
specifically the IRIS Data Management Center. Direct links to access to the data of this volcano are: 560 

https://ds.iris.edu/mda/UW/ 561 

https://ds.iris.edu/mda/UW/SHW/?starttime=1972-10-01T00:00:00&endtime=2599-12-562 
31T23:59:59 563 

4.- Bezymianny volcano. 564 

Data from 2007 were obtained by using the facilities of IRIS Data Services, and specifically the 565 
IRIS Data Management Center. 566 

Data for the temporary experiment (2017-2018) are available in the compressed folder 567 
“Dataset_volcanoes.Rar”, located in the ZENODO repository at the following address and DOI. 568 

https://doi.org/10.5281/zenodo.6821530 569 

https://zenodo.org/record/6821530#.YvyeUS7P1PY 570 

5.- Etna volcano data (2013) are available in the ZENODO repository at the following address 571 
and DOI. 572 

 https://doi.org/10.5281/zenodo.6849621 573 

https://zenodo.org/record/6849621#.YvyetS7P1PY 574 

B) Instructions for downloading the data associated with the IRIS network, as well as the access 575 
to the download software developed by us, can be found in the “Readme.txt” file, available in the 576 
ZENODO repository at the following address and DOI. 577 

 https://doi.org/10.5281/zenodo.6821530 578 

 https://zenodo.org/record/6821530#.YvyeUS7P1PY 579 

C) The seismic parameter analysis software, with illustrative examples to be able to reproduce 580 
our results, are available in the compressed folder “Software.Rar”, located in the ZENODO repository at 581 
the following address and DOI. 582 

 https://doi.org/10.5281/zenodo.6821530 583 

 https://zenodo.org/record/6821530#.YvyeUS7P1PY 584 

D) The software related to the automatic recognition of seismic signals used for the study of the 585 
Bezymianny volcano is developed under the EU project called VULCAN.ears located in the ZENODO 586 
repository at the following address and DOI. 587 
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https://zenodo.org/record/3594080#.YvydiC7P1PY 588 

https://zenodo.org/record/4305100#.Yvydti7P1PY 589 

https://doi.org/10.5281/zenodo.4305100590 
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TABLES 889 
 890 

Table 1. Volcanic Data and Seismic Stations 891 

VOLCANO 

(LOCATION) PERIOD 

 

SEISMIC STATION 

 

DESCRIPTION AND 
ACTIVITY 

 

MONITORING REFERENCES 

Mt.Etna 
(Sicily, Italy) 

 

 
 
 
November 2013 
11th,17th, 23rd, 28th 

 
 
 
 
EBEM 

 

 

Basaltic 
Stratovolcano. 

Volcanic tremor. 

Strombolian activity 
and Lava Fountain 

 

INGV-OE 

(Instituto Nazionale 
di Geofisica e 
Vulcanologia – 
Osservatorio Etneo) 

Aloisi et al., 2020;  

Barreca et al., 2018, 
2020;  

Presti et al., 2020; 

 Bonaccorso et al., 
2014 

Spampinato et al., 
2019 

Zuccarello et al., 2022

 
 
Bezymianny 
(Kamchatka, Russia) 
 
 

 
 
December 20th, 2017 

 
 
BZ01 (Fig. 2: blue) 
 

 

Andesitic volcano. 

VT activity. 

Dome growth. Very 
energetic explosions 

 

Temporary Field 
Experiment (2017) 

KGBS 

(Kamchatkan Branch 
of Geophysical 
Survey) 

Mania et al., 2019 

Koulakov et al., 2021 

Davydova et al., 2022 

September 25th 
October 14th, 
November 5th, 2007 

 

BELO (Fig. 2: green) 

Girina, 2013 

Thelen et al., 2010 

Bueno et al, 2019 

Mount St. Helens 
(Washington, USA) 

 
 
 
 
 
October 1st , 2004 

 

 

 

SHW 

 

 

Andesitic-Dacitic 
Stratovolcano. 

VT and tremor. 

Phreatic Eruption 

 

 

Pacific Northwest 
Seismic Network 

University of 
Washington 

Iverson et al., 2006 

De Siena et al., 2014 

Sherrod et al., 2008 

Berlo et al., 2004 

Gabrielli et al., 2020 

Anderson & Segall, 
2013 

Lehto et al., 2010 

Augustine 
(Alaska, USA) 

 
 
 
 
 
January 11th, 2006 

 

 

 

 

AUH 

 

 

 

Andesitic-Dacitic 
Stratovolcano 

VT activity. 

