Modulation of Tropical Convection-circulation Interaction by Aerosol Indirect Effects in a Global Convection-permitting Model

Chun-Yian Su¹, Chien-Ming Wu², Wei-Ting Chen², and john peters³

¹Pennsylvania State University ²National Taiwan University ³Penn State

March 6, 2023

Abstract

Observations suggest tropical convection intensifies when aerosol concentrations enhance, but quantitative estimations of this effect remain highly uncertain. Leading theories for explaining the intensification are based on the dynamical response of convection to changes in cloud microphysics independently from possible changes in the environment. Here, we provide a new perspective on aerosol indirect effects on tropical convection by using a global convection-permitting model that realistically simulates convection-circulation interaction. Simulations of radiative-convective equilibrium show that pollution facilitates the development of deep convection in a drier environment, but cloud condensates are more likely to be exported from moist clusters to dry areas, impeding the large-scale moisture-convection feedback and limiting the intensity of maximum precipitation (30 vs. 47 mm h-1). Our results emphasize the importance of allowing atmospheric phenomena to evolve continuously across spatial and temporal scales in simulations when investigating the response of tropical convection to changes in cloud microphysics.

https://doi.org/10.22541/essoar.167810272.23043464/v1 — This a preprint and has not been peer reviewed. Data may be preliminary Posted on 6 Mar 2023 -The copyright holder is the author/funder. All rights reserved. No reuse

Modulation of Tropical Convection-circulation Interaction by Aerosol Indirect Effects in a Global Convection-permitting Model

Chun-Yian $Su^{1,2}$, Chien-Ming Wu^2 , Wei-Ting Chen², and John M. Peters¹

¹Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA ²Department of Atmospheric Sciences, National Taiwan University, Taipei city, Taiwan

Key Points:

1

2

3

4

5

6

8

9	•	Simulations of the global convection-permitting model provide a new perspective
10		on aerosol indirect effects.
11	•	Pollution facilitates the development of deep convection in a drier environment.
12	•	The response of large-scale circulation to pollution limits the intensity of maxi-
13		mum precipitation.

Corresponding author: Chien-Ming Wu, mog@as.ntu.edu.tw

14 Abstract

Observations suggest tropical convection intensifies when aerosol concentrations enhance, 15 but quantitative estimations of this effect remain highly uncertain. Leading theories for 16 explaining the intensification are based on the dynamical response of convection to changes 17 in cloud microphysics independently from possible changes in the environment. Here, 18 we provide a new perspective on aerosol indirect effects on tropical convection by using 19 a global convection-permitting model that realistically simulates convection-circulation 20 interaction. Simulations of radiative-convective equilibrium show that pollution facili-21 tates the development of deep convection in a drier environment, but cloud condensates 22 are more likely to be exported from moist clusters to dry areas, impeding the large-scale 23 moisture-convection feedback and limiting the intensity of maximum precipitation (30 24 vs. 47 mm h⁻¹). Our results emphasize the importance of allowing atmospheric phenom-25 ena to evolve continuously across spatial and temporal scales in simulations when inves-26 tigating the response of tropical convection to changes in cloud microphysics. 27

²⁸ Plain Language Summary

How does air pollution affect thunderstorm intensity over the tropical ocean? Past 29 studies have proposed different opinions but generally neglect the interplay between the 30 development of thunderstorms and the long-range movement of air that redistributes the 31 Earth's thermal energy and moisture. Here, we address this question by investigating 32 33 results from numerical experiments in which the global domain is used to simulate the response of individual thunderstorms and large-scale air motion to pollution. Our results 34 show that tropical thunderstorms with given moisture are more vigorous under the pol-35 luted scenario. However, pollution makes the thunderstorms keep less moisture in their 36 surroundings, limiting the maximum intensity of thunderstorms and weakening the large-37 scale air motion that supplies moisture to thunderstorms. Our results suggest that the 38 interplay between the development of thunderstorms and the long-range movement of 39 air is crucial in determining the effects of pollution in the tropical atmosphere. 40

