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Abstract

We present an O(n) complexity and implicit algorithm for the two-dimensional solution of the Stream Power Incision Model

(SPIM) enriched by a discharge threshold term and taking into account variability in rainfall and thus discharge. The algo-

rithm is based on the formulation developed by Deal et al (2018) and the generalization of the FastScape algorithm (missing

citation)where the slope is approximated by first-order accurate finite difference. We consider a variety of discharge thresholds

that vary in their dependence on channel slope. The algorithm requires finding the root of a non-linear equation using a

Newton-Raphson iterative scheme. We show that the convergence of this scheme is unconditional, except for a narrow range

of model parameters where the threshold increases with the slope and for low discharge variability. We also show that the rate

of convergence of the iterative scheme is directly proportional to the slope exponent n in the SPIM. We compare the algorithm

to analytical solutions and to numerical solutions obtained using a higher-order finite difference scheme. We show that the

accuracy of the FastScape algorithm and its generalization presented here is comparable to other schemes for values of n>1.

We also confirm that the FastScape algorithm and its generalization to variable discharge+threshold conditions does not need

to satisfy the CFL condition and provides an accurate solution for both small and very long time steps. We finally use the

new algorithm to quantify how the existence of an erosional threshold strongly affects the length of the post-orogenic decay of

mountain belts.
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Abstract13

We present an O(n) complexity and implicit algorithm for the two-dimensional solution14

of the Stream Power Incision Model (SPIM) enriched by a discharge threshold term and15

taking into account variability in rainfall and thus discharge. The algorithm is based on16

the formulation developed by Deal et al. (2018) and the generalization of the FastScape17

algorithm (Braun & Willett, 2013) where the slope is approximated by first-order ac-18

curate finite difference. We consider a variety of discharge thresholds that vary in their19

dependence on channel slope. The algorithm requires finding the root of a non-linear equa-20

tion using a Newton-Raphson iterative scheme. We show that the convergence of this21

scheme is unconditional, except for a narrow range of model parameters where the thresh-22

old increases with the slope and for low discharge variability. We also show that the rate23

of convergence of the iterative scheme is directly proportional to the slope exponent n24

in the SPIM. We compare the algorithm to analytical solutions and to numerical solu-25

tions obtained using a higher-order finite difference scheme. We show that the accuracy26

of the FastScape algorithm and its generalization presented here is comparable to other27

schemes for values of n > 1. We also confirm that the FastScape algorithm and its gen-28

eralization to variable discharge+threshold conditions does not need to satisfy the CFL29

condition and provides an accurate solution for both small and very long time steps. We30

finally use the new algorithm to quantify how the existence of an erosional threshold strongly31

affects the length of the post-orogenic decay of mountain belts.32

Plain Language Summary33

The Stream Power Incision Model is a computational model that is widely accepted34

to represent the rate of incision by rivers into bedrock. Recent work has shown how dis-35

charge daily variability influences the rate of incision. This demonstration has only been36

done at the local level, i.e., at a given point in a landscape. Here we present an algorithm37

that allows to implement the effect of discharge variability in a two-dimensional land-38

scape evolution model. In most practical situations, our algorithm is very efficient as the39

computation time it requires is directly proportional to the number of nodes used to dis-40

cretise a synthetic landscape and it is also very stable as it allows for very large time steps.41

We show under which exact conditions this statement is true. We also use the model to42

demonstrate the importance of discharge variability on the longevity of mountain belts.43
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1 Introduction44

There has been much debate about the links between erosion and climate, in par-45

ticular about how rainfall intensity and thus river discharge affects erosional efficiency46

(von Blanckenburg, 2006; Scherler et al., 2017a; Snyder et al., 2003; DiBiase & Whip-47

ple, 2011). In its simplest form, the widely used Stream Power Incision Model (SPIM)48

states that the erosion rate of a river should be proportional to river discharge to some49

poorly known power (Whipple & Tucker, 1999). Recent work has shown that rainfall and50

thus discharge variability are important too when erosion only takes place above a cer-51

tain discharge threshold (Tucker & Bras, 2000; Lague et al., 2005; Deal et al., 2018). Con-52

sequently, much work has been devoted to assess the importance of such thresholds (Scherler53

et al., 2017b), to characterize them and, in particular, to determine whether they depend54

on channel slope or not (Lamb et al., 2008).55

Recently, Deal et al. (2018) have proposed an improved version of the SPIM that56

takes into account the existence of an erosional threshold in determining erosional effi-57

ciency under variable rainfall/discharge conditions. Here, we propose a new numerical58

implementation of this improved SPIM, which we will call TS-SPIM, that is of complex-59

ity O(n) and implicit in time and therefore very efficient and unconditionally stable. Our60

approach is an extension of the FastScape algorithm developed by Braun and Willett61

(2013) for the SPIM.62

We will present the new method and its implementation for a range of threshold63

definitions, i.e., proportional, inversely proportional or not proportional to channel slope.64

The method relies on the solution of a non-linear equation by Newton-Raphson itera-65

tions. We determine, for a wide range of thresholds, the conditions and rate of conver-66

gence of this scheme. Finally, we compare the accuracy of the method with higher-order67

but slower and less stable numerical schemes.68

2 The TS-SPIM69

We start from the following expression derived in Deal et al. (2018) (their Equa-70

tion 25) for the long-term or time integrated erosion rate, < E >:71

< E >= µϵKµ
mAmSn − λϵΨ (1)72
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where K is a constant, µ is daily streamflow mean, A is upstream drainage area, S is73

slope and Ψ is the threshold for erosion (Ψ = keτ
a
c , where τc is the critical shear stress74

for erosion to occur, ke is an erosional constant and a = 3n/2 is an exponent reflect-75

ing the dominant erosion mechanism). µϵ is the nonlinear average of daily streamflow76

above the threshold and λϵ is the probability of streamflow exceeding the threshold.77

Deal et al. (2018) have derived expressions for µϵ and λϵ based on a physically re-78

alistic model of basin hydrology that describes daily streamflow variability with a pa-79

rameter b, representing the non-linearity of streamflow recession and, consequently, the80

heaviness of the tail of the distribution of daily streamflow. We will consider here only81

three cases corresponding to b = 1 (streamflow distribution is a gamma distribution),82

b = 1.5 and b = 2 (streamflow distribution is an inverse gamma distribution). These83

expressions are (Deal et al., 2018):84

µϵ =
Γ(1/ν + γ)