Vulcanian activity 

 

 

AVO 

(Alaska Volcano 
Observatory) 

DeRoin & McNutt, 
2012 

DeShon et al., 2010 

Buurman & West, 
2006 

Bailey et al., (2006) 

Coombs et al., 2010 

Manley et al., 2021 

Power et al., 2010 

Zhan et al., 2022 

Kilauea 
(Hawaii, USA) 

 

May 3rd, 2018 

 

JOKA 

 

Basaltic Shield 
Volcano 

Summit Collapse and 
fissure eruptions 

HVO 

(Hawaiian Volcano 
Observatory) 

Patrick et al., 2020 

Neal et al., 2019 

Roman et al., 2021 
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FIGURE CAPTIONS. 892 

Figure 1. Schematic workflow illustrating the methodology used to transform the seismic data from the amplitude-893 
time space of seismograms to the temporal matrix space of features. 894 

Figure 2. Study region locations and maps of the seismic networks for each of the five volcanoes:  Mount St. 895 
Helens, Bezymianny, Augustine, Kilauea and Mt. Etna. Red triangles denote the main eruptive center, squares 896 
represent the used seismic stations and blue square are the seismic stations used to plot the figures of this work. In 897 
the map of the Bezymianny volcano we denoted in black triangle and with a letter K the position of the volcano 898 
Kliuchevskoy and added the letter B to the main eruptive center of Bezymianny volcano. In Bezymianny map blue 899 
square represents the station BZ01 and the green square is the station BELO. 900 

Figure 3. Temporal variation of Shannon Entropy at station BZ01 of Bezymianny from August 2017 to July 2018. 901 
The biggest decay occurred in the instant of the largest volcanic explosion of December, 20th 2017. Additional low 902 
Shannon entropy values were observed. Data from the KBGS (Kamchatka Branch Geophysical Survey) institution 903 
reported two important explosions at the neighboring Kliuchevskoy volcano (August 2017 and May 2018) marked 904 
as a red shadow area. There is a minimum of short duration located on September 2017 associated with a local 905 
earthquake of magnitude Mw 4.3 as reported in IRIS institution. The decrease observed in March 2018 is associated 906 
to an intense volcanic tremor recorded in the volcanic area triggered by another local earthquake of Mw 4.5 907 
(reported in IRIS). In April 2018 an intense volcano-tectonic earthquake swarm was recorded, associated with a set 908 
of three minimum values of the Shannon Entropy.  909 

Figure 4. (Up)Temporal evolution of the Shannon entropy before and after eruptive episode of Bezymianny, 910 
December 2017 marked with a vertical red line. Green region indicates a stable decay bigger than the 70%. Decay at 911 
the moment of the eruption: 98.3%. (Down) Temporal evolution of the STA/LTA ratio making in red values bigger 912 
than 70%. 913 

Figure 5. Temporal evolution of the Shannon entropy before and after three explosive episodes of Bezymianny in 914 
2007, all of them marked with vertical red lines. Green region indicates a decay bigger than the 70%. Decay at the 915 
moment of the eruption: 99.5%, 99.5% and 100%. 916 

Figure 6. Temporal evolution of the Shannon entropy before and after four lava fountain paroxysms of Mt. Etna 917 
during November 2013 all of them marked with vertical red lines. Green region indicates a decay bigger than the 918 
70%. Decay at the moment of the eruption: 98.4%, 98.9%, 97.4% and 95.1%. 919 

Figure 7. a) Temporal evolution of the Shannon entropy before and after the October 1st, 2004, eruptive episode of 920 
Mount St. Helens marked with the vertical red line. Blank spaces in the graph represent data gaps; the vertical red 921 
line denote the time of the eruption. b) Temporal evolution of the Shannon entropy before and after the January 922 
11th, 2006, eruption of Augustine. The two main explosions are marked with vertical red lines. c) Temporal 923 
evolution of energy (blue line) and Shannon entropy (orange line) at Kilauea from April 29 to May 7, 2018. The 924 
solid black line marks the caldera collapse and the dashed line marks a local Mw 6.9 earthquake. The solid red line 925 
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denotes the start of the eruptive episode. Green region indicates a decay bigger than the 70%. Decay at the moment 926 
of the eruption in Mount St. Helens and Augustine: 100% and 96.8%. Kilauea: induced by summit collapse (99.1%), 927 
first fissure (80.7%) and earthquake (98.0%). 928 

