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Abstract

We present a seismic model of the African Plate, made with the technique of full-waveform inversion. The purpose of our model

is to become a foundation for future use and research, such as quantitative geodynamic interpretations, earthquake-induced

ground motion predictions, and earthquake source inversion. Starting from the first-generation Collaborative Seismic Earth

Model (CSEM), we invert seismograms filtered to a minimum period of 35 s and compute gradients of the misfit function

with respect to the model parameters using the adjoint state method. In contrast to the conventional FWI approach, we use

dynamically changing data subsets (mini-batches) of the complete dataset to compute approximate gradients at each iteration.

This approach has three significant advantages: (1) it reduces computational costs for model updates and the inversion, (2) it

enables the use of larger datasets without increasing iteration costs, and (3) it makes it trivial to assimilate new data since we

can add it to the complete dataset without changing the misfit function, thereby enabling “evolutionary FWI”. We perform

130 mini-batch iterations and invert data from 397 unique earthquakes and 184,356 unique source-receiver pairs at the cost of

approximately 10 full-data iterations. We clearly image tectonic features such as the Afar triple junction. Particularly interesting

are the low-velocity zones below the Hoggar, Aı̈r, and Tibesti Mountains, pronounced more than in earlier works. Finally, we

introduce a new strategy to assess model uncertainty. We deliberately perturb the final model, perform additional mini-batch

iterations, and compare the result with the original final model. This test uses actual seismic data instead of artificially generated

synthetic data and requires no assumptions about the linearity of the inverse problem.
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Key Points:7

• We invert waveform recordings of 397 earthquakes down to periods of 35 s to re-8

cover crustal and mantle structure of the African Plate.9

• We apply the dynamic mini-batch approach to reduce computational costs and10

enable inclusion of more data.11

• We present a new approach to uncertainty analysis in which we perturb the model12

and continue the inversion.13

Corresponding author: Dirk-Philip van Herwaarden, dirkphilip.vanherwaarden@erdw.ethz.ch

–1–



manuscript submitted to JGR: Solid Earth

Abstract14

We present a full-waveform inversion (FWI) study of the African plate. Starting from15

the first-generation Collaborative Seismic Earth Model (CSEM), we invert seismograms16

filtered to a minimum period of 35 s and compute gradients of the misfit function with17

respect to the model parameters using the adjoint state method. In contrast to the con-18

ventional FWI approach, we use dynamically changing data subsets (mini-batches) of19

the complete dataset to compute approximate gradients at each iteration. This approach20

has three significant advantages: 1) it reduces computational costs for model updates21

and the inversion, 2) it enables the use of larger datasets without increasing iteration costs,22

and 3) it makes it trivial to assimilate new data since we can add it to the complete dataset23

without changing the misfit function, thereby enabling “evolutionary FWI”. We perform24

130 mini-batch iterations and invert data from 397 unique earthquakes and 184,356 unique25

source-receiver pairs at the cost of approximately 10 full-data iterations. We clearly im-26

age tectonic features such as the Afar triple junction. Particularly interesting are the low-27

velocity zones below the Hoggar, Aı̈r, and Tibesti Mountains, pronounced more than in28

earlier works. Finally, we introduce a new strategy to assess model uncertainty. We de-29

liberately perturb the final model, perform additional mini-batch iterations, and com-30

pare the result with the original final model. This test uses actual seismic data instead31

of artificially generated synthetic data and requires no assumptions about the linearity32

of the inverse problem.33

Plain Language Summary34

We present a seismic tomography of the African plate. We use the full-waveform35

inversion (FWI) technique to update the velocity structure of a global Earth model, called36

the Collaborative Seismic Earth Model. FWI promises to create more detailed images37

of the subsurface, compared to other approaches that rely on less complete physics. This38

technique, however, requires a lot of computing power. We use a stochastic optimiza-39

tion method that has been shown to reduce the need for computational resources. It also40

allows us to include more seismic data to update our model given a certain budget. In41

our final model, we see low-velocity structures beneath mountain ranges in the central42

Sahara, such as Hoggar and Tibesti, that have not been seen so clearly in earlier works,43

and many other tectonic features. Finally, we propose a new strategy to test the qual-44

ity of the resulting model. We introduce errors into our final velocity model and continue45

to update the seismic structure. We then test if we can remove the introduced errors from46

our model. The outcome gives us an idea about the resolution as well as the reliability47

of our solution.48

1 Introduction49

The African continent is home to several unique surface anomalies, such as the East50

African Rift System (EARS), the Afar Depression, and significant topography in the south-51

ern part of the continent that cannot be explained by plate tectonics alone (Fishwick &52

Bastow, 2011). At the same time, the seismic structure, which may help to explain some53

of these distinctive features, has been notoriously difficult to assess for decades. Rela-54

tive to other continents, there is a lack of seismic instrumentation, primarily due to the55

economic and political situation across much of the continent. The station coverage in56

Africa has been substantially improved by the AfricaArray (Nyblade et al., 2011). This57

study takes advantage of the resulting substantial extension of the seismic data collec-58

tion.59

In addition to a relative lack of stations in Africa, high-magnitude earthquakes are60

uncommon there. Emry et al. (2019) performed tomographic imaging using ambient noise61

to mitigate this issue. This approach has the benefit of providing additional data over62

just earthquake data. However, the common assumption that ambient noise cross-correlations63
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are equivalent to Green’s functions, not considering the noise source distribution, may64

lead to imaging artefacts (e.g. Wapenaar, 2004; Fichtner et al., 2016; Sager et al., 2018).65