Γ(1/ν)ν−γ
Γ(1/ν + γ, qc∗/ν)

λϵ = Γ(1/ν, qc∗/ν) (2)85

for b = 1,:86

µϵ =
K(2γ−1)(4/ν)

K−1(4/ν)
Γg(2γ − 1, 2

√
qc∗/ν; 4/ν

2)

λϵ = Γg(−1, 2
√
qc∗/ν; 4/ν

2) (3)87

for b = 1.5 and:88

µϵ =
Γ(1/ν + 1− γ)

Γ(1/ν)νγ−1
γ(1/ν + 1− γ, 1/νqc∗)

λϵ = γ(1/ν + 1, 1/νqc∗) (4)89

for b = 2. In these expressions, ν is streamflow variability, γ is an exponent that de-90

scribes how the at-a-station channel width varies with the daily variations in streamflow91

and qc∗ is the critical (or threshold) specific daily streamflow for erosion normalised by92

mean daily streamflow, qc∗ = qc/µ. Γ(, ) and γ(, ) are the upper and lower regularized93

incomplete gamma functions, respectively, Γg(, ; ) is the generalized upper regularized94

incomplete gamma function and Γ() is the gamma function. Kv() is the modified Bessel95

function of the second type.96

Streamflow mean and variability are obtained based on a hydro-ecological model97

derived by Botter et al. (2007), in which daily rainfall is assumed to follow a Poisson’s98

process of rate λ and intensity α. λ can be regarded as the mean daily rainfall frequency99

–4–
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and α as the mean daily rainfall or storm depth. According to this model, streamflow100

mean, µ, and variability, ν, can be expressed as:101

µ = ωαcλc

ν = 1/(ωλcτ) (5)102

where ω is a dimensionless filtering factor representing the ratio of rainfall that is given103

back to the atmosphere through evapo-transpiration and τ is the catchment response time,104

which we assume to vary as a weak power of catchment size (Doulatyari et al., 2017):105

τ ∝ A0.13 (6)106

λc and αc are the upstream catchment integrated mean daily rainfall frequency and mean107

daily storm depth, i.e., modified values of λ and α to take into account that the fraction108

of a catchment simultaneously affected by a storm decreases as catchments become big-109

ger because storms have a characteristic size. They can be expressed as (see Appendix110

A):111

λc = 1− (1− λ)η

αc = λα/λc (7)112

where η is the ratio of upstream area, A, to storm size, Ac:113

η = max(1, A/Ac) (8)114

Following Porporato et al. (2002), the dimensionless factor ω can be expressed as:115

ω =
ϕs

s∗/ϕ
∗ e−s∗

s∗Γ(s∗/ϕ)γ(s∗/ϕ, s∗)
(9)116

where ϕ is the aridity index, and s∗ the effective soil depth. The aridity index is the ra-117

tio of potential evapo-transpiration to mean rainfall rate (ϕ = PET/p̄, where p̄ = λα)118

and the effective soil depth is the ratio of soil depth to storm depth (s∗ = s0/α).119

3 The critical specific daily streamflow, qc∗120

The critical streamflow, qc∗, can be expressed in terms of the critical shear stress,121

τc, according to:122

qc∗ =
( keτ

a
c

KµmAmSn

)1/γ
(10)123
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This implies that, if the critical shear stress does not depend on slope, the critical dis-124

charge varies as S−nγ . There is, however, some debate (Lamb et al., 2008) on the de-125

pendence of the critical shear stress on slope. This dependence is commonly expressed126

using the critical Shields stress, τc∗ (or normalized critical stress), as follows:127

τc∗ =
τc

(ρs − ρw)Dg
= kSd (11)128

where ρs and ρw are the density of sediment and water, respectively, D the mean grain129

size and g the gravitational acceleration. According to Miller et al. (1977), d = 0 and130

k = 0.047 (this corresponds to the case where the critical shear stress is independent131

of slope), while according to Lamb et al. (2008) two asymptotic behaviours must be con-132

sidered: d = 0.25 and k = 0.15 when water height is markedly greater than grain size133

(typically in low slope environments) and d = 1 and k = 0.7 otherwise.134

In order to maintain generality, we will assume the following expression for the nor-135

malized critical streamflow:136

qc∗ =
(ke(k(ρs − ρw)DgS

d)a

KµmAmSn

)1/γ
=

( ϵc
KµmAm

)1/γ
S(ad−n)/γ (12)137

where:138

ϵc = ke(k(ρs − ρw)Dg)
a (13)139

is a quantity that has the dimension of an erosion rate. We see that if ad−n ≈ 0, the140

normalized critical streamflow is independent of slope. Any other combination of d, a141

and n will lead to some form of dependence of the critical streamflow, qc∗, on slope. In142

particular, and assuming that a = 3n/2 and γ = 3/4, several combinations that are143

of interest to us are shown in Table 1. It shows that, across the range of accepted val-144

ues for the dependence of the critical Shields stress on slope (Lamb et al., 2008), the crit-145

ical specific streamflow, qc∗, can either decrease or increase with slope. The former seems146

more physically plausible than the latter. However, in high slope environments, water147

depth may be smaller than mean grain size leading to a decrease in the lift force caused148

by flowing water on bedload (Lamb et al., 2008) and, consequently, an increase in the149

critical specific streamflow.150

Finally, it is worth noting that there might exist a power law relationship between151

mean grain size and slope as suggested by Scherler et al. (2017b). In this case, the crit-152

ical erosion rate would take the form:153

ϵc = ke(k(ρs − ρw)D0g)
a (14)154
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Table 1. Dependency of the critical shear stress on slope (exponent d in Equation 11) and its

implication for the dependency of critical stream flow (exponent (ad− n)/γ in Equation 12).

