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Abstract

In this study, the combined application of geodesic kernel and Gaussian process regression was investigated to estimate non-

stationary hydraulic conductivity fields in two-dimensional hydrogeological systems. Particularly, a semi-analytical form of the

geodesic distance based on the intrinsic geometry of the manifold was derived and used to define positive definite geodesic covari-

ance matrices that are employed for Gaussian process regression. Furthermore, the proposed approach was applied to a series

of synthetic hydraulic conductivity estimation problems and the results show that the incorporation of secondary information,

such as geophysical or geological interpretations, can considerably improve the estimation accuracy, especially in nonstation-

ary fields. Moreover, groundwater flow and solute transport simulations based on the estimated hydraulic conductivity fields

revealed that the accuracy of the simulations was strongly affected by the inclusion of secondary information. These results

suggest that incorporating secondary information into manifold geometry can remarkably improve the estimation accuracy

and provide new insights on the underlying structure of geological data. This proposed approach has crucial implications for

hydrogeological applications, such as groundwater resource management, safety assessments, and risk management strategies

related to groundwater contamination.
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Key Points: 9 

• Estimation of hydraulic conductivity in hydrogeological systems using geodesic kernel–10 
Gaussian process regression was proposed. 11 

• Incorporating secondary information can improve estimation accuracy and provide 12 
insights into geological structures. 13 

• Importance of accurate hydraulic conductivity estimation for groundwater management 14 
and contamination risk assessment was highlighted. 15 

  16 
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Abstract 17 

In this study, the combined application of geodesic kernel and Gaussian process regression was 18 
investigated to estimate nonstationary hydraulic conductivity fields in two-dimensional 19 
hydrogeological systems. Particularly, a semi-analytical form of the geodesic distance based on 20 
the intrinsic geometry of the manifold was derived and used to define positive definite geodesic 21 
covariance matrices that are employed for Gaussian process regression. Furthermore, the 22 
proposed approach was applied to a series of synthetic hydraulic conductivity estimation 23 
problems and the results show that the incorporation of secondary information, such as 24 
geophysical or geological interpretations, can considerably improve the estimation accuracy, 25 
especially in nonstationary fields. Moreover, groundwater flow and solute transport simulations 26 
based on the estimated hydraulic conductivity fields revealed that the accuracy of the simulations 27 
was strongly affected by the inclusion of secondary information. These results suggest that 28 
incorporating secondary information into manifold geometry can remarkably improve the 29 
estimation accuracy and provide new insights on the underlying structure of geological data. This 30 
proposed approach has crucial implications for hydrogeological applications, such as 31 
groundwater resource management, safety assessments, and risk management strategies related 32 
to groundwater contamination. 33 

Keywords: geodesic kernel, Gaussian process regression, manifold geometry, hydraulic 34 
conductivity estimation, nonstationary fields, secondary information. 35 

Plain Language Summary 36 

In this study, a novel method is proposed to estimate the distribution of hydraulic properties in 37 
two-dimensional hydrogeological systems. This approach combines geodesic kernel and 38 
Gaussian process regression to utilize secondary information, such as geophysical exploration 39 
data or field geological insights, and considerably improves the estimation accuracy, particularly 40 
for nonstationary fields often observed in real practices. Incorporating secondary information 41 
into manifold geometry can yield novel insights into the underlying structure of geological data, 42 
allowing for more accurate spatial estimations in nonlinear and nonstationary situations. 43 
Moreover, the computational efficiency of the approach is reflected in the simple, semi-44 
analytical form of the derived geodesic kernel equation. These findings have notable 45 
implications for subsurface fluid flow and solute transport affected by small scale variability of 46 
the media properties for example groundwater resource management, safety assessments, and 47 
risk management strategies related to groundwater contamination. 48 

1 Introduction 49 

Geostatistics provides a robust set of methods to estimate subsurface properties based on 50 
statistical regularities (e.g., Deutsch & Journel, 1992; Goovaerts, 1997; Chiles & Delfiner, 2009). 51 
However, the application of these methods is often limited by the spatial variability of geological 52 
processes, which can undermine the assumption of stationarity and make accurate estimation 53 
challenging (Cressie, 1986; Cressie, 1993; Yeh & Liu, 2000; Wackernagel, 2003). 54 
Nonstationarities in geological processes present a major hindrance to the application of 55 
geostatistical methods at large-scale sites, thereby exhibiting substantial heterogeneity in 56 
geological structures and processes. This limitation emphasizes the need for advanced and 57 
reliable methods to characterize and model the hydraulic conductivity distribution, which plays a 58 
vital role in groundwater management and risk assessment (Dagan, 1989; Gorelick & Zheng, 59 
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2015). Therefore, it is crucial to improve the existing methods for estimating the hydraulic 60 
conductivity distribution in order to enrich our understanding of subsurface properties and 61 
efficiently manage groundwater resources and mitigate groundwater contamination risks. 62 
Toward this end, both advanced and diversified methods are crucial in capturing the complex 63 
spatial variability and nonstationarities in geological processes that are common in large-scale 64 
aquifers.  65 

