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2Instituto Pirenaico de Ecoloǵıa, CSIC (Spanish Research Council)
32Aragonese Agency for Research and Development Researcher (ARAID). Department of
Geography, University of Zaragoza.
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Abstract

This study provides a global analysis of drought metrics obtained from several climatic, hydrologic and ecological variables in a

climate change framework using CMIP6 model data. A comprehensive analysis of the evolution of drought severity on a global

scale is carried out for the historical experiment (1850-2014) and for future simulations under a high emissions scenario (SSP5-

8.5). This study focuses on assessing trends in the magnitude and duration of drought events according to different standardised

indices over the world land-surface area. The spatial and temporal agreement between the different drought indices on a global

scale was also evaluated. Overall, there is a fairly large consensus among models and drought metrics in pointing to drought

increase in southern North America, Central America, the Amazon region, the Mediterranean, southern Africa and southern

Australia. Our results show important spatial differences in drought projections, which are highly dependent on the drought

metric employed. While a strong relationship between climatic indices was evident, climatic and ecological drought metrics

showed less dependency over both space and time. Importantly, our study demonstrates uncertainties in future projections

of drought trends and their interannual variability, stressing the importance of coherent hydrological and plant physiological

patterns when analysing CMIP6 model simulations of droughts under a warming climate scenario.
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Abstract 11 

This study provides a global analysis of drought metrics obtained from several climatic, 12 

hydrologic and ecological variables in a climate change framework using CMIP6 model data. A 13 

comprehensive analysis of the evolution of drought severity on a global scale is carried out for 14 

the historical experiment (1850-2014) and for future simulations under a high emissions 15 

scenario (SSP5-8.5). This study focuses on assessing trends in the magnitude and duration of 16 

drought events according to different standardised indices over the world land-surface area.  17 

The spatial and temporal agreement between the different drought indices on a global scale 18 

was also evaluated. Overall, there is a fairly large consensus among models and drought 19 

metrics in pointing to drought increase in southern North America, Central America, the 20 

Amazon region, the Mediterranean, southern Africa and southern Australia. Our results show 21 

important spatial differences in drought projections, which are highly dependent on the 22 

drought metric employed. While a strong relationship between climatic indices was evident, 23 

climatic and ecological drought metrics showed less dependency over both space and time. 24 

Importantly, our study demonstrates uncertainties in future projections of drought trends and 25 

their interannual variability, stressing the importance of coherent hydrological and plant 26 

physiological patterns when analysing CMIP6 model simulations of droughts under a warming 27 

climate scenario. 28 

 29 

Keywords: Climate change, drought projections, CMIP6 simulations, model uncertainty. 30 
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1. Introduction 31 

Assessment of future drought projections is at the forefront of scientific debate in the current 32 

research on climate, hydrology, agriculture, and ecology. This is simply due to the multiple 33 

dimensions of droughts, which cause strong complexity for drought assessment and 34 

quantification (Lloyd-Hughes, 2014; Douville et al., 2021). In addition, the strong 35 

environmental and socioeconomic implications of drought changes in future climate scenarios 36 

adds more complexity to this debate (Van Loon et al., 2016; Xu et al., 2019; Naumann et al., 37 

2021). 38 

In order to robustly assess future changes in drought severity, we must refer to different types 39 

of drought. This is fundamental to properly evaluate the impacts associated with drought in 40 

future climates. Generally, the concepts of meteorological drought (precipitation deficits), 41 

agricultural droughts(crop failure or yield decrease), ecological droughts (damages in natural 42 

vegetation, reduced photosynthesis activity, and carbon uptake and increased plant mortality), 43 

and hydrological droughts (reductions in the availability of water in different sources such as 44 

reservoir storages, streamflow and groundwater) are used commonly to refer to drought 45 

types. These types are largely impacted by different processes and physical and ecological 46 

implications (Wilhite and Buchanan-Smith, 2005; Lobell, 2014; Vicente-Serrano et al, 2020b; 47 

Douville et al, 2021). 48 

In the literature, a wide spectrum of studies characterised drought projections on the global 49 

scale using model simulations of various climatic, hydrological, and vegetation variables under 50 

different future climates scenarios (e.g. Cook et al., 2014, 2020; Martin, 2018; Luet al., 2019; 51 

Ukkolaet al., 2020; Vicente-Serranoet al., 2020a; Zhu and Yang, 2021; Papalexiouet al., 2021; 52 

Zhao and Dai, 2021; Ridderet al., 2022; Zenget al., 2022). Nonetheless, most of these studies 53 

focused on metrics directly simulated by different Coupled Model Intercomparison Projects 54 

(CMIP) since they allow to directly evaluate drought impacts on a variety of agricultural, 55 

ecological, and hydrological systems (Quiring and Papakryiakou, 2003; Hlavinka et al., 2009; 56 
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Vicente-Serrano et al., 2012; Stagge et al., 2015a; Bachmair et al., 2016, 2018; O’Connor et al., 57 

2022).  58 

In the literature, the most widely used drought metrics for drought monitoring and impact 59 

assessment are synthetic indices that combine precipitation and atmospheric evaporative 60 

demand (AED), allowing for a direct quantification of drought severity and drought extent 61 

(Vicente-Serrano et al., 2010; van der Schrier et al., 2013; Tomas-Burguera et al., 2020a; Dai, 62 

2021), as well as their impacts on ecosystems (Bachmair et al., 2015). For future simulations, 63 

different studies analysed drought projections based on these indices, employing ESMs 64 

outputs under different future climate scenarios (Dai, 2012; Naumann et al., 2018; Spinoni et 65 

al., 2020; Vicente-Serrano et al., 2020a; Zhao and Dai, 2022). According to these scenarios, 66 

drought severity would increase, mainly as a consequence of the enhanced AED in a warming 67 

climate. Nonetheless, some studies suggest uncertainty of using  these metrics (e.g. Berg and 68 

Sheffield, 2018;  McColl et al., 2022). Specifically, the criticisms argue are that these indices are 69 

not necessarily representative of the metrics based on water storage (i.e. soil moisture), 70 

surface water generation (i.e. runoff) or vegetation activity (i.e. leaf area and net primary 71 

production). These arguments would be supported by the notion that hydrological and 72 

ecological systems might show different dynamics and responses under future climates (Berg 73 

and Sheffield, 2018; Scheff, 2018). Furthermore, CMIP models generate simulations of 74 

hydrological and plant metrics, which would make it unnecessary to focus on climate metrics 75 

as proxies of drought impacts (McColl et al., 2022). Moreover, drought indices that include 76 

AED in their calculations might overestimate drought severity under high=emissions future 77 

climate scenarios. This is simply because future increase in AED is likely to be higher than the 78 

expected increase in land evapotranspiration (Et) (Roderick et al., 2015a; Milly and Dunne, 79 

2016; Scheff, 2018; Yang et al., 2019), which is also determined by water availability.  80 

As such, assessments of drought projections based on different drought metrics make it 81 

necessary to provide a more complete spatio-temporal comparison of different drought 82 
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metrics to provide a more robust picture of how drought responds to future climate. 83 

Nevertheless, although recent studies have analysed global drought projections based on the 84 

latest model outputs from the CMIP6 using different drought metrics (e.g. Cook et al., 2020; 85 

Ukkolaet al., 2020; Liet al., 2021; Papalexiouet al., 2021; Zhu and Yang, 2021; Menget al., 2022; 86 

Zenget al., 2022; Zhao and Dai, 2022), few works assessed the robustness and coherence in the 87 

drought metrics under scenarios of high greenhouse gasses (GHG) emissions. Importantly, 88 

these studies lacked the opportunity to investigate some drought metrics that are essential for 89 

assessing agricultural and ecological droughts. As such, a focus on these gaps may provide new 90 

evidence that helps reconcile perspectives or stress uncertainties related to future trends in 91 

drought severity. On the other hand, it is necessary to test the robustness of the spatial and 92 

temporal consistency among the different drought metrics, which can give indications on the 93 

reliability of drought projections. In the pursuit of this background, the objectives of this study 94 

are to i) determine future drought projections based a more complete set of drought metrics 95 

to date, providing a more complete mosaic of current global studies and ii) determine the 96 

spatial and temporal coherence among the different drought metrics in replicating drought 97 

severity. Accordingly, the current global assessment can contribute to the arising debate on 98 

the robustness of the different drought metrics, providing new evidences on CMIP6 model 99 

uncertainties for agricultural, ecological, and hydrological drought projections under a high-100 

emission climate scenario.  101 

 102 

2. Data and Methods 103 

We employed monthly data of a set of hydroclimatic variables from the CMIP6 experiment 104 

(Eyring et al., 2016). These variables included precipitation, runoff, total column soil moisture, 105 

leaf area index (LAI) and net primary production (NPP). Data were provided for the historical 106 

period (1850-2014) and for the Shared Socioeconomic Pathway (SSP; 5-8.5) from 2015 to 2100. 107 

All CMIP6 individuals that secure data for the necessary variables, as well as the period 1850-108 
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2100, were considered in our analysis (see Supplementary Table 1). Recalling that the CMIP6 109 

outputs are provided in different native spatial resolutions, we interpolated data to a common 110 

resolution of 2.5° x 2.5°. To assess future projections in drought severity, our decision was 111 

made to consider the SSP5-8.5 scenario, which represents the worst possible scenario 112 

compared to the historical experiment.  113 

The standardised drought indices were computed based on the common data inputs (e.g. 114 

precipitation, runoff, total column soil moisture, LAI and NPP). Nonetheless, other indices were 115 

computed using a combination of new variables. For example,  maximum and minimum air 116 

temperatures, relative humidity, wind speed and solar radiation, were used to calculate  AED 117 

following the Penman-Monteith FAO-56 equation (Pereira et al., 2015). Overall, based on 118 

these data and data of Evapotranspiration (Et), we calculated different indices using: i) the 119 

difference between precipitation and AED (P-AED), which is a metric that has been widely used 120 

for drought assessment since it summarises the balance between the water available in the 121 

form of precipitation and the existing AED (Vicente-Serrano et al., 2010; Tomas-Burguera et al., 122 

2020a), ii) precipitation minus land evapotranspiration (P-Et), which is considered a long-term 123 

water budget and has been accordingly used to assess drought severity in several works (e.g. 124 

Padrón et al., 2020), and iii) the difference between Et and AED (Et-AED), which compares the 125 

difference between the available water to evaporate and the water demand by the 126 

atmosphere (Kim and Rhee, 2016; Vicente-Serrano et al., 2018) and is highly related to plant 127 

water stress (Stephenson, 1990). All these drought metrics were transformed into the same 128 

standardised units to make robust spatial and temporal comparisons. To fit data distribution, a 129 

log-logistic distribution was used , which is capable of standardising different climate and 130 

hydrological records under different climate conditions, as being evidenced in earlier works 131 

(e.g. Vicente-Serrano and Beguería, 2016; Vicente-Serrano et al., 2020a). The only exception 132 

was for precipitation, which was fitted to a Gamma distribution (Stagge et al., 2015b). We 133 

tested the goodness of fit of the standardized indices using the coefficient of determination 134 
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(R2) of the QQ plots, which compare the empirical probability distribution function (pdf) of 135 

each index and the pdf of the standard normal distribution. Results demonstrate that R2 were 136 

almost close to 1 for majority of the world regions (Fig S1), with small deviations among the 137 

models (Fig S2) and for specific timescales (e.g. 3-month and 12-month). Afterwards, a second 138 

standardisation procedure was carried out independently for each of the 12 monthly series of 139 

the indices. To make this standardisation, both the mean and the standard deviation were 140 

computed for the reference period 1850-2014. This procedure minimizes the possible impacts 141 

of strong trends presented in the analysed variables for future scenarios in the possibility of 142 

calculating the drought indices (Vicente-Serrano et al., 2020a). Furthermore, this 143 

standardisation allows for a robust spatial and temporal comparability between the different 144 

metrics. Accordingly,  drought duration and magnitude can be quantified for each time series 145 

and for the different indices. Drought events were identified using the run theory (Tallaksen et 146 

al., 1997; Fleig et al., 2006), considering a threshold of z = -1.28, which corresponds to a 10% 147 

probability of a standard normal observation being below that value. For drought event 148 

identification, all indices were computed at the 3-month time scale. To analyse the trends in 149 

the duration and magnitude of drought events, a linear regression model was fitted as a 150 

function of time, and the estimated slope was used to quantify the amount of change over 151 

time. The significance of these changes was assessed using the Mann–Kendall test (Kendall, 152 