Reference d ad (ad− n)/γ

Miller et al. (1977) 0 0 −8n/3

Lamb et al. (2008) 1/4 3n/8 −5n/3

Special case 2/3 n 0

Lamb et al. (2008) 1 3n/2 4n/3

with:155

D = D0S
d′

(15)156

and the slope dependence of qc∗ would be expressed as:157

qc∗ =
( ϵc
KµmAm

)1/γ
S(a(d+d′)−n)/γ (16)158

Scherler et al. (2017b) propose a value of 0.45 for d′. Here, for simplicity, we will assume159

that the exponent d contains both the dependence of the critical Shields stress on slope160

and the dependence of grain size on slope.161

4 Generalized TS-SPIM162

We recall that the critical daily streamflow corresponds to the minimum stream-163

flow necessary for instantaneous erosion to take place. This implies that :164

ϵ = KµmAmSnqγc∗ −Ψ = 0 (17)165

and thus:166

Ψ = KµmAmSnqγc∗ = ϵcS
ad (18)167

Incorporating this expression for the critical streamflow into the TS-SPIM expression168

(Equation 1) yields:169

< E >= KµmAmµϵS
n − λϵϵcS

ad (19)170

In this way, incorporating the effect of variable discharge/rainfall into the SPIM increases171

its ‘complexity’ by two additional parameters, d and ϵc, assuming that a = 3n/2 .172

–7–
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5 The FastScape algorithm173

Braun and Willett (2013) developed an O(n)-complexity and implicit algorithm174

to solve the SPIM, which, can be written in its simplest form (i.e., assuming uniform pre-175

cipitation and no threshold) as:176

< E >= ∂th = −KAmSn = −KAm∂xh
n (20)177

where ∂t and ∂x are time and down-slope distance derivatives, respectively.178

Using a first-order finite difference scheme between any node, i, and its so-called179

‘receiver’, r, to express the slope S, they propose the simple following expression:180

hi(t+∆t) = hi(t)−
∆tKAm

i

∆xn
(hi(t+∆t)− hr(t+∆t))n (21)181

where ∆t is the time step and ∆x the distance between node i and its receiver r. The182

algorithm can be made O(n) in complexity by defining first a stack order si in which to183

process the nodes discretizing the landscape to (a) compute the drainage area and (b)184

solve the SPIM. The computation of the drainage areas is made on the landform at time185

t and is therefore not implicit. In the stack order any node i follows its receiver r.186

In the case n = 1, equation 21 reduces to:187

hi = hi,0 − F (hi − hr) (22)188

where hi is the height of node i at time t+∆t, hi,0 is the height of node i at time t, hr189

is the height of the receiver of node i at t+∆t and F = ∆tKAm
i /∆x, and which can190

be easily solved for each node i according to:191

hi =
hi0 + Fhr
1 + F

(23)192

if nodes are processed in stack order.193

In the case n ̸= 1, Braun and Willett (2013) propose to use a simple Newton-Raphson194

iterative scheme to find the root (zero) of the function:195

F = hi − hi,0 + F (hi − hr)
n (24)196

This leads to the following recursive formula:197

hk+1
i = hki −F(hki )/∂hF(hki ) (25)198

where ∂hF is the derivative of F with respect to hi obtained by simple differentiation:199

∂hF(hki ) = 1 + Fn(hi − hr)
n−1 (26)200

–8–
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and h0i = hi,0.201

6 Implicit algorithm for the TS-SPIM202

We propose to follow a similar approach to generalize the implicit method to the203

TS-SPIM. In this case and following Equation (19) the function F takes the form:204

F = hi − hi,0 +∆tKµmAmµϵ(hi − hr)
n/∆xn −∆tϵcλϵ(hi − hr)

ad/∆xad (27)205

If we introduce a dimensionless variable x = hi−hr

hi,0−hr
, this expression can be simplified206

to:207

F = x− 1 + F1µϵ(x)x
n − F2λϵ(x)x

p (28)208

where p = ad and:209

F1 =
∆tKµm

i A
m
i

hi,0 − hr
Sn
0

F2 =
∆tϵc

hi,0 − hr
Sp
0 (29)210

where S0 =
hi,0−hr

∆x . The critical streamflow can be expressed as:211

qc∗ =
(F2

F1

)1/γ
x(p−n)/γ (30)212

The iterative Newton-Raphson scheme takes the following form:213

xk+1 = xk − F(xk)

∂xF(xk)
(31)214

with x0 = 1 and:215

∂xF̄ = 1 + F1(µϵnx
n−1 + ∂xµϵx

n)− F2(λϵpx
p−1 + ∂xλϵx

p) (32)216

with the factors µϵ and λϵ given in Equations 2, 3 and 4 for the different values of b and:217

∂xµϵ = ∂qc∗µϵ∂xqc∗ and ∂xλϵ = ∂qc∗λϵ∂xqc∗ (33)218

where:219

∂qc∗µϵ = −e
−qc∗/ν(qc∗/ν)1/ν+γ−1

Γ(1/ν)ν−γ
if b = 1

∂qc∗µϵ = −q
γ−1
c∗ e−2

√
qc∗(1+1/qc∗)/ν

2νK−1(4/ν)
if b = 1.5

∂qc∗µϵ = −e
−1/νqc∗(1/νqc∗)1/ν−γ+2

Γ(1/ν)νγ−2
if b = 2

(34)220

and:221

∂qc∗λϵ = −e
−qc∗/ν(qc∗/ν)1/ν−1

Γ(1/ν)
if b = 1

–9–
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∂qc∗λϵ = −e
−2

√
qc∗(1+1/qc∗)/ν

2qc∗νK−1(4/ν)
if b = 1.5

∂qc∗λϵ = −νe
−1/νqc∗(1/νqc∗)1/ν+2

Γ(1/ν + 1)
if b = 2

(35)222

and:223

∂xqc∗ = qc∗
(p− n

γ

)
x−1 (36)224

When convergence is reached, i.e., when:225

ϵk = |xk+1 − xk| < tol (37)226

where tol is a specified tolerance, the new height can be obtained from:227

hi = xk+1(hi,0 − hr) + hr (38)228

A flow chart is given in Appendix B describing the successive steps of the algorithm229

for ready implementation. We also provide a python implementation in a Jupyter Note-230

book (see Open Research Section).231

Note that when p(= ad) = n, the critical streamflow, qc∗ does not depend on slope232

and therefore not on x. In this case, Equation (27) becomes:233

F = hi − hi,0 + F ′(hi − hr)
n (39)234

with235

F ′ = ∆t(KµmAmµϵ − ϵcλϵ)/∆x
n (40)236

independent of hi. This, in turn, implies that we can write:237

∂hF = 1 + F ′n(hi − hr)
n−1 (41)238

and apply the Newton-Raphson algorithm used in the SPIM case (Equation 25) while239

simply replacing F by F ′.240

At this point, we must acknowledge that there exists no efficient algorithm to com-241

pute the value of the generalized upper regularized incomplete gamma function, Γg(, ; ).242

For the commonly accepted value of γ = 0.75, which leads to 2γ−1 = 0.5, a finite ex-243

pansion can be used to compute Γg(0.5, ; ) but cannot be used to compute Γg(−1, ; ) as244

required for the computation of λϵ when b = 1.5. In the case, b = 1.5, approximate245

