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Abstract

We present a representation of nitrogen and phosphorus cycling in the vegetation demography model the Functionally Assembled

Terrestrial Ecosystem Simulator (FATES), within the Energy Exascale Earth System (E3SM) land model. This representation

is modular, and designed to allow testing of multiple hypothetical approaches for carbon-nutrient coupling in plants. The model

tracks nutrient uptake, losses via turnover from both live plants and mortality into soil decomposition, and allocation during

tissue growth for a large number of size- and functional-type-resolved plant cohorts within a time-since-disturbance-resolved

ecosystem. Root uptake is governed by fine root biomass, and plants vary in their fine root carbon allocation in order to balance

carbon and nutrient limitations to growth. We test the sensitivity of the model to a wide range of parameter variations and

structural representations, and in the context of observations at Barro Colorado Island, Panama. A key model prediction is

that plants in the high-light-availability canopy positions allocate more carbon to fine roots than plants in low-light understory

environments, given the widely different carbon versus nutrient constraints of these two niches within a given ecosystem. This

model provides a basis for exploring carbon-nutrient coupling with vegetation demography within Earth System Models (ESMs).
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Abstract12

We present a representation of nitrogen and phosphorus cycling in the vegetation13

demography model the Functionally Assembled Terrestrial Ecosystem Simulator (FATES),14

within the Energy Exascale Earth System (E3SM) land model. This representation is15

modular, and designed to allow testing of multiple hypothetical approaches for carbon-16

nutrient coupling in plants. The model tracks nutrient uptake, losses via turnover from17

both live plants and mortality into soil decomposition, and allocation during tissue growth18

for a large number of size- and functional-type-resolved plant cohorts within a time-since-19

disturbance-resolved ecosystem. Root uptake is governed by fine root biomass, and plants20

vary in their fine root carbon allocation in order to balance carbon and nutrient limi-21

tations to growth. We test the sensitivity of the model to a wide range of parameter vari-22

ations and structural representations, and in the context of observations at Barro Col-23

orado Island, Panama. A key model prediction is that plants in the high-light-availability24

canopy positions allocate more carbon to fine roots than plants in low-light understory25

environments, given the widely different carbon versus nutrient constraints of these two26

niches within a given ecosystem. This model provides a basis for exploring carbon-nutrient27

coupling with vegetation demography within Earth System Models (ESMs).28

Plain Language Summary29

This work introduces a new set of nutrient cycling hypotheses integrated with a30

coupled terrestrial biosphere model. This includes the cycling of carbon, nitrogen and31

phosphorus, and focuses mainly on plant acquisition, allocation, and turnover. An anal-32

ysis shows the model offers reasonable response to perturbations in parameter constants33

and boundary conditions, considering its design balance between process complexity and34

parameterization burden.35

Key Points:36

• The nutrient enabled ELM-FATES model represents reasonable pattern responses37

to nutrient availability and parameter perturbations.38

• The model has been designed to introduce a reasonably small parameterization39

burden, considering the total number of newly introduced parameters and the rel-40

ative ease of finding values (i.e. directly from observations, or through calibration).41

• The model formulation described here does not make any assertions that it offers42

a complete representation of nutrient and carbon dynamics, rather that these are43

a set hypothesis that can capture certain element of carbon-nutrient dynamics and44

can be further intercompared with other hypotheses.45

1 Introduction46

Projections of the global climate system response to anthropogenic CO2 emissions47

require coupled models of the climate system and carbon cycle. Much of the uncertainty48

in current climate projections arises from the global terrestrial carbon cycle, and in par-49

ticular the responses of plants to elevated CO2 (Arora et al., 2020). Many current Earth50

System Models (ESMs) do not take into account plant size structure, disturbance his-51

tory, and other aspects known to govern ecosystem function and thereby current and fu-52

ture responses to anthropogenic pressures (D. Purves & Pacala, 2008). Additionally, lim-53

itation by nutrients of plant productivity under elevated CO2 has been shown to strongly54

affect both the historical and future uptake of carbon (Hungate et al., 2003; P. Thorn-55

ton et al., 2007; Zaehle & Friend, 2010; Wang et al., 2015). The importance of includ-56
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ing nutrient dynamics in projecting the global terrestrial carbon budget is evidenced by57

its expanded role in Earth System land models, such as CASACNP (Wang et al., 2010),58

GFDL LM4.1-BNF (Kou-Giesbrecht et al., 2021a; Sulman et al., 2019), ED2-MEND-59

NCOM (Medvigy et al., 2019), and Quincy v1.0 (Thum et al., 2019) to name a few. The60

processes that govern nutrient cycling rates in ecosystems are highly uncertain, since many61

of them occur belowground where observation is more difficult than in plant canopies.62

To allow exploration of this epistemic uncertainty, we propose here a modular approach63

to representing nutrient cycling that facilitates exploration of alternative process hypothe-64

ses and parameter and structural uncertainty quantification.65

This manuscript describes a modeling methodology for plant acquisition, storage,66

and allocation of nutrients and carbon within the terrestrial biosphere of an ESM. This67

manuscript also describes how the plant nutrient dynamics interface with existing soil68

nutrient hypotheses, but does not introduce new soil modeling hypotheses. This system69

is an extension of the coupled modeling framework of the Energy Exascale Earth Sys-70

tem Model (E3SM) (Caldwell et al., 2019) and the Functionally Assembled Terrestrial71

Ecosystem Simulator (FATES). E3SM includes a land model (ELM) among other com-72

ponents such as atmosphere, ocean, ice, and human. The terrestrial vegetation simulated73

in FATES is based on the plant size and time-since-disturbance structured approach de-74

rived from the Ecosystem Demography model (Moorcroft et al., 2001; R. A. Fisher et75

al., 2015).76

The nutrient modeling framework we describe here can be summarized in three model77

components: 1) a new module that handles on-plant nutrient and carbon allocations to78

different organs, designated the Plant Allocation, Reactions, and Transport Extensible79

Hypotheses (PARTEH), 2) a restructuring of the rest of the FATES model to track vari-80

able chemical elements in seed, unfragmented litter, and coarse woody debris pools, and81

3) a means of acquisition and competition for nutrients by FATES plants amongst mi-82

crobes and mineral surfaces. An evaluation of the model at a tropical test-bed site fol-83

lows.84

2 Model Description - Plant-Soil Nutrient Dynamics85

The Energy Exascale Earth System Model Land Model component (Burrows et al.,86

2020), resolves numerous processes related to the cycling of water, energy, carbon, ni-87

trogen and phosphorus in natural and anthropogenic ecosystems. Soil decomposition is88

handled via a derivative of the CENTURY approach (C. Koven et al., 2013; Parton et89

al., 1988). Total ecosystem nitrogen fixation has been represented in ELM by assuming90

proportionality with either evapotranspiration or net primary productivity (Cleveland91

et al., 1999; P. Thornton et al., 2007). Symbiotic fixation at the plant level is introduced92

in the Methods section and will be described in more detail. When symbiotic fixation93

is represented by FATES, the total ecosystem fixation module in ELM is scaled down94

to represent on free-living fixation in the soil. Soil biogeochemical dynamics lead nitro-95

gen to cascade from organic pools with different turnover times to ammonium (NH4) and96

nitrate (NO3) pools. ELM contains two alternative representations of competition for97

these these nutrient species amongst plants, microbes (decomposers for organic pools,98

as well as nitrifiers and denitrifiers for mineral nitrogen pools), and mineral surfaces (for99

phosphorus). These are the Relative Demand (RD) approach (P. Thornton et al., 2007;100

X. Yang et al., 2014, 2019) and a Capacity-Based approach that applies the Equilibrium101

Chemistry Approximation (CB) (Tang & Riley, 2013; Zhu et al., 2016, 2019).102

FATES is a vegetation demography model(R. A. Fisher et al., 2015; C. D. Koven103

et al., 2020) that represents the demographics of vegetation using plant size and time-104

since-disturbance structured scaling algorithms defined in the Ecosystem Demography105

(ED) Model (Moorcroft et al., 2001). FATES represents vegetation by grouping plants106

of similar size and functional type into cohorts, which inhabit patches of the landscape107
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that are defined by their time since last disturbance. Unlike unstructured vegetation mod-108

els, which treat growth and mortality processes as changes to the size of whole ecosystem-109

level carbon and nutrient pools, cohort-based vegetation models like FATES explicitly110

track the growth of plants, the size (volume, height, etc) growth of various components,111

and the resulting carbon and nutrient pools of their tissues using allometrically-defined112

scaling relationships with stem diameter. FATES also allows for competition for light113

between plant types in the same vertical profile, which leads to self-thinning dynamics114

and other spatio-temporal changes in vegetation composition to emerge as a function of115

variation in plant functional traits. FATES estimates mortality at the plant cohort scale,116

based on several factors including carbon starvation, understory impact survival, hydraulic117

stress (R. A. Fisher et al., 2015), background mortality (i.e. unspecified or unknown effects)(Moorcroft118

et al., 2001), fire (Thonicke et al., 2010), and relationships with plant age or size (Needham119

et al., 2020). In the current version of FATES, the time-since-disturbance patch discretiza-120

tion only resolves heterogeneity in the above-ground environment, with all cohorts on121

all patches drawing water and nutrients from the same soil pools.122

FATES represents a variety of processes, including but not limited to: photosyn-123

thesis and its coupling with water limitations on stomatal conductance (Farquhar et al.,124

1980; Collatz et al., 1991; Oleson et al., 2013; G. Bonan et al., 2014), respiration (Ryan,125

1991) of live tissues, vertical distribution of canopy functional trait parameters (G. B. Bo-126

nan et al., 2012), radiation scattering (Norman, 1979), phenology (Botta et al., 2000),127

and turnover into coarse woody debris and fine litter (R. A. Fisher et al., 2015; Oleson128

et al., 2013). FATES’ radiation scattering module accounts for both the vertical struc-129

ture of vegetation and the variable scattering characteristics of different plant functional130

groups in parallel (R. A. Fisher et al., 2015). The spatial configuration of the canopy scat-131

tering elements is driven by a modified perfect plasticity approximation (D. W. Purves132

et al., 2008; R. A. Fisher et al., 2015; C. D. Koven et al., 2020). While FATES can op-133

tionally utilize sophisticated representations of plant hydraulics (Christoffersen et al.,134

2014; Fyllas et al., 2014; Fang et al., 2022) and fire (Thonicke et al., 2010; Buotte et al.,135

2021; Ma et al., 2021), in order to maintain a focus on nutrient dynamics, these options136

were not active in the modeling exercises described herein. Details on all of these pro-137

cess representations can be found in the FATES technical documentation (FATES-Development-138

Team, 2019).139

The introduction of nutrients to FATES, via the PARTEH approach to (Plant Re-140

source Allocations, Reactions, and Transport Extensible Hypotheses) described here, fol-141

lows a sequence of operations that are shown in Figure 1. The descriptions of these pro-142

cesses follow the flow-chart order and can be found in the following subsections: sym-143

biotic fixation in 2.1, plant acquisition of aqueous soil nutrients in 2.2, re-absorption dur-144

ing senescent turnover in 2.3, updating the target fine-root biomass (the optimal fine-145

root biomass associated with the plant’s nutrient requirements) in 2.6, and allocation146

to the various plant organs in 2.5. Soil hydrology in ELM is the same as that described147

in the CLM technical manual (Oleson et al., 2013).148
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Figure 1. Flow-chart of key processes and order of operations for nutrient cycling in ELM-

FATES. This chart places more emphasis on plant-side processes. New processes described in this

manuscript are shown in yellow boxes. Grey boxes indicate a pre-existing but relevant processes

in the model. For the process of soil nutrient competition, nothing has changed from the original

schemes, except how plants present themselves as competitors (shown as with a split grey/yellow

color). In the box highlighting symbiotic fixation, scattering, etc., symbiotic fixation is a new

process and the others are un-modified.

An overview of the nutrient mass fluxes through the key nutrient pools in the soil-149

plant system are shown in Figure 2. Also, a list of all variables and parameters described150

in this manuscript are provided in Appendix A Table A1.151
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Figure 2. Diagram showing the key pools and fluxes for nitrogen and phosphorus cycling in

ELM-FATES. Plant pools are shown with yellow boxes, soil pools are shown with slate colored

boxes. Similar to the convention in Figure 1, this conveys new model content, in this case the

introduction of nitrogen and phosphorus mass accounting in FATES. *Denotes the special status

of nutrient storage, in that storage nutrient pools are distinct from the carbon storage pool. The

leaf, fine-root, sapwood, structure and reproductive tissues assume that carbon, nitrogen and

phosphorus are bound together in the tissues. **Fixation fluxes only refer to nitrogen. Leaching

refers to phosphate and nitrate (not ammonium) and denitrification losses are only from nitrate.