1948; Mann, 1945).   153 

We analysed the relationship between the annual indices (computed at 12-month time scale) 154 

using the Kendall´s rank correlation coefficient, i.e., Kendall's 𝜏𝜏coefficient (Kendall, 1938). This 155 

coefficient is a nonparametric measure of rank correlation that is more suitable than 156 

parametric statistics (e.g. Pearson's linear correlation coefficient) because it accounts for the 157 

non-linear relationships between variables. 158 

For each grid point, the temporal agreement between the indices (computed at 12-month 159 

scale) was assessed by obtaining the percentage of simultaneous occurrence of years in which 160 
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a pair of indices were below z=-1.28, thus producing a 2-dimensional representation of the 161 

results.  Also, we computed the percentage of grid points where each pair of indices showed z-162 

value below -1.28, resulting in a time series.  163 

 164 

3. Results 165 

3.1. Evolution of drought severity based on different metrics 166 

Fig. 1 shows the evolution of the world land surface affected by drought between 1850 and 167 

2100. It is computed as the percentage of land grid points below the 5th percentile of each raw 168 

(non-standardised) variable. This percentile is computed independently for each month, 169 

considering the 1850-2014 reference period. For all the variables, we found an increase in the 170 

world land surface impacted by drought from 1850 to 2010, albeit with some considerable 171 

spatial differences. Results demonstrate that precipitation, leaf area, and runoff will likely 172 

show a small increase of drought severity in future - scenarios. For precipitation-Et and NPP, 173 

the increase was mostly intermediate, although a sharp increase in NPP is noted between 2010 174 

and 2030, followed by a constant behaviour to the end of the twenty-first century. For 175 

precipitation-AED, Et-AED and soil moisture, a remarkable increase is noted at the end of the 176 

century. As illustrated in Figs S3 and S4, some variables exhibited important seasonal and 177 

regional differences. For example, during the boreal winter season, drought based on NPP, soil 178 

moisture, and Et-AED increased. Rather, for precipitation and runoff, irrelevant drought 179 

increase was noted from 1850 to 2100. On the contrary, in the boreal summer season, the 180 

main drought increase was recorded for precipitation-AED, Et-AED, and soil moisture, with 181 

little increase for other variables (e.g. precipitation, runoff, and precipitation-Et).  182 

Overall, we noted an increase in the magnitude of drought events that affects large areas of 183 

the world in terms of precipitation-AED, Et-AED, and soil moisture, albeit with significant 184 

spatial differences (Fig. 2). Interestingly, these three drought metrics showed a high agreement 185 

in terms of the areas that are likely to exhibit the highest increase in the magnitude of drought 186 
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periods, including the Mediterranean region, Central America, northern South America and 187 

western South America, West Africa and South Africa. Nevertheless, it can be noted that the 188 

areas affected are much larger using Et-AED metric, with almost the entire land showing an 189 

increase in drought severity. Meteorological droughts, based on precipitation, showed an 190 

increase in drought magnitude in areas of Central and South America, West Africa, South 191 

Australia and the Mediterranean region, although this increase is not as high as suggested by 192 

other drought indices (i.e. Et-AED, and soil moisture). This pattern was almost similar when 193 

considering precipitation-Et, although some areas of South America did not show an increase 194 

in drought severity, suggesting that –in specific regions- the increase in drought magnitude can 195 

be reduced if Et is included in the calculations. Drought magnitude trends based on runoff 196 

showed smaller changes than considering exclusively precipitation, demonstrating that  CMIP6 197 

models project a less increase in the magnitude of hydrological droughts than in the 198 

magnitude of meteorological (precipitation) droughts. LAI did not show an increase in the 199 

magnitude of drought events in large areas of the world, except for parts of East Brazil. Thus, 200 

the spatial pattern was sparse on the global scale, with strong regional variability and a 201 

dominance of no changes or decrease in the magnitude of drought events in some regions 202 

(e.g., South America, Southeast Asia, Central Europe, and North America). Notably, the NPP-203 

based assessment showed a strong reinforcement of drought magnitude in the high latitudes 204 

of the Northern Hemisphere. Rather, in some areas of Africa, South America and Southeast 205 

Asia, a decrease in the magnitude of the drought episodes, based on the NPP, was noted. . 206 

Changes in the duration of drought events were almost similar to those of drought magnitude, 207 

particularly in terms of spatial patterns and the behaviour of the different drought metrics (Fig. 208 

S5).  209 

Some drought metrics show high consistency in identifying positive trends in drought 210 

magnitude among the different models. Fig. 3 shows the percentage of models showing 211 

positive and statistically significant trends in drought magnitude between 1850 and 2100. As 212 
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depicted, almost all models defined the same the regions with strong increase in drought 213 

magnitude considering precipitation-AED and Et-AED. This agreement was much lower for soil 214 

moisture, , even in large regions where the multimodel median values showed an increase in 215 

drought magnitude. A representative example is found in southern North America and South 216 

Africa, where multimodel medians showed a large increase in drought magnitude, while less 217 

than 40% of the models showed a positive and significant trend. In other regions wherea 218 

decline in drought magnitude was observed like northern South America or the 219 

Mediterranean, the percentage of models showing significant declining trends was roughly 220 

50%, suggesting a strong uncertainty in model projections. Notably, although precipitation, 221 

precipitation-Et and runoff showed a drought increase in fewer regions than soil moisture, the 222 

consistency of this increase among models seems to be greater. More than 50% of the models 223 

suggested a positive and statistically significant increase in drought magnitude in northern 224 

South America and Central America, the Mediterranean and southern Africa for precipitation. 225 

A similar pattern was evident for vast areas in North and South America, Central Africa, and 226 

Central and South Asia when considering P-Et. This suggests that Et projections suppress the 227 

trend toward higher drought magnitudes in Southern Africa in comparison to precipitation-228 

based projections, with only few models showing a positive and statistically significant trend. 229 

Interestingly, for runoff almost 50% of the models suggested a significant increase in drought 230 

magnitude in large regions of the Northern Hemisphere (e.g. Alaska, Labrador, Scandinavia, 231 

West Russia), while they did not witness a relevant increase in drought magnitude based on 232 

precipitation and precipitation-Et metrics. In the same context, apart from the high latitudes of 233 

the Northern Hemisphere, there were no regions where more than 30% of models showed an 234 

increase in drought magnitude for the NPP. Interestingly, results demonstrate that drought 235 

magnitude based on LAI will not change anywhere worldwide, with almost no model suggests 236 

significant changes.  237 
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Like drought magnitude, similar patterns of drought duration changes were observed globally 238 

(Fig. S6), with majority of the models suggesting no significant changes in ecological and 239 

agricultural droughts across majority of the world regions under scenarios of high greenhouse 240 

gas emissions.  241 

The negative trends in drought magnitude (Fig. 4) and duration (Fig. S7) indicated few regions 242 

and metrics in which the models agree on a decrease in drought severity, mainly for 243 

precipitation in the high latitudes of the Northern Hemisphere. Even for LAI and NPP, the 244 

percentage of models that showed a decrease in drought magnitude is low. As depicted, 245 

although some areas, based on some metrics, showed a projected decrease in drought 246 

duration and magnitude with multimodel medians (e.g. Southeast Asia with LAI, Central Africa 247 

with the NPP, West Russia with soil moisture), there is still large inconsistency among the 248 

models. In the same context, while a steady increase in drought duration and magnitude was 249 

projected for some regions and variables, only few areas witnessed a decrease in drought 250 

duration and magnitude, irrespective of drought metric used. Thus, although there are 251 

important uncertainties between drought metrics and models related to the increase of 252 

drought duration and magnitude, there is a high consistency between models and metrics 253 

concerning drought decrease since drought magnitude and duration are not expected to 254 

decrease much under a scenario of high greenhouse gasses emissions. 255 

 256 

3.2. Spatio-temporal relationships among drought metrics 257 

In addition to knowing the consistency of trends between different drought metrics and 258 

models, it is also relevant to analyse the consistency of the temporal relationship in the 259 

drought severity based on these metrics (Fig. S8). As illustrated, we found strong annual 260 

relationships between some pairs of drought indices in the historical period. For example, the 261 

correlation was higher than 0.8 between precipitation and precipitation-AED and between 262 

precipitation and precipitation-Et in most areas of the world. Also, a high correlation was 263 
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observed between precipitation-AED and precipitation-Et, with few exceptions, mainly in arid 264 

and semiarid regions where correlations decreased. Other pairs of drought metrics showed 265 

lower relationships on global scale, with important spatial differences. For example, the 266 

relationship between precipitation and Et-AED was only high in water-limited regions, where 267 

Et is mostly determined by water availability. It is worth mentioning that the relationship 268 

between precipitation (and also between the other climatic metrics) and soil moisture was low 269 

in most regions. Thus, the correlation with soil moisture was higher considering precipitation-270 

AED and particularly Et-AED in regions like South America, Africa, and South Asia. LAI and NPP 271 

showed high correlations particularly in water-limited and cold regions. Nevertheless, these 272 

two ecological variables showed low correlations with the different meteorological drought 273 

metrics, suggesting that the interannual variability of agricultural and ecological droughts 274 

simulated by models is independent from those of climatic droughts in most regions of the 275 

world. This pattern was also observed considering soil moisture, with low correlations found 276 

between the interannual variability of soil moisture and the NPP and LAI in most regions, 277 

irrespective of biome types and bioclimatic conditions. The relationship between precipitation 278 

and runoff was high in most regions of the world, except for North America and most of 279 

Eurasia. In contrast, the relationship between interannual variability of runoff and soil 280 

moisture tended to be low globally, apart from the Mediterranean, northern South America, 281 

and Africa. Similarly, ecological metrics (i.e. NPP and LAI) showed low correlations with runoff 282 

worldwide.  283 

Overall, these results suggest that, except for the high relationship between different climate 284 

metrics and their corresponding spatial differences that are mainly determined by the average 285 

water availability and temperature, the temporal relationship between different drought 286 

metrics was generally low in most regions of the world. This relationship was particularly low 287 

between climatic and vegetation metrics, as well as between soil moisture and other drought 288 

metrics. 289 



12 
 

The spatial pattern and the magnitude of the temporal relationships between the different 290 

variables did not show important changes considering future simulations (2015-2100), as 291 

compared with historical simulations (Fig. S9), albeit with some important exceptions (Fig. 5). 292 

For example, the relationship between the interannual variability of precipitation and other 293 

climatic drought metrics generally decreased, which is quite relevant in some areas of Central 294 

Asia considering precipitation-AED, but also in the Sahel and high latitudes of the Northern 295 

Hemisphere considering Et-AED. On the contrary, the relationship between precipitation and 296 

precipitation-Et remained stable for both the historical period and future. Also, we found a 297 

decrease in the relationship between precipitation-AED and precipitation-Et in some regions of 298 

Europe, South America, and Africa. The relationship between LAI and NPP was stable for the 299 

historical period and future simulations in most regions, albeit with a trend to reinforce in 300 

some regions. In addition, the relationship between precipitation and LAI tended to reinforce 301 

in the high latitudes of the Northern Hemisphere. This was also observed with the NPP, 302 

although a decline in the correlation between precipitation and NPP was observed in the 303 

Mediterranean, southern North America and northern South America. While the relationship 304 

between NPP and precipitation-AED was low during the historical period, this relationship was 305 

projected to decline further in the future, particularly in arid regions, the Amazon basin, and 306 

some wet areas of Africa. The decrease in the relationship with the NPP was even more severe 307 

when considering Et-AED, with an overall global decline. In addition, the relationship between 308 