–10–
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expressions can be derived for µϵ and λϵ that are only valid for large values of the nor-246

malized specific daily streamflow, qc∗ >> 1 (Lague et al., 2005). This leads to:247

µϵ =
Γ(a+ γ′)
Γ(a)ν′−γ′ Γ(a+ γ′, q2−b

c∗ /ν′)

λϵ = Γ(a, q2−b
c∗ /ν′) (42)248

where ν′ = ν/(2 − b), γ′ = γ/(2 − b) and a = (1 − b)/(2 − b). In the rest of the249

manuscript we will therefore only consider the cases b = 1 and b = 2.250

7 Convergence rate of the Newton-Raphson scheme251

7.1 Original FastScape algorithm252

In the original FastScape algorithm, the function for which a root must be found253

(Equation 24) can be expressed in its dimensionless form:254

F = x− 1 + F̂ xn (43)255

with:256

F̂ =
∆tKAm

hi,0 − hr
Sn
0 (44)257

The optimum convergence of the Newton-Raphson scheme is known to be quadratic such258

that the errors at successive iterations follow the following relationship (see Appendix259

C for derivation):260

|ϵk+1| ≤ Lϵ2k (45)261

where:262

L = sup
x∈[0,1]

1

2

∣∣∂2xF̂
∂xF̂

∣∣ (46)263

Equation 45 implies, however, that convergence is conditional to:264

L|ϵ0| < 1 (47)265

In the case of the FastScape algorithm:266

L = sup
x∈[0,1]

1

2

∣∣n(n− 1)F̂ xn−2

1 + nF̂xn−1

∣∣ = 1

2

n(n− 1)F̂

1 + nF̂
(48)267

and, because x0 = 1:268

|ϵ0| =
∣∣ F̂(1)

∂xF̂(1)

∣∣ = F̂

1 + nF̂
(49)269

This leads to the following condition for convergence:270

L|ϵ0| =
1

2

n(n− 1)F̂ 2

(1 + nF̂ )2
< 1 (50)271

–11–
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which is satisfied for all values of F̂ ∈ [0,+∞[, as:272

lim
F̂→0

L|ϵ0| = 0 and lim
F̂→∞

L|ϵ0| =
1

2

(n− 1)

n
< 1, for all n ≥ 1 (51)273

Note also that Equation 45 implies that the rate of convergence is proportional to L−1.274

In Figure 1a, we show the solution of the non-linear SPIM over one time step as275

a function of F̂ for different values of the exponent n. For each n value, the range of val-276

ues for F̂ has been adjusted such that the solution decreases at least by two orders of277

magnitude over the range of F̂ values. The number of iterations required to reach con-278

vergence, niter is shown in Figure 1b assuming that convergence is reached when ϵniter <279

10−6. The number of iterations grows asymptotically as log(F̃ ) (grey dashed line) and280

grows linearly with n. In Figure 1c and d, we show L and L|ϵ0| for the same range of281

F̂ and n values. The grey dashed lines in Figures 1c and d are the asymptotic values for282

L and L|ϵ0|, respectively, when F → ∞. Most importantly, we see that (1) the con-283

vergence criterion is, indeed, always fulfilled, i.e., for all n > 1 and regardless of the value284

of F̃ (Figure 1d) and (2) the asymptotic rate of convergence (i.e., for F̃ → ∞) decreases285

linearly as 1/n (Figure 1c).286

7.2 Generalized TS-SPIM FastScape algorithm but first neglecting the287

slope dependence in µϵ and λϵ288

If we neglect the dependence on slope of µϵ and λϵ (through their dependence on289

qc∗) in the generalized TS-SPIM FastScape algorithm, the function for which a root must290

be found (Equation 24) has the form:291

F = x− 1 + F̂1x
n − F̂2x

p (52)292

where:293

F̂1 =
∆tKµmAmµϵ

hi,0 − hr
Sn
0 (53)294

and:295

F̂2 =
∆tϵcλϵ
hi,0 − hr

Sp
0 (54)296

Note that, with this notation, the condition F̂1 > F̂2 must be fulfilled for erosion to take297

place.298

We now write the corresponding expressions for L and |ϵ0|:299

L =
1

2

∣∣n(n− 1)F̂1 − p(p− 1)F̂2

1 + nF̂1 − pF̂2

∣∣ (55)300

–12–
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Figure 1. a) Solution of the non-linear SPIM after one time step as a function of F̂ (Equa-

tion 44) and various values of n. b) Corresponding number of iterations required to achieve

convergence (ϵniter < 10−6; the black symbols correspond to the value obtained for the largest

value of F̂ over the range considered. c) Inverse of the convergence rate computed according to

Equation 46; the grey dashed lines correspond to the asymptotic value s for F̂ → ∞. d) Initial

converge criterion, L|ϵ0| computed according to Equation 50; the grey dashed lines correspond to

the asymptotic values for F̂ → ∞.
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and301

|ϵ0| =
∣∣ F̂1 − F̂2

1 + nF̂1 − pF̂2

∣∣ (56)302

The condition for convergence becomes:303

L|ϵ0| =
1

2

(F̂1 − F̂2)|n(n− 1)F̂1 − p(p− 1)F̂2|
(1 + nF̂1 − pF̂2)2

< 1 (57)304

Introducing the ratios r = p/n and ζ̂ = F̂2/F̂1, this condition can be simplified by con-305

sidering only its asymptotic value, i.e.:306

lim
F̂1,F̂2→∞

L|ϵ0| =
1

2

(1− r)|1− 1/n− ζ(ζ̂ − 1/n)r|
(1− ζ̂r)2

(58)307

In Figure 2, we map this condition in the [r, ζ̂]-space for two extreme values of n,308

i.e., n = 1 and 10. We consider values of r ∈ [−1, 2] and ζ̂ ∈ [0, 1]. We see that the309

condition is always fulfilled and the Newton-Raphson scheme is unconditionally conver-310

gent when the ratio r = p/n < 1. For values of p > n (or r > 1), the scheme does not311

converge (i.e., L|ϵ0| > 1) in the range corresponding to the grey hatched area in Fig-312

ure 2. We see that this region does not depend much on n.313

Considering the plausible values of p = ad given in Table 1, we see that our pro-314

posed scheme is suitable and unconditionally convergent except for the special case when315

p = ad = 3n/2 > n that is suggested by Lamb et al. (2008)’s work in high slope, low316

flow thickness environments.317

7.3 Generalized TS-SPIM algorithm318

In this case, the function for which a root must be found has the form:319

F = x− 1 + F1µϵ(x)x
n − F2λe(x)x

p (59)320

and to estimate the convergence criterion, we need to compute ∂2xF . The procedure is321

shown in Appendix D.322

In Figure 3 and 4, we show where the convergence criterion is not met (the dark323

grey hatched region), i.e., where L|ϵ0| > 1, in the space [r, ζ], where r = p/n and ζ =324