While it is, in principle, possible to take the noise source distribution into account, it has66

only been done on the global scale with long-period data (Sager et al., 2020) due to the67

implementation complexity and high computational costs.68

These factors make it challenging to obtain high-quality tomographic images that69

might shed light on the origins of Africa’s unique tectonic features. During the past two70

decades, there have been a number of large-scale surface wave studies (e.g. Ritsema &71

van Heijst, 2000; Sebai et al., 2006; Pasyanos & Nyblade, 2007; Priestley et al., 2008; Fish-72

wick, 2010; Celli et al., 2020) with a focus on the African continent. Generally, these stud-73

ies agreed well with each other and find low-velocity anomalies beneath the EARS and74

high-velocity anomalies beneath the major cratons. With more data becoming available75

and ever improving methodology, the seismic structure in these models is becoming more76

and more detailed. However, the resolution is still relatively low compared to well in-77

strumented regions such as Europe, North America, Australia, China and Japan.78

In this contribution, we aim to improve upon the state-of-the-art tomographic mod-79

els by using the technique of full-waveform inversion (FWI) (e.g. Virieux & Operto, 2009;80

Fichtner, 2010; Q. Liu & Gu, 2012). In contrast to the traditional traveltime tomogra-81

phy methods, FWI extracts information from the entire waveform, and the sensitivity82

of each recording can be accurately computed through the adjoint state method (e.g. Taran-83

tola, 1984, 1988; Tromp et al., 2005; Fichtner et al., 2006). This enables us to account84

for finite-frequency and wavefield scattering effects, and recover a more detailed struc-85

ture given the same number of recordings (e.g. Pratt, 1999; Virieux & Operto, 2009).86

We compute model updates with the dynamic mini-batch approach introduced in van87

Herwaarden et al. (2020), and described more in detail later in Section 4.88

To deal with the sparsity of seismic data on the African continent, we extend the89

modelled domain to use earthquakes around the entire African Plate and exploit wave-90

form recordings in the much more densely instrumented European countries. Celli et al.91

(2020) took a similar approach by applying automated multimode inversion (AMI) (Lebedev92

et al., 2005) to surface and S waves. Eventually, our model will become part of the CSEM93

(Fichtner, van Herwaarden, Afanasiev, Simutė, et al., 2018), which serves as a framework94

to integrate information from various tomographic studies at different scales.95

This manuscript is structured as follows. In Section 2, we introduce the geologic96

background of the study region; Section 3 shows the used dataset; in Section 4, we de-97

scribe the methodology; Section 5 shows the results of the waveform inversion and the98

final model; and Section 6 the results of the uncertainty analysis. Finally, we conclude99

the manuscript with a discussion and conclusions in Sections 7 and 8.100

2 Geologic background101

Africa is geologically rich, and any section on its geologic background can only be102

incomplete. Hence, the following paragraphs are limited to the description of a few fea-103

tures that may be considered of broader interest and will appear again later when we104

roughly interpret the model in terms of the regional geology. Fig. 1 shows an elevation105

plot of the continent, the most significant plate boundaries, and volcanoes that we marked106

with red triangles, as well as the location of major cratons and tectonic features.107

The continent includes several large cratons. While often referred to as a single cra-108

ton, these regions can also be considered collections of smaller cratonic fragments. The109

most significant ones are the West African Craton, the Congo Craton, and the Kalahari110

Craton, composed of the Kaapvaal and Zimbabwe Craton (Begg et al., 2009).111
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On the other hand, Africa also contains much more volcanically and tectonically112

active regions. Significant hotspot areas in the Atlantic Ocean include Cape Verde or113

the Walvis Ridge and the Comoro Islands in the Indian Ocean. In the northwest of the114

continent itself, the Atlas Mountains are located, separating the Sahara Desert from the115

Mediterranean Sea. Continuing in the southeast direction, we can see a distinct moun-116

tain range group in the central Sahara, including the Hoggar, Aı̈r, and Tibesti Moun-117

tains, followed by the Darfur Dome in the southeast Sahara corner. Eastern Africa is home118

to the Afar Triple junction and the EARS. On the opposite side of the continent, the119

Cameroon volcanic line starts near Lake Chad and stretches in the southwest direction120

into the Atlantic Ocean, forming an island chain including, e.g., São Tomé and Principe.121

In the south, we find a large region of significant topography at the Southern African122

Plateau, surrounded by the Great Escarpment. Here, bands of a highly elevated surface123

fall steeply toward the coasts.124

The geology of Northern Africa is hard to observe from the surface, as most of it125

is covered beneath the Sahara desert. Several regions of elevated topography exist through-126

out Northern Africa, some of which expose altered Proterozoic or Archean rocks, and127

Cenozoic volcanic deposits cap (Abdelsalam et al., 2002). The uplift in these areas has128

been proposed to have a dynamic origin (Burke & Gunnell, 2008), as no known plate bound-129

aries exist there. In particular, very few seismic stations are installed in the Sahara. De-130

spite the relative lack of information, earlier studies, e.g., by Fishwick and Bastow (2011)131

suggest that parts of Northern Africa have slower than average mantle velocities and that132

several high-velocity regions may mark the locations of cratonic fragments within the133

Saharan Metacraton (Liégeois et al., 2013).134

The EARS is an area that is composed of multiple rift branches. It extends to the135

Red Sea in the northeast and along Tanzania to Mozambique and Zambia in the south136

(Chorowicz, 2005). The Afar region and the Red Sea in the north are home to the only137

known area on Earth where incipient seafloor spreading is sub-aerially exposed (Almalki138

et al., 2016). Most of the EARS follows the same trends as the mobile belts, especially139

in the south where several cratons are located. The northern and eastern branches of140

the EARS are more magmatic than the western and southern branches (Furman, 2007).141