***Myccorhizal uptake is not currently represented in the model, but may be in the future.

Three chemical elements are tracked and conserved by mass within the plant, lit-152

ter and soil system: carbon (non isotope specific), nitrogen, and phosphorus. The masses153

of these elements at any given instance in time are designated C(o) for carbon and M(o,s)154

for the two nutrients elements, where o is the generic subscript for the organs and s is155

the generic subscript for the two nutrient elements nitrogen and phosphorus.156

In the following model description, parameter constants are indicated by lowercase157

Greek letters. Some variables not associated with a mass use lower-case letters. Unless158

specified otherwise, fluxes and rates of change use an over-dot (i.e. Ẋ). All plant states159

have units of [kg plant−1]. Turnover and allocation within the plant occur at a daily fre-160

quency. Thus, they have units of [kg plant−1 day−1]. Nutrient competition between plants161

and soil competitors (e.g., microbes, mineral surfaces) is resolved at sub-diurnal timescales162

–6–



manuscript submitted to JAMES

(typically 30 minutes), and is integrated over the day and presented as a daily uptake163

[kg plant−1 day−1].164

Each plant cohort is represented by an average individual that maintains discrete165

mass pools for the following organs (and associated sub-scripts): leaf (lf), sap-wood (sa),166

dead-wood (de), fine-root (fr), reproductive (re) and storage (so) (see Table 1).167

Organ Name Subscript Symbol
leaf lf
fine-root fr
live (sap) wood sa
dead (structural) wood de
reproductive re
storage∗ so

Table 1. The plant organs and their subscripts represented in a FATES cohort. *Storage is not

technically an organ, but its sum throughout the plant is tracked.

168

Sapwood refers to all living woody tissues, including organs such as the cambium,169

phloem, and xylem. Dead-wood refers to all non-living tissues such as heartwood and170

bark. Both cases (dead and live) include below and above-ground components. The dead171

pool should not be confused with the coarse woody debris associated with dead trees.172

Fine-roots are functionally classified as tissues with high turnover and respiration rates,173

as compared to below-ground sapwood (coarse roots). Reproductive organs encompass174

all ephemeral tissues associated with reproduction, including seeds, cones, flowers, fruits,175

etc. For storage, the term “organ” is used loosely because reserves are spatially distributed176

throughout the plant, often in vacuoles, referring to all forms of C, N, and P that can177

be re-mobilized for growth or maintenance of other tissues. Carbon storage refers to non-178

structural carbohydrates of starches and sugars. Storage of N is often comprised of pro-179

teins and amino compounds (Millard & Grelet, 2010), whereas phosphate compounds180

are typical for phosphorus storage (S.-Y. Yang et al., 2017).181

Plants represented in FATES can acquire nutrients through several means: 1) up-182

take of mineral nutrients from soil solution, 2) symbiotic nitrogen fixation, and 3) re-absorption183

preceding litterfall. In PARTEH, each function is designed to be modular and interchange-184

able with alternative hypotheses. Here we describe the default options for these uptake185

processes.186

2.1 Acquisition through Symbiotic Fixation187

The carbon cost of symbiotic nitrogen fixation is modeled as an obligate (temper-188

ature dependent) increase in maintenance respiration (Houlton et al., 2008). Plants that189

are designated as nitrogen fixers generate a fixation rate Ṁf [kgN plant−1 day−1] by respir-190

ing carbon rf [kgC plant−1 second−1] at a rate that is a constant fraction ρf(pft) of all191

non-fixation fine-root maintenance respiration (Ryan, 1991) (non-growth) costs rm [kgC192

plant−1 second−1]. This simplification assumes that all resources driving nitrogen fix-193

ation are mediated through respiration, and those costs act as a surrogate for other costs194

such as building and maintaining nodules and feeding specialized bacteria. This repre-195

sents an obligate strategy because all plants of a Plant Functional Type (PFT) with a196

nonzero value of ρf(pft) constantly fix N and incur the respiratory cost of doing so. The197

representation of facultative nitrogen fixation strategies in FATES is left for future work.198
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The nitrogen fixation flux is accumulated on each sub-daily time-step (of duration ∆t =199

1800 seconds) over the total steps for the day td.200

rf = rm · ρf(pft)

Ṁf =

td∑
t

rfnf∆t

(1)

The rate of nitrogen fixed per unit carbon respired, nf [gN gC−1], follows the func-201

tional form by (Houlton et al., 2008). Calibrated constants are taken from (J. Fisher et202

al., 2010) (af1 = −6.25) and (Houlton et al., 2008) (af2 = −3.62, af3 = 0.27, af4 =203

25.15) and the soil temperature Tsoil is prognostic variable of ELM.204

nf = af1

(
e
af2+af3·Tsoil

(
1−0.5·Tsoil

af4

)
− 2

)
(2)

2.2 Plant Acquisition of Aqueous Soil Nutrients205

In both supported nutrient competition schemes (CB and RD, see below for de-206

tails), FATES cohorts compete with other cohorts, as well as microbes and mineral sur-207

faces (for phosphorus) for aqueous nutrients in each discrete soil layer j. (Note that the208

CB scheme does allow for occlusion of ammonium and nitrate in clay soils) Plants com-209

pete for 1) ammonium (NH4) with decomposer and nitrifier microbes, 2) nitrate (NO3)210

with decomposer and denitrifer microbes, and 3) phosphate (PO4) with decomposer mi-211

crobes and mineral surfaces.212

In the native ”big-leaf” vegetation representation in ELM, each functional type com-213

petes for nutrients as a group. In contrast, FATES enables many cohorts of different sizes214

and functional types, all to compete independently for resources with soil competitors215

(typical cohort counts on a site can number anywhere from tens to more than a thou-216

sand, depending on local biodiversity and modeler decisions on how to delineate func-217

tional groups and size-similarity). Both CB and RD schemes require each cohort to pro-218

vide a potential uptake rate, or uptake capacity, for each mineral nutrient species (M̂u,NH4(j),219

M̂u,NO3(j), or M̂u,PO4(j) units [kg m−2 s−1]). The actual net daily uptake flux Ṁu(s,j)220

[kg m−2 day−1] results from the competition schemes, which we denote with a generic221

“competition function” Γc(j,t). The Relative Demand (RD) (P. Thornton et al., 2007)222

method distributes nutrient uptake to competitors in proportion to their demands. It223

also provides controls to scale up or down the relative competitiveness of each entity when224

total mineralized nutrients are less than total demand. If the total demand exceeds avail-225

ability, all uptake rates are down-scaled to ensure that the scheme does not generate neg-226

ative soil N and P concentrations. The Capacity Based (CB) (Zhu et al., 2019) method227

utilizes a Michaelis-Menten approach to estimate the simultaneous uptake of compet-228

ing entities with half-saturation parameters, and is therefore influenced by the soil aque-229

ous nutrient concentrations. The CB model also accommodates phosphatase dynamics230

following (Wang et al., 2010). The ELM-FATES modeling coupling does enable these231

phosphatase dynamics, as well as resulting preferential phosphorus availability to the plants.232

The exact form of the competition functions and details about the schemes are described233

in Zhu et al. (2019).234

FATES calculates plant growth and allocation on a daily basis, hence, the total daily235

uptake for each cohort includes the sum of the uptake over each of the total number of236
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js soil layers and sub-daily time-steps (of duration ∆t seconds) over the total for the day237

td.238

Ṁu(N) =

js∑
j

td∑
t

(
M̂u,NH4(j) · Γc,NH4(j,t) + M̂u,NO3(j) · Γc,NO3(j,t)

)
∆t

Ṁu(P ) =

js∑
j

td∑
t

(
M̂u,PO4(j) · Γc,PO4(j,t)

)
∆t

(3)

The nutrient uptake capacity of a FATES cohort is defined by the per-plant fine-239

root biomass C(fr) [kg plant−1], the plant density np [plants m−2], the fraction of fine-240

root biomass in each soil layer ffr(j) (see Section Appendix C), and the maximum up-241

take rate per unit fine-root biomass νmax(pft). This parameter is unique to each min-242

eral nutrient chemical species (NH4, NO3, PO4) for each PFT represented by FATES243

[kg kg−1 s−1]. Cohort density and fine-root biomass are prognostic variables in FATES.244

M̂u,NH4(j) =νmax,NH4
· C(fr) · np · ffr(j)

M̂u,NO3(j) =νmax,NO3
· C(fr) · np · ffr(j)

M̂u,PO4(j) =νmax,PO4
· C(fr) · np · ffr(j)

(4)

Note that for the RD approach, the nitrate uptake capacity M̂u,NO3(j) is handled245

slightly different than equation 4. With RD, uptake for nitrogen happens sequentially.246

The uptake capacity for ammonium and nitrate are combined, and used to drive uptake247

first from the ammonium pool. This will fulfill some of the plant’s needs, and reduce the248

joint uptake capacity. The remaining joint uptake capacity is then applied to draw down249

the nitrate pool.250

2.3 Losses and Re-acquisition During Turnover251

FATES tracks the daily turnover from senescent tissues on live plants with a car-252

bon loss rate Ċt(o) and nutrient loss rates Ṁt(o,s) [kg plant−1 day−1] for all non-reproductive253

plant tissue pools: leaf, fine-root, sapwood, storage, and structural wood, for each co-254

hort. These turnover fluxes are non-episodic, and the rates are controlled by the turnover255

period parameter τ(o,pft) [years] associated with the plant’s phenological dynamics, which256

are PFT dependent. The storage, sapwood, and structural wood all share the same turnover257

rate which is associated with branch-fall. A module that explicitly tracks damage lega-258

cies and represents degraded crowns exists (Needham et al., 2022), but is not used here259

to reduce confounding model factors during analysis.260

Ċt(o) = C(o)/(365 · τ(o,pft))
Ṁt(o,s) = M(o,s)/(365 · τ(o,pft))

(5)

Plants re-absorb a portion of nutrients before leaf and fine-root tissues are shed dur-261

ing senescent turnover. This rate Ṁra(o,s) [kg plant−1 day−1] is drawn from the turnover262

rate, is directed towards plant storage M(so,s), and is removed from the litter mass flux.263
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There is no re-absorption during fire, and no re-absorption from wood tissues. This re-264

absorption happens at a constant proportion for leaves ωlf(s,pft) and fine-roots ωfr(s,pft)265

[kg kg−1] specific to each nutrient (N or P) and PFT. Plants with high re-absorption rates266

will require less nutrient acquired from other sources, and will generate litter with lower267

nutrient density per unit carbon. A description of how re-absorption rates are estimated268

is described in Section 3.1.269

Ṁra(lf,s) = Ṁt(lf,s) · ωlf(s,pft)

Ṁra(fr,s) = Ṁt(fr,s) · ωfr(s,pft)

(6)

Litter mass nutrient fluxes from senescent turnover of live plants follow the same270

proportion rules and constants as carbon for how they are proportioned into the labile,271

lignin and cellulose litter pools. For more details, see the FATES technical manual (FATES-272

Development-Team, 2019).273

2.4 Definition of Plant Organ Targets274

In FATES-PARTEH, plants grow (to the extent possible, as described below) their275

organs to preserve observationally-constrained allometric relationships. As the plant grows276

and increases in stature (defined by stem diameter at reference height d), these allomet-277

ric functions define a target carbon mass for each organ, C̀(o). The plant will always at-278

tempt to allocate resources such that mass in an organ matches the target (i.e. replace279

what has been lost), before it attempts to further grow in stature. The method of defin-280

ing carbon targets in FATES remains unchanged from (R. A. Fisher et al., 2015; C. D. Koven281

et al., 2020) for all organs except fine-root. Fine-root mass targets now vary as a func-282

tion of carbon and nutrient storage. This is a key new model mechanism introduced in283

this work and is explained in Section 2.6. Details on carbon targets and allometry func-284

tions for the other organs can be found in the FATES technical manual (FATES-Development-285

Team, 2019).286

Nutrient targets M̀(o,s) for leaf, fine-root, sapwood, and structural wood seek to main-287

tain a constant stoichiometry (i.e., constant P:C and N:C ratios), defined as parameter288

constants α(o,s,pft) specific to each plant functional type, element (N or P) and organ.289