F2/F1, for various values of n, ν and b, and assuming γ = 1. We see that including the325

full dependence of µϵ and λϵ on S does not restrict the conditions for convergence of the326

Newton-Raphson algorithm. In fact the region of parameter space where convergence327

is not garanteed shrinks as streamflow variability, ν, increases for both values of the b328

exponent considered here, i.e., 1 and 2.329
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Figure 2. Regions of the [ζ̂, r] space where the condition for stability of the Newton-

Raphson’s root finding scheme is not met (dark grey hatch area) and region of physically mean-

ingful values of the ζ̂ and r parameters (light grey shaded area) for a n = 1) and b) n = 10. The

densely shaded area corresponds to the case envisaged by Lamb et al. (2008) leading to a critical

streamflow increasing with slope. We note that the region of overlap corresponding to situations

that are physically plausible but where the iterative scheme diverges are limited to that part of

the parameter space.
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Figure 3. Regions of the [ζ̂, r] space where the condition for stability of the Newton-

Raphson’s root finding scheme is not met (dark grey hatch area) and region of physically mean-

ingful values of the ζ̂ and r parameters (light grey shaded area). The densely shaded area cor-

responds to the case envisaged by Lamb et al. (2008) leading to a critical streamflow increasing

with slope. Each panel, a) to i), correspond to specific and representative values of n and ν, the

streamflow variability, as indicated. In this figure b = 1 is assumed.
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Figure 4. Regions of the [ζ̂, r] space where the condition for stability of the Newton-

Raphson’s root finding scheme is not met (dark grey hatch area) and region of physically mean-

ingful values of the ζ̂ and r parameters (light grey shaded area). The densely shaded area cor-

responds to the case envisaged by Lamb et al. (2008) leading to a critical streamflow increasing

with slope. Each panel, a) to i), correspond to specific and representative values of n and ν, the

streamflow variability, as indicated. In this figure b = 2 is assumed.
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8 Algorithm performance330

8.1 Original FastScape Algorithm331

The efficiency of the implicit FastScape algorithm (Braun & Willett, 2013) comes332

at the cost of its accuracy, as demonstrated by Campforts and Govers (2015). The FastScape333

algorithm uses a first order accurate estimate of the slope and in the direction opposite334

to the transfer of information by upstream advection. As shown by Campforts and Gov-335

ers (2015) and in Figure 5a, the algorithm produces an unwanted numerical smoothing336

or diffusion of knickpoints. In Figure 5a, we compare the solution obtained with the FastScape337

algorithm to an analytical solution (from Royden and Perron (2013)) for the propaga-338

tion of a knickpoint following the instantaneous and uniform uplift of an initially flat area339

of which one point is kept at a constant, nil elevation (the base level). The FastScape340

solution is also compared to the solution obtained with the TVD (Total Variation Di-341

minishing) algorithm proposed by (Campforts & Govers, 2015). The TVD algorithm per-342

forms much better than the FastScape algorithm in the vicinity of the knickpoint. This343

difference is, however, much smaller for larger values of n. In Figure 5b, we show the same344

comparison for n = 2.345

The error is also a function of the time step length and the grid spacing. In Fig-346

ure 6, we show contour plots of the error, ϵF , computed from:347

ϵF =< max
x∈L

|h− ha|
maxha

> (60)348

where <> is the mean value over all time steps.349

We see that error is between half to an order of magnitude smaller for the TVD350

algorithm compared to the FastScape algorithm, as already demonstrated by Campforts351

and Govers (2015). As the slope exponent is increased, the difference is much reduced352

as the error obtained with the FastScape algorithm is less than 1% for all reasonable val-353

ues of time and space discretization (nstep > 30 and nx > 30).354

Being explicit in time, the TVD method can only be used if the time step satis-355

fies the CFL condition, which is in this case:356

CFL =
∆t

∆x
max
x∈L

(
KAmSn−1

)
< 1 (61)357

as shown by Campforts and Govers (2015). The CFL condition corresponds to combi-358

nations of nstep and nx above the black line diagonally crossing each panel in Figure 6.359
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Figure 5. Comparison between an analytical solution, the FastScape algorithm and the TVD

method proposed by Campforts and Govers (2015) to a simple knickpoint propagation problem

from an initially flat topography subject to an instantaneous, uniform uplift at time t = 0. Time

and space resolutions of 2000 time steps and 100 grid points to cover a 1 Myr total run time and

a L = 100 km spatial domain, are used. In panel a) the SPIM slope exponent, n, is 1; in panel b)

the slope exponent is 2. The area exponent, m, has been scaled such that the concavity is 0.45 in

both cases, and the rate coefficient, K has also been scaled such that the knickpoint propagates

to an identical distance.
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Figure 6. Contour plots of the error estimated computed from Equation 60 using the

FastScape algorithm (a to c) and the TVD algorithm (d to f). In each panel, the region above

and below the black line correspond to CFL < 1 and CFL > 1, respectively. The small crosses

give the position of the 49 discrete values of nstep and nx used to compute the contour plots.