Tomographic studies have confirmed this; e.g. Benoit et al. (2006); Bastow et al. (2008);142

Fishwick (2010) find lower velocities in the north relative to the south. Large parts of143

the EARS also coincide with regions of high elevations that may be associated with dy-144

namic uplift due to mantle upwellings (e.g. Mulibo & Nyblade, 2013).145

3 Data146

Africa’s two essential station networks are the AfricaArray (Nyblade et al., 2011)147

and the NARS array (Utrecht University, 2013). We downloaded recordings from 397148

earthquakes through the FDSN web services (Romanowicz & Dziewonski, 1986). The149

earthquake source information was extracted from the GCMT Catalog (Ekström et al.,150

2012) and selected to fall within a magnitude range of 5.5 to 6.7. Empirically, this range151

provides a good signal while minimizing the finite-source effects associated with large152

earthquakes (Vallée, 2013). We use 184,356 unique source-receiver pairs recorded by 6,088153

three-component receivers. Fig. 2a shows a ray coverage plot of the entire dataset.154

Before inverting, we preprocess the data as follows. First, the data is detrended,155

and we subtract the mean. Next, we remove the instrument response and filter the seis-156

mogram to the period band of interest.157

In addition to the entire dataset, we also consider a separate one that we refer to158

as the validation dataset. We do not use these data to update the model directly but159

as a reference throughout the inversion to assess improvements in waveform fit. The val-160

idation dataset is shown in Fig. 2b and discussed in more detail in the next section.161
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Figure 1. Elevation plot with volcanoes marked as red triangles. Major plate boundaries

(Bird, 2003) are marked with a red dashed line. The main cratons (Begg et al., 2009) are in-

dicated on the map: WA: West African Craton, KA: Kalahari Craton, CNG: Congo Craton.

Other features: EARS: East African Rift System, CVL: Cameroon Volcanic Line, AT: Atlas

Mountains, HG: Hoggar mountains, TI: Tibesti Mountains, DD: Darfur Dome, ATJ: Afar

Triple Junction, CV: Cape Verde, WR: Walvis Ridge, CM: Comoro Volcanic Islands. Volcanoes

were taken from the online database provided by NCEI (2022), and elevation data was supplied

by GMT (Wessel et al., 2019).
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(a) (b)Full dataset Validation dataset

Figure 2. Raydensity plots of the datasets used in this study. Bright colors represent a higher

density of rays. Yellow stars represent earthquake locations, and black marks denote station loca-

tions. The red line represents the edge of the modeled domain. (a) The full dataset contains data

from 397 earthquakes. All events were recorded between 1995 and 2020 by 6,088 stations, result-

ing in 184,356 unique source-receiver pairs. (b) The validation dataset consists of 19 events and

9,525 unique source-receiver pairs. We do not use these data to update the model, or in other

words, we do not specifically try to fit these data. At several stages in the inversion, the misfit is

computed for this independent dataset to measure improvements in waveform fit.
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4 Forward and inverse modeling162

We perform forward and adjoint modeling with the wave propagation and inver-163

sion package Salvus (Afanasiev et al., 2019). Salvus utilizes the spectral-element method.164

The method was first introduced in the fluid dynamics community (Patera, 1984) and165

later adapted to solve the seismic wave equation (e.g. Faccioli et al., 1996; Komatitsch166

& Tromp, 1999; Chaljub et al., 2003). The implementation allows for ocean loading (Komatitsch167

& Tromp, 2002), viscoelasticity (e.g. Robertsson et al., 1994), ellipticity of the Earth,168

and topography.169

Our mesh extends down to the outer core, as we are primarily interested in sur-170

face waves and first arrivals from source-receiver pairs with limited epicentral distances.171

We place absorbing boundaries on all outer edges except the surface, where we impose172

a free-surface boundary condition. Gradients of the misfit function with respect to the173

model parameters (or just gradients from hereon) are computed with the adjoint state174

method (e.g. Tarantola, 1984, 1988; Tromp et al., 2005; Fichtner et al., 2006).175

We largely follow the workflow established in Fichtner et al. (2009) and Tape et176

al. (2009), enhanced with the dynamic mini-batch approach introduced in van Herwaar-177

den et al. (2020). In contrast to conventional FWI, this technique operates on subsets178

of the full dataset. The gradient associated with each iteration is then only computed179

for this subset. The subset size may change between iterations, depending on the esti-180

mated difference of the mini-batch gradient approximation with respect to the full dataset181

gradient. This concept has also been described as adaptive gradient optimization (AGO)182

(Bernal-Romero & Iturrarán-Viveros, 2021).183

The method has three significant benefits. First, it enables the use of significantly184

larger datasets while keeping similar iteration costs. Therefore, we can incorporate more185

data, which provides the inversion with more information and possibly leads to a bet-186

ter image. Second, the approach has been shown in van Herwaarden et al. (2020) to re-187

quire fewer simulations than conventional FWI to obtain a model of the same quality,188

thereby extending the frequency range for a given computational budget. Third, it be-189

comes trivial to assimilate new data on the fly during the inversion process. We can eas-190

ily add data to the dataset from which we sample the mini-batches. This fact leads to191

an “evolutionary” mode of FWI (van Herwaarden et al., 2021), where the model can evolve192

as new data becomes available. In addition, the use of mini-batches may help to prevent193

data overfitting (e.g. Hoffer et al., 2017). Since we compute the gradient for each sub-194

set, information unique to each subset becomes harder to fit.195

Like in van Herwaarden et al. (2020), we use trust-region L-BFGS (D. C. Liu &196

Nocedal, 1989) as the optimization algorithm. L-BFGS is a quasi-Newton method, where197

we calculate the model updates by scaling the gradients with the L-BFGS approxima-198

tion of the inverse Hessian. We compute this approximation from a history of gradients199

and models from earlier iterations.200

We then invert in two separate stages. We first filter the data to a period range201

of 55–130 s. After convergence in this period band, we filter the data to 35–130 s. We202

do this for two reasons. First, by starting at longer periods, we reduce the computational203

requirements in the wavefield simulations and, thus, the overall cost of the inversion. Sec-204

ond, this mitigates the risk of possible cycle-skipping issues when the starting model is205

not good enough.206

4.1 Starting model207

The starting model is the first generation of the transverse isotropic Collaborative208