NPP and soil moisture is likely to decline over large areas (e.g. the Mediterranean, northern 309 

South America, southern Africa, and Australia). Finally, the relationship of the runoff to other 310 

drought metrics tended to be stable between the historical period and the future high 311 

emission scenario, although a decreasing correlation with precipitation was observed in 312 

Scandinavia, and particularly with precipitation-AED and Et-AED in most Africa and the Amazon 313 

basin. 314 
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The temporal agreement in drought conditions among the different metrics is small in most 315 

regions during the historical period (Fig S10), suggesting that the annual drought conditions 316 

tend to differ noticeably between metrics. There was some agreement in the identified 317 

drought periods between precipitation and precipitation-AED, except in arid lands. A similar 318 

pattern was also noted between precipitation and precipitation-Et in wet regions and between 319 

precipitation-AED and Et-AED in arid lands. Nevertheless, the agreement in the occurrence of 320 

droughts between climatic, ecologic, and hydrologic metrics was small. Herein, it is worth to 321 

note that while our analysis is restricted to annual droughts to reduce the role of seasonality 322 

and the lags in the response of hydrological, agricultural and ecological drought conditions to 323 

meteorological droughts and irrespective of the physical consistency among models, drought 324 

periods mostly do not coincide in time among the different metrics. For the projected 325 

scenario, the temporal agreement between metrics shows some increase (Fig. S11). This is 326 

particularly relevant in some regions, such as the Mediterranean region, southern Africa, the 327 

Amazon basin, and Central America when comparing drought episodes recorded with 328 

precipitation and precipitation-AED, precipitation-Et, Et-AED and soil moisture and also 329 

between precipitation-AED and precipitation-Et and between Et-AED and soil moisture, 330 

particularly in water-limited regions. The agreement in the temporal identification of drought 331 

conditions also increases when comparing the climatic indices and the runoff in some areas, 332 

particularly in the Amazon and the humid regions of Africa, suggesting an agreement in annual 333 

droughts between some pairs of drought metrics, especially in water-limited or humid regions 334 

(Fig. 6).  335 

The temporal agreement between annual droughts was low during the historical period 336 

between the different metrics, and also with low spatial agreement, suggesting that the global 337 

spatial patterns of annual drought severity usually did not agree between drought metrics (Fig. 338 

7). The spatial agreement of drought conditions tends to increase under future climate change, 339 

in particular for some metrics (e.g. precipitation-AED and precipitation-Et, precipitation-AED 340 
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and Et-AED, precipitation-AED and soil moisture). Nevertheless, the spatial agreement 341 

between droughts on the annual scale between climatic indices, runoff, and ecological 342 

droughts was low in both the historical experiment and the projected scenario, indicating 343 

spatial inconsistency in replicating annual droughts among the different drought metrics 344 

obtained from ESMs. 345 

 346 

4. Discussion 347 

This study analysed long-term evolution of different drought metrics on a global scale using 348 

CMIP6 models from 1850 to 2100. These metrics represent different climatic, hydrologic, and 349 

ecological variables. Results were presented for the historical experiment (1850-2014) and 350 

future projections (2015-2100) under a high-emission scenario (SSP5-8.5). While numerous 351 

studies assessed drought severity for future climate using CMIP6 models (e.g. Cook et al., 352 

2020; Ukkolaet al., 2020; Papalexiouet al., 2021; Wanget al., 2021; Guoet al., 2022; Zhao and 353 

Dai, 2022), our assessment employed a larger number of drought metrics, including climate-354 

based (precipitation, precipitation-AED, precipitation-Et, Et-AED), hydrological-based (soil 355 

moisture and runoff) and plant physiology-based metrics (LAI and NPP). An evaluation of this 356 

variety of different metrics is essential to assess different drought types (meteorological, 357 

agricultural/ecological and hydrological) and to determine their consistency in terms of 358 

projected drought severity.  Our results, as suggested by most models and drought metrics, 359 

suggest that drought would increase in southern North America, Central America, the Amazon 360 

region, the Mediterranean, southern Africa, and southern Australia, which agrees with earlier 361 

studies (e.g. Cook et al., 2020; Ukkolaet al., 2020; Seneviratneet al., 2021; Wanget al., 2021; 362 

Zhao and Dai, 2022). Also, in accordance with previous studies (Cook et al., 2020; Scheff et al., 363 

2021), our results showed important differences in drought projections as a function of 364 

drought metrics. For example, the use of AED-based drought metrics(e.g. the Standardised 365 

Precipitation Evapotranspiration Index (SPEI)) revealed that drought severity is likely to 366 
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enhanced in future , as compared to those metrics based on precipitation, precipitation-Et, 367 

and runoff. This finding agrees with some investigations based on CMIP6 (e.g. Zeng et al., 368 

2022), and CMIP5 outputs (e.g. Cook et al., 2014) and also by studies that employed other 369 

metrics like the Palmer Drought Severity Index (PDSI) (e.g. Scheff et al., 2021; Yang et al., 2021; 370 

Zhao and Dai, 2022). The different magnitude of drought as simulated based on hydrological 371 

(i.e. runoff) and climatic drought indices (which use AED in the calculations) is behind the 372 

overestimation of drought severity based on climatic indices under high emissions climate 373 

change scenarios as  suggested by some studies(Berg and Sheffield, 2018; Scheff, 2018; Greve 374 

et al., 2019; Berg and McColl, 2021).  375 

While it can be argued that focusing on the metrics directly indicative of impacts in 376 

agricultural, ecological and hydrological systems (i.e. soil moisture, runoff, net primary 377 

production, and leaf area index) instead of climatic proxies of drought severity can be a more 378 

practical approach (McColl et al., 2022), we believe that models can show uncertainties in 379 

simulating complex hydrological and plant physiology processes. In addition, hydrological and 380 

ecological outputs from CMIP models could be affected by more uncertainty in comparison to 381 

climatic metrics that can be simulated easier, irrespective of any possible coupling 382 

mechanisms. For example, the spatial and temporal variability in soil moisture involves several 383 

processes, some of them are unknown, while others are difficult to simulate (van den Hurk et 384 

al., 2011; Lu et al., 2019). This may explain poor agreement between soil moisture 385 

observations and model simulations (Yuan and Quiring, 2017; Ford and Quiring, 2019). 386 

Streamflow generation is also very complex and models usually fail to simulate hydrological 387 

droughts (Tallaksen and Stahl, 2014; Barella-Ortiz and Quintana-Seguí, 2018). Plant physiology 388 

is also a key factor controlling both hydrological, agricultural and ecological droughts, and 389 

models show strong limitations and uncertainties in simulating plant physiological processes 390 

and water interchanges with soil and atmosphere (Liu et al., 2020). These problems are even 391 

more important for future climate projections (Gentine et al., 2019), given that other 392 
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processes may introduce other sources of uncertainty (e.g. the role of atmospheric CO2 393 

concentrations) (De Kauwe et al., 2021). Therefore, although some studies argue that plant 394 

and hydrological drought metrics obtained from model simulations can probably be more 395 

accurate than AED-based climatic indices, we believe that these metrics may also be affected 396 

by several strong uncertainties.  397 

One of the novelties of our study is the use of diverse metrics, which is fundamental to address 398 

drought characteristics and impacts. In particular, we employed the Standardised 399 

Evapotranspiration Deficit Index (SEDI), based on the difference between Et and AED, which is 400 

informative on plant water stress (Kim and Rhee, 2016; Vicente-Serrano et al., 2018; Li et al., 401 

2019, 2020; Zhang et al., 2019; Alsafadi et al., 2022; Jiang et al., 2022) with several 402 

biogeographic implications (Stephenson, 1990). Changes in the SEDI, both in spatial patterns 403 

and drought severity, were almost similar, or even stronger than those obtained by the SPEI, 404 

and are characterised by an increase in drought severity under future scenarios of high 405 

anthropogenic emissions. In addition, we used two eco-physiological metrics, LAI and NPP, 406 

which have been considered by few studies as metrics of drought severity in model 407 

simulations(e.g. Scheff et al., 2021). As opposed to the SEDI, our assessment based on the LAI 408 

and NPP did not suggest an increase in agricultural and ecological drought severity, except for 409 

the high latitudes of the Northern Hemisphere. This may be explained by the role of snow and 410 

permafrost melt processes that could affect water availability (Chen et al., 2021).  411 

The picture provided by our eight drought metrics showed some paradoxical projections that 412 

are difficult to explain by coherent hydrological and plant physiological processes. In particular, 413 

different studies focusing on plant physiology have highlighted that plant mortality will 414 

strongly increase in future as a consequence of increased plant water stress and air 415 

temperature (e.g. Williams et al., 2013; McDowell and Allen, 2015; Xuet al., 2019; Brodribbet 416 

al., 2020). This assessment is consistent with observations of ecological and agricultural 417 

impacts of droughts, which are clearly reinforced by the observed increase in AED (Breshears 418 
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et al., 2005, 2013; Allen et al., 2010; Carnicer et al., 2011; Lobell et al., 2011; Asseng et al., 419 

2015; Sánchez-Salguero et al., 2017). Nevertheless, in opposition to this empirical evidence 420 

and the strong increase of drought severity as suggested by some climatic indices, LAI-based 421 

drought projections suggested that –in few cases where precipitation is projected to 422 

increase(e.g. Central America, southwestern Australia and the south of the Amazon region), 423 

drought severity is likely to increase in future simulations.  424 

The limited increase in drought severity based on ecological metrics is difficult to be supported 425 

according to the widely known response of plants to water availability (Vicente-Serrano et al., 426 

2020b) and atmospheric water demand (Breshears et al., 2013; Grossiord et al., 2020), 427 

particularly in water-limited regions where meteorological droughts (e.g. southern Africa, 428 

southern North America, and the Mediterranean), and AED are projected to increase (Scheff 429 

and Frierson, 2015; Vicente-Serrano et al., 2020d). These conditions can lead to a remarkable 430 

increase in plant water stress incompatible with increases in LAI and NPP. Thus, the only way 431 

to avoid changes in ecological droughts in water-limited regions, where climate aridity is 432 

projected to increase, is probably related to the physiological effects of the atmospheric CO2 433 

concentrations (Mankin et al., 2017; Gonsamo et al., 2021; Scheff et al., 2022). Several studies 434 

have showed a reduction in the leaf stomatal conductance and plant resistance to water stress 435 

in response to enhanced atmospheric CO2 concentrations (e.g., Ceulemans and Mousseau, 436 

1994; Ainsworth and Long, 2005; Donohue et al., 2013; Green et al., 2020). However, the 437 

effects of increasing CO2concentrations on ecological and agricultural drought severity are very 438 

complex (Allen et al., 2015; De Kauwe et al., 2021), and there are still several uncertainties in 439 

the assessment of these effects based on ESMs (Gentine et al., 2019; De Kauwe et al., 2021), 440 

tended to overestimate the effects of increasing CO2 concentrations on plant physiology (Kolby 441 

Smith et al., 2015; Marchand et al., 2020; Zhao et al., 2020). Moreover, CO2 effects would not 442 

ameliorate plant stress during periods of water deficit, given that leaf stomatal conductance 443 

would not be controlled by CO2 concentrations, but mostly by soil moisture content (Morgan 444 
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et al., 2004; Xu et al., 2016; Menezes-Silva et al., 2019). Therefore, our assessment of future 445 

agricultural and ecological droughts based on model simulations is highly uncertain given the 446 

current evidence of the responses of plants to enhanced water stress and AED and the several 447 

sources of uncertainty in the modelling of the carbon cycle by the ESMs (Padrón et al., 2022). 448 

Thus, it is difficult to argue that ecological droughts will not increase in areas in which models 449 

suggest a strong decrease in precipitation and a remarkable increase in AED.  450 