Being implicit in time, the FastScape algorithm is unconditionally stable and its accu-360

racy increases with a diminishing time step but is independent of spatial resolution when361

CFL < 1 and increases with diminishing grid spacing but is independent of time step362

length when CFL > 1.363

8.2 Generalized SPIM364

There is no simple analytical solution to the generalized SPIM, i.e., Equation 19.365

We can, however, assess the accuracy of the implicit algorithm using an analytical so-366

lution to the following equation:367

∂h

∂t
= U −KAmSn + V S (62)368

that has the same form as Equation 19 in the sense that it is the sum of two terms, one369

dependent on slope to power n and drainage area to power m and one dependent on slope370

to power 1. In fact this equation represents a variant of the SPIM in which a term rep-371

resenting the horizontal advection of the surface (at a rate V ) has been added. For ex-372
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Figure 7. Contour plots of the error estimated computed from Equation 60 using the gener-

alized FastScape algorithm for different values of n(a to c). The small crosses give the position of

the 49 discrete values of nstep and nx used to compute the contour plots.

ample, in a simple situation where uplift is due to movement of a thrust fault dipping373

at angle ψ, U and V are related by a simple relationship:374

V sinψ = U cosψ (63)375

Making use of Hack’s law, i.e., A = k(L− x)p, we can write this equation under376

the following form:377

∂h

∂t
= U −Kkm(L− x)mpSn + V S (64)378

which has a steady-state analytical solution for n = 1, 2 or 3 under the assumption of379

uniform uplift at a rate U and horizontal advection at a velocity V . The transient so-380

lution is made of two parts: the region below the knickpoint has reached steady-state381

while the region above the knickpoint is at a uniform elevation given by Ut.382

In figure 7, we show the error resulting from the implicit solution. We see that the383

error decreases with increasing temporal resolution (i.e., decreasing time step length) but384

is rather insensitive to the spatial resolution, except when n = 1. As in the original FastScape385

algorithm, the error decreases drastically with increasing n.386

9 Example of use of the new algorithm: effect of an erosional thresh-387

old on the decay rate of orogenic systems388

The topographic longevity of many ancient orogenic systems, such as the Dabie Shan389

(Braun & Robert, 2005) or the Pyrenees (Curry et al., 2019), remains enigmatic. Although390

erosion-driven, post-orogenic isostatic rebound affects the rate of topographic decay (Ahnert,391
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1970), it is widely accepted that it is the efficiency of erosional processes that exerts the392

primary control (Wolf et al., 2022). As shown by Baldwin et al. (2003), the existence of393

an erosional threshold, represented in their study by the inclusion of a critical shear stress394

in the stream power law, may cause a channel to maintain signifiant relief over periods395

that far exceed the characteristic time for mountain growth (of the order of a few mil-396

lions of years). Here, using our newly developed algorithm, we present the results of a397

series of two-dimensional numerical experiments in order to confirm and generalise this398

result to the mountain scale.399

In figure 8a and b, we first show how the SPIM slope exponent, n, influences the400

longevity of the post-orogenic phase of a mountain belt. For this, we performed simple401

2D experiments using the FastScape algorithm in which a small orogenic area of size 10×10402

km is subjected to uplift at a rate of 10−3 m/yr for a period of 20 Myr at which point403

the uplift rate is set to zero. The SPIM slope exponent, n, varies between experiments404

from 1 to 5. The area exponent, m varies also to keep the ratio m/n constant at 0.45,405

while the rate constant K varies between 10−5 and 10−13 m2−m/yr in order to create406

a mountain belt that has approximately the same mean steady-state topography in all407

experiments. In figure 8a, we show the temporal evolution of the mean topography for408

five of these experiments corresponding to integer values of n between 1 and 5. We see409

that during the growth phase the mean topography increases as an exponential function410

of time:411

hmean ∝ 1− e−t/τ (65)412

where τ is of the order of 2-3 Myrs, regardless of the value of n. On the contrary, the413

evolution of the decay phase varies strongly with n and leads to a finite residual topog-414

raphy at time t = 50 Myr or at a time equal to 10 × τ after the end of the orogenic415

phase that increases with n. One can show (see Appendix E) that the rate of topographic416

decay follows a power law of the form:417

hmean ∝ (1 + (n− 1)πt/τ)1/(1−n) (66)418

rather than an exponential law. In figure 8b, we show the ratio of this residual mean to-419

pography to the steady-state orogenic mean topography for 20 values of n between 1 and420

5 to demonstrate the quasi linear relationship between R∞ and n. Although interest-421

ing, this result cannot easily explain the longevity of post-orogenic topography as com-422
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Figure 8. a) Time evolution of mean topography in a 2D orogen during orogenic growth and

decay, for various values of the SPIM slope exponent, n. b) Ratio, R∞, of mean topography at

the end of the experiment and at the end of orogenic phase as a function of n. c) Computed val-

ues of R∞, the ratio of preserved to steady-state mean topography as a function of ϵc normalised

by the imposed uplift rate, U for the case b = 1 and d) for the case b = 2.

monly accepted values of n are in the range [1-2], which implies that only a few percent423

of the steady-state topography could be preserved by invoking this mechanism.424

We performed another set of experiments in which we introduced a erosional thresh-425

old to quantify how the value of the threshold may influence the amplitude of the resid-426

ual topography. For this, we performed another set of experiments varying n (and thus427

m and K) but also the value of ϵc (Equation 13) while keeping the parameters control-428

ling stream flow variability and its effect on erosion constant, i.e., λ = 0.2 per day, α =429

10 mm, PET = 1 mm/day, s0 = 10 mm,ad = 3n/8 and γ = 0.75. We assumed a430

storm size much bigger than the mountain area so that the effect of a finite storm size431

is neglected and we present results for two values of the recession exponent, i.e., b = 1432

and 2.433
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Results are shown in figure 8c and d as plots of the preserved topographic ratio,434

R∞, against the threshold erosion rate, ϵc normalised by the uplift rate, for the two val-435

ues of the recession exponent, b. We see that as the assumed threshold increases, the pro-436

portion of the steady-state topography that is preserved 30 Myr after the end of the oro-437

genic phase also increases. This increase is much greater and shows a greater rate of in-438

crease as a function of ϵc for b = 1 than for b = 2.439

Most interestingly, in the case where n = 2, which is likely to be most represen-440

tative of the natural system, R∞ can be as high as 0.25 (i.e., a quarter of the steady-441

state topography is preserved 30 Myr after the end of the orogenic phase) when the crit-442

ical erosion rate, ϵc is ten times the value of the uplift rate. This implies that, even for443

a reasonable/small value of n, the presence of a finite erosional threshold can lead to preser-444

vation of a substantial amount of post-orogenic topography for tens or even hundreds445

of millions of years, confirming the results obtained by Baldwin et al. (2003).446