Since the recognition of nonstationarity owing to geological structures and processes is a 66 
major challenge in subsurface characterization, considerable research efforts have been made to 67 
develop more advanced methods to characterize and model the spatial variability arising from 68 
geological processes. Different from the conventional covariance-based approach, multipoint 69 
statistics (MPS) is a robust approach to address spatial nonstationarity using pattern recognition 70 
from multiple points (Strebelle, 2002). It incorporates additional information from multiple 71 
points, thereby improving the accuracy and reliability of subsurface property estimation, 72 
particularly in areas exhibiting high heterogeneity in geological structures and processes 73 
(Mariethoz et al., 2010; Mariethoz & Caers, 2014). Moreover, spatial generative adversarial 74 
network (SGAN) by Laloy et al. (2018) is another robust method that exhibits promising results 75 
in capturing and reproducing complex spatial patterns of geological structures and processes. 76 
Both MPS and SGAN methods typically rely on training images as a source of nonstationary 77 
spatial statistical information. As noted in literature (Mariethoz, 2018; Madsen et al., 2021), 78 
these methods are most effective in when there is a severe scarcity or abundance of information 79 
present; however, they may not perform optimally in cases where an intermediate level of 80 
geological detail from secondary information such as geophysical data is available, which is the 81 
issue addressed in this study. 82 

Recently, addressing the nonstationarity problem in covariance-based approaches has 83 
received considerable attention. Most popular among these are methods that use geodesic kernel 84 
approaches (e.g., Feragen et al., 2014; Jayasumana et al., 2015; Pereira et al., 2022) or kernel 85 
convolution approaches (e.g., Higdon et al., 1999; Paciorek, 2003; Fouedjio et al., 2016). These 86 
approaches present great potential in capturing complex spatial variations in subsurface 87 
properties, which have crucial applications in hydrogeology and other fields where 88 
nonstationarity is a common challenge. However, the selection of kernel function and manifold 89 
structure requires domain-specific knowledge, which poses a challenge for its applications when 90 
the underlying data structure is complex and not well understood. Therefore, further research in 91 
hydrogeology and related fields is required to completely address these challenges and realize 92 
the true potential of these approaches. 93 

Although the geodesic kernel and kernel convolution approaches exhibit great potential 94 
in capturing complex spatial variations in subsurface properties, the former is particularly well-95 
suited for handling nonEuclidean manifolds, which are common in hydrogeology. Considering 96 
the irregularity of the subsurface data in hydrogeology, the geodesic kernel approach was 97 
selected as the most appropriate choice for this study. This approach combines targeted variable 98 
observations (as primary data) with a secondary information-derived manifold to enhance 99 
estimation accuracy. The manifold structure utilized herein was guided by geophysical 100 
explorations or derived from domain-specific expert knowledge, and can be further optimized 101 
with additional data and analysis. 102 

A manifold can provide a more detailed and interpretable representation of the spatial 103 
relationships between locations within a given dataset by embedding high-dimensional data in a 104 
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low-dimensional space. Differential geometry offers two main approaches for handling 105 
manifolds: intrinsic and extrinsic. Intrinsic geometry studies the geometric properties of objects 106 
from within, without relying on any external reference system. In contrast, extrinsic geometry 107 
studies objects from the outside, by embedding them in a higher-dimensional space. While each 108 
approach offers different advantages, the intrinsic approach may be more suitable for providing a 109 
more detailed and interpretable representation of the spatial relationships within a given dataset, 110 
particularly in the case of the often complex and irregular parameter distributions encountered in 111 
geological fields. Nontheless, many of the referable studies have primarily utilized extrinsic 112 
geometry, which frequently requires complex numerical methods to compute geodesics on the 113 
manifold. To address the existing challenges and to potentially increase its accessibility to 114 
hydrogeologists, a computational approach utilizing intrinsic geometry was proposed in this 115 
study. By leveraging the underlying manifold structure of the data, this approach has the 116 
potential to overcome nonstationarity and other challenges, making it a more accessible solution 117 
for hydrogeologists looking to incorporate these techniques into their studies. As an initial study, 118 
the main focus is not on providing specific methods for tailoring manifold geometries to 119 
particular geological structures, but rather on developing a methodology and demonstrating it 120 
through a few synthetic examples. Thus, a detailed description of how manifold geometries are 121 
constructed from secondary information is not covered in this manuscript.  122 

In the remaining sections of this manuscript, an approach employing intrinsic geometry is 123 
proposed. Particularly, a metric tensor is introduced to define a geodesic distance in the 124 
Euclidean space. Additionally, the Gaussian process regression (GPR) method that uses the 125 
geodesic kernel is introduced. To implement this approach, a synthetic hydraulic conductivity 126 
field is generated to obtain synthetic data that can be utilized as conditioning information. These 127 
synthetic data serve as the primary data, and the secondary data with variable amounts of 128 
information are used in conjunction for estimation. In the latter part of the implementation, 129 
groundwater flow and solute transport simulations are conducted on the estimated results, and 130 
they are systematically compared with the true values.  131 

2 Methodology 132 

2.1 Manifold and radial basis functions 133 

Herein, a manifold approach was adopted to address nonstationarity in spatial statistics. A 134 
manifold is a topological space that locally resembles Euclidean space. In spatial analysis, 135 
manifolds can be used as supplementary information to incorporate prior information, such as the 136 
underlying spatial structure, to improve the interpretability of the estimations since the curvature 137 
of manifolds can provide crucial information about spatial relationships between data points 138 
(Pereira et al., 2022). This study hypothesized that the geometries of the manifolds can be 139 
constructed through secondary information, such as geophysical or geological surveys, where the 140 
primary data include petrophysical properties such as permeability or porosity.  141 