Seismic Earth Model (CSEM) (Fichtner, van Herwaarden, Afanasiev, Simute, et al., 2018).209

The CSEM is a framework to sequentially update an initial global background model with210
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models of increasingly more detail. The global background model consists of the Pre-211

liminary Reference Earth Model (PREM) (Dziewoński & Anderson, 1981), where a lin-212

ear gradient replaces the 220 km discontinuity. The mantle is perturbed by velocities from213

S20RTS (Ritsema et al., 1999), to which P-velocity variations are scaled (Ritsema & van214

Heijst, 2002). Finally, the crust of PREM is overwritten by the crustal model of (Meier215

et al., 2007), derived from a surface wave inversion, to complete the global background.216

Within the domain that we consider, regional updates have been made to this model in217

Europe (Fichtner, Trampert, et al., 2013), the South Atlantic (Colli et al., 2013), the North218

Atlantic (Rickers et al., 2013), the Western Mediterranean (Fichtner & Villaseñor, 2015),219

Turkey (Fichtner, Saygin, et al., 2013) and the Central and Eastern Mediterranean (Blom220

et al., 2020).221

The model is parameterized in vertically and horizontally propagating/polarized222

P/S velocities, vPH , vPV , vSH , vSV , density ρ, and the dimensionless parameter η. In-223

dependently constraining the entire set of parameters is unrealistic, given the limited data224

coverage. For this reason, we only invert for isotropic P-wave velocity vP , and transverse225

isotropic S-wave velocities vSH and vSV . To reduce the parameter space, we set η = 1226

and set vP = vPV = vPH . Fichtner, Trampert, et al. (2013) give a more detailed ex-227

planation of this decision. We show several depth slices through the initial distributions228

of the vSV parameter in Fig. 3.229

4.2 Misfit functional and validation misfits230

The misfit functional that we optimize is the time- and frequency-dependent phase231

misfit (Fichtner et al., 2008). It does not require the isolation of specific phases, and elim-232

inates uncertainties related to imprecise earthquake magnitudes by ignoring constant am-233

plitude scalings. However, it keeps the waveform information, i.e., the information on234

relative amplitudes of neighboring wiggles.235

We also employ a station weighting scheme that empirically leads to faster conver-236

gence by down-weighting clusters of stations. For this purpose, misfits at station loca-237

tion xr are multiplied by the factor238

Wr = c

 n∑
i=1,i̸=r

1

||xi − xr||

−1

, (1)

where n is the total number of all other station locations xi for the respective event. The239

events are then normalized by factor c, so the average weight per station is constant across240

events. Ruan et al. (2019) gives a more detailed explanation of station weighting meth-241

ods in regional to global scale FWI in 2D.242

In addition to the misfits and gradients used for the optimization process, we also243

compute misfits for the validation dataset shown in Fig. 2b. We calculate no gradients244

for this dataset and do not use them to compute model updates directly. We compute245

the L2 norm of the difference between these data and synthetics over the full trace ev-246

ery five iterations. We use full traces to avoid the bias that selecting measurement win-247

dows would introduce. On the other hand, it means that we include all the noise in this248

independent measurement, and therefore misfit decrease will be smaller than it would249

be for only high-quality data.250

The use of a validation dataset serves multiple purposes. First, it enables us to have251

a measure for convergence since a vanishing misfit decrease suggests we approach a min-252

imum. Secondly, a strategy like this may help prevent us from overfitting our model to253

the data; if the misfit decreases for the full dataset but not for the validation one, we likely254

fit noise at that stage. The third benefit of this approach is that it guides us on the choice255

of the regularization parameters. Suppose independent data misfits become smaller when256

we reduce the gradient smoothing. In such a case, the features we introduce will likely257
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!"# perturbation at 40 km depth !"# perturbation at 70 km depth

!"# perturbation at 120 km depth !"# perturbation at 240 km depth

Figure 3. The starting model of the vSV parameter at 40, 70, 120, and 240 km depth. The

main plate boundaries (Bird, 2003) are plotted on top with dashed black lines. Perturbations are

plotted relative to the lateral mean.
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generalize to unseen data, and we are probably further improving the model rather than258

just fitting noise. Thrastarson et al. (2022) have introduced and explained this concept259

in more detail.260

4.3 Multiscale inversion and regularization261

To avoid trapping in a local minimum and to reduce computational costs, we split262

the inversion into different phases of varying period bands. This is a standard procedure263

to prevent cycle-skipping problems (e.g. Bunks et al., 1995; Krischer et al., 2018; Blom264

et al., 2020).265

In the first phase of the inversion, we use the period band of 55–130 s and move266

on to a broader period band of 35–130 s. We regularize the model by smoothing the gra-267

dients using the diffusion equation. This technique was popularised first in image pro-268

cessing (e.g. Barash, 2002) and adopted into seismic imaging within Salvus (Afanasiev269

et al., 2019). Effectively, this smoothing operator is equivalent to convolving the gradi-270

ent with a Gaussian kernel. A great benefit of this technique is that it enables velocity-271