10 Discussion and conclusions447

We have shown that the FastScape algorithm can be generalized to take into ac-448

count the existence of an erosional discharge threshold under variable discharge condi-449

tions, even if the threshold is a function of channel slope. The algorithm remains O(n)450

in complexity and is implicit in time. To achieve this, we need to find the root of a highly451

non-linear function by a Newton-Raphson iterative algorithm. We have shown that, for452

the original FastScape algorithm, the convergence is unconditional and its rate varies lin-453

early with the value of n, the slope exponent in the SPIM. For the generalized TS-SPIM,454

the convergence of the Newton-Raphson algorithm is also unconditional except when the455

threshold is a positive function of channel slope (as suggested by Lamb et al. (2008)) and456

when discharge variability is low.457

We have also confirmed the findings of Campforts and Govers (2015) concerning458

the relative low accuracy of the FastScape algorithm but demonstrated that it becomes459

similar to that of other higher-order algorithms for values of the slope exponent, n, larger460

than 1. It is also important to remind the reader that, due to its implicit nature, the FastScape461

algorithm provide a stable and accurate solution to the SPIM and TS-SPIM for time steps/spatial462

discretization that do not satisfy the CFL condition, contrary to other higher-order al-463

gorithms.464
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This work demonstrates that even complex non-linear erosion laws can be rendered465

implicit and O(n) complexity based on a generalized version of the FastScape algorithm.466

Hergarten (2020) has shown that even transport-limited and under-capacity laws can also467

be rendered implicit and O(n) complexity but in the spacial case of a linear dependence468

on channel slope only. Future work should be devoted to generalize this finding to any469

slope exponent n in the SPIM formulation and to the more useful case of multiple di-470

rection flow when dealing with sediment transport and deposition. Using the approach471

presented here could provide an effective solution.472

Appendix A Averaging uncorrelated and correlated rainfall473

The probability of rainfall occurring at point i is λ0, and the probability of rain-474

fall depth when rainfall occurs is:475

fX0
(X0 = x0) =

1

αi
e−x0/α0 (A1)

Thus the probability of rainfall at point i is a random variable described by the follow-476

ing probability distribution:477

fX0
(X0 = x0) =

λ0
αi
e−x0/α0 + (1− λ0)δ(0) (A2)

where the second term represents the atom of probability that there is no rainfall. Here478

we want to track the depth of rainfall relative to the catchment we want to upscale to,479

so we introduce a new variable x = A0x0/A where A is the area of the large catchment,480

and A0 is the small area associated with the point rainfall statistics. Using this new vari-481

able, we can write:482

fX(X = x) =
Aλ0
A0α0

e−Ax/α0A0 + (1− λ0)δ(0) (A3)

we now make the assumption that rainfall is perfectly correlated up to some scale, Ac,483

above which it is independent. Thus, as long as A ≤ Ac, we can write:484

fX(X = x) =
λ0
α0
e−x/α0 (A4)

When A > Ac, rainfall is made of uncorrelated storms of size Ac, which can be regarded485

as an ‘average storm size’ and is the convolution of n distributions. Considering first two486

such rainfall events, we can write:487

fZ(z) = fX ∗ fX = (λfX,1 + (1− λ)fX,0) ∗ (λfX,1 + (1− λ)fX,0) (A5)
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where n = A/Ac, fX,1 = n
α0
e−nx/α0 and fX,0 = δ(0). This leads to:488

fZ(z) = λ2(fX,1 ∗ fX,1) + 2λ(1− λ)(fX,1 ∗ fX,0) + (1− λ2)(fX,0 ∗ fX,0) (A6)

As fX,0 = δ(0), we can write that fX,0 ∗ fX,0 = δ(0) and fX,1 ∗ fX,0 = fX, 1,489

while fX,1 = (nλ0

α0
)2 x

Γ(2)e
−nx/α0 as the convolution of two exponential functions is the490

gamma function.491

We can now generalize this result for n rainfall events, which gives:492

fZ(z) = (fX)n =
(
1− (1− λ0)

n
)an(x)
cn

e−nx/α0 (A7)

where:493

an(x) =

n∑
k=0

(
n
k

)
Γ(k)

( λ0
1− λ0

)k(nx
α0

)k−1

(A8)

and:494

cn =

n∑
k=0

(
n

k

)( λ0
1− λ0

)k

(A9)

where
(
n
k

)
are the binomial coefficients.495

If we make the further assumption that λ0 is much less than 1, equation A7 be-496

comes:497

fZ = (1− (1− λ0)
n)
n

α0
e−nx/α0 (A10)

which leads to:498

λ = 1− (1− λ0)
n (A11)

and:499

α =
α0λ0

1− (1− λ0)n
(A12)

Appendix B TH-SPIM implicit algorithm implementation500

The procedure to update the height hi,0 of a node at time t is as follows.501

1. Obtain input parameters that are uniform in value: K, m, n, ϵc, p, b, γ, ∆t, ∆x502

2. Obtain input parameters that are specific to node i: µi, νi, Ai, hr503

3. Compute F1 =
∆tKµm

i Am
i

hi,0
Sn
0 and F2 = ∆tϵc

hi,0
Sp
0 where S0 =

hi,0

∆x504

4. Initialize k = 0 and xk = 1505

5. Compute qc∗ =
(
F2

F1

)1/γ
x
(p−n)/γ
k506

6. Compute ∂xqc∗ = qc∗
(
p−n
γ

)
x−1
k507
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7. Compute:508

• µϵ =
Γ(1/ν+γ)
Γ(1/ν)ν−γ Γ(1/ν + γ, qc∗/ν) if b = 1509

• µϵ =
Γ(1/ν+1−γ)
Γ(1/ν)νγ−1 γ(1/ν + 1− γ, 1/νqc∗) if b = 2510

• λϵ = Γ(1/ν, qc∗/ν) if b = 1511

• λϵ = γ(1/ν + 1, 1/νqc∗) if b = 2512

• ∂qc∗µϵ = − e−qc∗/ν(qc∗/ν)
1/ν+γ−1

Γ(1/ν)ν−γ if b = 1513

• ∂qc∗µϵ = − e−1/νqc∗ (1/νqc∗)
1/ν−γ+2

Γ(1/ν)νγ−2 if b = 2514

• ∂qc∗λϵ = − e−qc∗/ν(qc∗/ν)
1/ν−1

Γ(1/ν) if b = 1515

• ∂qc∗λϵ = −νe−1/νqc∗ (1/νqc∗)
1/ν+2

Γ(1/ν+1) if b = 2516

8. Compute ∂xµϵ = ∂qc∗µϵ∂xqc∗ and ∂xλϵ = ∂qc∗λϵ∂xqc∗517

9. Compute F̄ = x− 1 + F1µϵx
n
k − F2λϵx

p
k518

10. Compute ∂xF̄ = 1 + F1(µϵnx
n−1
k + ∂xµϵx

n
k )− F2(λϵpx

p−1
k + ∂xλϵx

p)519

11. Compute xk+1 = xk − F̄
∂xF̄ if F̄ > 0 or xk+1 = xk otherwise520

12. Check for convergence: if ϵk = |xk − xk+1| > tol set k = k + 1 and go back to521

5; otherwise continue522

13. Compute new height: hi = xk+1(hi,0 − hr) + hr523

Appendix C Newton-Raphson Convergence criterion524

If xk is the estimate of the root xr of function F(x) after k iterations, we can ex-525

pand F(xr) around xk:526

F(xr) = F(xk) + (xr − xk)∂xF(xk)(xr − xk) + ρ (C1)

where ρ is the remainder of the expansion and can be expressed as:527

ρ =
1

2
(xr − xk)