Owing to their properties of handling irregular or complex geometries and allowing for 142 
nonlinear data relationships (Carr et al., 2001), kernel functions, especially radial basis functions 143 
(RBFs), have long been used in conventional geostatistics and are known to be well-suited for 144 
spatial analysis on a manifold (Feragen et al., 2014). Furthermore, this study hypothesized that 145 
the statistical relationships between spatially varying data can be represented via spatial analysis 146 
on a manifold using RBFs. The kernel function considered here is a Gaussian RBF, which 147 
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Because a manifold defines a detailed spatial relationship between two data locations, 173 
these data locations can be analyzed by introducing the metric tensor to the 𝑢𝑣 plane, allowing 174 
the determination of preferential correlation directions (Pereira et al., 2022). The metric tensor 175 
can capture the local variations in the spatial relationships between data points, providing a more 176 
detailed view of the correlations that exist within the data. 177 

Herein, 𝑋𝑌𝑍 surface is an inner product space 𝒱 determined using the following mapping 178 
function 𝜓: 𝑀 → 𝒱:  179 𝑋(𝑢, 𝑣) = 𝑢, 𝑌(𝑢, 𝑣) = 𝑣, and#(1)  𝑍(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) 

where 𝑓: (𝑀 × 𝑀) → ℝ. After adopting intrinsic geometry from Eq. (1), the metric tensor 180 
for space 𝑀 can be formulated as follows: 181 

𝑔 = ൦𝑑𝐫𝑑𝑢 ⋅ 𝑑𝐫𝑑𝑢 𝑑𝐫𝑑𝑢 ⋅ 𝑑𝐫𝑑𝑣𝑑𝐫𝑑𝑢 ⋅ 𝑑𝐫𝑑𝑣 𝑑𝐫𝑑𝑣 ⋅ 𝑑𝐫𝑑𝑣൪ #(2)  

In Eq. (2), 𝐫 is a vector valued function parametrically representing a curved surface such 182 
that, 183 𝐫(𝑢, 𝑣) = ൫𝑋(𝑢, 𝑣), 𝑌(𝑢, 𝑣), 𝑍(𝑢, 𝑣)൯. #(3)  

Moreover, 𝑑𝐫/𝑑𝑢 and 𝑑𝐫/𝑑𝑣 in Eq. (2) are expressed as follows:  184 ௗ𝐫ௗ௨ = ௗ௑ௗ௨ 𝐞௑ + ௗ௒ௗ௨ 𝐞௒ + ௗ௓ௗ௨ 𝐞௓ = 𝐞௑ + ௗ௙(௨,௩)ௗ௨ 𝐞௓ and 185 𝑑𝐫𝑑𝑣 = 𝑑𝑋𝑑𝑣 𝐞௑ + 𝑑𝑌𝑑𝑣 𝐞௒ + 𝑑𝑍𝑑𝑣 𝐞௓ = 𝐞௒ + 𝑑𝑓(𝑢, 𝑣)𝑑𝑣 𝐞௓, #(4)  

using the parameterizations in Eq. (1), where 𝐞௑ = 𝜕𝐫/𝜕𝑋, 𝐞௒ = 𝜕𝐫/𝜕𝑌, and 𝐞௓ =186 𝜕𝐫/𝜕𝑍 are the tangent space bases. Finally, the metric coefficients are determined by putting Eq. 187 
(4) into Eq. (2): 188 

𝑔 = ⎣⎢⎢
⎢⎡ 1 + ቆ𝑑𝑓(𝑢, 𝑣)𝑑𝑢 ቇଶ 𝑑𝑓(𝑢, 𝑣)𝑑𝑢 𝑑𝑓(𝑢, 𝑣)𝑑𝑣𝑑𝑓(𝑢, 𝑣)𝑑𝑢 𝑑𝑓(𝑢, 𝑣)𝑑𝑣 1 + ቆ𝑑𝑓(𝑢, 𝑣)𝑑𝑣 ቇଶ ⎦⎥⎥

⎥⎤ . #(5)  

2.3 Geodesic distance  189 

The geodesic distance on a manifold is a notion of distance that measures the shortest 190 
path between two points on a curved surface. However, a geodesic distance on a Euclidean space 191 
is the shortest path (i.e., a straight line) between two points in the space. In the case of a 192 
Euclidean space with a metric tensor that corresponds to the geometry of an embedded manifold, 193 
the straight lines in the Euclidean space correspond to the geodesics on the manifold. Using the 194 
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metric tensor in Eq. (5), the distances between all points on the 𝑢𝑣 plane and 𝑋𝑌𝑍 surface are 195 
equivalent, and 𝑢𝑣 plane and 𝑋𝑌𝑍 surface are isometric to each other. 196 

 Generally, to determine a geodesic distance (𝑑௚) between (𝑢଴, 𝑣଴) and (𝑢ଵ, 𝑣ଵ) on a 197 
curved space, the following equation can be adopted: 198 𝑑௚ = න ฯ𝑑𝐫𝑑𝜆ฯ 𝑑𝜆 #(6)  

where the metric tensor in Eq. (5) is used to evaluate the term inside integration as 199 
follows: 200 