dependent and spatially varying smoothing as well as anisotropic smoothing. We can ex-272

press the smoothing length relative to the seismic wavelength at the given place in the273

model and smooth more in areas with higher velocities, where we expect to retrieve less274

detail. Furthermore, we mitigate the problem of source imprint formation by cutting out275

a region with a radius of 250 km around each source location.276

Initially, we start conservatively by convolving with a Gaussian with a standard277

deviation of one minimum wavelength in the lateral direction and half a wavelength ra-278

dially. We expect the radial resolution to be higher as the surface wave sensitivity ker-279

nels have a shorter cross-section in the radial direction (Takeuchi & Saito, 1972). We in-280

crementally reduce smoothing and eventually use a standard deviation of 0.3 minimum281

wavelengths in the radial direction and 0.6 minimum wavelengths in the lateral direc-282

tion.283

4.4 Workflow management284

Workflow management is often an underappreciated part of an FWI. A large-scale285

FWI can involve millions of different files and terabytes of storage. In addition to meta-286

data, e.g., station- and event information, we need to keep track of heavy data such as287

synthetic traces, measurement windows, and adjoint sources. All these files must be tracked288

and used for the appropriate computing processes in each iteration. Without any form289

of automation, this becomes intractable for large projects.290

To facilitate the management of these files and the inversion, we use LASIF (Krischer,291

Fichtner, et al., 2015; Thrastarson, van Herwaarden, Krischer, & Fichtner, 2021). LASIF292

is a software package that automates many previously time-consuming tasks associated293

with FWI, such as data acquisition, processing, organization, and window picking. Once294

set up, we use the automation package Inversionson (Thrastarson, van Herwaarden, &295

Fichtner, 2021), which was developed to automatically perform iterations and submit296

waveform simulation jobs to a high-performance computing (HPC) cluster.297

5 Full-waveform tomography of the African Plate298

In this section, we show the model evolution, the misfits of the independent val-299

idation data, and the final model and its significant features. Starting from the first gen-300

eration CSEM, we perform 45 iterations in the first period band (55–130 s) and 85 in301

the second period band (35–130 s). Figs. 4 and 5 show how the vSV and vSH models302

change as a function of the iteration number. We can see that areas, such as the Afar303

Triple junction, start sharpening throughout the inversion. We show these two param-304
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Initial model Leg 1, iteration 10

Leg 2, iteration 30 Leg 2, iteration 85

VSV perturbation at 70 km depth!"# perturbation at 70 km depth

Figure 4. The vSV model plotted at a selection of iterations. Perturbations are plotted rela-

tive to the lateral mean. Notice that scale lengths become smaller as we increase the frequency,

and regions such as the Mid-Atlantic Ridge and the Afar Triple junction become well-defined in

the form of low-velocity anomalies.

eters as they are most sensitive to the surface waves that dominate the signal within the305

band-pass-filtered data. For the same reason, we expect the best results for these two306

parameters, which we confirm in later model uncertainty tests. The data is plotted as307

a perturbation to the lateral mean velocities. For reference, Fig. 6 shows the lateral mean308

velocities for the top 250 km for the initial and final model.309

5.1 Final model310

Figs. 7 and 8 show the final vSV and vSH velocity models at a selection of depths311

(40, 70, 120, and 240 km). Fig. 9 focuses on the final vSV model at 70 km depth, with312

the location of several tectonic features plotted on top.313
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Initial model Leg 1, iteration 10

Leg 2, iteration 30 Leg 2, iteration 85

VSH perturbation at 70 km depth!"# perturbation at 70 km depth

Figure 5. The vSH model plotted at a selection of iterations. The description remains the

same as in Fig. 4.
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Figure 6. Depth profile of the lateral mean velocities for the vSV and vSH parameters of the

initial and final model.

Several mountain ranges believed to be of a dynamic origin, such as the Hoggar,314

Aı̈r, and Tibesti Mountains, correspond clearly to low-velocity anomalies, especially at315

70 km and 120 km depth. The most volcanically active areas, such as the Afar triple junc-316

tion, the Cameroon Volcanic line, Cape Verde, and the Walvis Ridge, and even solitary317

volcanoes overlap favorably with low-velocity anomalies in the model, too. The Mid-Atlantic318

Ridge sharpened significantly compared to the initial model (Fig. 3). Furthermore, we319

observe relatively high velocities in Northern Africa in regions that Abdelsalam et al. (2002)320

hypothesized to be home to cratonic fragments. The West African, Congo, and Kala-321

hari Craton areas also appear as high-velocity anomalies.322

In Fig. 10, we show a cross-section through the East African Rift System. Low ve-323

locities extend deep downwards beneath the Afar region and Tanzania. The area beneath324

Tanzania and Kenya is thought to be home to a mantle superplume (e.g. Ebinger & Sleep,325

1998; Thrastarson et al., 2022), and our model aligns with those findings. The model sug-326

gests that the low-velocity anomaly beneath the Tanzania region may become less pro-327

nounced below the 660 km discontinuity. Due to the dominance of the surface waves in328

our data, we likely have our highest sensitivity in the top several hundred kilometers of329

the Earth. Therefore, the findings at these deeper depths need to be interpreted with330

additional caution. Fig. 11 shows a vertical slice through the vSV model in the Eastern331

Mediterranean. The CSEM in this region has already been updated with an inversion332

by (Blom et al., 2020). We see updates in the deeper sections and the southern part of333

the vertical slice that appear to improve the definition of the subduction zone.334