Figure 8. Cumulative number of volcano tectonic (VT) earthquakes (orange line) and the temporal evolution of 929 
kurtosis (blue line) at station BZ01 of Bezymianny prior to the explosion of December 20st, 2017 marked with the 930 
vertical red line. Green region indicates a decay of the Shannon Entropy larger than the 70%. 931 

Figure 9. (Upper figure) Comparison between the temporal evolution of the logarithm of the energy (orange line) 932 
and the temporal evolution of Frequency Index (blue line) at station EBEM of Mt. Etna prior to the lava fountain of 933 
November 23rd, 2013, marked with the vertical red line. Green region indicates decay of the Shannon Entropy 934 
bigger than the 70% of the average value until the starting of the eruption. (Lower figure) seismogram and 935 
spectrogram of the volcanic tremor associated to the lava fountain eruption. 936 

Figure 10. Temporal evolution of energy, kurtosis, and frequency index prior to the eruption of Mount St. Helens, 937 
October 2004, marked with the vertical red line. Green region indicates a decay bigger than the 70%. 938 
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 22 

1. General Table of Feature parameters 23 

A key point to identify and clarify seismic signals is how to represent observations; that 24 

is, the determination of a set of meaningful features that relate to measurements made on 25 

observations. Such representations are typically obtained by extracting parameters (features) 26 

from the data and using them in a new frame of reference to perform a classification of isolated 27 

seismic events. In this work initially we extracted features from both the waveform (statistical, 28 

shape descriptors, etc.) and the spectrum according their different natures. Ultimately, we choose 29 

a subset of 26 features (Table S1). 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 
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Table S1. Features selected. 40 

 41 
FEATURE FORMULA 

1. Energy 𝐸𝐸 = ∑ 𝑆𝑆[𝑖𝑖]2𝑛𝑛
𝑖𝑖=1 ; 𝐸𝐸𝑖𝑖 = 𝑆𝑆[𝑖𝑖]2 

2. Frequency index 𝐹𝐹𝐹𝐹 = 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝐸𝐸ℎ𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
� 

3. Attack ratio 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 �
𝑆𝑆[𝑖𝑖] − 𝑆𝑆[𝑖𝑖 − 1]

𝑛𝑛 � 

4. Decay ratio 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 �
𝑆𝑆[𝑖𝑖] − 𝑆𝑆[𝑖𝑖 + 1]

𝑛𝑛 � 

5. Mean 𝜇𝜇𝑠𝑠 =
1
𝑛𝑛� 𝑆𝑆[𝑖𝑖]

𝑖𝑖
  

6. Standard deviation 𝜎𝜎𝑠𝑠 = �
1

(𝑛𝑛 − 1)� (𝑆𝑆[𝑖𝑖] − 𝜇𝜇𝑠𝑠)2
𝑖𝑖

 

7. Skewness 1
𝑛𝑛� �

𝑆𝑆[𝑖𝑖] − 𝜇𝜇𝑠𝑠
𝜎𝜎𝑠𝑠

�
3

𝑖𝑖
 

8. Kurtosis 
1
𝑛𝑛� �

𝑆𝑆[𝑖𝑖] − 𝜇𝜇𝑠𝑠
𝜎𝜎𝑠𝑠

�
4

𝑖𝑖
 

9. i of central energy 𝑖𝑖 =
1
𝐸𝐸� 𝐸𝐸𝑖𝑖 · 𝑖𝑖

𝑖𝑖
 

10. RMS bandwidth 𝐵𝐵𝑖𝑖 = �
1
𝐸𝐸� 𝑖𝑖2 · 𝐸𝐸𝑖𝑖 − 𝑖𝑖

2

𝑖𝑖
 

11. Mean skewness �∑ �𝑖𝑖 − 𝑖𝑖�
3
𝐸𝐸𝑖𝑖𝑖𝑖

𝐸𝐸 · 𝐵𝐵𝑖𝑖3
 

12. Mean kurtosis �∑ �𝑖𝑖 − 𝑖𝑖�
4
𝐸𝐸𝑖𝑖𝑖𝑖

𝐸𝐸 · 𝐵𝐵𝑖𝑖4
 

13. Entropy � 𝑃𝑃𝑓𝑓�𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛, 𝑓𝑓)�
𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙2 �𝑃𝑃𝑓𝑓�𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛, 𝑓𝑓)�� 