ฯ𝑑𝐫𝑑𝜆ฯଶ = ൤𝑑𝑢𝑑𝜆 𝑑𝑣𝑑𝜆൨ ⎣⎢⎢
⎢⎡ 1 + ቆ𝑑𝑓(𝑢, 𝑣)𝑑𝑢 ቇଶ 𝑑𝑓(𝑢, 𝑣)𝑑𝑢 𝑑𝑓(𝑢, 𝑣)𝑑𝑣𝑑𝑓(𝑢, 𝑣)𝑑𝑢 𝑑𝑓(𝑢, 𝑣)𝑑𝑣 1 + ቆ𝑑𝑓(𝑢, 𝑣)𝑑𝑣 ቇଶ ⎦⎥⎥

⎥⎤ ൦𝑑𝑢𝑑𝜆𝑑𝑣𝑑𝜆൪ . #(7)  

As the line spans from (𝑢଴, 𝑣଴) to (𝑢ଵ, 𝑣ଵ), 𝑢 and 𝑣 along the straight line can be 201 
formulated as 𝑢(𝜆) = 𝑢଴ + (𝑢ଵ − 𝑢଴)𝜆, 𝑣(𝜆) = 𝑣଴ + (𝑣ଵ − 𝑣଴)𝜆, and 𝜆 ∈ ሾ0,1ሿ. From this 202 
formulation, the derivatives of 𝑢 and 𝑣 with respect to 𝜆 are 𝑑𝑢/𝑑𝜆 = 𝑢ଵ − 𝑢଴ and 𝑑𝑣/𝑑𝜆 =203 𝑣ଵ − 𝑣଴, respectively. Using these formulations, Eq. (7) can be expressed as follows: 204 ฯ𝑑𝐫𝑑𝜆ฯଶ = ൬𝑑𝑢𝑑𝜆൰ଶ 𝑔ଵଵ + 2 𝑑𝑢𝑑𝜆 𝑑𝑣𝑑𝜆 𝑔ଶଵ + ൬𝑑𝑣𝑑𝜆൰ଶ 𝑔ଶଶ. #(8)  

Substituting ‖𝑑𝐫/𝑑𝜆‖ in Eq. (6) by the square root of Eq. (8), the nonEuclidean arc 205 
length representing the correlation between two data locations ((𝑢଴, 𝑣଴) and (𝑢ଵ, 𝑣ଵ)) can be 206 
obtained using the following Eq. (9): 207 𝑑௚(𝑢ଵ, 𝑣ଵ; 𝑢଴, 𝑣଴) = න ඥ(𝑢ଵ − 𝑢଴)ଶ𝑔ଵଵ + 2(𝑢ଵ − 𝑢଴)(𝑣ଵ − 𝑣଴)𝑔ଶଵ + (𝑣ଵ − 𝑣଴)ଶ𝑔ଶଶ𝑑𝜆ଵ

଴ . #(9)  

where 𝑔ଵଵ, 𝑔ଶଵ (= 𝑔ଵଶ), and 𝑔ଶଶ are the metric tensor elements in Eq. (5). In the 208 
equation, 𝑑𝑓(𝑢, 𝑣)/𝑑𝑢 and 𝑑𝑓(𝑢, 𝑣)/𝑑𝑣 can be determined as follows: 209 𝑑𝑓(𝑢, 𝑣)𝑑𝑢 = 𝑑𝑓(𝑢, 𝑣)𝑑𝜆 1𝑢ଵ − 𝑢଴  and 𝑑𝑓(𝑢, 𝑣)𝑑𝑣 = 𝑑𝑓(𝑢, 𝑣)𝑑𝜆 1𝑣ଵ − 𝑣଴  . #(10)  

Using Eq. (10), Eq. (9) can be rewritten as follows:  210 

𝑑௚(𝑢ଵ, 𝑣ଵ; 𝑢଴, 𝑣଴) = න ඨ(𝑢ଵ − 𝑢଴)ଶ + (𝑣ଵ − 𝑣଴)ଶ + 4 ቆ𝑑𝑓(𝑢, 𝑣)𝑑𝜆 ቇଶ 𝑑𝜆ଵ
଴ , #(11)  

where 𝑑(𝑢ଵ, 𝑣ଵ; 𝑢଴, 𝑣଴) = ׬ ඥ(𝑢ଵ − 𝑢଴)ଶ + (𝑣ଵ − 𝑣଴)ଶ𝑑𝜆ଵ଴  represents the Euclidean 211 
distance between (𝑢଴, 𝑣଴) and (𝑢ଵ, 𝑣ଵ) for a flat surface. Therefore, the nonEuclidean distance, 212 𝑑௚, is always greater than the Euclidean distance, 𝑑, except for the case when the manifold is flat 213 
at 𝜆 (i.e., 𝑑𝑓(𝑢, 𝑣)/𝑑𝜆 = 0), as in the problem given by Eq. (1). However, without using Eq. 214 
(11), a geodesic distance can be determined from Eq. (9) directly using 𝑑𝑓(𝑢, 𝑣)/𝑑𝑢 and 215 𝑑𝑓(𝑢, 𝑣)/𝑑𝑣, where the derivatives can be calculated using an analytical or a numerical (i.e., 216 
finite difference) method, if 𝑓(𝑢, 𝑣) in Eq. (1) is given. Additionally, numerical integration in 217 
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Eq. (9) may be preferred over analytical integration, when 𝑓(𝑢, 𝑣) analytical or analytical 218 
integrations are not available. Various algorithms can be adopted for the numerical integration. 219 
Herein, a simple rectangle rule with 5–10 segmentation was applied for the numerical integration 220 
considering gentle manifold shapes. The semi-analytical form of Eq. (9) allows easy computation 221 
with only a few lines of code, further simplifying the calculation process. However, for more 222 
accurate results, alternative numerical integration methods such as Gaussian quadrature 223 
(Abramowitz & Stegun, 1972) could be used instead of the simple rectangle rule, particularly for 224 
more complex manifold shapes or when a higher precision is required. Although this study 225 
utilized a semi-analytical approach to derive the geodesic distance, numerous completely 226 
numerical methods are available for this purpose. Among them, the heat method proposed by 227 
Crane et al. (2013) could be used as an alternative approach for numerically determining the 228 
geodesic distance. 229 