For hydrological drought projections, our study indicates that future projections of droughts 451 

quantified with soil moisture tend to resemble the pattern of the projections of drought 452 

severity using SPEI. This seems to disagree with some previous studies that had suggested less 453 

increase in soil moisture deficits than the decrease in meteorological indices including AED in 454 

future drought projections (Milly and Dunne, 2016; Berg and Sheffield, 2018). This 455 

disagreement can basically explained by the different statistical methods used to assess future 456 

projections. These models are strongly affected by the autocorrelation of the drought metrics, 457 

as well as by focusing on changes in the average values versus the tails of the complete set of 458 

the distribution values  (Vicente-Serrano et al., 2020a). Thus, the last IPCC report has showed a 459 

strong increase in drought severity worldwide based on extreme events of the total column 460 

soil moisture, particularly during the boreal summer season (Seneviratne et al., 2021). This 461 

increase in the duration and magnitude of soil moisture deficits would be coherent with an 462 

increase in agricultural and ecological drought severity, even more considering the strong 463 

increase in AED, as projected by the CMIP models (Scheff and Frierson, 2015; Vicente-Serrano 464 

et al., 2020d), which would cause enhanced plant stress. Also, uncertainties in the projected Et 465 

are noticeably affect drought projections based on precipitation-Et, which is usually considered 466 

a metric of water availability. Thus, it is curious that the projections of meteorological droughts 467 

based on precipitation showed a stronger increase in drought duration and magnitude than 468 

projections based on precipitation-Et and runoff. It would be expected that hydrological 469 

droughts will not increase at similar rates of agricultural and ecological droughts, in response 470 
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to increased AED. This is basically because the response of streamflow to enhanced AED is 471 

expected to be lower than to precipitation, as observed with streamflow data (Ficklin et al., 472 

2018; Yang et al., 2018; Vicente-Serrano et al., 2019). This issue has been well-established 473 

based on the ESMs, as runoff simulations mostly respond to precipitation at short time scales 474 

(Scheff et al., 2022). However, even responding more to precipitation than to AED, it is difficult 475 

to support a smaller increase in drought severity by runoff than by precipitation under 476 

scenarios of a high increase in AED. This behaviour would be mostly explained by the 477 

suppression of Et as a consequence of the decreased leaf stomatal conductance given the 478 

enhanced atmospheric CO2concentrations, which would reduce the severity of hydrological 479 

droughts (Roderick et al., 2015b; Milly and Dunne, 2016; Yang et al., 2019). However, a main 480 

constrain of this assessment is that the influence of this mechanism on future Et is highly 481 

uncertain in ESMs (Vicente-Serrano et al., 2022a). Moreover, Et is also observed to increase 482 

during dry periods (Zhao et al., 2022) and evaporation in surface water bodies is expected to 483 

increase in future scenarios (Wang et al., 2018). For these reasons, it is difficult to argue that 484 

hydrological droughts quantified using precipitation-Et and runoff will increase less than 485 

meteorological droughts, based on precipitation, in future scenarios. 486 

In addition to the comparative assessment of drought trends based on different drought 487 

metrics, another aspect of novelty in our study is that it assesses the spatial and temporal 488 

relationship between different drought metrics under the historical experiment and future 489 

SSP5-8.5 scenario. Specifically, we found that the temporal relationship between the 490 

precipitation-based climatic metrics (i.e. precipitation, precipitation-AED, and P-Et) is high 491 

worldwide, with some spatial exceptions (e.g. in water-limited regions for P-Et). This behaviour 492 

is expected given that precipitation is a main controller of the interannual variability of 493 

drought conditions(Vicente-Serrano et al., 2015; Tomas-Burguera et al., 2020b). For example, 494 

in the case of SPEI, precipitation explains more than 90% of the variability of this index, while 495 

AED is only relevant during periods of precipitation deficit, particularly in water-limited regions 496 
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(Tomas-Burguera et al., 2020b). This main role of precipitation is also observed in other 497 

drought indices such as the PDSI (van der Schrier et al., 2013; Vicente-Serrano et al., 2015). On 498 

the other hand, under the SSP5-8.5 scenario, the correlation between precipitation and AED-499 

based drought indices is expected to decrease, suggesting a greater role of AED. Nevertheless, 500 

this temporal relationship remains high in most world regions. 501 

The close relationship found between climate drought indices in historical and future 502 

simulations contrasts with the low correlations found between climatic and ecological drought 503 

indices, given the low percentage of years when drought conditions coincide following 504 

meteorological and ecological metrics. The interannual variability of LAI and NPP showed high 505 

agreement in both the historical period and in the future scenario. This is in agreement with 506 

observations recorded in the last decades using vegetation activity from satellites (as a 507 

surrogate of the leaf area) and tree-ring growth (as a surrogate of NPP) (Vicente-Serrano et al., 508 

2016, 2020c). Nevertheless, unexpectedly, we noted a poor relationship between the temporal 509 

evolution of both LAI and NPP and the climatic drought indices, albeit with the use of a wide 510 

set of metrics used here that highly represent plant water stress conditions (e.g. Et-AED). 511 

Moreover, this low relationship is also found between the ecological variables and soil 512 

moisture, which is one of the main factors controlling vegetation activity and carbon uptake 513 

worldwide (Green et al., 2019). This low relationship between climatic indices (and soil 514 

moisture) and ecological metrics could be explained by the uncoupling between water 515 

availability and plant water requirements as a consequence of the physiological effects of 516 

atmospheric CO2 concentrations (as discussed above). Nevertheless, low interannual 517 

correlations were also found in the historical experiment. We consider that the low 518 

relationship between ecological drought metrics and climatic and soil moisture metrics 519 

introduces another important source of uncertainty in the assessment of the drought severity 520 

under future climate scenarios.  It is expected that the agreement between NPP, LAI, and the 521 

different climatic metrics and soil moisture should be high, given the climate forcings used in 522 
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the historical experiment. Thus, based on different vegetation metrics, numerous studies 523 

found strong temporal correlations between climate drought indices and soil moisture and 524 

different ecological measurements in the past decades, including satellite metrics (e.g. 525 

Vicente-Serrano et al., 2013; Bachmair et al., 2018), and tree ring growth (e.g. Orwig and 526 

Abrams, 1997; Vicente-Serrano et al., 2014). This unexpectedly low correlation between 527 

climatic droughts, soil moisture deficits and agricultural and ecological droughts during the 528 

historical experiment suggests that the temporal decoupling between these metrics is not 529 

related to the possible physiological effects of the enhanced CO2 concentrations. Rather, it can  530 

probably be due to the existing limitations of the models in reproducing the real physiological 531 

response of vegetation to drought. In addition to the low temporal concordance, there is a 532 

general spatial disconnection between the occurrence of climatic and ecological droughts in 533 

different regions worldwide. 534 

The temporal agreement between climatic drought metrics, soil moisture, precipitation-Et, and 535 

runoff is also low, both in the historical experiment and the SSP5-8.5 scenario. With the 536 

exception of the tropical and subtropical regions in the case of runoff, the remaining world 537 

showed low correlations with climatic metrics. Thus, the temporal correlations were low 538 

between the interannual variability of soil moisture and runoff in most regions of the world. 539 

This suggests that, considering climatic and hydrological drought metrics, the consistency of 540 

ESMs simulations on long temporal scales (i.e. annual) may be also affected by uncertainties. 541 

Thus, as opposed to CMIP6 outputs, the interannual variability of observed soil moisture and 542 

streamflow is highly consistent with climate variables in most basins of the world (Dai, 2021).   543 

 544 

5. Conclusions 545 

This study provided new evidence on the interannual relationships and long-term trends 546 

between drought types based on different drought metrics obtained from ESM simulations. 547 

The main conclusion is that the coherence of the trends and the interannual relationships 548 
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between drought metrics show important uncertainties that can largely impact any robust 549 

assessment of drought projections under scenarios of enhanced emissions of greenhouse 550 

gases. Although some previous studies have suggested that the use of climatic drought indices 551 

could overestimate drought severity under future scenarios, this study indicates that 552 

projections based on hydrological (i.e. soil moisture and runoff) and ecological drought metrics 553 

(i.e. NPP and LAI) can introduce uncertainties and inconsistencies, particularly for the 554 

projected interannual relationship between drought metrics, as well as expected drought 555 

impacts under scenarios of high emissions of greenhouse gases and strong temperature 556 

increase. Still, there are several sources of uncertainty, particularly linked to the plant 557 

processes and the physiological influences of the enhanced CO2 atmospheric concentrations, 558 

which have important implications for the assessment of both ecological and hydrological 559 

droughts in future scenarios. Recent evidence highlights increased drought effects on crop 560 

systems and natural environments in response to drought events characterised by warmer 561 

conditions (Breshears et al., 2013; Williams et al., 2013; Fontes et al., 2018), but also 562 

hydrological implications given enhanced evaporation from crops, natural vegetation, and 563 

water bodies (Vicente-Serrano et al., 2017; Friedrich et al., 2018; Althoff et al., 2020). Although 564 

the response of plant physiology and hydrological processes could change in the future, with 565 

more adaptive strategies to much warmer conditions leading to a reduction in the severity of 566 

hydrological, agricultural, and ecological droughts compared to climatic droughts conditions, 567 

these scenarios may be uncertain. Therefore, the same (or even greater) criticism could be 568 

made of the drought severity projections based on climatic drought indices using plant and 569 

ecological metrics, as these metrics do not seem to respond coherently in time and space to 570 

the occurrence of meteorological droughts and seem to underestimate the strong role of 571 

warming processes, already evident in some hydrological systems, but mostly in agricultural 572 

and ecological ones. 573 
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Drought severity projections are an extremely relevant topic with several environmental and 574 

socioeconomic implications, which deserves some scientific debate. Nevertheless, several 575 

studies based on models can present considerable uncertainties. Indeed, improving the 576 

knowledge and modelling of the complex processes involved could reduce these uncertainties, 577 

but we are probably still far from finding this solution. A focus on simple, but robust models, as 578 

suggested by McColl et al.(2022), could be a better approach to improve the assessment of 579 

future drought severity. However, this robust assessment may actually be simpler, as in future 580 

periods of precipitation deficits (anthropogenic or naturally=induced), the projected increased 581 

warming will cause more stress on hydrological and environmental systems as observed in 582 

near-present climate, irrespective of the projected trends in precipitation. 583 
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 1008 

Fig. 1. Evolution of the annual average percentage of global land area affected by extreme dry 1009 
conditions (5%) from 1850 to 2100. Grey lines represent the value for the different 1010 

independent models and red lines refer to the median. 1011 

  1012 
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 1013 

Fig. 2. Spatial distribution of the median trend in the magnitude of drought events between 1014 
1850 and 2100 (Factor: 100) 1015 
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Fig. 3. Percentage of models showing positive and statistically significant trends in drought 1019 
magnitude from 1850 to 2100 1020 
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 1022 

Fig. 4. Percentage of models showing negative and statistically significant trends in drought 1023 
magnitude from 1850 to 2100 1024 
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 1026 

Fig. 5: Differences in the median Kendall's 𝜏𝜏 correlations between the projected (2015-2100) 1027 
and historical period (1850-2014) for the different models 1028 
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 1033 

Fig. 6: Differences in the average percentage of temporal agreement among the different 1034 
metrics between the projected (2015-2100) and the historical period (1850-2014) for the 1035 
different models 1036 
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 1040 

Fig. 7: Evolution of the spatial agreement of dry conditions between the different drought 1041 
metrics.  1042 

 1043 
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Abstract 11 

This study provides a global analysis of drought metrics obtained from several climatic, 12 

hydrologic and ecological variables in a climate change framework using CMIP6 model data. A 13 

comprehensive analysis of the evolution of drought severity on a global scale is carried out for 14 

the historical experiment (1850-2014) and for future simulations under a high emissions 15 

scenario (SSP5-8.5). This study focuses on assessing trends in the magnitude and duration of 16 

drought events according to different standardised indices over the world land-surface area.  17 

The spatial and temporal agreement between the different drought indices on a global scale 18 

was also evaluated. Overall, there is a fairly large consensus among models and drought 19 

metrics in pointing to drought increase in southern North America, Central America, the 20 

Amazon region, the Mediterranean, southern Africa and southern Australia. Our results show 21 

important spatial differences in drought projections, which are highly dependent on the 22 

drought metric employed. While a strong relationship between climatic indices was evident, 23 

climatic and ecological drought metrics showed less dependency over both space and time. 24 