M̀(o,s) = α(o,s,pft) · C(o) (o = lf, fr, sa, de)

(7)

Unlike the other organs, the nutrient to carbon ratio of the reproductive tissues and290

storage (o = re, so) are not defined directly by parameter constants. FATES, like many291

vegetation demography models, does not mechanistically resolve germination or other292

processes of plants below a minimum recruitment size (Hanbury-Brown et al., 2022);293

instead it assumes that a fraction of carbon flux allocated to reproduction emerges as294

new recruits at some time later. We extend this approach to nutrients as well. The sto-295

ichiometry of reproductive tissues is set to match the nutrient to carbon ratios of a newly296

recruited plant (i.e. a plant with the smallest trackable stem diameter d = dmin). This297

approach means that only the nutrients that are needed to produce recruits with a known298

stoichiometry are allocated to reproduction, and represents the optimal reproductive al-299

location stoichiometry that also satisfies mass conservation. FATES initializes newly re-300

cruited plants with no reproductive tissues, and they start “on-allometry” (i.e. when their301

actual mass matches the allometrically defined target).302

–10–



manuscript submitted to JAMES

α(re,s,pft) =

∑
M̀(o,s)∑
C̀(o)

(d = dmin, o = lf, fr, sa, de, so)

(8)

The target nutrient storage M(so,s) is a special case, because it is not associated303

with a specific tissue. Therefore the target is scaled (µ(s,pft)) based on the target nu-304

trient content of the leaves when “on-allometry”. Alternative hypotheses are available305

for users to test, allowing for storage capacity to scale off of any combination of other306

organs (e.g., sapwood, fine roots).307

M̀(so,s) = µ(s,pft) · M̀(lf,s)

(9)

2.5 Plant Allocation and Mass Balance Accounting308

Both the carbon and nutrient fluxes in the plant and soil systems are mass con-309

servative (i.e. all mass fluxes are accounted for and nothing is created or destroyed). Sup-310

plemental nitrogen and phosphorus are often added to the soil in the early years of a spin-311

up simulation. These effective ’accelerate’ the accumulation of nutrient pools in the soil,312

and the unresolved processes pf primary succession. These fluxes are tracked in the over-313

all balance as well. The FATES code performs mass-balance checks at both plant and314

landscape (i.e. contains all disturbance history patches in each FATES site) scale every315

day. The following rules are stated explicitly for nutrients M , but are also valid for car-316

bon C. The sum of daily allocated nutrient Ṁa(o,s) over all organs, should equal the dif-317

ference between the plant’s total gains for the day Ṁg(s) and losses due to exudation Ṁe(s).318

The total change in mass over the course of the day M(o,s) is therefore the difference be-319

tween what is allocated Ṁa(o,s) and lost in turnover Ṁt(o,s).320

∑
o

Ṁa(o,s) =Ṁg(s) − Ṁe(s)

Ṁ(o,s) =Ṁa(o,s) − Ṁt(o,s)

(10)

For nitrogen, the daily gain Ṁg(s=N) includes aqueous uptake Ṁu(s=N) and sym-321

biotic fixation Ṁf . As per the ELM soil biogeochemistry model, any nitrogen made avail-322

able by free-living fixers in the soil are assumed to be added directly to the aqueous NH4323

pool, and does not need to be explicitly included in this calculation.324

Ṁg(s=N) = Ṁu(N) + Ṁf325

Ṁg(s=P ) = Ṁu(P ) (11)326
327

The model considers three phases for allocation. In each phase, the mass pool for328

the daily gain Ṁg is reduced as portions of this mass are transferred into plant organs329

M(o,s). This phase proceeds sequentially in this order, as described next:330

• Phase 1: Replacement of Turnover331

• Phase 2: Stature Growth332

• Phase 3: Remainder and Overflow333
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2.5.1 Allocation Phase 1: Replacement of Turnover334

In the first phase, replacement of tissues lost to turnover is controlled by a prior-335

itization scheme, whereby a user controlled parameter indexed by plant organ δ(o) is used336

to assign priority. Organs with the highest priority have a δ(o) of 1, organs with the low-337

est priorities will have larger values of δ(o). A priority of 1 indicates the organ of inter-338

est has the first opportunity, along with other organs with that priority, to replace losses339

and thus increase the mass of the organ toward the allometric target (turnover losses shift340

organ masses ”off-allometry”). Other organs with incrementally increasing δ(o) are then341

allowed to replace losses while there is still mass in the daily gain pool Ṁg. The high-342

est priority organs (δ(o) = 1) have some special considerations to how they are applied343

(see Appendix Appendix B). This flexible scheme reflects persistent uncertainty over the344

prioritization of allocation by plants and in principle allows rapid hypothesis testing.345

The amount of nutrient Ṁa(o,s) (or carbon) sent to each organ is driven by the deficit346

between the actual element mass of the organ and its target mass M̀(s,o). We define a347

set of organs Θ1(p) (subscript 1 is for “phase-1” allocation”) at priority level p, and the348

fraction of the total allocation demand that can be filled fa(s) for all organs in this pri-349

ority level (bounded between 0 and 1). The allocation for each organ is simply its por-350

tion of the total replacement demand, scaled by the total replaceable fraction fa(s,p).351

fa(s,p) = min

1, Ṁg(s)/
∑
Θ1(p)

max
(
0, M̀(s,o) −M(s,o)

)
Ṁa(o,s) = fa(s,p) ·max

(
0, M̀(s,o) −M(s,o)

)
/
∑
Θ1(p)

max
(
0, M̀(s,o) −M(s,o)

)
(12)

With each successive allocation, mass is removed from the daily gain Ṁg(s).352

2.5.2 Allocation Phase 2: Stature Growth353

If mass remains in all of the daily gain pools (Ṁg(s=N), Ṁg(s=P ), and Ċg) follow-354

ing the replacement phase, the plant will grow in stature. The stem diameter will increase,355

the target masses of the plant organs (which are tied allometrically to diameter) will in-356

crease, and the mass of each organ will increase. All organs grow together as a group,357

but exceptions can occur for numerical reasons (this is discussed in Section Appendix358

D). This set of organs that are “on-allometry” are defined as set Θ2.359

The first task is to determine which of the three elements (C, N or P) is in short-360

est supply and will limit growth. We do this by estimating the mean stoichiometric ra-361

tios of the potential new plant growth. Note that to get the relative proportions of new362

mass allocated to the organs, we evaluate the derivative of the target carbon with re-363

spect to change in diameter d,
dC̀(s,o)

dd , for the organs in set Θ2, which can be retrieved364

the from allometric functions at the current stem diameter. The estimated mean stoi-365

chiometries (represented by the two summation terms in the brackets to the right of the366

Mg(s) term in Equation 13) are then used to transform the daily nutrient gain into an367

equivalent carbon Ċg,eq(s) gain.368

Ċg,eq(s) = Ṁg(s)

[∑
Θ2

dC̀(o)

dd
/

(∑
Θ2

α(ft,s,o)

dC̀(o)

dd

)]
(13)
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The minimum of the actual carbon gain Ċg and the two equivalent carbon gain pools369

Ċg,eq(s) then defines the carbon that is available for stature growth Ċsg.370

Ċsg = min(Ċg, Ċg,eq(s=N), Ċg,eq(s=P )) (14)

The carbon fluxes into each plant organ are solved via a set of coupled differential371

equations, conducted via numerical integration from bounds zero to Ċsg for each organ372

in set Θ2. The proportion of carbon gain directed to each organ is defined by the deriva-373

tive of the diameter-to-mass allometry functions, as a fraction of the sum of all deriva-374

tives in set Θ2. The derivatives of the target masses with respect to diameter
(

dC̀(o)

dd

)
375

are readily available by differentiating the allometry functions. These are coupled equa-376

tions because they are all simultaneously drawing down Ċsg together, and the deriva-377

tives are continuously changing as they grow.378

Ċa(o) = Ċa(o) +

∫ Ċsg

0

[
dC̀(o)

dd
/

(∑
Θ2

dC̀(o)

dd

)]
dĊsg

(15)

To handle the allocation of nutrient gains, the same allocation rules from Phase379

1 are applied here in Phase 2, using the updated carbon biomass of each organ just ex-380

plained. Refer to Equations 7 and 12. It should be noted that this modelling hypoth-381

esis holds the stoichiometries of plant organs (aside from storage) to the values provided382

by the parameter constants α(ft,s,o). Small deviations may periodically occur, but they383

will be corrected automatically by the nature of the algorithm.384

2.5.3 Allocation Phase 3: Remainder and Overflow385

Daily gain pools (Ṁg(s=N), Ṁg(s=P ), and Ċg) that were not limiting stature growth386

or replacement may still be available and must be allocated to storage or removed from387

the plant. Unlike other pools, we allow storage to exceed the target, up to a maximum388

“overflow” capacity that is based on the target and a user-defined PFT-level parame-389

ter constant µov(pft). An overflow flux Ṁov(s) captures this transfer from gains to stor-390

age; carbon fluxes follow the same rules as nutrients and are omitted for simplicity.391

Ṁov(s) =max(0,min(M̀(so,s)(1 + µov(ft))−M(so,s), Ṁg(s)))

Ṁg(s) =Ṁg(s) − Ṁov(s)

Ṁa(so,s) =Ṁa(so,s) + Ṁov(s)

(16)

If the storage overflow capacity is full and there are still gains (i.e. Ṁg(s=N) > 0)392

that have not been allocated, the plant will exude residual nutrient Ṁe(s) into the metabolic393

(i.e. from labile sources, contains no lignin or cellulose) litter pool with vertical profile394

fluxes proportional to the fine-root density of each soil layer. If excess carbon remains,395

there are two options to get rid of the excess Ċe. The default method is to burn it off396

as autotrophic respiration. Alternatively, users can also opt to exude the carbon with397

the same partitioning rules along with the nutrients. As will be described in the next398

section, this model features optimization process that seeks to balance uptake of carbon399

and nutrients, which will also serve to minimize these excesses. This is evaluated in the400

analysis.401
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2.6 Dynamic Fine-root Biomass Response402

Along with symbiotic relationships with nitrogen-fixing bacteria, plants also mod-403

ify their network of fine-roots to regulate uptake of mineralized nutrient (Forde & Lorenzo,404

2001). Some plant and ecosystem models have utilized this behavior for some time (Thornley,405

1995; de Kauwe et al., 2014), and a dynamic fine-root optimization scheme is detailed406

here as well. This scheme seeks to adjust resource allocation above- and below-ground407

in order for plant growth to be equally limited by carbon, nitrogen and phosphorus (Bloom408

et al., 1985). If the resource limitations on growth are balanced, the relative amount of409

carbon in storage (i.e. mass of carbon currently in storage C(so) divided by the target410

amount of carbon storage C̀(so)) will match the relative amount of nutrient in storage411

(i.e. mass of nutrient currently in storage M(so,s) divided by target amount of nutrient412

storage M̀(so,s)). Given the high complexity of within-plant signalling mechanisms that413

govern allocation and growth of leaf and root tissues, we do not try to mechanistically414

represent these processes, and instead aim to tractably represent with as few parame-415

ters as possible the net effects of these mechanisms via the optimality-based approach416

developed here.417

We quantify a plant’s carbon to nutrient balance with the term fcn, see Equation418

17. The term is calculated for the two nutrient elements and takes the maximum, which419

represents the nutrient with lowest relative storage. A natural log transform is applied420

for several reasons: 1) the metric becomes centered on zero, where carbon limited plant421

is less than and a nutrient limited plant is greater than zero, 2) by not being a ratio, it422

can be averaged and/or smoothed, and 3) enables additive properties in the algorithm423

that optimizes fine-root (explained below).424

fcn = ln

(
N,P
max

s

[
C(so)/C̀(so)

M(so,s)/M̀(so,s)

])
(17)425

Fine-root biomass is living tissue that both respires (where maintenance respira-426

tion rm is a function of mass, nitrogen concentration in the tissue, and temperature, fol-427

lowing (Ryan, 1991)) and requires continual replacement of losses. An increase in fine-428

root mass will therefore result in more respiration and lower carbon use efficiency per429

unit leaf area, but it will also increase capacity for acquiring mineralized nutrients in the430

soil (recall Equation 4). This is visualized in Figure 3. Thus, positive values of fcn will431

drive fine-root growth, and negative values of fcn will drive fine-root reductions.432
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Figure 3. Visualization of the dynamic interaction between differential carbon-nutrient stor-

age and fine-root growth. A plant (left) with proportionally more fine-root will tend to have

decreased carbon allocation and increased nutrient allocation, than a plant (right) with propor-

tionally less fine-root. The algorithm presented here seeks to balance these allocations through

modifying fine-root growth. Illustration by Diana Swantek, Lawrence Berkeley National Labora-

tory.