2.4 Gaussian geodesic kernel and Gaussian process regression 230 

Based on the previous studies (Feragen et al., 2014; Jayasumana et al., 2015; Feragen and 231 
Hauberg, 2016; Borovitskiy et al., 2020), a positive definite geodesic kernel on a manifold was 232 
defined (Eq. 12), when the manifold is isometric to some Euclidean space. 233 𝑘(𝑢, 𝑣; 𝑢଴, 𝑣଴) = exp ቆ− 𝑑௚ଶ(𝑢, 𝑣; 𝑢଴, 𝑣଴)2𝜌ଶ ቇ , #(12)  

where 𝜌 is the parameter related to the correlation scale of a kernel function. 234 

Reproducing property of a positive definite kernel ensures that the inner product in the 235 
associated reproducing kernel Hilbert space can be expressed using evaluations of the kernel at 236 
points in the space (Schölkopf et al., 2002). In this case, GPR can be used for the manifold 237 
estimation. Here, the Gaussian process is defined over the space of functions on the manifold and 238 
can be used to model complex relationships and nonlinear interactions between variables. The 239 
use of GPR on manifolds requires the definition of a covariance function that captures the 240 
properties of the underlying space. The kernel trick is valid in the case when GPR is applied on 241 
this manifold (Patel & Vidal, 2014).  242 

In GPR, the estimation for an uninformed location is modeled as a Gaussian distribution. 243 
Moreover, the mean and covariance of the distribution are defined by the observations and a 244 
positive definite kernel, which can be seen as a similarity measurement between any given two 245 
locations. Although basis functions (𝛟) are not explicitly used, the estimation (𝐳) in GPR can be 246 
expressed in conceptual sense as a linear combination of 𝛟 such that  247 𝐳 = 𝜔ଵ𝛟ଵ + 𝜔ଶ𝛟ଶ + ⋯ + 𝜔௡೑𝛟௡೑, #(13)  

where 𝜔 represents weights and 𝑛௙ denotes the number of basis functions used for the 248 
estimation. Using Mercer’s theorem, a symmetric positive definite kernel can be decomposed 249 
into an infinite set of basis functions, and a positive definite kernel can be considered as a 250 
generalization of the concept of basis functions. Hence, the covariance matrix from a symmetric 251 
positive definite kernel can be written as follows: 252 𝚺 = 𝚽୘𝚽, #(14)  

where the feature matrix 𝚽 = ൣ𝛟ଵ ⋯ 𝛟௡೑൧, and the covariance matrix, 253 
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𝚺 = ൥𝑘(𝐱ଵ, 𝐱ଵ) ⋯ 𝑘(𝐱ଵ, 𝐱ே)⋮ ⋱ ⋮𝑘(𝐱ே, 𝐱ଵ) ⋯ 𝑘(𝐱ଵ, 𝐱ே)൩ , #(15)  

is composed of the kernel function in Eq. (12). Furthermore, the weight vector of 𝛚 254 
(= ሾ𝜔ଵ ⋯ 𝜔௡೑ሿ୘) can be obtained using a ridge regression as follows: 255 𝛚 = (𝚽(𝐱ௗ)୘𝚽(𝐱ௗ) + 𝜎ଶ𝐈)ିଵ𝚽(𝐱ௗ)୘𝐝, #(16)  

where 𝐱ௗ denotes the location vector of data observations and 𝚽(𝐱ௗ) corresponds to the 256 𝐱ௗ-th rows of 𝚽 and 𝐝 is a vector with the observed data. Additionally, the estimation can be 257 
expressed, from Eqs. (13) and (16), with Woodbury matrix identity (Max, 1950) as follows: 258 𝐳 =  𝚽𝛚 = 𝚺଴ௗ(𝚺ௗௗ + 𝜎ଶ𝐈)ିଵ𝐝 . #(17)  

Moreover, the estimation uncertainty conditioned on observations can be obtained from 259 
an updated covariance matrix given by 260 𝚺௨௣ = 𝚺 − 𝚺଴ௗ(𝚺ௗௗ + 𝜎ଶ𝐈)ିଵ𝚺଴ௗ୘, #(18)  

where the diagonals of 𝚺௨௣ are equivalent to estimation uncertainties. 261 

In Eqs. (17) and (18), 𝜎ଶ denotes the observation error, 𝚺଴ௗ = 𝚽୘𝚽(𝐱ௗ), and 𝚺ௗௗ =262 𝚽(𝐱ௗ)୘𝚽(𝐱ௗ), where 𝚺଴ௗ and 𝚺ௗௗ can be directly evaluated from Eq. (12) without explicit 263 
evaluations of 𝚺 or 𝚽 by kernel trick. 264 