2∂2xF(x′) (C2)

Because xr is the root and thus F(xr) = 0, we can write:528

(xr − xk) +
F(xk)

∂xF(xk)
= −(xr − xk)

2 1

2

∂2xF(xk)

∂xF(xk)
(C3)

which leads to:529

ϵk+1 = −1

2

∂2xF(xk)

∂xF(xk)
ϵk (C4)

as:530

xk+1 = xk − F(xk)

∂xF(xk)
(C5)
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where ϵk = xr − xk and ϵk+1 = xr − xk+1 are the errors at iteration k and k + 1, re-531

spectively.532

Equation C5 can also be expressed as:533

|ϵk+1| ≤ Lϵ2k (C6)

where:534

L = sup
x∈[xr,x0]

1

2

∣∣∂2xF(xk)

∂xF(xk)

∣∣ (C7)

and shows that the Newton-Raphson scheme is quadratic, under the condition that:535

L|ϵ0| < 1 (C8)

Appendix D F second derivative536

The function for which a root must be found has the form:537

F = x− 1 + F1µϵ(x)x
n − F2λe(x)x

p (D1)

and to estimate the convergence criterion, we need to compute:538

∂2xF = F1(µϵn(n−1)xn−2+2∂xµϵnx
n−1+∂2xµϵx

n)−F2(λϵp(p−1)xp−2+2∂xλϵpx
p−1+∂2xλϵx

p)

(D2)

with:539

∂2xµϵ = ∂2qc∗µϵ(∂xqc∗)
2 + ∂qc∗µϵ∂

2
xqc∗ (D3)

and:540

∂2xλϵ = ∂2qc∗λϵ(∂xqc∗)
2 + ∂qc∗λϵ∂

2
xqc∗ (D4)

in which:541

∂2qc∗µϵ = e−qc∗/ν
(qc∗/ν)1/ν+γ − (1/ν + γ − 1)(qc∗/ν)1/ν+γ−2

Γ(1/ν)ν−γ
for b = 1

∂2qc∗µϵ =
e−1/νqc∗

Γ(1/ν + 1)νγ−3
(1/νqc∗)

1/ν−γ+3
[
1/ν − γ + 2− (1/νqc∗)

2
]

for b = 2

(D5)

and:542

∂2qc∗λϵ = e−qc∗/ν
(qc∗/ν)1/ν − (1/ν − 1)(qc∗/ν)1/ν−2

Γ(1/ν)
for b = 1

∂2qc∗λϵ =
e−1/νqc∗

Γ(1/ν + 1)ν−2

(
1/νqc∗

)1/ν+3[
1/ν + 2− (1/νqc∗)

2
]

for b = 2

(D6)
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and:543

∂2xqc∗ = q
(p− n

γ

)(p− n

γ
− 1

)
x−2 (D7)

We will now assume that the maximum value of |∂xxF/∂xF| is reached when x = 1.544

We will call q0 the critical discharge at x = 1 and from Equation 12, we can write:545

q0 = qc∗(x = 1) =
(F2

F1

)1/γ
(D8)

and:546

∂xqc∗(x = 1) = ∂xq0 = q0(
p− n

γ
) and ∂2xqc∗(x = 1) = ∂2xq0 = q0(

p− n

γ
)(
p− n

γ
− 1) (D9)

Finally, Equation D2 estimated at x = 1 becomes:547

∂2xF(0) = F1

(
µϵ,0 n(n−1)+2∂xµϵ,0 n+∂

2
xµϵ,0

)
−F2

(
λϵ,0 p(p−1)+2∂xλϵ,0 p+∂

2
xλϵ,0

)
(D10)

with:548

µϵ,0 = µϵ(q0) and λϵ,0 = λϵ(q0)

∂xµϵ,0 = ∂qc∗µϵ(q0) ∂xq0 and ∂xλϵ,0 = ∂qc∗λϵ(q0) ∂xq0

∂2xµϵ,0 = ∂2qµϵ(q0)(∂xq0)
2 + ∂qc∗µϵ∂

2
xq0 and ∂2xλϵ,0 = ∂2qλϵ(q0)(∂xq0)

2 + ∂qc∗λϵ∂
2
xq0 (D11)

Appendix E Erosional decay curve549

During the erosional decay phase of a mountain belt, assuming that the SPIM con-550

trols the erosional process, topographic height, h, obeys the following partial differen-551

tial equation:552

∂h

∂t
= −KAmSn (E1)

Considering that during the decay phase the river network is frozen to the geometry that553

was set during the orogenic phase, one can hypothesise that, to first order, (a) the con-554

tributing drainage area is not going to evolve and is thus independent of time and (b)555

the slope is mostly dependent on the height, h and not on changes in horizontal length.556

We can therefore simplify this equation to be:557

∂H

∂t
= −K ′Hn (E2)

where H is a measure of mountain topographic height (mean or maximum). We can fur-558

ther simplify it using H ′, the mountain height normalised by its value at the end of the559

orogenic phase:560

∂H ′

∂t
= −K ′H ′n (E3)
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This equation has the following general solution:561

H ′(t) = [(n− 1)(C +K ′t)]1/(n−1) (E4)

and knowing that H ′(t′ = 0) = 1 we can derive the value of the constant C to obtain:562

H ′(t) = [1 + (n− 1)K ′t]1/(n−1) (E5)

By fitting the results of the numerical experiments shown in figure 8a, we find that the563

optimum value of the parameter K ′ is π/τ where τ is the response time scale of the growth564

phase. This leads to:565

H ′(t) = [1 + (n− 1)πt/τ ]1/(n−1) (E6)

Open Research Section566

A python version of the algorithm described in this manuscript as well as a Jupyter567

Notebook containing an example on its use can be found in the following GitHub repos-568

itory: https://github.com/fastscape-lem/VariableSPIM569
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