In the FATES allometric model, the fine root target is defined by its proportion-433

ality λ with target leaf biomass C̀(lf). The target leaf biomass is defined by the plant’s434

allometry (function of diameter), for details see the FATES technical manual (FATES-435

Development-Team, 2019).436

C̀(fr) = λ · C̀(l) (18)437

In previous versions of FATES, the proportionality λ between leaf and fine-root was438

a constant user specified parameter. Here, we create an algorithm where it is allowed to439

be dynamic, and it’s value is optimized to result in a differential carbon to nutrient stor-440

age fcn that tends towards zero. This system of carbon and nutrient regulation is sum-441

marized in Table 2.442
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condition root response plant response

high/positive fcn → λ ↑ , C(fr) ↑ → rm ↑ , Ṁu ↑, CUE ↓
low/negative fcn → λ ↓ , C(fr) ↓ → rm ↓ , Ṁu ↓, CUE ↑

Table 2. Table describing the plant’s response to the fcn storage metric. Relatively high and

positive fcn drives increases in the fine-root bimoass target, which drives increases in fine root

biomass, which results in higher respiration (lower carbon use efficiency CUE) yet increased up-

take. The reverse is true for low and negative fcn status (ie proportionally high nutrient).

In early iterations of developing this hypothesis, we found that a linear model be-443

tween λ and fCN was prone to over and undershooting an optimal solution, leading to444

oscillations of λ in steady state climate conditions. To suppress the oscillatory behav-445

ior, we included the temporal derivative of fCN . With this, the methodology became a446

reduced form of a Proportional Integral Derivative (PID) “control-loop” system. In this447

particular example, fcn is the “process variable” which is driven by a “set-point” (λ).448

PID controllers also contain an integral term along with the proportion and derivative449

term. Each of the three terms is given a scaling coefficient, see Equation 19. The cal-450

ibration of the controller is discussed further in Section 3.3.451

λt = λt−1 +Kp(pft)fcn +Ki(pft)

∫
fcndt+Kd(pft)

dfcn
dt

(19)

2.7 Software Features452

The processes described here are encoded in a modular and extensible software struc-453

ture. It is modular because the software for the plant algorithms do not reference data454

structures from the FATES (or other) model and uses a lightweight coupler to commu-455

nicate with FATES. This approach allows the plant model to be ported to any terres-456

trial biosphere model that uses a cohort or individual plant type of scaling approach. It457

is extensible because the software is written so that other configurations of plant organs458

(e.g. leaf spatial layering, storage pools with different functions, mycorrhizae, etc) and459

chemical elements (e.g. Potassium, Magnesium, etc) can be readily adapted, if the user460

can provide relevant parameter constants and the surrounding terrestrial biosphere model461

can accommodate the boundary fluxes. Further, the FATES model code that processes462

litter fluxes has been written to loop over the self-describing data structures for the chem-463

ical elements present (instead of explicitly defining new variable primitives for each mass464

pool or flux associated with a chemical species).465

3 Model Calibration and Evaluation466

An evaluation of the new model mechanics is performed via simulations at the Smith-467

sonian Tropical Research Institute’s Barro Colorado Island (BCI) site in Panama. The468

BCI site is conducive to evaluating a nutrient enabled terrestrial biosphere model be-469

cause it has an extensive 100 year history of ecological monitoring and analysis in ar-470

eas including forest demography and census (Condit et al., 2017), growth and mortal-471

ity (Wright et al., 2010), plant allometry (Mart́ınez Cano et al., 2019; Cushman et al.,472

2021), nitrogen fixation (Wieder & Wright, 1995; Batterman et al., 2013), litter and soil473

biogeochemistry (Mirabello et al., 2013; Yavitt et al., 2011; Yavitt & Wright, 2001; Pow-474

ers et al., 2005) and many more. It also stands out among tropical monitoring sites for475
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the long (> 30 year) and quality controlled meteorological data that is used to drive the476

FATES model (Patton, 2019a, 2019b, 2019c, 2019d; Faybishenko et al., 2018).477

Over the course of our analysis, we found that evaluating both nitrogen and phos-478

phorus dynamics simultaneously expanded our scope beyond what can be covered in one479

manuscript. We therefore decided to focus solely on evaluating nitrogen limitations, given480

the following considerations: 1) the model mechanics for phosphorus within the plant481

are almost exactly the same as with nitrogen with the exception of different parameter482

constants; 2) nitrogen has a more complicated representation in the model because it has483

two soil mineral pools and can be fixed by the plant; and 3) there is a companion pa-484

per evaluating phosphorus dynamics at a different site (Wei et al. in prep). While pre-485

vious research at Barro Colorado Island has found phosphorus and potassium limitations486

to vegetation growth (Wright et al., 2011), we still find this an excellent site to evalu-487

ate the model mechanics in a carbon-nitrogen framework. This is because of wealth of488

previously mentioned observations at the site, and also that previous experiments with489

FATES are available to provide a solid calibration basis (C. D. Koven et al., 2020). Fur-490

ther, the objective here is not to make predictions, but rather determine if the model can491

capture pattern responses in a test-bed that has realistic parameter constraints and bound-492

ary conditions.493

Turning off phosphorus limitations is straightforward and achieved by 1) provid-494

ing a supplementation term that feeds phosphorus directly to soil decomposers, plants,495

and mineral surfaces so that their nutrient demands are completely met and 2) using a496

plant uptake affinity parameter νmax(s=P ) that is excessively efficient (large). This re-497

sults in the plants ignoring phosphorus effects on the fine-root biomass optimization, ac-498

quiring more than enough phosphorus for growth requirements and therefore releasing499

the excess back to the soil and litter.500

3.1 Initial Parameter Calibration501

A set of model parameter constants derived from previous research were used as502

a basis for investigating the sensitivity and function of newly introduced parameters. C. D. Koven503

et al. (2020) performed a parameter sensitivity analysis of the pre-existing carbon-only504

ELM-FATES at BCI, where they generated an ensemble of 576 parameter combinations505

to explore model response to twelve plant traits. Their model output was retrieved and506

compared at different size classes to measurements of growth increment (centered at 7.5,507

12.5 and 40cm), mortality rate (centered at 5.5 and 30 cm), and integrated total basal508

area (< 30 cm, < 70 cm and all) (Condit et al., 2017). Only two size classes were used509

for mortality (compared with 3 for basal area and growth increment), to compensate for510

fewer data points (observations) associated with mortality. Scalar values of leaf area and511

gross primary productivity (GPP) were also compared (Ely et al., 2019). This totals 10512

values that can be compared: 10 = 2 size classes of mortality + 3 size classes of basal513

area + 3 size classes of growth increment + 1 for leaf area and + 1 for GPP.514

For each ensemble member i and each of these 10 comparison points (subscript j),515

a difference between the observed and modeled x(i,j) were aggregated to a single fitness516

metric ϵi for each ensemble member, by summing the difference squared between the mod-517

eled and observed variables, divided by the variance of the difference across across en-518

sembles. The parameter set associated with the simulation that minimized the fitness519

metric was used as a basis for simulations described here, a comparison of that param-520

eter set with data is provided in Figure 4.521
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∆x(i,j) = xobs(j) − x(i,j)

ϵ(i) =
∑
j

(
∆x(i,j)

)2
/σ∆x(j)

(20)

Figure 4. Comparison of observations with the most optimal ELM-FATES parameter set

from the ensemble of simulations generated in (C. D. Koven et al., 2020).

Some of the parameters described in Table A1, organ stoichiometries αo,s,pft and522

organ turnover rates τo,pft, are also derived from the optimization of output (C. D. Koven523

et al., 2020). For nutrient enabled simulations, there are several new parameter constants524

that must be estimated. The methods for estimating the parameter constants for this525

study are explained here:526

ωlf(N,pft) Leaf re-absorption fractions are set at 0.45, and are derived from measure-527

ments of leaf litter and live on-tree leaf stoichiometries at BCNM (unpublished528

dataset provided by S Joseph Wright).529

ωfr(N,pft) Evidence of root re-absorption of N and P is sparse, but has been observed530

in extratropical sites(Nambiar, 1987; Freschet et al., 2010). It is also believed that531
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if roots do not actively retranslocate nutrients before senescent turnover, some por-532

tion of nutrient in the newly made root litter will be made available for plant up-533

take by mycorrhizae. We assume a 0.25 fine-root re-absorption fraction of nitro-534

gen on senescence. Given this uncertainty, this modeling framework could be used535

in further studies to better understand the sensitivity of different re-absorption536

assumptions on ecosystem response.537

δ(o) We assign leaves and fine-roots the highest replacement priority, followed by stor-538

age and then sapwood and structural wood. We view other prioritization group-539

ings as alternative modeling hypotheses that can be explored in further study.540

µ(N,pft),µov The parameter that controls the size of the nitrogen storage target µ(N,pft),541

and how much storage overflow is allowed µov is explored in experiment IV (see542

Table 3 and Section F2). Understanding plant nutrient storage is a difficult, but543

there is some thought that plants store enough nutrient for seasonal use (Millard544

& Grelet, 2010). As a base assumption, for all other experiments, we assume the545

overflow is 100% of the target, and target nitrogen storage is 1-times the size of546

total nitrogen bound in leaf tissues.547

ρf(pft) The maintenance respiration surcharge fraction for obligate symbiotic dinitro-548

gen fixation is explored in experiment VII (See Table 3 and Section 3.5. Symbi-549

otic fixation is turned off in all other experiments, and total ecosystem fixation550

is used as a surrogate in those cases.551

νmax(N) Nitrogen uptake efficiency was viewed as a model calibration parameter, and552

not something directly determined via field measurements. Although calculations553

based on field inventory data provided a rough starting point. A spectrum of up-554

take efficiencies were tested and model output was evaluated for basal area com-555

parable to field observations ( 30 m2 ha−1). For relative demand soil competition556

mechanics, this resulted in a base value of νmax(N) = 5e−9 [gN gC−1 s−1]. Sen-557

sitivity is evaluated in experiment VIII. The capacitance based competition nu-558

trient scheme has a much smaller actual/potential uptake ratio due to a different559

algorithm, and thus we arrived at higher values of νmax(NH4,NO3) = 1.75e−7. Fur-560

ther details are provided in Experiment IX.561

Kp(pft),Ki(pft),Kd(pft) The calibration and sensitivity of the PID scaling parameters562

are covered in Experiment I and II (see Table 3 and Section 3.3).563

3.2 Description of Experiments and Simulations564

We conduct a series of experiments to elucidate the model’s behavior and param-565

eter spaces that focus on nutrient dynamics. A list of the experiments and the simula-566

tions used in each is provided in Table 3.567

Some simulations are “spin-ups”. In these simulations, FATES vegetation is ini-568

tialized with saplings (if more than 1 plant-functional type is present, the abundances569

are equal). For the first 30 years of the simulation, nitrogen is added to the soils to ac-570

commodate the potential uptake capacity of the plants and microbes that is not met by571

the existing aqueous nitrogen in the soil (i.e. nitrogen limitations are removed from all572

competitors). After this 30 year phase, nitrogen then accumulates in the system through573

the natural mechanisms of deposition and fixation (fixation is the dominant input in the574

system and evaluated further). The modeled decomposition process in this phase uses575

increased rate constants (often referred to as Accelerated Decomposition (P. E. Thorn-576

ton & Rosenbloom, 2005)). The atmospheric CO2 concentration in spin-ups is fixed at577

pre-industrial levels (290 PPM). Eventually, the nitrogen and carbon content of the soils578

reaches an equilibrium, as the vegetation evolves towards a mature demographic (quan-579

tified by a steady basal area distribution across size and functional types) and the lit-580

ter fluxes from the vegetation reaches a steady state.581

The objective of several spin-up simulations were to provide an initial-condition582

for industrial-era simulations with transient CO2 concentrations. In those, we determined583
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that the spin-ups had reached steady-state because the log of the absolute value of Net584