3 Results and Discussion 265 

3.1 Case studies of hydraulic conductivity field estimations 266 

Herein, the geodesic kernel approach utilized intrinsic geometry to incorporate a metric 267 
tensor (Eq. (5)) into Euclidean space. The metric tensor quantified the distance between points 268 
on the manifold surface, as described in Eq. (9), and characterized its curvature. This information 269 
was incorporated into the kernel function, as specified in Eq. (12), to calculate the correlation of 270 
values between two locations. Accordingly, nonstationary spatial covariance could be easily 271 
estimated without any complex numerical techniques to approximate the embedded manifold 272 
geometry and the geodesic distances. MATLAB codes and a few illustrative examples developed 273 
herein will be published in conjunction with the publication of the manuscript. 274 

To evaluate the estimation characteristics, a few two-dimensional (2D) hypothetical 275 
aquifer scenarios were developed. In these scenarios, a 2D domain discretized into 𝑛௫ × 𝑛௬, 276 
where 𝑛௫ = 𝑛௬= 500, and a grid size of Δ𝑥 = Δ𝑦 = 1 m was consistently used throughout this 277 
study. 278 

Furthermore, synthetic hydraulic conductivity data using unconditional simulation for a 279 
log-transformed hydraulic conductivity field was generated to evaluate the performance of the 280 
developed estimator. This simulation targeted the mean and variance of 0 and 1, respectively and 281 
assumed a specific nonstationary spatial structure (Figure 2a). A total of 50 locations (red dots) 282 
were randomly selected from the simulated field to compare against the actual measurements. 283 
This approach allowed the estimation of the accuracy and effectiveness of the developed 284 
estimator in predicting hydraulic conductivity in nonstationary conditions. Eq. (1) represents the 285 𝑋𝑌𝑍 surface, and 286 
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3a exhibits a completely different structure from that in Figure 2a, although the estimate 328 
accurately reflects the given conditioning data (red dots). The root mean square error (RMSE) 329 
for the conditioning data locations was found to be 0.311, indicating that the conditioning data 330 
are not correctly reflected in the estimation. Additionally, the RMSE calculated across the entire 331 
domain was 0.7259, and a large RMSE that was close to the standard deviation of the reference 332 
case suggests that the estimated field lacks information on the true hydraulic conductivity field 333 
across the entire domain. It was found that assuming the absence of geological structure leads to 334 
unreliable hydraulic conductivity estimations. To further improve the estimation quality, cross 335 
validation can be used to tune the parameter of 𝜌. However, any additional parameter 336 
improvements were not performed, as the improvement in estimation quality is limited for 337 
nonstationary fields, such as the reference case, in the absence of secondary information.  338 

In the second scenario, it was hypothesized that the secondary data on the spatial 339 
structure were known inaccurately and were used for the estimation. This false information may 340 
be attributed to mistakes in geophysical processing or misinterpretation of geology. In terms of 341 
Eq. (1), 𝑓(𝑢, 𝑣) is arbitrarily selected to be 342 𝑓(𝑢, 𝑣) = 𝛼ଵ − (𝑢 − 250)ଶ + (𝑣 − 250)ଶ2𝛼ଶ  , #(21)  

among which the metric tensor can be analytically derived from Eq. (5). The spatial structure 343 
generated using Eq. (21) exhibits a circular shape, which is reminiscent of the shape that some 344 
geological domes may assume due to specific geological processes (Figure 3b). Importantly, the 345 
conventional semi-variogram analysis is not applicable in this scenario, as it only provides 346 
information on linear spatial relationships. The estimated hydraulic conductivity field using 347 𝜌 = 50 m for Eq. (12) and 𝜎ଶ = 10ିଶ for Eq. (17) is represented in Figure 3b. The conditioning 348 
data (red dots) are well reflected in the estimate (red dots in Figure 3b) with an RMSE of 0.0498. 349 
However, the RMSE calculated across the entire domain was 0.8195, indicating that the 350 
estimation may not accurately capture the variability of the reference field (Figure 2a). 351 
Additionally, the spatial structure of the estimate is evidently different from that in the reference 352 
field. These observations indicate that the use of misinterpreted secondary information can lead 353 
to an erroneous estimation result; moreover, in some instances, it may also result in worse 354 
outcomes compared to when no secondary information is used. When using the developed 355 
estimator, it is crucial to consider the quality of secondary data that is used to inform the 356 
estimation process, as misinformed, biased, or inaccurate data can lead to prejudicial estimation 357 
results. Quality assurance and control measures can help mitigate the risk of misinformed 358 
secondary data and improve the accuracy and reliability of estimation results; however, the 359 
implementation of such measures was beyond the scope of this study. 360 

In the third scenario, it is assumed that the secondary information accurately reflects the 361 
structural nonstationarity for the entire domain; therefore, Eq. (19) was applied to Eq. (1). 362 
However, it was hypothesized that the fitting parameters of 𝛼ଵ, 𝛼ଷ, and 𝜌 were unknown and had 363 
to be estimated. Figure 3c demonstrates the results of GPR estimation using parameters 364 
arbitrarily set to 𝛼ଵ = 120, 𝛼ଷ = 1.5, and 𝜌 = 50 m, which are used as initial guesses for the 365 
parameter estimation. Herein, the periodicity of the folding structure corresponding to 𝛼ଶ was 366 
assumed to be accurately determined through a rigorous secondary data analysis, including 367 
geophysical data processing. Based on these parameters, the RMSEs for the conditioning data 368 
location and entire domain were found to be 0.0337 and 0.466, respectively. These findings 369 
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indicate that although the overall depiction of nonstationarity in the secondary information may 370 
be accurate, the estimation outcome can deviate from reality if precision is lacking in the details.  371 