Importantly, our study demonstrates uncertainties in future projections of drought trends and 25 

their interannual variability, stressing the importance of coherent hydrological and plant 26 

physiological patterns when analysing CMIP6 model simulations of droughts under a warming 27 

climate scenario. 28 

 29 
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1. Introduction 31 

Assessment of future drought projections is at the forefront of scientific debate in the current 32 

research on climate, hydrology, agriculture, and ecology. This is simply due to the multiple 33 

dimensions of droughts, which cause strong complexity for drought assessment and 34 

quantification (Lloyd-Hughes, 2014; Douville et al., 2021). In addition, the strong 35 

environmental and socioeconomic implications of drought changes in future climate scenarios 36 

adds more complexity to this debate (Van Loon et al., 2016; Xu et al., 2019; Naumann et al., 37 

2021). 38 

In order to robustly assess future changes in drought severity, we must refer to different types 39 

of drought. This is fundamental to properly evaluate the impacts associated with drought in 40 

future climates. Generally, the concepts of meteorological drought (precipitation deficits), 41 

agricultural droughts(crop failure or yield decrease), ecological droughts (damages in natural 42 

vegetation, reduced photosynthesis activity, and carbon uptake and increased plant mortality), 43 

and hydrological droughts (reductions in the availability of water in different sources such as 44 

reservoir storages, streamflow and groundwater) are used commonly to refer to drought 45 

types. These types are largely impacted by different processes and physical and ecological 46 

implications (Wilhite and Buchanan-Smith, 2005; Lobell, 2014; Vicente-Serrano et al, 2020b; 47 

Douville et al, 2021). 48 

In the literature, a wide spectrum of studies characterised drought projections on the global 49 

scale using model simulations of various climatic, hydrological, and vegetation variables under 50 

different future climates scenarios (e.g. Cook et al., 2014, 2020; Martin, 2018; Luet al., 2019; 51 

Ukkolaet al., 2020; Vicente-Serranoet al., 2020a; Zhu and Yang, 2021; Papalexiouet al., 2021; 52 

Zhao and Dai, 2021; Ridderet al., 2022; Zenget al., 2022). Nonetheless, most of these studies 53 

focused on metrics directly simulated by different Coupled Model Intercomparison Projects 54 

(CMIP) since they allow to directly evaluate drought impacts on a variety of agricultural, 55 

ecological, and hydrological systems (Quiring and Papakryiakou, 2003; Hlavinka et al., 2009; 56 
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Vicente-Serrano et al., 2012; Stagge et al., 2015a; Bachmair et al., 2016, 2018; O’Connor et al., 57 

2022).  58 

In the literature, the most widely used drought metrics for drought monitoring and impact 59 

assessment are synthetic indices that combine precipitation and atmospheric evaporative 60 

demand (AED), allowing for a direct quantification of drought severity and drought extent 61 

(Vicente-Serrano et al., 2010; van der Schrier et al., 2013; Tomas-Burguera et al., 2020a; Dai, 62 

2021), as well as their impacts on ecosystems (Bachmair et al., 2015). For future simulations, 63 

different studies analysed drought projections based on these indices, employing ESMs 64 

outputs under different future climate scenarios (Dai, 2012; Naumann et al., 2018; Spinoni et 65 

al., 2020; Vicente-Serrano et al., 2020a; Zhao and Dai, 2022). According to these scenarios, 66 

drought severity would increase, mainly as a consequence of the enhanced AED in a warming 67 

climate. Nonetheless, some studies suggest uncertainty of using  these metrics (e.g. Berg and 68 

Sheffield, 2018;  McColl et al., 2022). Specifically, the criticisms argue are that these indices are 69 

not necessarily representative of the metrics based on water storage (i.e. soil moisture), 70 

surface water generation (i.e. runoff) or vegetation activity (i.e. leaf area and net primary 71 

production). These arguments would be supported by the notion that hydrological and 72 

ecological systems might show different dynamics and responses under future climates (Berg 73 

and Sheffield, 2018; Scheff, 2018). Furthermore, CMIP models generate simulations of 74 

hydrological and plant metrics, which would make it unnecessary to focus on climate metrics 75 

as proxies of drought impacts (McColl et al., 2022). Moreover, drought indices that include 76 

AED in their calculations might overestimate drought severity under high=emissions future 77 

climate scenarios. This is simply because future increase in AED is likely to be higher than the 78 

expected increase in land evapotranspiration (Et) (Roderick et al., 2015a; Milly and Dunne, 79 

2016; Scheff, 2018; Yang et al., 2019), which is also determined by water availability.  80 

As such, assessments of drought projections based on different drought metrics make it 81 

necessary to provide a more complete spatio-temporal comparison of different drought 82 
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metrics to provide a more robust picture of how drought responds to future climate. 83 

Nevertheless, although recent studies have analysed global drought projections based on the 84 

latest model outputs from the CMIP6 using different drought metrics (e.g. Cook et al., 2020; 85 

Ukkolaet al., 2020; Liet al., 2021; Papalexiouet al., 2021; Zhu and Yang, 2021; Menget al., 2022; 86 

Zenget al., 2022; Zhao and Dai, 2022), few works assessed the robustness and coherence in the 87 

drought metrics under scenarios of high greenhouse gasses (GHG) emissions. Importantly, 88 

these studies lacked the opportunity to investigate some drought metrics that are essential for 89 

assessing agricultural and ecological droughts. As such, a focus on these gaps may provide new 90 

evidence that helps reconcile perspectives or stress uncertainties related to future trends in 91 

drought severity. On the other hand, it is necessary to test the robustness of the spatial and 92 

temporal consistency among the different drought metrics, which can give indications on the 93 

reliability of drought projections. In the pursuit of this background, the objectives of this study 94 

are to i) determine future drought projections based a more complete set of drought metrics 95 

to date, providing a more complete mosaic of current global studies and ii) determine the 96 

spatial and temporal coherence among the different drought metrics in replicating drought 97 

severity. Accordingly, the current global assessment can contribute to the arising debate on 98 

the robustness of the different drought metrics, providing new evidences on CMIP6 model 99 

uncertainties for agricultural, ecological, and hydrological drought projections under a high-100 

emission climate scenario.  101 

 102 

2. Data and Methods 103 

We employed monthly data of a set of hydroclimatic variables from the CMIP6 experiment 104 

(Eyring et al., 2016). These variables included precipitation, runoff, total column soil moisture, 105 

leaf area index (LAI) and net primary production (NPP). Data were provided for the historical 106 

period (1850-2014) and for the Shared Socioeconomic Pathway (SSP; 5-8.5) from 2015 to 2100. 107 

All CMIP6 individuals that secure data for the necessary variables, as well as the period 1850-108 
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2100, were considered in our analysis (see Supplementary Table 1). Recalling that the CMIP6 109 

outputs are provided in different native spatial resolutions, we interpolated data to a common 110 

resolution of 2.5° x 2.5°. To assess future projections in drought severity, our decision was 111 

made to consider the SSP5-8.5 scenario, which represents the worst possible scenario 112 

compared to the historical experiment.  113 

The standardised drought indices were computed based on the common data inputs (e.g. 114 

precipitation, runoff, total column soil moisture, LAI and NPP). Nonetheless, other indices were 115 

computed using a combination of new variables. For example,  maximum and minimum air 116 

temperatures, relative humidity, wind speed and solar radiation, were used to calculate  AED 117 

following the Penman-Monteith FAO-56 equation (Pereira et al., 2015). Overall, based on 118 

these data and data of Evapotranspiration (Et), we calculated different indices using: i) the 119 

difference between precipitation and AED (P-AED), which is a metric that has been widely used 120 

for drought assessment since it summarises the balance between the water available in the 121 

form of precipitation and the existing AED (Vicente-Serrano et al., 2010; Tomas-Burguera et al., 122 

2020a), ii) precipitation minus land evapotranspiration (P-Et), which is considered a long-term 123 

water budget and has been accordingly used to assess drought severity in several works (e.g. 124 

Padrón et al., 2020), and iii) the difference between Et and AED (Et-AED), which compares the 125 

difference between the available water to evaporate and the water demand by the 126 

atmosphere (Kim and Rhee, 2016; Vicente-Serrano et al., 2018) and is highly related to plant 127 

water stress (Stephenson, 1990). All these drought metrics were transformed into the same 128 

standardised units to make robust spatial and temporal comparisons. To fit data distribution, a 129 

log-logistic distribution was used , which is capable of standardising different climate and 130 

hydrological records under different climate conditions, as being evidenced in earlier works 131 

(e.g. Vicente-Serrano and Beguería, 2016; Vicente-Serrano et al., 2020a). The only exception 132 

was for precipitation, which was fitted to a Gamma distribution (Stagge et al., 2015b). We 133 

tested the goodness of fit of the standardized indices using the coefficient of determination 134 
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(R2) of the QQ plots, which compare the empirical probability distribution function (pdf) of 135 

each index and the pdf of the standard normal distribution. Results demonstrate that R2 were 136 

almost close to 1 for majority of the world regions (Fig S1), with small deviations among the 137 

models (Fig S2) and for specific timescales (e.g. 3-month and 12-month). Afterwards, a second 138 

standardisation procedure was carried out independently for each of the 12 monthly series of 139 

the indices. To make this standardisation, both the mean and the standard deviation were 140 

computed for the reference period 1850-2014. This procedure minimizes the possible impacts 141 

of strong trends presented in the analysed variables for future scenarios in the possibility of 142 

calculating the drought indices (Vicente-Serrano et al., 2020a). Furthermore, this 143 

standardisation allows for a robust spatial and temporal comparability between the different 144 

metrics. Accordingly,  drought duration and magnitude can be quantified for each time series 145 

and for the different indices. Drought events were identified using the run theory (Tallaksen et 146 

al., 1997; Fleig et al., 2006), considering a threshold of z = -1.28, which corresponds to a 10% 147 

probability of a standard normal observation being below that value. For drought event 148 

identification, all indices were computed at the 3-month time scale. To analyse the trends in 149 

the duration and magnitude of drought events, a linear regression model was fitted as a 150 

function of time, and the estimated slope was used to quantify the amount of change over 151 

time. The significance of these changes was assessed using the Mann–Kendall test (Kendall, 152 

1948; Mann, 1945).   153 

We analysed the relationship between the annual indices (computed at 12-month time scale) 154 

using the Kendall´s rank correlation coefficient, i.e., Kendall's 𝜏𝜏coefficient (Kendall, 1938). This 155 

coefficient is a nonparametric measure of rank correlation that is more suitable than 156 

parametric statistics (e.g. Pearson's linear correlation coefficient) because it accounts for the 157 

non-linear relationships between variables. 158 

For each grid point, the temporal agreement between the indices (computed at 12-month 159 

scale) was assessed by obtaining the percentage of simultaneous occurrence of years in which 160 
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a pair of indices were below z=-1.28, thus producing a 2-dimensional representation of the 161 

results.  Also, we computed the percentage of grid points where each pair of indices showed z-162 

value below -1.28, resulting in a time series.  163 

 164 

3. Results 165 

3.1. Evolution of drought severity based on different metrics 166 

Fig. 1 shows the evolution of the world land surface affected by drought between 1850 and 167 

2100. It is computed as the percentage of land grid points below the 5th percentile of each raw 168 

(non-standardised) variable. This percentile is computed independently for each month, 169 

considering the 1850-2014 reference period. For all the variables, we found an increase in the 170 

world land surface impacted by drought from 1850 to 2010, albeit with some considerable 171 

spatial differences. Results demonstrate that precipitation, leaf area, and runoff will likely 172 

show a small increase of drought severity in future - scenarios. For precipitation-Et and NPP, 173 

the increase was mostly intermediate, although a sharp increase in NPP is noted between 2010 174 

and 2030, followed by a constant behaviour to the end of the twenty-first century. For 175 

precipitation-AED, Et-AED and soil moisture, a remarkable increase is noted at the end of the 176 

century. As illustrated in Figs S3 and S4, some variables exhibited important seasonal and 177 

regional differences. For example, during the boreal winter season, drought based on NPP, soil 178 

moisture, and Et-AED increased. Rather, for precipitation and runoff, irrelevant drought 179 

increase was noted from 1850 to 2100. On the contrary, in the boreal summer season, the 180 

main drought increase was recorded for precipitation-AED, Et-AED, and soil moisture, with 181 

little increase for other variables (e.g. precipitation, runoff, and precipitation-Et).  182 