Biome Productivity had reached very small values (approx 10−4 [kgC m−2 year−1]) (C. Koven585

et al., 2013).586

Industrial-era simulations used normal (un-accelerated) decomposition rate con-587

stants, initialized size and age structure of vegetation from preceding spin-up simulations,588

and likewise initialized organic soil C and N pools using a multiplier of the values passed589

in from the preceding spin-up simulations. In some experiments where simulations were590

evaluated into the future, CO2 concentrations follow from scenario SSP2-4.5.591

All simulations utilized the 13-year (2003-2016) meteorological record from Faybishenko592

et al. (2018) to provide ELM-FATES with rainfall, down-welling solar radiation, down-593

welling thermal radiation, atmospheric pressure, humidity, wind-speed and surface tem-594

perature. The simulations were all much longer than the meteorological record, so the595

forcing was looped. Most experiments made use of the relative demand competition scheme,596

solely because this approach is mathematically and conceptually simpler, which is help-597

ful in probing the complexities of the plant dynamics it is coupled with. The final ex-598

periment uses the capacitance based scheme because it was effective at maintaining aque-599

ous soil nutrient pools under high demand from competitors, as well as to see if its dy-600

namics were sensible and coupled correctly.601

Experiment Description Competition Period Section
Scheme Period Section

I Single cohort simulations RD 150 year spin-up 3.3
for controller sensitivity

II Competition based controller RD 1000 year spin-up 3.3
calibration RD

III Evaluation of base RD 500 year spin-up + 300 3.4
parameterization RD year industrial-era

IV Sensitivity to storage capacity RD 500 year spin-up F2
V Sensitivity to sub-module RD 500 year spin-up F3
V hypotheses
VI Sensitivity to free-living RD 500 year spin-up + 300 F4

fixation hypotheses year industrial-era
VII Evaluation of competition RD 500 year spin-up 3.5

between symbiotic fixers
and non-fixers

VIII Evaluation of interplay between RD 500 year spin-up + 300 3.6
uptake efficiency (νmax(N)) year industrial-era
and soil N availability year industrial-era

IX Evaluation of fine-root biomass CB 500 year spin-up + 300 3.7
estimates against field data year industrial-era

Table 3. List experiments, a brief description, the ELM nutrient competition scheme used

(Relative Demand RD or Capacitance Based CB), the simulations periods used for each, and the

section.

3.3 Experiments I and II: Controller Calibration602

The three terms in the PID control system serve distinctly different functions. The603

proportion term serves to push the process variable back towards its target value (fcn =604

0) when there is a large difference between the current and target value. The derivative605

term serves to promote stability by suppressing rapid change in the process variable. The606
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integral term is most useful in reducing small and/or persistent biases between the pro-607

cess variable and its target; as the bias grows over time it will exert greater influence to608

change the set variable. In testing the PID controller and exploring all three terms, we609

were able to achieve stable results without the integral term, so we decided to set it’s610

scaling constant Ki to zero for this study.611

This system of nutrient cycling is fairly complex, with many plant and soil actors612

competing for and cycling resources, all amongst changing meteorological conditions. The613

plants are not experiencing a steady availability of nutrients for acquisition, and thus the614

relationship between controller set point (root proportion λ) and the process variable615

(storage ratio fCN ) are continually experiencing perturbations. To reduce the impact616

of these perturbations in destabilizing the control system, we apply a multi-day smoother617

to the derivative term. We use simple exponential smoothing where the future smoothed618

value Xt+1 is updated by the instantaneous value Y , the previous smoothed value Xt619

and a weighting factor D synonymous with the number of time-points (days) over which620

to weight the instantaneous variable: Xt+1 = Xt ·(1−1/D)+Y ·(1/D). In the experi-621

ments described here, we apply an D = 10 day smoother. We also tested 5 and 20 day622

smoothing windows. Ultimately, reasonable controller response was found with all win-623

dows depending on the strength of the scaling constants.624

In Experiment I, special reduced complexity simulations were conducted over a two625

dimensional log-scale grid search of the Kp and Kd terms from Equation 19. These re-626

duced complexity simulations turned off recruitment and disturbance, which resulted in627

a simulation of a single plant cohort over a 100 year life-cycle trajectory. Each simula-628

tion was assessed for the variance and mean of the process variable fCN(N) (Figure 5),629

leaf to fine-root biomass multiplier λ (set point, Figure F1) and growth increment (an630

indicator of optimization of resource use, Figure F2).631
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Figure 5. Mean and variance of the relative storage of carbon to nitrogen variable (and Pro-

portion Integral Derivative controller process variable) fCN(N), over a range of proportion and

derivative controller settings. The values next to “v” and “b” indicate the ascending rank of

each parameter couplet for bias and variance. Test v1 and b1 had the lowest variance and biases.

Couplets designated A,B,C and D are used in the follow-up simulation.

The grid search shows that the model simulations are stable and viable (i.e. the632

plants survive and can adequately adapt their root sizes to become productive) over a633

large range of parameters (> 2 orders of magnitude each). However in Experiment II,634

to determine which parameters offer a solution that is most in line with the optimality-635

based idea that underlies this approach, we create a simulation with four different func-636

tional types of plants that compete against each other for resources. A comparison of637

their basal area trajectories, and the root proportion λ of newly recruited plants in open638

and exposed sunlight are shown in Figure 6. The plant functional types have the same639

parameters (i.e., traits) and initial seedling density (this is a spin-up style simulation)640

with the exception of different PID controller constants. These parameter couplets are641

labeled A, B, C, and D in Figure 5.642
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Figure 6. ELM-FATES spin-up simulation output containing four competing plant functional

types, labeled A-D. These four PFTs have identical traits and parameters, with the exception of

their propotion and derivative PID parameters. The values of their PID parameters are provided

in 5. The right hand panel shows the mean root proportionality λ term for the different PFTs for

open patch recruits. Patches that are open, do not have closed canopies and thus light availabil-

ity to recruits. Recruit λ values are shown to avoid any differences associated with differences in

size structure.

The result of Experiment II shows that the “C” PID parameter couplet was most643

effective at rapidly adjusting to the competitive resource environment and homing in on644

a reasonable λ value fairly quickly (see right panel of F1), thus initially occupying the645

canopy. The “B” and “D” parameter couplets, while not dominating during any phase,646

persisted through the simulation. The “A” PID parameter couplet eventually out-competes647

“C” to dominate the canopy, and was ultimately chosen as a default set of PID constants648

moving forward. The complex competition and coexistence dynamics of the four differ-649

ent parameter couplets prompts the question as to whether the responsiveness of a plant650

to adjust to nutrient and carbon needs is a part of how plants navigate and find niches651

in the multidimensional coexistence space, and this responsiveness might align with other652

traits that determine successional dynamics.653

3.4 Experiment III: Towards an Optimality-Based Root Allocation Model654

In experiment III, a single spin-up style simulation is conducted, using a single plant655

functional type, and the base set of parameters. The purpose of this experiment is to656

view the emergent stand structure of the simulated vegetation under the new nitrogen657

constraints and fine-root biomass optimization algorithm.658

In Figure 7, size-structured estimates of Basal Area, Above Ground Biomass, and659

the leaf to fine-root proportion term λ partitioned into canopy and under-story plants,660

are projected across time. All plots show the signature of the spin-up simulation, where661

over the course of 400 years the trees grow into the larger size classes from saplings.662

By the completion of the simulation, there is a fairly uniform distribution of basal663

area across size classes. There is also a signature of inter-annual variability at any given664

size. This feature emerges due to the internal dynamics of the cohorts, as similar cohorts665

fuse together, and grow from one size-classification to a larger one. Other simulations666
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(not shown) were conducted that removed the inter-annual meteorological signal by loop-667

ing a single year of data, and similar patterns emerged there as well. AGB dynamics are668

similar but with more strongly weighted towards larger trees, as they contain a greater669

proportion of the ecosystem-level biomass than basal diameter.670
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Figure 7. Evaluation of the size structure of vegetated biomass accumulation, and the size

and canopy position structure of the fine-root proportion term λ [gC fine-root gC−1 leaf].

Canopy plants display distinctly larger λ values than understory plants at similar size classes.

Notably, the λ values in the canopy plants are distinctly and consistently larger than671

those in the understory. Canopy plants have greater access to light and have increased672

primary productivity compared to their understory neighbors. This increased produc-673

tivity places a greater demand on nitrogen acquisition to keep pace with more rapid con-674

struction of plant tissues. Moreover, the increased productivity of the canopy plants pro-675

vides adequate carbon reserves to pay for the increased respiration associated with more676

fine-root biomass. Plants that are in the understory have limited access to light and sub-677

sequently lower productivity. Without the carbon to build new tissues there is a corre-678

spondingly lower demand on nutrients to match the construction costs of the carbon. This679

potentially triggers a response in the plant to decrease investments (respiration costs of680

fine-roots) in the acquisition of nutrients it doesn’t need.681

The massive biological diversity of tropical forests is often associated with a mul-682

tidimensional competition space. Different species allocate their resources into different683
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organs and traits, features that maximize their success in different niches. A classic ex-684

ample is the growth versus mortality trade-off (Wright et al., 2010). There are exam-685

ples of species at BCI that bide their time in the understory for many years without growth,686

and then accelerate growth when light conditions change. This difference in strategy be-687

tween understory and canopy plants is captured in ELM-FATES, and demonstrated by688

decreased proportions of fine-root biomass λ in understory plants.689

3.5 Experiment VII: Incorporating Cohort-Scale Symbiotic Fixers690

In Experiment VII, we test if the symbiotic nitrogen fixation module can gener-691

ate an expected ecosystem response. One way to test this is to see if a nitrogen-fixing692

plant functional type can coexist with a non-fixing functional type in simulation. In this693

experiment, the two plant functional types have the same traits with the exception of694

the symbiotic fixing parameters themselves. This test is a simple proof of concept, and695

ignores the multifaceted trait space that fixers and non-fixers may occupy.696

By introducing symbiotic fixation to the simulation, the pre-existing total ecosys-697

tem fixation scheme (Cleveland et al., 1999) must be modified to only represent free-living698

fixation. This approach is similar to the approach used by CLM5 (Lawrence et al., 2020),699

which identifies that the original total ecosystem fixation rates estimated in Cleveland700

et al. (1999) projected low and high ranges of fixation. Here, we downscale the NPP-derived701

total ecosystem nitrogen fixation rate by a multiplicative scaling factor of 0.2.702

For plants to achieve co-existence in this model configuration, the unit cost of sym-703

biotic fixation must be higher than the uptake of aqueous nitrogen at its potential rate704

(i.e. uptake when aqueous nitrogen is abundant and no source side limitation exists), yet705

must be lower than aqueous uptake under some amount of limitation. Otherwise, sym-706

biotic fixers would always be more efficient and out-compete non-fixers, not only when707

nitrogen from the mineralized soil pool is limited. Menge et al. (n.d.) has made this type708

of argument, pointing out that the energetic costs of breaking the triple bonds in N2 and709

supporting the nodules in symbiotic fixers are thought to be costly. The expectation is710

that the two functional types will reach an equilibrium in their relative proportion, where711

the symbiotic fixers will support a mineralized nitrogen pool to an amount where the car-712

bon costs of actual plant nitrogen uptake balance with that of fixation.713

In ELM-FATES, we assess the unit carbon efficiency [gN gC−1] (inverse of cost)714

for potential mineralized nutrient acquisition, as the sum of the potential uptake rate715

of the plant νmax(NH4,pft)+νmax(NO3,pft) [gN gC−1 s−1] (for RD based competition),716

divided by the maintenance respiration and replacement costs of the roots [gC gC−1 s−1].717

Note this is the steady state rate, and ignores the initial cost to grow the root. The unit718

cost of fixation is directly quantified by Equation 2, (Houlton et al., 2008; J. Fisher et719

al., 2010). In the base parameterization, the carbon efficiency for potential mineralized720

uptake was lower than the fixation efficiency. We found that by increasing the total po-721

tential uptake rate νmax(NO3) + νmax(NH4) and increasing the fine-root lifespan τ(fr)722

from 1 to 4 years, the potential mineralized uptake efficiency exceeded that of fixation,723

see Figure 8.724
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Figure 8. Comparison of the unit carbon efficiency for obligate symbiotic fixation (Houlton

et al., 2008; J. Fisher et al., 2010) versus potential aqueous nitrogen uptake under the base pa-

rameterization and one with increased efficiency. Carbon costs for uptake efficiency consider

maintenance respiration and replacement carbon costs, but not the initial investment.