5.2 Validation misfits and waveform fit335

As mentioned in Section 4, we assess convergence by evaluating waveform fits of336

an independent dataset. The dynamic mini-batch approach (van Herwaarden et al., 2020)337

that we follow here does not give us a standard misfit curve for the whole dataset. While338

not commonly done in the Earth science community, it is standard practice in machine339

learning (e.g. Zhang & Sabuncu, 2018; Tariq et al., 2018) to estimate the quality of pre-340

dictions on independent data, as it helps to estimate overfitting. Fig. 12 shows the evo-341

lution of the L2 misfit throughout the inversion in the two period bands.342

To eliminate the bias towards the windows that showed a good fit for the initial343

model, we computed the L2 misfits over the whole trace. This strategy also implies that344
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!"# perturbation at 40 km depth !"# perturbation at 70 km depth

!"# perturbation at 120 km depth !"# perturbation at 240 km depth

Figure 7. The final model of the vSV parameter at 40, 70, 120, and 240 km depth. The main

plate boundaries (Bird, 2003) are plotted on top with a black dashed line. Perturbations are

plotted relative to the lateral mean. Notice how the Afar triple junction seems to morph into an

elongated low-velocity anomaly underneath the entire EARS at greater depths, with especially

low velocities imaged east of Lake Victoria and the Afar region.
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!"# perturbation at 40 km depth

!"# perturbation at 120 km depth !"# perturbation at 240 km depth

!"# perturbation at 70 km depth

Figure 8. The final model of the vSH parameter at 40, 70, 120, and 240 km depth. The main

plate boundaries (Bird, 2003) are plotted on top with black dashed line. We see similar patterns

as in Fig. 7.
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!"# perturbation at 70 km depth

Figure 9. The final model of the vSV parameter at 70 km depth. Perturbations are plot-

ted with respect to the lateral mean. The main cratons (Begg et al., 2009) are indicated on the

map: WA: West African Craton, KA: Kalahari Craton, CNG: Congo Craton. Other features:

EARS: East African Rift System, CVL: Cameroon Volcanic Line, AT: Atlas Mountains, HG:

Hoggar mountains, TI: Tibesti Mountains, DD: Darfur Dome, ATJ: Afar Triple Junction, CV:

Cape Verde, WR: Walvis Ridge, CM: Comoro Volcanic Islands. In addition, volcano locations

(NCEI, 2022) are indicated with black triangles. These locations correspond well to low-velocity

regions in the model.
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Figure 10. A cross-section through the East African Rift System. The top figure shows the

initial model, and the bottom shows the final model. Low-velocity anomalies can be observed

beneath Tanzania and the Afar region. At the very left of the plot, a high-velocity anomaly can

be seen underneath the Zimbabwe Craton. Perturbations of the vSV parameter are plotted with

respect to PREM (Dziewoński & Anderson, 1981).
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Figure 11. Vertical slice through vSV model in the subduction zone of the Eastern Mediter-

ranean. This region was previously inverted by Blom et al. (2020) and part of the initial CSEM

model. Compared to the initial model, we observe a better continuation of the subduction zone

from the surface to roughly 400 km depth. This likely owes to sensitivity across the entire do-

main of the subduction zone. Perturbations of the vSV parameter are plotted with respect to

PREM (Dziewoński & Anderson, 1981).
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Figure 12. Normalized misfit reductions for the validation dataset over the course of the it-

erations in the first- (left) and second (right) leg of the inversion. Misfits are computed for the

entire trace length. Misfits do not decrease monotonically, as this misfit is computed separately

from the optimization, with L2 misfits instead of time-frequency phase misfits, and for different

data.

noisy (parts of) seismograms are included, making misfit reductions smaller than they345

would be if we only considered high-quality data.346

One can observe that the misfit curves do not decrease monotonically. This is not347

surprising as the objective function we decrease during the optimization is different and348

computed for other data.349

We can see a significantly improved fit, although we did not invert for these seis-350

mograms. Hence, we can assume that the improvements in waveform fit will generalize351

to unseen data. Fig. 13 shows a selection of three observed and synthetic seismograms352

computed from the validation dataset.353

6 Model uncertainty analysis354

Several uncertainty-assessment strategies are commonly employed to see if we can355

trust the retrieved models. In this section, we first briefly introduce commonly applied356

options. Then we propose an alternative, particularly well, but not only suited to test357

models created with mini-batch inversion workflows. Fully probabilistic approaches, in-358

cluding those that use Hamiltonian Monte Carlo sampling (e.g. Gebraad et al., 2020),359

are still not feasible for problems where even the deterministic methods require signif-360

icant resources on modern HPC clusters. We, therefore, limit the discussion to rather361

qualitative assessments of uncertainty.362

The most commonly applied test to assess model quality may be the checkerboard363

test. A model with a checkerboard pattern is created to produce synthetic data, which364

are then used as if they were the observed data and inverted for. Several checkerboard365

patterns can be tested to see what resolution might be achieved. An example of such a366

test on a continental scale can be found in van Herwaarden et al. (2020). The main down-367

side of this approach is that the resulting model is not a direct input to the checkerboard368

test itself. Thus we can evaluate only our FWI implementation and resolution achiev-369

able with the given set of sources and receivers, but not the quality of the actual final370

model. Furthermore, the synthetic data do not contain natural imperfections present in371

real data, such as noise, outliers, timing errors, and gaps in recordings. The intrinsic non-372

uniqueness of the original inverse problem is thus not considered. In the context of trav-373
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Figure 13. A selection of vertical-component seismograms from the validation dataset for

source-receiver pairs sensitive to the crustal and mantle structure of the African Plate. Top: a

magnitude 6.5 earthquake occurring on April 3rd, 2017, recorded in Turkey; Middle: a magni-

tude 6.0 earthquake occurring on February 2nd, 2017, recorded in Obninsk, Russia; Bottom:

a magnitude 5.9 earthquake occurring south of the South Africa coast, recorded in Cameroon.