Overall, we noted an increase in the magnitude of drought events that affects large areas of 183 

the world in terms of precipitation-AED, Et-AED, and soil moisture, albeit with significant 184 

spatial differences (Fig. 2). Interestingly, these three drought metrics showed a high agreement 185 

in terms of the areas that are likely to exhibit the highest increase in the magnitude of drought 186 
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periods, including the Mediterranean region, Central America, northern South America and 187 

western South America, West Africa and South Africa. Nevertheless, it can be noted that the 188 

areas affected are much larger using Et-AED metric, with almost the entire land showing an 189 

increase in drought severity. Meteorological droughts, based on precipitation, showed an 190 

increase in drought magnitude in areas of Central and South America, West Africa, South 191 

Australia and the Mediterranean region, although this increase is not as high as suggested by 192 

other drought indices (i.e. Et-AED, and soil moisture). This pattern was almost similar when 193 

considering precipitation-Et, although some areas of South America did not show an increase 194 

in drought severity, suggesting that –in specific regions- the increase in drought magnitude can 195 

be reduced if Et is included in the calculations. Drought magnitude trends based on runoff 196 

showed smaller changes than considering exclusively precipitation, demonstrating that  CMIP6 197 

models project a less increase in the magnitude of hydrological droughts than in the 198 

magnitude of meteorological (precipitation) droughts. LAI did not show an increase in the 199 

magnitude of drought events in large areas of the world, except for parts of East Brazil. Thus, 200 

the spatial pattern was sparse on the global scale, with strong regional variability and a 201 

dominance of no changes or decrease in the magnitude of drought events in some regions 202 

(e.g., South America, Southeast Asia, Central Europe, and North America). Notably, the NPP-203 

based assessment showed a strong reinforcement of drought magnitude in the high latitudes 204 

of the Northern Hemisphere. Rather, in some areas of Africa, South America and Southeast 205 

Asia, a decrease in the magnitude of the drought episodes, based on the NPP, was noted. . 206 

Changes in the duration of drought events were almost similar to those of drought magnitude, 207 

particularly in terms of spatial patterns and the behaviour of the different drought metrics (Fig. 208 

S5).  209 

Some drought metrics show high consistency in identifying positive trends in drought 210 

magnitude among the different models. Fig. 3 shows the percentage of models showing 211 

positive and statistically significant trends in drought magnitude between 1850 and 2100. As 212 



9 
 

depicted, almost all models defined the same the regions with strong increase in drought 213 

magnitude considering precipitation-AED and Et-AED. This agreement was much lower for soil 214 

moisture, , even in large regions where the multimodel median values showed an increase in 215 

drought magnitude. A representative example is found in southern North America and South 216 

Africa, where multimodel medians showed a large increase in drought magnitude, while less 217 

than 40% of the models showed a positive and significant trend. In other regions wherea 218 

decline in drought magnitude was observed like northern South America or the 219 

Mediterranean, the percentage of models showing significant declining trends was roughly 220 

50%, suggesting a strong uncertainty in model projections. Notably, although precipitation, 221 

precipitation-Et and runoff showed a drought increase in fewer regions than soil moisture, the 222 

consistency of this increase among models seems to be greater. More than 50% of the models 223 

suggested a positive and statistically significant increase in drought magnitude in northern 224 

South America and Central America, the Mediterranean and southern Africa for precipitation. 225 

A similar pattern was evident for vast areas in North and South America, Central Africa, and 226 

Central and South Asia when considering P-Et. This suggests that Et projections suppress the 227 

trend toward higher drought magnitudes in Southern Africa in comparison to precipitation-228 

based projections, with only few models showing a positive and statistically significant trend. 229 

Interestingly, for runoff almost 50% of the models suggested a significant increase in drought 230 

magnitude in large regions of the Northern Hemisphere (e.g. Alaska, Labrador, Scandinavia, 231 

West Russia), while they did not witness a relevant increase in drought magnitude based on 232 

precipitation and precipitation-Et metrics. In the same context, apart from the high latitudes of 233 

the Northern Hemisphere, there were no regions where more than 30% of models showed an 234 

increase in drought magnitude for the NPP. Interestingly, results demonstrate that drought 235 

magnitude based on LAI will not change anywhere worldwide, with almost no model suggests 236 

significant changes.  237 
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Like drought magnitude, similar patterns of drought duration changes were observed globally 238 

(Fig. S6), with majority of the models suggesting no significant changes in ecological and 239 

agricultural droughts across majority of the world regions under scenarios of high greenhouse 240 

gas emissions.  241 

The negative trends in drought magnitude (Fig. 4) and duration (Fig. S7) indicated few regions 242 

and metrics in which the models agree on a decrease in drought severity, mainly for 243 

precipitation in the high latitudes of the Northern Hemisphere. Even for LAI and NPP, the 244 

percentage of models that showed a decrease in drought magnitude is low. As depicted, 245 

although some areas, based on some metrics, showed a projected decrease in drought 246 

duration and magnitude with multimodel medians (e.g. Southeast Asia with LAI, Central Africa 247 

with the NPP, West Russia with soil moisture), there is still large inconsistency among the 248 

models. In the same context, while a steady increase in drought duration and magnitude was 249 

projected for some regions and variables, only few areas witnessed a decrease in drought 250 

duration and magnitude, irrespective of drought metric used. Thus, although there are 251 

important uncertainties between drought metrics and models related to the increase of 252 

drought duration and magnitude, there is a high consistency between models and metrics 253 

concerning drought decrease since drought magnitude and duration are not expected to 254 

decrease much under a scenario of high greenhouse gasses emissions. 255 

 256 

3.2. Spatio-temporal relationships among drought metrics 257 

In addition to knowing the consistency of trends between different drought metrics and 258 

models, it is also relevant to analyse the consistency of the temporal relationship in the 259 

drought severity based on these metrics (Fig. S8). As illustrated, we found strong annual 260 

relationships between some pairs of drought indices in the historical period. For example, the 261 

correlation was higher than 0.8 between precipitation and precipitation-AED and between 262 

precipitation and precipitation-Et in most areas of the world. Also, a high correlation was 263 
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observed between precipitation-AED and precipitation-Et, with few exceptions, mainly in arid 264 

and semiarid regions where correlations decreased. Other pairs of drought metrics showed 265 

lower relationships on global scale, with important spatial differences. For example, the 266 

relationship between precipitation and Et-AED was only high in water-limited regions, where 267 

Et is mostly determined by water availability. It is worth mentioning that the relationship 268 

between precipitation (and also between the other climatic metrics) and soil moisture was low 269 

in most regions. Thus, the correlation with soil moisture was higher considering precipitation-270 

AED and particularly Et-AED in regions like South America, Africa, and South Asia. LAI and NPP 271 

showed high correlations particularly in water-limited and cold regions. Nevertheless, these 272 

two ecological variables showed low correlations with the different meteorological drought 273 

metrics, suggesting that the interannual variability of agricultural and ecological droughts 274 

simulated by models is independent from those of climatic droughts in most regions of the 275 

world. This pattern was also observed considering soil moisture, with low correlations found 276 

between the interannual variability of soil moisture and the NPP and LAI in most regions, 277 

irrespective of biome types and bioclimatic conditions. The relationship between precipitation 278 

and runoff was high in most regions of the world, except for North America and most of 279 

Eurasia. In contrast, the relationship between interannual variability of runoff and soil 280 

moisture tended to be low globally, apart from the Mediterranean, northern South America, 281 

and Africa. Similarly, ecological metrics (i.e. NPP and LAI) showed low correlations with runoff 282 

worldwide.  283 

Overall, these results suggest that, except for the high relationship between different climate 284 

metrics and their corresponding spatial differences that are mainly determined by the average 285 

water availability and temperature, the temporal relationship between different drought 286 

metrics was generally low in most regions of the world. This relationship was particularly low 287 

between climatic and vegetation metrics, as well as between soil moisture and other drought 288 

metrics. 289 
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The spatial pattern and the magnitude of the temporal relationships between the different 290 

variables did not show important changes considering future simulations (2015-2100), as 291 

compared with historical simulations (Fig. S9), albeit with some important exceptions (Fig. 5). 292 

For example, the relationship between the interannual variability of precipitation and other 293 

climatic drought metrics generally decreased, which is quite relevant in some areas of Central 294 

Asia considering precipitation-AED, but also in the Sahel and high latitudes of the Northern 295 

Hemisphere considering Et-AED. On the contrary, the relationship between precipitation and 296 

precipitation-Et remained stable for both the historical period and future. Also, we found a 297 

decrease in the relationship between precipitation-AED and precipitation-Et in some regions of 298 

Europe, South America, and Africa. The relationship between LAI and NPP was stable for the 299 

historical period and future simulations in most regions, albeit with a trend to reinforce in 300 

some regions. In addition, the relationship between precipitation and LAI tended to reinforce 301 

in the high latitudes of the Northern Hemisphere. This was also observed with the NPP, 302 

although a decline in the correlation between precipitation and NPP was observed in the 303 

Mediterranean, southern North America and northern South America. While the relationship 304 

between NPP and precipitation-AED was low during the historical period, this relationship was 305 

projected to decline further in the future, particularly in arid regions, the Amazon basin, and 306 

some wet areas of Africa. The decrease in the relationship with the NPP was even more severe 307 

when considering Et-AED, with an overall global decline. In addition, the relationship between 308 

NPP and soil moisture is likely to decline over large areas (e.g. the Mediterranean, northern 309 

South America, southern Africa, and Australia). Finally, the relationship of the runoff to other 310 

drought metrics tended to be stable between the historical period and the future high 311 

emission scenario, although a decreasing correlation with precipitation was observed in 312 

Scandinavia, and particularly with precipitation-AED and Et-AED in most Africa and the Amazon 313 

basin. 314 
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The temporal agreement in drought conditions among the different metrics is small in most 315 

regions during the historical period (Fig S10), suggesting that the annual drought conditions 316 

tend to differ noticeably between metrics. There was some agreement in the identified 317 

drought periods between precipitation and precipitation-AED, except in arid lands. A similar 318 

pattern was also noted between precipitation and precipitation-Et in wet regions and between 319 

precipitation-AED and Et-AED in arid lands. Nevertheless, the agreement in the occurrence of 320 

droughts between climatic, ecologic, and hydrologic metrics was small. Herein, it is worth to 321 

note that while our analysis is restricted to annual droughts to reduce the role of seasonality 322 

and the lags in the response of hydrological, agricultural and ecological drought conditions to 323 

meteorological droughts and irrespective of the physical consistency among models, drought 324 

periods mostly do not coincide in time among the different metrics. For the projected 325 

scenario, the temporal agreement between metrics shows some increase (Fig. S11). This is 326 

particularly relevant in some regions, such as the Mediterranean region, southern Africa, the 327 

Amazon basin, and Central America when comparing drought episodes recorded with 328 

precipitation and precipitation-AED, precipitation-Et, Et-AED and soil moisture and also 329 

between precipitation-AED and precipitation-Et and between Et-AED and soil moisture, 330 

particularly in water-limited regions. The agreement in the temporal identification of drought 331 

conditions also increases when comparing the climatic indices and the runoff in some areas, 332 

particularly in the Amazon and the humid regions of Africa, suggesting an agreement in annual 333 

droughts between some pairs of drought metrics, especially in water-limited or humid regions 334 

(Fig. 6).  335 

The temporal agreement between annual droughts was low during the historical period 336 

between the different metrics, and also with low spatial agreement, suggesting that the global 337 

spatial patterns of annual drought severity usually did not agree between drought metrics (Fig. 338 