The result of the test simulation is shown in Figure 9. The symbiotic-fixing PFTs725

were set to apply a 10% surcharge on fine-root maintenance respiration to fuel symbi-726

otic fixation. This experiment also reduced the external N supplementation period from727

30 to 5 years, to ensure that the symbiotic fixers had more control over the system N728

supply.729

Fixers and non-fixers do show coexistence as demonstrated by their total above-730

ground biomass. The fixers have lower fine-root biomass fractions λ, which indicates their731

decreased need for mineralized nitrate and ammonium. Very early in the simulation, the732

non-fixers are more efficient due to the plentiful mineralized soil nitrogen. But after the733

supplementation period, plant mineralized nitrogen uptake becomes more limited (see734

bottom right panel), which then creates a competitive opportunity for the fixer PFT to735

emerge.736

As a whole (considering both PFTs), symbiotic fixation accounted for about 5-10%737

of total plant acquisition, and slightly more than 50% of the total nitrogen fixed by the738

ecosystem (including free-living). The latter is roughly close to what is expected, Batterman739

et al. (2013) suggested that symbiotic fixation was the dominant mode of introducing740

nitrogen to the site at BCNM, but within the same order of magnitude. The proportion741

in the simulation could be increased by further regulating uptake efficiency parameters742

or scaling down the free-living fixation rate. There are also different symbiotic fixation743

temperature response functions available (Bytnerowicz et al., 2022), and future ELM-744

FATES testing may use these.745
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Figure 9. ELM-FATES simulation with coexistence between a fixer and non-fixer plant func-

tional type. The symbiotic fraction of acquisition, refers to the fraction of plant acquisition that

is from symbiotic-fixation, along with mineralized nutrient uptake. The fraction of generation

looks at the relative contribution of symbiotic fixation to total nitrogen fixed by the system, also

considering free-living fixation.

It takes about 500 years in this simulation for the fixer and non-fixer types to reach746

an equilibrium. Yet, the results are an average of the whole landscape, and not a rep-747

resentation of how a single plot of land recovers from a disturbance. Batterman et al.748

(2013) estimated that symbiotic fixation peaked near the first decade following a distur-749

bance, but after several decades total fixation flux dwindled considerably. This suggested750

that symbiotic fixers play an important role in developing the nutrient environment in751

newly disturbed lands, but perhaps they became less competitive as the nitrogen built752

up in the soil and vegetation over time. The ELM-FATES model does have the ability753

to simulate disturbance and discretely track land of different ages (called “patches”) and754

the plants that inhabit them. However in the current version of the model, the soil col-755

umn and its biogeochemistry (i.e. nitrogen and phosphorus concentrations in all forms)756

are the same across patches of all ages, as the patch structure only represents hetero-757

geneity in the aboveground environment. In future versions of the model it would be in-758

teresting to see if the competitive dynamic of symbiotic fixers and non-fixers can be achieved759

over the time-scales of decades where each patch has a dedicated nutrient environment760

in the soil.761
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3.6 Experiment VIII: Sensitivity to Parameter Constants that Control762

Nutrient Availability and Affinity763

Experiment VIII tests model response to the intersection of three forces: nitrogen764

availability, plant nitrogen use efficiency and increasing atmospheric CO2 concentration.765

Nitrogen use efficiency is modified by perturbing the plant functional parameter constant:766

unit potential nitrogen uptake rate per mass of fine root (efficiency) νmax(pft,N) [gN gC−1].767

High values of νmax(pft,N) (highly efficient) will acquire more nitrogen for less fine-root768

carbon. Nitrogen availability is controlled by applying a constant multiplicative scaling769

coefficient β to the NPP-based total ecosystem fixation function. The β parameter is not770

listed in Table A1, and is not considered a component of this model because existing to-771

tal ecosystem fixation schemes were used in this manuscript and the scaling coefficient772

is only used here to test sensitivity. Four parameter combinations are provided in Ta-773

ble 4.774

low plant high plant
uptake affinity uptake affinity

low fixation νmax(N) = 5e−9, β = 0.5 νmax(N) = 2.5e−8, β = 0.5
high fixation νmax(N) = 5e−9, β = 2.0 νmax(N) = 2.5e−8, β = 2.0

Table 4. Parameter combinations for the four simulations in Experiment VIII. Each sim-

ulations used perturbations to only nitrogen acquisition efficiency νmax(pft,N) and a scaling

coefficient on total ecosystem fixation β. The red (compared to blue) indicates a higher nitrogen

availability in the system. The darker shade (compared to lighter) indicates a higher plant uptake

efficiency.

In all four simulations, there are several patterns that offer straightforward expla-775

nations. Increased productivity associated with higher CO2 concentrations drive higher776

basal area (biomass) and leaf area, as well as increased demand on nitrogen acquisition777

to meet greater organ construction costs. Mineralized (aqueous) nitrogen depletes over778

time, as the new additions to the system (fixation) can not keep pace with the increased779

uptake. Faced with a greater need for (higher production) and a reduced supply of aque-780

ous nitrogen, the plants respond by increasing uptake capacity by building more fine-781

roots (λ). With decreased aqueous nitrogen and higher root mass, the unit uptake of ni-782

trogen per unit biomass decreases. The increase in CUE experienced by the plants is di-783

minished (and mostly reversed) when the mineralized nitrogen pools fully deplete, and784

the plants are forced to respire newly assimilated carbon that cannot be used to build785

tissues.786
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Figure 10. Time series model output for the four simulations described in Experiment VIII.

Line colors match simulations described in Table 4, where: “lv-lf” is low-affinity low-fixation,

“hv-lf” is high-affinity low-fixation, “lv-hf” is low-affinity high-fixation and “hv-hf” is high-affinity

high-fixation”. The CO2 forcing signal uses observed industrial-era concentrations and follows the

SSP2-4.5 scenario prediction to 2100. With no symbiotic fixation, Free N Fixation is synonymous

with total fixation and is the primary source of nitrogen input. Carbon use efficiency (CUE) is

the ratio of net primary production over gross primary production, where NPP accounts (i.e.

subtracts) for any extra respiration of “excess carbon”, that which couldn’t be allocated due to

nitrogen limitations. This extra respiration is also captured by “C Allocation Inefficiency”, the

fraction of grams of excess carbon burned per grams NPP. Plant Unit N Uptake refers to the

grams of nitrogen uptake per gram of fine-root carbon.

Some patterns in the response are explainable, but less straightforward. Mineral-787

ized nitrogen depleted first in the low availability simulations, and also slightly earlier788
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in the high versus low affinity simulations. This suggested that plants can be overly com-789

petitive for nitrogen, ultimately to their detriment. In simulations with higher uptake790

affinity, the plants out-competed decomposers, which prevented the decomposers from791

mineralizing nitrogen into the system, which leads to a slightly earlier collapse.792

Another interesting pattern was the shift in the process variable fCN(N), from un-793

biased (i.e. closer to 0) to a bias indicative of a perpetually nutrient limited state. In the794

high affinity case, the algorithm attempts to rectify the bias by increasing the λ value,795

however the slowly dwindling supply of aqueous nitrogen continually counteracts the af-796

fect that increased fine-root fraction (set variable) should have on the process variable.797

This raises the question: what is the appropriate time-scale of response for investing in798

plant nutrient uptake? In these simulations, the PID constants that control λ were cho-799

sen for competitiveness in a constant CO2 environment, but perhaps a parameterization800

that favors more rapid adaptability would be more competitive in a changing CO2 en-801

vironment.802

3.7 Experiment IX: Comparison of Fine-root Biomass Estimates with803

Field Observations804

The objective of this experiment is to see if the new model formulation generates805

quantities of fine-root biomass comparable with observations in the field. In preliminary806

model simulations, estimated fine-root biomass was relatively low compared to obser-807

vations. Decreasing nutrient uptake efficiency νmax did generate larger fine-root propor-808

tions, however we learned from Experiment VIII that the increased respiration costs that809

come with higher root proportions also suppress net productivity and generated forests810

with less biomass.811

There are various plant physiological model parameters that can be perturbed to812

increase carbon availability, in coordination with the decrease in nitrogen uptake efficiency.813

We chose to increase a parameter that directly impacts carbon assimilation, Vc,max (cat-814

alytic capacity of Rubisco), from 30.9 to 55. And in increased a parameter that directly815

impacts carbon use efficiency, τ(fr) (fine-root turnover timescale) from 1 to 3 years. We816

chose these because they were simple, powerful and directly related to net carbon ac-817

quisition.818

Model output is compared to observed profiles by Yavitt et al. (2011), Yavitt and819

Wright (2001) and Powers et al. (2005) at BCNM (fig. 11). While the model captures820

the relative shape of fine-root biomass as a function of soil depth, the comparison shows821

us that the tendency of the model in this parameterization is to underestimate fine-root822

biomass. We discuss potential causes of the observed differences, and the interplay be-823

tween carbon productivity, nutrient uptake efficiency and total nutrient availability in824

the following discussion.825
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Figure 11. Comparison of ELM-FATES predicted fine-root biomass against observations at

BCNM by Yavitt et al. (2011) (y2011), Yavitt and Wright (2001) (yw2001) and Powers et al.

(2005) (p2005). All data was filtered to report only estimates of live roots from 0-2 mm diameter.

Studies that did not differentiate between live and dead roots were corrected using the necromass

to livemass ratio of 0.0806 (Yavitt & Wright, 2001). Data points with circles represent measure-

ments on Barro Colorado Island, data points with triangles are on the other side of the river on

the Gigante Peninsula.

4 Discussion826

4.1 Regulation of Nutrient Uptake827

There are multiple avenues plants employ to regulate nutrient acquisition, which828

include the fine-root growth response and obligate symbiotic fixation described in this829

manuscript. Yet the uptake of nutrient by plants harbours complexity, including mod-830

ification of not just fine-root biomass, but morphology and structure (e.g., Taylor et al.831

(2014)), considerations of advection and diffusion (e.g., McMurtrie and Näsholm (2018)),832

symplastic and apoplastic transport (Steudle & Peterson, 1998), enzyme kinetics, sym-833

biotic relationships with facultative nitrogen fixers, algal nitrogen fixation on leaves, my-834

corrhizal associations and moreover acquisition of other nutrients not considered here835

(K, Ca Mg, etc).836

Employing dynamic fine-root response to nutrient gradients has both an established837

history in observation (Forde & Lorenzo, 2001) as well as model development (Thornley,838

1995; Farrior et al., 2013; de Kauwe et al., 2014). This method differs from the Thorn-839

ley models in how fine-root growth is controlled, where they tracked the substrate (C840

and N) concentrations in the roots and shoots dynamically. So while it is clear that cer-841

tain plants do modify fine-root growth in response to nutrient availability, the signaling842

and what underlies these controls is less understood.843

Several models also down-regulate mineral nutrient uptake in a more facultative844

form, outside of signaling increases or decreases in fine-root biomass (Thornley, 1995;845

Kou-Giesbrecht et al., 2021b; Thum et al., 2019; Zhu et al., 2019). Thornley (1995) called846

this downregulation product inhibition, and based it on N concentrations in the roots.847

Kou-Giesbrecht et al. (2021b) identified it as nitrogen stress, and tied it to the deficit848

of actual to target non-structural nitrogen content in the plant. Thum et al. (2019) also849
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downregulates uptake based on “internal-demand” which also assesses the labile (non-850

structural) nutrient content in the plant against the nutrient content of roots and leaves.851

The ELM-FATES nutrient cycling model does not include this facultative downregula-852

tion, for two reasons. The first is that it was not clear how to represent this economi-853

cally by associating a cost to this regulation. Secondly, an imperative was placed on min-854

imizing the accumulation of parameters with the interest of using nutrient limitations855

in global simulations and their calibrations.856

Looking towards future model development and hypothesis testing of active acqui-857

sition, uptake capacity could be associated with dynamic activity levels of the fine roots,858

as well as the amount of fine-root biomass or their surface area. While many of these859

processes about to be mentioned are implicitly captured in the work presented here, through860

maximum uptake capacity of roots and the Michaeles Menten half-saturation constants,861

their explicit representation could be illuminating. For instance, dynamic activity could862

be described as enzymatic activity rates, which are tied to nutrient content, the produc-863

tion of exudates to prime decomposition (via mycorrhizae for instance) or to chelate nu-864

trients, and/or the construction of specific infrastructure necessary for transferring nu-865

trient across the root surface. This activity could be controlled explicitly by resource in-866

vestments from the plant (e.g. respiration, carbon and nutrient allocations) and constrained867