Consequently, the optimization of parameters 𝛼ଵ, 𝛼ଷ, and 𝜌 was performed using the 372 
training to testing data ratios heuristically set at 80% and 20%. The interior point method 373 
(Nocedal, 2014) encoded in the MATLAB fmincon function was adopted for this parameter 374 
optimization. The estimated values of 𝛼ଵ, 𝛼ଷ, and 𝜌, obtained through parameter estimation, 375 
were 297.5336, 1.3732, and 114.5088, respectively. Although these values are close to the target 376 
values of 250, 1, and 100, respectively, they differ slightly, indicating that the estimation process 377 
may have been influenced by the limited amount of data. Based on the parameter estimations, we 378 
found that the conditioning data (red dots) are almost perfectly reflected in the estimate (red dots 379 
in Figure 3d) with the RMSE of 0.0166. Furthermore, the RMSE calculated across the entire 380 
domain was 0.2266, suggesting that the estimation accurately captures the variability of the 381 
reference field. This indicates that, under the given conditions, the developed estimator is 382 
effective in modeling the underlying geological processes and can provide reliable estimates in 383 
the field of interest when informative secondary data are available. 384 

3.2 Perspectives to flow and transport problems 385 

Two-dimensional steady-state groundwater flow and transient solute transport 386 
simulations were conducted to evaluate the impact of an accurate hydraulic conductivity 387 
estimation on groundwater flow and solute behavior. MODFLOW-2005 (Harbaugh, 2005) and 388 
MT3D-USGS (Bedekar et al., 2016) were applied for the groundwater flow and solute transport 389 
simulations, respectively. The groundwater flow simulation included modeling the spatial 390 
variations of hydraulic head and flow rates in the aquifer system and applying the estimated 391 
hydraulic conductivity distribution as input. Based on the flow simulation results, the solute 392 
transport simulation was conducted to model the transport of a contaminant introduced at a 393 
specific location (250 m, 100 m) with a constant concentration of 100 mg/L. In the flow 394 
simulations, specified heads of 100 m and 90 m were assigned along 𝑦 = 1 and 500 m, 395 
respectively, and no flow boundaries were assigned along 𝑥 = 1 and 500 m in all cases. 396 
Similarly, in the solute transport simulations, fixed concentration boundaries were assigned 397 
along 𝑦 = 1 and 500 m, and zero flux boundaries were assigned along 𝑥 = 1 and 500 m in all 398 
cases. A nonreactive solute was selected for the simulations so as to clearly observe the effects of 399 
different hydraulic conductivity fields on the solute transport behavior. The dispersivities of the 400 
media were set uniformly to 1 and 0.1 m along the longitudinal and transverse directions, 401 
respectively, in all simulations. Although allocating uniform dispersivity values to the entire 402 
domain may not accurately reflect the real heterogeneity of the aquifer system, this simplification 403 
was considered to be sufficient for the purpose of the present study, which focused on the impact 404 
of different hydraulic conductivity distributions on solute transport behavior. Using uniform 405 
dispersivity values, the effects of hydraulic conductivity on the solute transport behavior were 406 
determined, and the performance of the developed method in estimating the hydraulic 407 
conductivity distribution under simplified conditions was evaluated. However, it is crucial to 408 
note that the simplifications in the simulation parameters may undermine the practicality of the 409 
simulation results. Herein, the total simulation period for the solute transport simulation was set 410 
to 365 days, which allowed the transport analysis of the deployed solute plume over a realistic 411 
timeframe and assessment of the potential impacts on the groundwater quality.  412 
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Figure 4 depicts the log-transformed solute plume deployment for a concentration of 10–3 413 
mg/L, utilizing the reference hydraulic conductivity field and the three different estimations 365 414 
days after the release of the solute. The application of a logarithmic scale for the concentration 415 
values allows better visualization of the spatial distribution and concentration levels of the solute 416 
plume. The solute plume for the reference case (Figure 4a) exhibits a complex and nonuniform 417 
deployment pattern, which is strongly affected by the heterogeneity of the hydraulic conductivity 418 
distribution. This distribution varies spatially and is nonstationary over the domain. However, the 419 
solute plumes in the cases without (Figure 4b) or incorrect (Figure 4c) secondary information 420 
exhibit noticeable differences in deployment patterns compared to that of the reference case. The 421 
solute plume in Figure 4b, which does not account for the geological structure, exhibits a more 422 
uniform and homogeneous deployment pattern compared to that observed in the other cases. This 423 
observation indicates that neglecting the geological structure in the estimation process may result 424 
in oversimplification of the hydraulic conductivity distribution and cause less realistic and 425 
inaccurate solute transport modeling.  426 