7). The spatial agreement of drought conditions tends to increase under future climate change, 339 

in particular for some metrics (e.g. precipitation-AED and precipitation-Et, precipitation-AED 340 
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and Et-AED, precipitation-AED and soil moisture). Nevertheless, the spatial agreement 341 

between droughts on the annual scale between climatic indices, runoff, and ecological 342 

droughts was low in both the historical experiment and the projected scenario, indicating 343 

spatial inconsistency in replicating annual droughts among the different drought metrics 344 

obtained from ESMs. 345 

 346 

4. Discussion 347 

This study analysed long-term evolution of different drought metrics on a global scale using 348 

CMIP6 models from 1850 to 2100. These metrics represent different climatic, hydrologic, and 349 

ecological variables. Results were presented for the historical experiment (1850-2014) and 350 

future projections (2015-2100) under a high-emission scenario (SSP5-8.5). While numerous 351 

studies assessed drought severity for future climate using CMIP6 models (e.g. Cook et al., 352 

2020; Ukkolaet al., 2020; Papalexiouet al., 2021; Wanget al., 2021; Guoet al., 2022; Zhao and 353 

Dai, 2022), our assessment employed a larger number of drought metrics, including climate-354 

based (precipitation, precipitation-AED, precipitation-Et, Et-AED), hydrological-based (soil 355 

moisture and runoff) and plant physiology-based metrics (LAI and NPP). An evaluation of this 356 

variety of different metrics is essential to assess different drought types (meteorological, 357 

agricultural/ecological and hydrological) and to determine their consistency in terms of 358 

projected drought severity.  Our results, as suggested by most models and drought metrics, 359 

suggest that drought would increase in southern North America, Central America, the Amazon 360 

region, the Mediterranean, southern Africa, and southern Australia, which agrees with earlier 361 

studies (e.g. Cook et al., 2020; Ukkolaet al., 2020; Seneviratneet al., 2021; Wanget al., 2021; 362 

Zhao and Dai, 2022). Also, in accordance with previous studies (Cook et al., 2020; Scheff et al., 363 

2021), our results showed important differences in drought projections as a function of 364 

drought metrics. For example, the use of AED-based drought metrics(e.g. the Standardised 365 

Precipitation Evapotranspiration Index (SPEI)) revealed that drought severity is likely to 366 
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enhanced in future , as compared to those metrics based on precipitation, precipitation-Et, 367 

and runoff. This finding agrees with some investigations based on CMIP6 (e.g. Zeng et al., 368 

2022), and CMIP5 outputs (e.g. Cook et al., 2014) and also by studies that employed other 369 

metrics like the Palmer Drought Severity Index (PDSI) (e.g. Scheff et al., 2021; Yang et al., 2021; 370 

Zhao and Dai, 2022). The different magnitude of drought as simulated based on hydrological 371 

(i.e. runoff) and climatic drought indices (which use AED in the calculations) is behind the 372 

overestimation of drought severity based on climatic indices under high emissions climate 373 

change scenarios as  suggested by some studies(Berg and Sheffield, 2018; Scheff, 2018; Greve 374 

et al., 2019; Berg and McColl, 2021).  375 

While it can be argued that focusing on the metrics directly indicative of impacts in 376 

agricultural, ecological and hydrological systems (i.e. soil moisture, runoff, net primary 377 

production, and leaf area index) instead of climatic proxies of drought severity can be a more 378 

practical approach (McColl et al., 2022), we believe that models can show uncertainties in 379 

simulating complex hydrological and plant physiology processes. In addition, hydrological and 380 

ecological outputs from CMIP models could be affected by more uncertainty in comparison to 381 

climatic metrics that can be simulated easier, irrespective of any possible coupling 382 

mechanisms. For example, the spatial and temporal variability in soil moisture involves several 383 

processes, some of them are unknown, while others are difficult to simulate (van den Hurk et 384 

al., 2011; Lu et al., 2019). This may explain poor agreement between soil moisture 385 

observations and model simulations (Yuan and Quiring, 2017; Ford and Quiring, 2019). 386 

Streamflow generation is also very complex and models usually fail to simulate hydrological 387 

droughts (Tallaksen and Stahl, 2014; Barella-Ortiz and Quintana-Seguí, 2018). Plant physiology 388 

is also a key factor controlling both hydrological, agricultural and ecological droughts, and 389 

models show strong limitations and uncertainties in simulating plant physiological processes 390 

and water interchanges with soil and atmosphere (Liu et al., 2020). These problems are even 391 

more important for future climate projections (Gentine et al., 2019), given that other 392 
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processes may introduce other sources of uncertainty (e.g. the role of atmospheric CO2 393 

concentrations) (De Kauwe et al., 2021). Therefore, although some studies argue that plant 394 

and hydrological drought metrics obtained from model simulations can probably be more 395 

accurate than AED-based climatic indices, we believe that these metrics may also be affected 396 

by several strong uncertainties.  397 

One of the novelties of our study is the use of diverse metrics, which is fundamental to address 398 

drought characteristics and impacts. In particular, we employed the Standardised 399 

Evapotranspiration Deficit Index (SEDI), based on the difference between Et and AED, which is 400 

informative on plant water stress (Kim and Rhee, 2016; Vicente-Serrano et al., 2018; Li et al., 401 

2019, 2020; Zhang et al., 2019; Alsafadi et al., 2022; Jiang et al., 2022) with several 402 

biogeographic implications (Stephenson, 1990). Changes in the SEDI, both in spatial patterns 403 

and drought severity, were almost similar, or even stronger than those obtained by the SPEI, 404 

and are characterised by an increase in drought severity under future scenarios of high 405 

anthropogenic emissions. In addition, we used two eco-physiological metrics, LAI and NPP, 406 

which have been considered by few studies as metrics of drought severity in model 407 

simulations(e.g. Scheff et al., 2021). As opposed to the SEDI, our assessment based on the LAI 408 

and NPP did not suggest an increase in agricultural and ecological drought severity, except for 409 

the high latitudes of the Northern Hemisphere. This may be explained by the role of snow and 410 

permafrost melt processes that could affect water availability (Chen et al., 2021).  411 

The picture provided by our eight drought metrics showed some paradoxical projections that 412 

are difficult to explain by coherent hydrological and plant physiological processes. In particular, 413 

different studies focusing on plant physiology have highlighted that plant mortality will 414 

strongly increase in future as a consequence of increased plant water stress and air 415 

temperature (e.g. Williams et al., 2013; McDowell and Allen, 2015; Xuet al., 2019; Brodribbet 416 

al., 2020). This assessment is consistent with observations of ecological and agricultural 417 

impacts of droughts, which are clearly reinforced by the observed increase in AED (Breshears 418 
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et al., 2005, 2013; Allen et al., 2010; Carnicer et al., 2011; Lobell et al., 2011; Asseng et al., 419 

2015; Sánchez-Salguero et al., 2017). Nevertheless, in opposition to this empirical evidence 420 

and the strong increase of drought severity as suggested by some climatic indices, LAI-based 421 

drought projections suggested that –in few cases where precipitation is projected to 422 

increase(e.g. Central America, southwestern Australia and the south of the Amazon region), 423 

drought severity is likely to increase in future simulations.  424 

The limited increase in drought severity based on ecological metrics is difficult to be supported 425 

according to the widely known response of plants to water availability (Vicente-Serrano et al., 426 

2020b) and atmospheric water demand (Breshears et al., 2013; Grossiord et al., 2020), 427 

particularly in water-limited regions where meteorological droughts (e.g. southern Africa, 428 

southern North America, and the Mediterranean), and AED are projected to increase (Scheff 429 

and Frierson, 2015; Vicente-Serrano et al., 2020d). These conditions can lead to a remarkable 430 

increase in plant water stress incompatible with increases in LAI and NPP. Thus, the only way 431 

to avoid changes in ecological droughts in water-limited regions, where climate aridity is 432 

projected to increase, is probably related to the physiological effects of the atmospheric CO2 433 

concentrations (Mankin et al., 2017; Gonsamo et al., 2021; Scheff et al., 2022). Several studies 434 

have showed a reduction in the leaf stomatal conductance and plant resistance to water stress 435 

in response to enhanced atmospheric CO2 concentrations (e.g., Ceulemans and Mousseau, 436 

1994; Ainsworth and Long, 2005; Donohue et al., 2013; Green et al., 2020). However, the 437 

effects of increasing CO2concentrations on ecological and agricultural drought severity are very 438 

complex (Allen et al., 2015; De Kauwe et al., 2021), and there are still several uncertainties in 439 

the assessment of these effects based on ESMs (Gentine et al., 2019; De Kauwe et al., 2021), 440 

tended to overestimate the effects of increasing CO2 concentrations on plant physiology (Kolby 441 

Smith et al., 2015; Marchand et al., 2020; Zhao et al., 2020). Moreover, CO2 effects would not 442 

ameliorate plant stress during periods of water deficit, given that leaf stomatal conductance 443 

would not be controlled by CO2 concentrations, but mostly by soil moisture content (Morgan 444 
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et al., 2004; Xu et al., 2016; Menezes-Silva et al., 2019). Therefore, our assessment of future 445 

agricultural and ecological droughts based on model simulations is highly uncertain given the 446 

current evidence of the responses of plants to enhanced water stress and AED and the several 447 

sources of uncertainty in the modelling of the carbon cycle by the ESMs (Padrón et al., 2022). 448 

Thus, it is difficult to argue that ecological droughts will not increase in areas in which models 449 

suggest a strong decrease in precipitation and a remarkable increase in AED.  450 

For hydrological drought projections, our study indicates that future projections of droughts 451 

quantified with soil moisture tend to resemble the pattern of the projections of drought 452 

severity using SPEI. This seems to disagree with some previous studies that had suggested less 453 

increase in soil moisture deficits than the decrease in meteorological indices including AED in 454 

future drought projections (Milly and Dunne, 2016; Berg and Sheffield, 2018). This 455 

disagreement can basically explained by the different statistical methods used to assess future 456 

projections. These models are strongly affected by the autocorrelation of the drought metrics, 457 

as well as by focusing on changes in the average values versus the tails of the complete set of 458 

the distribution values  (Vicente-Serrano et al., 2020a). Thus, the last IPCC report has showed a 459 

strong increase in drought severity worldwide based on extreme events of the total column 460 

soil moisture, particularly during the boreal summer season (Seneviratne et al., 2021). This 461 

increase in the duration and magnitude of soil moisture deficits would be coherent with an 462 

increase in agricultural and ecological drought severity, even more considering the strong 463 

increase in AED, as projected by the CMIP models (Scheff and Frierson, 2015; Vicente-Serrano 464 

et al., 2020d), which would cause enhanced plant stress. Also, uncertainties in the projected Et 465 

are noticeably affect drought projections based on precipitation-Et, which is usually considered 466 

a metric of water availability. Thus, it is curious that the projections of meteorological droughts 467 

based on precipitation showed a stronger increase in drought duration and magnitude than 468 

projections based on precipitation-Et and runoff. It would be expected that hydrological 469 

droughts will not increase at similar rates of agricultural and ecological droughts, in response 470 
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to increased AED. This is basically because the response of streamflow to enhanced AED is 471 

expected to be lower than to precipitation, as observed with streamflow data (Ficklin et al., 472 

2018; Yang et al., 2018; Vicente-Serrano et al., 2019). This issue has been well-established 473 

based on the ESMs, as runoff simulations mostly respond to precipitation at short time scales 474 