(albeit not explicitly governed or proportional to) by fine-root surface area. Root nutri-868

ent uptake could be made more realistic by considering the diffusion and mass transport869

of nutrients in the soil, root surface area and root architecture using the model of McMurtrie870

and Näsholm (2018).871

A plant-hydraulics model would likely make water transport of nutrients to the root872

surface more accurate. Further, the fine root allocation approach presented here does873

not consider the dual need for roots to provide both nutrients and water to plants, and874

thus future work will develop this allocation model to optimize both water and nutri-875

ent delivery. For instance, the FATES-HYDRO model evaluates fine-root surface area,876

hydraulic gradients between root surfaces and the soil and the conductivity across those877

gradients to drive water fluxes to and across the fine-root surfaces. FATES-HYDRO also878

has a basic representation of root structure that could support developments of the Mc-879

Murtrie model.880

This model formulation has not explicitly incorporated mycorrhizal activity or its881

affects on nutrient availability. In a sense, the effects of mycorrhizae are implicit or sub-882

sumed in the soil decomposition and nutrient competition schemes. However, without883

explicitly representing mycorrhizae, it is impossible to capture the symbiotic benefits of884

the association with the plants alone, and not just the broader affects of releasing min-885

eralized nutrient to the soil system. It would be interesting to incorporate and test hy-886

potheses of explicit mycorrhizal interactions, and their effects on nutrient cycling. In sum-887

mary, ELM-FATES-CNP uses the processes of fine-root biomass growth and maintenance888

as a surrogate for representing a broader and more complex set of functions related to889

nutrient acquisition and regulation. Simulating a more complex plant response to nu-890

trient uptake needs may also be more consistent with phenomena observed at BCNM,891

as fine-root biomass response to nitrogen fertilization is insignificant compared to that892

of potassium (Yavitt et al., 2011).893

However calibration and uncertainty in earth system simulators has become an ever894

increasing challenge as all facets of the models steadily become more complex, with more895

tune-able parameter constants and greater process uncertainty. It was imperative that896

this formulation struck a balance between the desire to represent numerous complex pro-897

cesses and the desire to have a stable model that uses a reasonably small number of pa-898

rameter constants (particularly those that cannot be directly retrieved from measure-899

ments). Without these concessions, terrestrial biosphere models cannot be extended be-900

yond a handful of measurement-rich testbed sites.901
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In light of this, field experiments that uncover the when and why’s associated with902

different modes of nutrient uptake regulation, their relative impacts on plant nutrient903

budgets, as well as the signaling from the plants that govern would be valuable.904

4.2 Fine-roots at the Nexus of Productivity, Resource Availability and905

Acquisition Efficiency906

Potential nutrient uptake in ELM-FATES is dictated by the amount of fine-root907

biomass and the maximum uptake rate parameter family νmax, recall Equation 4. As908

demonstrated in Experiment VIII, small (inefficient) values of νmax drive larger fine-root909

proportions (λ), and large (efficient) values of νmax drive smaller fine-root proportions910

λ. The response of λ was also impacted by total system nutrient availability (tested in911

Experiment VIII by scaling total N addition to the system via community N fixation),912

and how carbon productive the plants are (See pertubation to catalytic capacity of Ru-913

bisco vc,max in Experiment IX). This model has shown an interplay between the processes914

of how carbon productive and efficient plants are and how nutrient productive and ef-915

ficient plants are. The fine-root biomass is a manifestation of these processes, and ide-916

ally this would make a great point of model calibration.917

In theory we could continue to decrease the uptake efficiency parameter νmax un-918

til we achieve comparable estimates of fine-root biomass. This can not be done in iso-919

lation, as to support more fine-root biomass with a similar stand-structure, the plants920

would need greater productivity and would require a holistic calibration exercise that921

also looks at net carbon productivity parameters, such as those controlling organ turnover922

rates, respiration rates and gross primary productivity. However, we take the compar-923

ison of fine-root biomass with field data (see Figure 11) with a grain of salt, and see it924

more as a rough guide than a validation point. There are several reasons for this. Firstly,925

we have made the point that the representation of fine-root biomass in this model, and926

it’s response, is a surrogate for other processes (and their associated carbon costs) that927

are not represented and would harbour increased complexity and uncertainty.928

The second point, is that there is a difference between how the FATES model dif-929

ferentiates a fine-root from other tissues, and how fine-roots are differentiated in the field.930

FATES has a functional definition, and differentiates fine-roots as tissues that respire at931

a higher rate than coarse root or below-ground sapwood. Also FATES makes no differ-932

entiation of absorbing versus transporting fine-root tissues, or how how those tissues respire,933

turnover or impact nutrient cycling (McCormack et al., 2015). All fine roots are treated934

as absorbing tissues for the purposes of nutrient uptake. At the same time, the model935

applies a single fine-root lifetime for the purposes of calculating the costs and benefits936

of fine root allocation. Alternatively, fine-roots are typically differentiated in the field937

by size (diameter) and order (Iversen et al., 2017), and efforts to reconcile fine root biomass938

and 14C isotopic ratios have demonstrated two distinct populations of fine roots with widely-939

varying turnover times (Gaudinski et al., 2010; Ahrens et al., 2014). In this respect, there940

is somewhat of a disconnect between the meaning of fine-root represented in the model941

and how fine-roots are currently conceptualized to influence plant and ecosystem func-942

tion. However making a stronger better aligned comparison between what the model de-943

fines as fine-root, or what sub-classifications it has, and what is measured in the field,944

would be useful for verification and calibration. In future work, we intend to represent945

different fine root functional populations and associated turnover times to better rep-946

resent the joint constraints of nutrient uptake rates, root biomass profiles, and root 14C947

isotopic ratios.948

5 Conclusions949

The series of experiments presented here has demonstrated that this model frame-950

work can generate sensible patterns of ecosystem response, using a modest parameter951
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constant calibration effort. To summarize: 1) a small grid search of PID constants Kd952

and Kp rendered values that enable the model to adapt stable fine-root biomasses with953

reasonable levels of nutrient and/or carbon efficiency losses, 2) perturbations to param-954

eters that control nutrient storage µ,µov did not exert undue model instability or vari-955

ability, and 3) subtle differences in how the model culls unnecesary roots and removes956

unused carbon showed modest differences in model output. The number of newly intro-957

duced and salient (to nutrient cycling) model parameters that aren’t readily derived from958

field meausurements (i.e. stoichiometry α, and leaf reabsorption ωlf ) that exerted strong959

control on model response is small (namely, νmax). Balancing model complexity with960

model robustness and preventing over-calibration is of critical importance and has been961

identified as a key need in land-surface modeling endeavors (Prentice et al., 2015).962

The new model hypothesis captures a few simple yet important concepts. Nutri-963

ent acquisition requires resources and that the construction of plant biomass is limited964

by the acquisition of nutrients. In this case, the payment is the maintenance respiration,965

construction and turnover replacement cost of the fine-roots. The current model hypothe-966

ses can also work with existing hypotheses in free-living and symbiotic nutrient fixation.967

Finally, the dynamicism of fine-root proportion allows for a new competitive niche, where968

understory plants have a new method to conserve resources when there is low access to969

light and productivity.970
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Appendix A Table of Variables and Parameters971

Symbol Description Units
State Variables
C(o) carbon mass [kg]

C̀(o) target carbon mass [kg]
M(o,s) nutrient mass [kg]

M̀(o,s) target nutrient mass [kg]
d reference stem diameter [cm]
λ leaf to fine-root target biomass multiplier [-]
fcn the relative storage of carbon over the relative

storage of nutrient, for the maximum
(more limited) of nitrogen and phosphorus [-]

External and Diagnostic Variables
ftrim canopy trim fraction [-]
np the number of plants in a cohort per square meter [plants m−2]
ffr(j) the fraction of fine-root biomass in each soil layer [kg kg−1]
Fluxes

M̂u,NH4(j) plant ammonium uptake capacity in each soil layer [kg m−2 s−1]

M̂u,NO3(j) plant nitrate uptake capacity in each soil layer [kg m−2 s−1]

M̂u,POx(j) plant phosphate uptake capacity in each soil layer [kg m−2 s−1]

Ṁu(s) daily uptake of mineralized soil nutrients in solution [kg day−1]

Ċg daily carbon gain [kg day−1]

Ṁg(s) daily nutrient gain [kg day−1]

Ṁf daily nitrogen gained through symbiotic fixation [kg day−1]

Ṁe(s) excess nutrient exuded back to soil [kg day−1]

Ċt(o) daily carbon lost to turnover [kg day−1]

Ṁt(o,s) daily nutrient lost via turnover [kg day−1]

Ṁa(o,s) daily nutrient net allocated [kg day−1]
ṙe excess respiration of unusable carbon [kg day−1]
ṙf respiration cost to fix Nitrogen [kg day−1]
Parameter Constants
α(o,s) nutrient stoichiometric target for

non-labile tissue, nutrient mass per carbon mass [kg kg−1]
τ(o,pft) non-mortal turnover timescale of plant organs [years]
ωlf(s,pft) * leaf re-absorption fraction of nutrient on turnover [kg kg−1]
ωfr(s,pft) * fine-root re-absorption fraction of nutrient on turnover [kg kg−1]
µ(s,pft) * proportion of target nutrient stored

per target nutrient in tissues [kg kg−1]
µov * fractional overflow of storage (all chemical species)

the plant will hold before exuding or respiring [-]
ρf(pft) * maintenance respiration surcharge fraction

for obligate symbiotic dinitrogen fixation [-]
νmax(s) * maximum nutrient uptake demand per fine-root biomass [kg kg−1 s−1]
δ(o) * allocation priority [index]
Kp(pft) * proportion term scaling parameter in PID controller [-]
Ki(pft) * integral term scaling parameter in PID controller [-]
Kd(pft) * derivative term scaling parameter in PID controller [-]

Table A1. Non exhaustive list of variables and parameter constants in the FATES nutrient

cycling model. All mass and mass fluxes are assumed to be “per plant” [plant−1]. External vari-

ables refers to those variables that are resolved by FATES processes outside the scope of this

manuscript and are described in the FATES technical manual. Parameter constants denoted with
∗ are newly introduced in this study. PID stands for proportion integral derivative, and is the

controller used to search for optimal fine-root biomass.
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Appendix B Special Plant Organ Allocation Priority Levels972

During the first phase of plant nutrient and carbon allocation, where allocation seeks973

to replace losses due to continuous turnover (i.e. maintenance replacement), different or-974

gans can have higher replacement priority δ(o) than others.975

Priority level δ(o) = 1 has special status. Similar to previous carbon-only versions976

of FATES (C. D. Koven et al., 2020; R. A. Fisher et al., 2015). Organs at this level are977

allowed to draw from storage to replace a fraction of their replacement needs. The model978

will first attempt to use the daily gains and will resort to using storage if daily gains are979

not available. This allows for different species of plants to have more or less aggressive980

strategies.981

Priority level δ(o) = 2 also has special status, and is reserved solely for replace-982

ment of storage. Please refer to the FATES technical manual.983

In this study, we follow an organ prioritization similar to previous FATES model984

studies, where leaves and fine-roots are given the highest priority level (level 1), storage985

is given second priority, sapwood is the third, and structural wood is the fourth prior-986

ity987

Appendix C Vertical Fine-root Profile988

The vertical attenuation of the fine-root fraction follows a two parameter exponen-989

tial scaling model based on the depth of the upper (z+) and lower (z−) edge of the layer990

(Oleson et al., 2013). This fraction sums to unity and has no bearing on how much fine-991

root is present. The mass of fine-root is defined by allometric equations and the growth992

model (both described later).993

ffr(j) = 1/2
(
e
−7z+

(j) + e
−z+

(j) − e
−7z−

(j) − e
−z−

(j)

)
(C1)

Appendix D A Note About Growth Allocation and Numerical Inte-994

gration995

As mentioned earlier, it is typical that during the second phase of growth and al-996

location ”stature growth”, all organs will be ”on-allometry” as indicated by their masses997

being equivalent to the allometrically derived target mass for the plant’s diameter. It998

is possible that some organs, due either to the process of cohort fusion (see FATES tech-999

nical manual) or numerical integration truncation, will not have masses that exactly match1000

the target. In other words, the scheme will slightly overshoot or undershoot the target1001

mass. These differences are both very small, and immediately corrected in this scheme,1002

preventing the mass of the organs from drifting away from the allometric targets (in sit-1003

uations where the plant is not in carbon deficit). This self correcting methodology is part1004

of the existing carbon-only FATES model as well. Organs that have less mass than their1005

target will be corrected on the next day’s Phase 1 allocation, see the ”max” functions1006

in Equation 12. Organs that have masses larger than their target are exempt from Phase1007