Synthetic waveforms from the final model are shown in red, synthetic waveforms from the initial

model are shown in green, and recorded data is shown in black. Source locations are indicated

with yellow stars, and receiver locations are marked with black triangles.
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eltime inversion, the impact of noise on the non-uniqueness of the inversion problem is374

nicely illustrated by Deal and Nolet (1996).375

Another strategy consists in the use of point spread functions (PSFs) (e.g. Ficht-376

ner & Trampert, 2011). Here, the Hessian near the objective function’s minimum is in-377

terpreted as the inverse of the covariance matrix, and hence as a conservative estimate378

of the PSF. The Hessian-vector multiplication can be approximated through finite dif-379

ferences of two gradients (e.g. Nocedal & Wright, 2006; Gao et al., 2021),380

Hδm =
g(m+ hδm)− g(m)

h
, (2)

where H is the Hessian, δm the model- or point perturbation, and g(m) is the gradi-381

ent of the misfit function with respect to the model m. This approximation becomes ex-382

act in the limit of h tending towards 0. Notice that at a minimum of the misfit function,383

the gradient becomes 0, and the Hessian-vector product gets simplified to the gradient384

with respect to the perturbation δm.385

Alternatively, one can utilize the L-BFGS approximation of the Hessian, based on386

the history of the model and gradient updates (e.g. Wehner et al., 2022). This approach387

requires no additional simulations at the cost of a loss in accuracy. In areas with no or388

only minor gradient information, the Hessian approximation remains identical to the ini-389

tial guess, typically an identity matrix. As a result, the product of the approximate Hes-390

sian with the point perturbation becomes the point perturbation itself in such areas. This391

makes the interpretation rather difficult; the seemingly best results are achieved in the392

areas with the worst data coverage.393

In this study, we use mini-batches, as described in Section 4. It brings up the ad-394

ditional question of how to compute the Hessian-vector products. On the one hand, us-395

ing a constant data subset would mean that for the uncertainty analysis, we use differ-396

ent data than for the inversion itself. On the other hand, using all the data would be very397

expensive and not accurately represent the stochastic nature of the mini-batches.398

6.1 Restitution test399

To address some of the disadvantages of the approaches above, we propose another400

strategy. We deliberately perturb the final model or, in other words, introduce known401

errors into the model that we imaged with the inversion. We then continue the inver-402

sion as usual, performing iterations to reduce the misfit and correct the introduced er-403

rors. If the final model converged to a stable solution, and we can image the introduced404

perturbations, it should be possible to restore the model and return to the original un-405

perturbed model. This approach has several advantages:406

1) The final model becomes an integral part of the test.407

2) We use the actual dataset with all its natural imperfections.408

3) There is no need to create a costly separate synthetic dataset.409

4) The dynamic mini-batches can be used in the same way as during the inversion; we410

do not need a special data subset or the entire dataset.411

5) The non-linear nature of the full-waveform inversion problem is naturally considered.412

For the tests presented in this paper, we applied Gaussian perturbations to all model413

parameters. The Gaussians had an amplitude of 7%, a standard deviation of 225 km,414

peaks positioned onto a grid with a step of approximately 6 standard deviations, based415

at 225 km depth, and summed together, forming a checkerboard pattern. We then per-416

formed additional 80 mini-batch iterations until validation misfits were approximately417

the same as for the previously shown final model, see Fig. 14. The test results for the418

vSV parameter are summarized in Figs. 15 and 16 at 150 and 400 km depth, respectively.419
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Figure 14. Validation event misfit for the 80 iterations within the restitution test. Initially,

the misfit increases when we introduce errors by perturbing the model. Then we iterate until the

misfits are approximately the same as for the final model.

The restitution test figures (Figs. 15 and 16) show the whole inverted domain, un-420

like the previous model figures. We also include the edges of the domain, where a lower421

quality of recovery can be expected. One can observe how the lack of ray coverage (cross-422

ings) translates into the inability to restore the model.423

In the perturbation test at 150 km depth, the perturbed model restores almost per-424

fectly to the original final model. That indicates the velocity structures are imaged with425

a high degree of certainty. At 400 km depth, however, we can see that the mismatch be-426

tween the final and restored model is considerable. Hence, the model uncertainty at this427

depth is relatively higher, and one should interpret the model parameters with greater428

caution. In other words, the nullspace is larger, and it is possible to vary the model more429

while keeping very similar waveform misfits.430

7 Discussion431

We presented a full-waveform tomography of the African Plate. We believe these432

results are meaningful as many expected tectonic features are visible in the image. There433

are, however, external limiting factors that we can hardly influence. The most impor-434

tant one is the relatively small number of stations in the domain of interest. We must435

rely heavily on stations that are placed in Europe to make these results possible. De-436

spite this fact, the results of the restitution test give us confidence that we get decent437

model quality even in the south with comparatively little data.438

Note that we present a rather technical view of the model and its construction, to-439

gether with some proxies for resolution. Translating this into inferences of, e.g., geody-440

namic processes, chemical composition, and temperature, and carefully propagating our441

uncertainties into uncertainties of these various inferences, will require collaboration with442

experts in these fields. For this, we will happily share our data.443

In this study, we did not invert for the source parameters but assumed the param-444

eters provided by the GCMT Catalog (Ekström et al., 2012) to be correct, since, e.g.,445