In cases wherein the interpretation of the geological structure is inaccurate (Figure 4c), 427 
the deployment of the solute plume differs significantly from that of the reference case. This 428 
result highlights the importance of accurately identifying and incorporating geological 429 
information in the estimation process and its effect on the reliability and accuracy of solute 430 
transport modeling in groundwater systems. When the geological information is incorporated as 431 
a function and the parameters are optimized (Figure 4d), the deployment of the solute plume 432 
shows considerable similarity to the reference case. In this scenario, the details of the range and 433 
branching pattern of the solute plume is well preserved, suggesting that the developed estimator 434 
can accurately capture the important aspects of the hydraulic conductivity distribution. This 435 
observation suggests that the developed method is effective in modeling the complex behavior of 436 
the hydraulic conductivity distribution and can provide reliable estimates in the field of interest.  437 

Besides the qualitative comparison of plume similarity, the structural similarity index 438 
measurement (SSIM, Wang et al., 2004) was employed to provide a more quantitative 439 
comparison of the different solute plume deployments. The formulation of the SSIM is given by 440 
Eq. (22), as follows: 441 𝑆𝑆𝐼𝑀 = (2𝜇்𝜇௘ + 𝐶ଵ)(2𝜎்௘ + 𝐶ଶ)(𝜇ଶ் + 𝜇௘ଶ + 𝐶ଵ)(𝜎ଶ் + 𝜎௘ଶ + 𝐶ଶ) , #(22)  

where 𝜇் and 𝜇௘ denote the means of the reference and estimated log-transformed 442 
concentrations exceeding –3, respectively; 𝜎ଶ் and 𝜎௘ଶ represent the variances of the reference 443 
and estimated concentrations, respectively; and 𝜎்௘ denotes the covariance between the reference 444 
and estimated concentrations. For 𝐶ଵ and 𝐶ଶ, an extremely small number of 2.22 × 10−16 was 445 
applied. The SSIM values between the reference case and the simulation using the estimate with 446 
no secondary information (Figure 4b) and that using the estimate with misinterpreted secondary 447 
information (Figure 4c) were 0.18 and 0.2115, respectively. These low values indicate a lack of 448 
similarity between the shapes of the reference and simulated plumes. Conversely, the simulation 449 
using the estimated hydraulic conductivity field with the correct geodesic distance function and 450 
optimized parameters yielded an SSIM value of 0.7517, suggesting a high degree of similarity 451 
between the reference and simulated plumes. 452 
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risks can be developed by improving our understanding of the effect of hydraulic conductivity 466 
variability on solute transport behavior. 467 

4 Conclusions 468 

This study developed and demonstrated the combined application of geodesic kernel and 469 
GPR for estimating the distribution of hydraulic properties, which generally show spatially 470 
varying and nonstationary characteristics. In this direction, a geodesic distance based on the 471 
manifold's intrinsic geometry was derived; moreover, a GPR based on the geodesic kernel was 472 
defined. The equations for the geodesic kernel and GPR were of a simple semi-analytical form, 473 
which allows their efficient evaluation using only a few lines of computational code. 474 

Furthermore, the proposed approach was applied to several hypothetical scenarios to 475 
evaluate its effectiveness and the characteristics of the resulting estimations were analyzed. 476 
During the implementation of the developed approach, an unconditional reference hydraulic 477 
conductivity field was generated, which served as the foundation for the subsequent conditioning 478 
of the primary dataset. To introduce strong spatial nonstationarity in the hydraulic conductivity 479 
distribution, secondary information was hypothesized, assuming a specific geological structure 480 
that was used in the generation process. The resulting primary dataset was subsequently used in 481 
further estimations, with one case using only the primary information and the other two cases 482 
incorporating partial amounts of the secondary information to varying degrees. The results of the 483 
hydraulic conductivity estimations show the strong dependence of estimation accuracy on the use 484 
of secondary information for characterizing the nonstationary field. This sensitivity can be 485 
attributed to the high-dimensional nature of the developed estimator. Cross validation can be 486 
used to further improve the estimation, allowing optimization of the model parameters of the 487 
secondary information. Furthermore, the estimated hydraulic conductivity fields were used to 488 
simulate groundwater flow and solute transport, revealing the great dependence of the estimation 489 
accuracy of the hydraulic conductivity on the incorporation of secondary information in addition 490 
to the primary information, with the case that incorporated optimized secondary information 491 
exhibits the highest similarity to the reference case. This finding highlights the significance of 492 
utilizing secondary information, especially for characterizing nonstationary aquifers, for accurate 493 
hydraulic property estimation to ensure effective groundwater resources management. Notably, 494 
the developed approach is susceptible to overfitting similar to that in any high-dimensional 495 
method. This leads to poor estimation results in case of misinterpretation of the secondary 496 
information. Therefore, future studies should explore techniques to mitigate overfitting and 497 
ensure the robustness of the estimation process. 498 

Although further studies are still required in this field, the current study represents a 499 
crucial initial step in exploring the method to incorporate secondary information into manifold 500 
geometry for geological processes. Results show the potential of the proposed approach to yield 501 
remarkable improvements in estimation accuracy and provide novel insights into the underlying 502 
structure of geological data. Particularly, the developed estimator can be incorporated into an 503 
inversion approach to improve accountability of nonstationary structures in the estimation, 504 
leading to more accurate and realistic estimates of hydraulic conductivity distribution. These 505 
insights have crucial implications in safety assessments and risk management strategies 506 
associated with groundwater contamination, where accurate and reliable estimation of hydraulic 507 
conductivity is critical to assess potential risks and develop effective mitigation measures. 508 
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Accordingly, further research can significantly enhance our understanding of subsurface geology 509 
and associated geological processes.  510 
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