2 allocation, and will be re-added to the list of organs in later iterations when the other1008

organ masses have caught-up. That is why the set of organs Theta2 does not always match1009

the total set of non-reproductive organs.1010

The numerical integration can be handled by either an adaptive Euler or an adap-1011

tive Runge-Kutta-Fehlerg 4/5 integration scheme. Because the numerical integration er-1012

rors (either overshooting or undershooting the target mass of an organ) have relatively1013

small consequence due to the self correcting nature of the scheme, we therefore default1014
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to the Euler integration scheme in all FATES allocation integrations, and retain the RKF4/51015

for experimental purposes.1016

Appendix E Complementary analysis of the carbon-only model cal-1017

ibration phase1018

Measurements published by Ely et al. (2019) on leaf N:C ratio and SLA were used1019

to filter the set of model simulations in C. D. Koven et al. (2020), by imposing that only1020

simulations with parameter sets that fell within the 15-85 percentile bounds, see Figure1021

E1. The histograms of other key carbon-only model parameters in C. D. Koven et al.1022

(2020) ensembles are also shown, see Figure E2.1023
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Figure E1. Rank plots of leaf nitrogen:carbon ratios and specific leaf area measured in

Panama. Measurements by Ely et al. (2019). Vertical lines indicate the bounds of the 15-85

percentile.
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Figure E2. Histograms of model parameters from the parameter perturbation study of

(C. D. Koven et al., 2020). Dark grey points represent parameters drawn from ensembles with

leaf C:N ratios that fall within central 15− 85% ranks in Figure E1. Blue points represent a small

selection of ensemble members with best agreement with the census data.
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Appendix F Experiment Analysis Expanded1024

F1 Supplemental Proportion Integral Derivative Controller Analysis1025

Figure F1. Mean and variance of the leaf to fine-root biomass multiplier variable (and PID

set point) λ, over a range of PID proportion and derivative controller settings. Settings with let-

ter designations are used in a follow-up simulation designed to identify a more optimal parameter

couplet. PID stands for proportion integral derivative and is the fineroot biomass optimization

controller.

–39–



manuscript submitted to JAMES

Figure F2. Mean and variance of the mean growth increment, over a range of PID proportion

and derivative controller settings. Settings with letter designations are used in a follow-up simu-

lation designed to identify a more optimal parameter couplet. PID stands for proportion integral

derivative and is the fineroot biomass optimization controller.

F2 Experiment IV: Sensitivity to non-PID parameter constants that in-1026

directly control fine-root growth1027

Since λ is driven directly by the differential nutrient storage ratios fNC(s), we fo-1028

cus on newly-introduced parameters that directly govern this differential, which includes1029

the relative capacity the nutrient storage pools µ(s,pft) and the allowable overflow of stor-1030

age for all species µov. While it would be interesting to investigate all correlations that1031

exist between parameters, as well as how exiting parameters such as leaf photosynthetic1032

traits govern this allocation, we leave that to future study.1033

In Experiment IV, we compare three simulations: the base simulation, one where1034

the target N storage µ(N,pft) is halved, and one where storage overflow µov is halved. Time-1035

series of model indicators are compared, see Figure F3. In summary, major perturba-1036

tions to nutrient storage and overflow do not qualitatively change model results, and more-1037

over, the changes are explainable. Changes in NPP, Basal Area, Carbon Use Efficiency,1038

total nutrient uptake, organic nitrogen in the soil and aqueous nitrogen were also rel-1039

atively unaffected. The largest changes were seen in those variables immediately con-1040

nected to the parameters, such as differential storage.1041
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With a smaller overflow capacity µov, plants that acquire more nitrogen or carbon1042

than required to fulfill construction costs, will be forced get rid of both at smaller tol-1043

erances. This was true for both species (see carbon use and nitrogen use inefficiency).1044

However, halving overflow still generated a fairly high N allocation efficiency (i.e. plants1045

were dumping less than 0.2% of what they acquired due to over-asking) and had small1046

impacts on CUE.1047

A smaller nitrogen holding capacity µ(N,pft) made plants slightly more net produc-1048

tive with higher carbon use efficiency, driven mostly by smaller allocations (and there-1049

fore respiration costs) to fine roots. With smaller holding capacity, a plant is more likely1050

to fill up stores with excess nitrogen, which would signal to decrease root growth.1051
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Figure F3. Sensitivity of model output to 0.5x reductions in plant Nitrogen Storage µ(N)

(0.5x Nstore) and overflow storage µov (0.5x Overflow) parameters, as compared to a base simu-

lation (1x for each).

F3 Experiment V: Sensitivity to alternative hypotheses for handling ex-1052

cess fine root and excess carbon gain1053

In experiment V, we evaluate how two subtle modifications to the core model hy-1054

potheses affect differences in the simulation compared to the base hypothesis. In the base1055

hypothesis, when the fine-root biomass optimization algorithm signals a decrease in fine-1056

root, the model will remove carbon and nutrients from the fine-root pool such that it matches1057

the new (decreased) target. This removed mass is exported directly to the soil litter pool.1058
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In an alternative configuration, called “efficient trim” (eff-trim), the carbon and nutri-1059

ent removed from the fine-root is sent to the plant’s storage. The storage accepts this1060

mass until full (defined by the target and overflow parameters), beyond which the mass1061

is either burned as respiration (for carbon) or exuded to the labile soil pool (for nitro-1062

gen and phosphorus). The other alternative hypothesis, “c-exude” assumes that excess1063

carbon acquired by the plant that can not fit in storage (defined by the target and over-1064

flow parameters) will be released into the labile litter pool, in a manner similar to the1065

nutrients (instead of released as respiration).1066

In summary, there is very little difference in the model predictions between the three1067

model hypotheses. Part of this may be due to evaluating these differences through a pa-1068

rameter set that has reasonable parameters and some modest optimization (in the case1069

of the PID parameters). The plants in the base parameterization do not waste that much1070

carbon and nutrients (see the efficiency metrics in Figure F3), and these alternative hy-1071

potheses are oriented around how these waste terms are treated. If future experiments1072

wish to activate these alternative hypotheses, they are maintained in the FATES code1073

behind software switches that other modelers can activate if there is interest.1074
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Figure F4. Comparison of model spin-ups for three different functional hypotheses. The ”eff-

trim” simulation re-captures the carbon and nutrients from fine-roots when the PID controller

decreases λ and moves it into storage (instead of releasing it to the litter pool, like turnover).

The “c-exude” simulation exports carbon that is in excess of overflow storage to the labile pool in

the soil, instead of burning it as respiration. The ”base” simulation (the default used for all other

simulations) assumes that fine-root tissues are lost as turnover when the PID controller decreases

λ, and that carbon gained in excess of overflow storage is burned as respiration.
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F4 Experiment VI: Sensitivity to total ecosystem fixation hypothesis:1075

evapotranspiration versus net primary production based1076

The ELM-FATES model can represent two sources of nitrogen fixation: 1) fixation1077

that generates nitrogen in the soil and 2) obligate symbiotic nitrogen fixation that is avail-1078

able only to the plant individuals that spend the resources to fix. The nitrogen produced1079

in the first method becomes available for competition between the nitrogen consumers1080

in the soil (plants, nitrifiers and decomposers). In experiment IV, symbiotic nitrogen is1081

turned off, and thus the fixation via method 1 is representative of total ecosystem fix-1082

ation, acting as a catch all for free-living microbial fixers in the soil, symbiotic fixers in1083

root nodules as well and potentially other sources.1084

Model response to the different total ecosystem nitrogen fixation (TEF) methods,1085

proportionality with evapotranspiration (et-fix) and proportionality with net primary1086

productivity (npp-fix) (Cleveland et al., 1999; P. Thornton et al., 2007), is evaluated over1087

industrial-era atmospheric CO2 concentrations, see Figure F5. Both simulations were1088

initialized with a pre-industrial 500 year spin-up.1089

Batterman et al. (2013) estimates that fixation at the BCI site is dominated by sym-1090

biotic fixation and almost negligible free-living fixation (with an exception for some old1091

forest stands). Study at the nearby San Lorenzo (Stanton et al., 2019) site suggested that1092

canopy microbial fixation can contribute significant sources of nitrogen.1093
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Figure F5. Time series model response to the two different total ecosystem nitrogen fixa-

tion hypotheses in ELM, fixation proportional to NPP (npp-fix) and fixation proportional to

evapotranspiration (et-fix).

The two methods generate qualitatively different results, particularly in reference1094

to the total nitrogen fixation flux into the system. Both methods could be calibrated by1095

adjusting scaling parameters, but we chose to use the default scaling coefficients in the1096

ELM model, as the differences between the two options provide good end-points to study1097

the system. Note that while the NPP method introduces more nitrogen as a whole, it1098

also continues to increase indefinitely with CO2 increases, while the evapotranspiration1099

method saturates and even decreases late in the 21st century. However, availability of1100

nitrogen limits the models (as indicated by the plant unit N uptake, the nitrogen uptake1101

per gram of fine-root, and the depleting mineralized (aqueous) N pool) in both scenar-1102

ios. The differences are mostly manifested in increased growth and biomass in the veg-1103

etation canopy with access to increased nitrogen, particularly late in the 21st century.1104

The carbon usage efficiency is higher with more nitrogen availability, presumably because1105

the vegetation can use the carbon it acquires to build tissues, instead of respiring it.1106

Soil nitrogen responses are also provided in the supplement, see Figure F6. Note1107

that in each fixation hypothesis, there are similar pattern responses to the fraction of1108

mineralized nitrogen that can be immobilized for decomposition, as well as leaching, ni-1109

trification and denitrification response.1110
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Figure F6. Differential responses of soil nitrogen flux to the two free-living fixation hypothe-

ses (NPP based and evapotranspiration based).

Appendix G Open Research1111

The data and software code used to reproduce the model simulations and analy-1112

sis in this manuscript have been made publicly available.1113

G1 Data Availability1114

The ”Next Generation Ecosystem Experiment - Tropics” project provides model1115

driver data at the Barro Colorado Island Site, including soils and meteorological data1116

(Knox et al., 2019). The data can be found here: https://ngt-data.lbl.gov/dois/1117

NGT0086/1118

G2 Software Availability1119

Both the FATES and E3SM models use Git (https://git-scm.com/) version con-1120

trol to manage their software, and Github (https://github.com/) to host their soft-1121

ware. The model software of both projects and their dependencies are publicly available.1122

Readers who wish to either reproduce or do similar work in this manuscript are encour-1123

aged to install git and use it to clone the E3SM model, also Zenodo DOIs are provided.1124

FATES will be imported as a submodule of E3SM. To initialize submodules following1125

a clone, and assuming the user has ”checked out” the correct tag or branch, they should1126

run the command ”git submodule update –init –recursive”.1127

The specific E3SM tag used in this research is DOI 10.5281/zenodo.7684977, https://1128

doi.org/10.5281/zenodo.7684977; or the github tag can be found here: https://github1129

.com/rgknox/E3SM/releases/tag/elm-fates-cnp-ms (?, ?).1130

The specific FATES tag used in this research is DOI 10.5281/zenodo.7685350, https://1131

doi.org/10.5281/zenodo.7685350; or the github tag can be found here: https://github1132

.com/rgknox/fates/releases/tag/fates-cnp-ms-anlsys (?, ?).1133
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The python analysis scripts (contained in (?, ?)) used to generate the figures in this1134

manuscript are provided in the directory: ”./ms-analysis/”.1135

This file (contained in (?, ?)) will patch the default FATES parameter file to gen-1136

erate parameterizations specifically for one tropical evergreen plant functional type at1137

Barro Colorado Island Panama: https://github.com/rgknox/fates/blob/fates-cnp1138

-ms/parameter files/patch default bciopt224.xml1139

A nix-type ”shell” script (contained in (?, ?)) is provided, that was used to build1140

and setup the simulations. This script should be executed from the directory: ”./cime/scripts”.1141

This file also assumes that the driver data package listed above is unpacked in the same1142

directory as well. The user will need to modify many of the paths in the script to ac-1143

commodate their file structure. This script should facilitate other users running simu-1144

lations at BCI, but this file is provided as-is, and absolutely no support will be provided1145

for making this script work. https://github.com/rgknox/fates/blob/fates-cnp-ms/1146

parameter files/create bci fatescnp mscopy.sh1147
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