Hjörleifsdóttir and Ekström (2010); Bozdağ et al. (2016) only found minor updates when446

doing a source inversion. Most earthquakes in our dataset occurred on the edge of the447

domain of interest, with most stations on one side of the event. This lack of azimuthal448

coverage makes it virtually impossible to find more accurate source locations. Neverthe-449
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(a) Final model (b) Applied perturbation

(c) Perturbed model

(e) Restored model

(d) Perturbed model – Restored model

(f) Restored model – Final model

!"# at 150 km depth !"# perturbation at 150 km depth

Figure 15. Restitution test for the vSV parameter at 150 km depth. Panel (a) shows the final

model after 130 mini-batch iterations, (b) shows the applied perturbation, (c) the model with

the perturbation, (e) the model after the 80 repairing iterations, and (d) the difference between

the perturbed and restored model. Finally, (f) shows the difference between the restored and the

final model; this difference is relatively low in the domain of interest, implying the final model is

reliable there.
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(a) Final model (b) Applied perturbation

(c) Perturbed model

(e) Restored model

(d) Perturbed model – Restored model

!"# at 400 km depth !"# perturbation at 400 km depth

(f) Restored model – Final model

Figure 16. Restitution test for the vSV parameter at 400 km depth. The description of the

panels remains the same as in Fig. 15. Notice the restoration errors remain larger here than in

Fig. 15. Panel (d) indicates that we can retrieve anomalies at the scale of the perturbations;

however, the errors remain relatively large as seen in (f). The misfits for models (a) and (e) are

very similar. Therefore, the greater difference between models (a) and (e) at 400 km depth than

that at 150 km depth (Fig. 15) suggests velocities are less tightly constrained and thus imaged

with less certainty.
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less, the mini-batch approach allows us to include many more events, so their location450

inaccuracies will likely average out more efficiently.451

Several other studies focusing on the African upper mantle have been published452

before (e.g. Ritsema & van Heijst, 2000; Sebai et al., 2006; Pasyanos & Nyblade, 2007;453

Priestley et al., 2008; Fishwick, 2010; Emry et al., 2019; Celli et al., 2020). These mod-454

els generally agree on large-scale features, such as low velocities beneath the EARS and455

high velocities beneath the major cratons. We compare our model to a recent one by Celli456

et al. (2020). Similar to our study, that model was produced using extensive data from457

the AfricaArray (Nyblade et al., 2011), and synthetic waveforms were used. In contrast458

to our study, waveforms were computed from normal mode summations rather than by459

solving the wave equation. Figs. 17 and 18 compare the isotropic shear wave velocity460

perturbations between the two models. For this purpose, we computed the Voigt aver-461

aged shear wave velocity, where vS =
√
(2v2SV + v2SH)/3.462

Broadly, there is a notable similarity between the two models. It appears that some463

of the features in the model by Celli et al. (2020) show more resemblance to our model464

at an earlier stage of the inversion and longer periods (see Fig. 4). However, we retrieve465

more localized structures after additional iterations at shorter periods. We observe dis-466

tinctive low-velocity anomalies beneath the Hoggar, Tibesti, and Aı̈r Mountains. These467

anomalies are not typically seen in other models of the African upper mantle, although468

they are expected beneath regions with dynamic topography. We also see the Cameroon469

Volcanic Line as a thinner, more defined low-velocity anomaly. This increased level of470

detail likely owes to the fact that we compute gradients with respect to an evolving 3D471

model rather than a constant 1D referential one, as is the case in the Automated Mul-472

timode Inversion (Lebedev et al., 2005) method used by Celli et al. (2020).473

With the proposed restitution test in hand, it is possible to see where we can re-474

cover structure. At the same time, the lack of precision in recovering the final model af-475

ter applying perturbations gives us an idea about the model uncertainty. This test is cheaper476

to compute than a traditional checkerboard test because we do not need to create a syn-477

thetic dataset first. No approximate versions of the real dataset are used, and we directly478

test the final model itself. In contrast to the Hessian-vector product approach, we can479

incorporate the non-linearity of the FWI imaging process.480

The proposed restitution test is approximately equally expensive as running the481

inversion itself. While testing different model perturbations would be potentially inter-482

esting, it would also make the uncertainty analysis more costly. Doing so, however, might483

make it possible to obtain more quantitative estimates of model uncertainty. Perhaps,484

this could be an interesting subject of future research.485

8 Conclusions486

We presented a full-waveform tomography of the African continent using the dy-487

namic mini-batch technique. To our knowledge, this is the most extensive continental-488

scale full-waveform inversion study performed for this area to date. We incorporated data489

from 184,356 unique source-receiver pairs and achieved significant improvements in wave-490

form fits at 35 s, even for data we did not use within the inversion process.491

Many significant features, such as the Afar Triple Junction, the Cameroon Volcanic492

Line, and mountain ranges of dynamic origin, are visible in the images and align well with493

the surface anomalies. Additionally, we imaged a low-velocity region beneath the EARS494

with low-velocity anomalies extending deeper down beneath Ethiopia and the Tanzania-495

Kenya border region.496

The alignment with these tectonic features suggests that the imaged seismic struc-497

ture is meaningful. However, our novel model uncertainty analysis indicates that we should498
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!" perturbation at 70 km depth

Celli et al. (2020)

This study

Figure 17. A comparison between the shear velocity model of Celli et al. (2020) and this

study at 70 km depth. Perturbations are plotted relative to the lateral mean.
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Celli et al. (2020)

This study

!" perturbation at 150 km depth

Figure 18. A comparison between the shear velocity model of Celli et al. (2020) and this

study at 150 km depth. Perturbations are plotted relative to the lateral mean.
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be careful when interpreting deeper-lying model attributes. We would gladly share the499

model and collaborate to get more in-depth interpretations of the tomographic results.500
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