14. Brightness 
∑ 𝑓𝑓 · 𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛, 𝑓𝑓)𝑖𝑖
∑ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑛𝑛, 𝑓𝑓)𝑖𝑖

 

15. Shannon entropy −� 𝑃𝑃(𝑆𝑆𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙2
𝑖𝑖

�𝑃𝑃(𝑆𝑆𝑖𝑖)� 

16. Rényi entropy 
1

1 − 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙2 �� 𝑃𝑃(𝑆𝑆𝑖𝑖)𝑎𝑎
𝑖𝑖

� 

  
17. LPC (5 coefficients) 

𝑆𝑆[𝑛𝑛] = �� 𝑎𝑎𝑘𝑘 · 𝑆𝑆[𝑛𝑛 − 𝑘𝑘]
𝑖𝑖

� + 𝑒𝑒𝑒𝑒𝑒𝑒[𝑛𝑛] 

18. Cepstral coefficients 
 (5 coefficients) 

𝑅𝑅𝑅𝑅 �𝐹𝐹𝐹𝐹𝐹𝐹−1 �𝑙𝑙𝑙𝑙𝑙𝑙 �𝑎𝑎𝑎𝑎𝑎𝑎�𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆𝑖𝑖)���� 

Note: The symbols used in this table are explained in Esmaili et al. (2004), Alvarez et al., (2011), 42 
and Malfante et al. (2018a,b). RMS, Root Mean Square; LPC, linear predictive coefficients. 43 
Parameters 1 to 4 are phenomenological features; parameters 5 to 16 are statistical features; 44 
parameters 17 and 18 (10 coefficients) are signal domain transform parameters. 45 
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2. Study of General evolution of the Seismic Features for Mt. Etna Volcano. 46 

We studied the temporal evolution of the selected seismic features to determine which 47 

presented significant pre-eruptive variation in comparison with a non-eruptive period. For this 48 

purpose, we selected the data for a lava fountain eruption at Mt. Etna on November 11th, 2013. 49 

This choice was based on the fact that among our case study volcanoes, Mt. Etna has the densest 50 

seismic network and the seismic records for this event are of high quality over different 51 

distances. Figure S1 shows the evolution of the 26 seismic features at station EBEM, divided 52 

into six subgroups for 2 days before and 1 day after the eruption. Some features were found to be 53 

invariant or to exhibit random changes prior to the eruption (e.g., skewness and mean skewness, 54 

the i of central energy, brightness, the LPC coefficients, and the cepstral coefficients). Among 55 

the cepstral coefficients, only CEP1 showed pre-eruptive change; however, this is likely because 56 

CEP1 is associated with energy. Energy (Figure S1a), the frequency index (Figure S1a), Shannon 57 

entropy (Figure S1b), and kurtosis (Figure S1c) all showed clear changes in their temporal 58 

evolution prior to the eruption, particularly in the 12 h before the eruption, and represented the 59 

best candidates for short-term volcanic eruption prediction. The other features that also showed 60 

variation prior to the eruption were at least partially linked to energy, kurtosis, frequency index, 61 

or Shannon entropy; as such, they are not discussed further. 62 

 63 

 64 

 65 

 66 

 67 
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 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

Figure S1. Time evolution of 26 seismic features at station EBEM for 2 days before and 81 
1 day after a lava fountain eruption of Mt. Etna on November 11th, 2013. Features are divided 82 
into six subgroups: (a) energy and associated features (blue is energy; orange is the frequency 83 
index; yellow is the rate of decay, and purple is the rate of attack); (b) entropy features (blue is 84 
entropy; orange is Rényi entropy; yellow is Shannon entropy, and purple is the brightness); (c) 85 
statistical features (blue is kurtosis; orange in the mean; yellow is the skewness, and purple is the 86 
standard deviation); (d) statistical features (blue is mean skewness; orange is mean kurtosis; 87 
yellow is the i of central energy, and purple is the root mean square [RMS] bandwidth); (e) 88 
cepstral coefficients; and (f) linear predictive coefficients (LPC) coefficients. In (e) and (f), blue 89 
is the 1st, orange the 2nd, yellow the 3rd, purple the 4th, and green is the 5th coefficient. The time of 90 
the eruption is represented by the vertical red line. 91 
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