(Scheff et al., 2022). However, even responding more to precipitation than to AED, it is difficult 475 

to support a smaller increase in drought severity by runoff than by precipitation under 476 

scenarios of a high increase in AED. This behaviour would be mostly explained by the 477 

suppression of Et as a consequence of the decreased leaf stomatal conductance given the 478 

enhanced atmospheric CO2concentrations, which would reduce the severity of hydrological 479 

droughts (Roderick et al., 2015b; Milly and Dunne, 2016; Yang et al., 2019). However, a main 480 

constrain of this assessment is that the influence of this mechanism on future Et is highly 481 

uncertain in ESMs (Vicente-Serrano et al., 2022a). Moreover, Et is also observed to increase 482 

during dry periods (Zhao et al., 2022) and evaporation in surface water bodies is expected to 483 

increase in future scenarios (Wang et al., 2018). For these reasons, it is difficult to argue that 484 

hydrological droughts quantified using precipitation-Et and runoff will increase less than 485 

meteorological droughts, based on precipitation, in future scenarios. 486 

In addition to the comparative assessment of drought trends based on different drought 487 

metrics, another aspect of novelty in our study is that it assesses the spatial and temporal 488 

relationship between different drought metrics under the historical experiment and future 489 

SSP5-8.5 scenario. Specifically, we found that the temporal relationship between the 490 

precipitation-based climatic metrics (i.e. precipitation, precipitation-AED, and P-Et) is high 491 

worldwide, with some spatial exceptions (e.g. in water-limited regions for P-Et). This behaviour 492 

is expected given that precipitation is a main controller of the interannual variability of 493 

drought conditions(Vicente-Serrano et al., 2015; Tomas-Burguera et al., 2020b). For example, 494 

in the case of SPEI, precipitation explains more than 90% of the variability of this index, while 495 

AED is only relevant during periods of precipitation deficit, particularly in water-limited regions 496 
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(Tomas-Burguera et al., 2020b). This main role of precipitation is also observed in other 497 

drought indices such as the PDSI (van der Schrier et al., 2013; Vicente-Serrano et al., 2015). On 498 

the other hand, under the SSP5-8.5 scenario, the correlation between precipitation and AED-499 

based drought indices is expected to decrease, suggesting a greater role of AED. Nevertheless, 500 

this temporal relationship remains high in most world regions. 501 

The close relationship found between climate drought indices in historical and future 502 

simulations contrasts with the low correlations found between climatic and ecological drought 503 

indices, given the low percentage of years when drought conditions coincide following 504 

meteorological and ecological metrics. The interannual variability of LAI and NPP showed high 505 

agreement in both the historical period and in the future scenario. This is in agreement with 506 

observations recorded in the last decades using vegetation activity from satellites (as a 507 

surrogate of the leaf area) and tree-ring growth (as a surrogate of NPP) (Vicente-Serrano et al., 508 

2016, 2020c). Nevertheless, unexpectedly, we noted a poor relationship between the temporal 509 

evolution of both LAI and NPP and the climatic drought indices, albeit with the use of a wide 510 

set of metrics used here that highly represent plant water stress conditions (e.g. Et-AED). 511 

Moreover, this low relationship is also found between the ecological variables and soil 512 

moisture, which is one of the main factors controlling vegetation activity and carbon uptake 513 

worldwide (Green et al., 2019). This low relationship between climatic indices (and soil 514 

moisture) and ecological metrics could be explained by the uncoupling between water 515 

availability and plant water requirements as a consequence of the physiological effects of 516 

atmospheric CO2 concentrations (as discussed above). Nevertheless, low interannual 517 

correlations were also found in the historical experiment. We consider that the low 518 

relationship between ecological drought metrics and climatic and soil moisture metrics 519 

introduces another important source of uncertainty in the assessment of the drought severity 520 

under future climate scenarios.  It is expected that the agreement between NPP, LAI, and the 521 

different climatic metrics and soil moisture should be high, given the climate forcings used in 522 
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the historical experiment. Thus, based on different vegetation metrics, numerous studies 523 

found strong temporal correlations between climate drought indices and soil moisture and 524 

different ecological measurements in the past decades, including satellite metrics (e.g. 525 

Vicente-Serrano et al., 2013; Bachmair et al., 2018), and tree ring growth (e.g. Orwig and 526 

Abrams, 1997; Vicente-Serrano et al., 2014). This unexpectedly low correlation between 527 

climatic droughts, soil moisture deficits and agricultural and ecological droughts during the 528 

historical experiment suggests that the temporal decoupling between these metrics is not 529 

related to the possible physiological effects of the enhanced CO2 concentrations. Rather, it can  530 

probably be due to the existing limitations of the models in reproducing the real physiological 531 

response of vegetation to drought. In addition to the low temporal concordance, there is a 532 

general spatial disconnection between the occurrence of climatic and ecological droughts in 533 

different regions worldwide. 534 

The temporal agreement between climatic drought metrics, soil moisture, precipitation-Et, and 535 

runoff is also low, both in the historical experiment and the SSP5-8.5 scenario. With the 536 

exception of the tropical and subtropical regions in the case of runoff, the remaining world 537 

showed low correlations with climatic metrics. Thus, the temporal correlations were low 538 

between the interannual variability of soil moisture and runoff in most regions of the world. 539 

This suggests that, considering climatic and hydrological drought metrics, the consistency of 540 

ESMs simulations on long temporal scales (i.e. annual) may be also affected by uncertainties. 541 

Thus, as opposed to CMIP6 outputs, the interannual variability of observed soil moisture and 542 

streamflow is highly consistent with climate variables in most basins of the world (Dai, 2021).   543 

 544 

5. Conclusions 545 

This study provided new evidence on the interannual relationships and long-term trends 546 

between drought types based on different drought metrics obtained from ESM simulations. 547 

The main conclusion is that the coherence of the trends and the interannual relationships 548 
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between drought metrics show important uncertainties that can largely impact any robust 549 

assessment of drought projections under scenarios of enhanced emissions of greenhouse 550 

gases. Although some previous studies have suggested that the use of climatic drought indices 551 

could overestimate drought severity under future scenarios, this study indicates that 552 

projections based on hydrological (i.e. soil moisture and runoff) and ecological drought metrics 553 

(i.e. NPP and LAI) can introduce uncertainties and inconsistencies, particularly for the 554 

projected interannual relationship between drought metrics, as well as expected drought 555 

impacts under scenarios of high emissions of greenhouse gases and strong temperature 556 

increase. Still, there are several sources of uncertainty, particularly linked to the plant 557 

processes and the physiological influences of the enhanced CO2 atmospheric concentrations, 558 

which have important implications for the assessment of both ecological and hydrological 559 

droughts in future scenarios. Recent evidence highlights increased drought effects on crop 560 

systems and natural environments in response to drought events characterised by warmer 561 

conditions (Breshears et al., 2013; Williams et al., 2013; Fontes et al., 2018), but also 562 

hydrological implications given enhanced evaporation from crops, natural vegetation, and 563 

water bodies (Vicente-Serrano et al., 2017; Friedrich et al., 2018; Althoff et al., 2020). Although 564 

the response of plant physiology and hydrological processes could change in the future, with 565 

more adaptive strategies to much warmer conditions leading to a reduction in the severity of 566 

hydrological, agricultural, and ecological droughts compared to climatic droughts conditions, 567 

these scenarios may be uncertain. Therefore, the same (or even greater) criticism could be 568 

made of the drought severity projections based on climatic drought indices using plant and 569 

ecological metrics, as these metrics do not seem to respond coherently in time and space to 570 

the occurrence of meteorological droughts and seem to underestimate the strong role of 571 

warming processes, already evident in some hydrological systems, but mostly in agricultural 572 

and ecological ones. 573 
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Drought severity projections are an extremely relevant topic with several environmental and 574 

socioeconomic implications, which deserves some scientific debate. Nevertheless, several 575 

studies based on models can present considerable uncertainties. Indeed, improving the 576 

knowledge and modelling of the complex processes involved could reduce these uncertainties, 577 

but we are probably still far from finding this solution. A focus on simple, but robust models, as 578 

suggested by McColl et al.(2022), could be a better approach to improve the assessment of 579 

future drought severity. However, this robust assessment may actually be simpler, as in future 580 

periods of precipitation deficits (anthropogenic or naturally=induced), the projected increased 581 

warming will cause more stress on hydrological and environmental systems as observed in 582 

near-present climate, irrespective of the projected trends in precipitation. 583 
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 1008 

Fig. 1. Evolution of the annual average percentage of global land area affected by extreme dry 1009 
conditions (5%) from 1850 to 2100. Grey lines represent the value for the different 1010 

independent models and red lines refer to the median. 1011 
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 1013 

Fig. 2. Spatial distribution of the median trend in the magnitude of drought events between 1014 
1850 and 2100 (Factor: 100) 1015 
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Fig. 3. Percentage of models showing positive and statistically significant trends in drought 1019 
magnitude from 1850 to 2100 1020 
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 1022 

Fig. 4. Percentage of models showing negative and statistically significant trends in drought 1023 
magnitude from 1850 to 2100 1024 
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 1026 

Fig. 5: Differences in the median Kendall's 𝜏𝜏 correlations between the projected (2015-2100) 1027 
and historical period (1850-2014) for the different models 1028 
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Fig. 6: Differences in the average percentage of temporal agreement among the different 1034 
metrics between the projected (2015-2100) and the historical period (1850-2014) for the 1035 
different models 1036 
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Fig. 7: Evolution of the spatial agreement of dry conditions between the different drought 1041 
metrics.  1042 

 1043 
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Tables 

Table 1: CMIP6 models used in this study 

 

MODEL NAME INSTITUTION NATIVE SPATIAL 
RESOLUTION (lon x lat) 

ACCESS-CM2 CSIRO-ARCCSS 1.875° x 1.25°  

ACCESS-ESM1-5 CSIRO 1.875° x 1.25° 

CanESM5-CanOE CCCma 2.8125° x 2.767272° 

CanESM5 CCCma 2.8125° x 2.767272° 

CMCC-ESM2 CMCC 1.25° x 0.9424084° 

CNRM-CM6-1-HR CNRM-CERFACS 0.5° x 0.49512° 

CNRM-CM6-1 CNRM-CERFACS 1.40625° x 1.38903° 

CNRM-ESM2-1 CNRM-CERFACS 1.40625° x 1.38903° 

FIO-ESM-2-0 FIO-QLNM 1.25° x 0.9424084° 

GFDL-ESM4 NOAA-GFDL 1.25° x 1° 

GISS-E2-1-G NASA-GISS 2.5° x 2° 

HadGEM3-GC31-LL MOHC 1.875° x 1.25° 

HadGEM3-GC31-MM MOHC 0.8333333° x 0.5555556° 

INM-CM4-8 INM 2° x 1.5° 



IPSL-CM6A-LR IPSL 2.5° x 1.267606° 

MIROC-ES2L MIROC 2.8125° x 2.767272° 

MIROC6 MIROC 1.40625° x 1.38903° 

MRI-ESM2-0 MRI 1.125° x 1.11209° 

 

  



 

Fig. S1: Average R2 of the standard normal QQ-plots used for assessing the fit of the index 
obtained by standardizing the studied variables by means of the log-logistic distribution 

(gamma distribution for precipitation) 

 

 



 

Fig. S2: Standard deviation of the values in Fig. S1  

  



 

 

 

Fig. S3. Average percentage of global land area affected by extreme dry conditions. Same as 
Fig. 1, but for the evolution of the Boreal winter season (DJF).  

 

 

  



 

Fig. S4. Average percentage of global land area affected by extreme dry conditions. Same as 
Fig. 1, but for the evolution of the Boreal summer season (JJA).  

 

 

 

  



 

 

Fig. S5. Spatial distribution of the median trend in the duration of drought events between 
1850 and 2100 (Factor: 100). 

  



 

 

Fig. S6. Percentage of models showing positive and statistically significant trends in drought 
duration from 1850 to 2100 

  



 

 

Fig. S7. Percentage of models showing negative and statistically significant trends in drought 
duration from 1850 to 2100. 

 



 

Fig. S8. Median Kendall's 𝜏𝜏 correlation in the historical period (1850-2014) among the various 
metrics for the different models 

 



 

Fig. S9. Median Kendall's 𝜏𝜏correlation in the projected period (2015-2100) among the various 
metrics for the different models. 

 

 

 

 

 



 

Fig. S10. Average percentage of temporal agreement among the various metrics in the 
historical period (1850-2014) for the different models. 

 

 

 

 



 

Fig. S11. Average percentage of temporal agreement among the various metrics in the 
projected period (2015-2100) for the different models. 