41 **1** Introduction

Deep convective clouds (DCCs) play a critical role in the global climate system via 42 their role in the Earth's energy budget (Arakawa, 2004; Hartmann et al., 2001). They 43 can aggregate into organized convective systems that span hundreds to a thousand kilo-44 meters (Houze, 2004) and contribute significantly to tropical rainfall (Chen et al., 2021; 45 Houze et al., 2015; Nesbitt et al., 2006; Tao & Chern, 2017; Yuan & Houze, 2010). Ob-46 servations suggest that updrafts of tropical DCCs can be invigorated by enhanced aerosol 47 concentrations that arise from human activities and natural sources (Andreae et al., 2004; 48 Koren et al., 2008; Niu & Li, 2012; Pan et al., 2021; Storer et al., 2014). By acting as 49 cloud condensate nuclei (CCN) or ice nuclei (IN), aerosols change cloud properties by 50 influencing cloud microphysics and dynamics, meanwhile influencing cloud-radiation feed-51 backs (i.e., aerosol indirect effects (AIEs); see reviews of Fan et al. (2016) and Tao et al. 52 (2012)). A deeper understanding of AIEs on tropical DCCs and organized convective sys-53 tems could improve the prediction of extreme precipitation events in global weather and 54 climate models. However, the underlying mechanisms of how the updrafts are invigo-55 rated remain elusive and are often debated (Fan et al., 2018; Fan & Khain, 2021; W. W. Grabowski 56 & Morrison, 2020, 2021; Igel & van den Heever, 2021). A particular challenge of under-57 standing AIEs using observations is that the observed aerosol concentrations in the en-58 vironments of DCCs often covary with other meteorological factors, such as convective 59 available potential energy and vertical wind shear (W. W. Grabowski, 2018; Nishant & 60 Sherwood, 2017; Varble, 2018), and the influences of meteorological and aerosol variabil-61 ity are difficult to disentangle from one another. Further, there is evidence from simu-62 lations that AIEs on DCCs vary as a function of meteorological conditions such as shear 63

and humidity (Fan et al., 2009; van den Heever & Cotton, 2007; Khain et al., 2008; Koren et al., 2010; Z. Lebo, 2018), which further complicates our ability to isolate the aerosol
effects from other meteorological processes. AIEs are underrepresented in global climate
models because of these knowledge gaps, which contributes to considerable uncertainty
in estimating human climate forcing (Forster et al., 2021).

To investigate the aerosol indirect effects on DCCs that interact with their surround-69 ing environment, Abbott and Cronin (2021) carried out simulations using a small do-70 main (128x128 km²) three-dimension cloud-resolving model (3-D CRM) with parame-71 72 terized large-scale dynamics under the weak temperature gradient (WTG) approximation (Sobel et al., 2001). Abbott and Cronin (2021) suggested that enhanced CCN con-73 centrations produce clouds that mix more condensed water into the surrounding air. This 74 enhances the environment favorably for subsequent convection by moistening the free 75 troposphere and reducing the deleterious effects of entrainment. The humidity-entrainment 76 mechanism they proposed is distinct from past work, which linked stronger updrafts with 77 latent heat released by cloud condensation (Fan et al., 2018) or freezing (Rosenfeld et 78 al., 2008) independently from possible changes in the environment. Anber et al. (2019) 79 also used a small domain (192x192 km²) 3-D CRM with parameterized large-scale dy-80 namics to carry out simulations with different number concentrations of CCN but found 81 a contrasting result. In their simulations, convection and mean precipitation get weaker 82 when the CCN concentration increases. They suggested that the changes are associated 83 with the modulation of coupling between convective processes and large-scale motions 84 that overall reduces surface enthalpy fluxes. 85

Using a large domain (10000 km) two-dimension CRM configured in radiative-convective 86 equilibrium (RCE; Manabe & Strickler, 1964), van den Heever et al. (2011) found a weak 87 response of the large-scale organization of convection and the domain-averaged precip-88 itation to enhanced CCN concentrations. They suggested that AIEs on the three trop-89 ical cloud modes are opposite in sign, offsetting each other, thus producing a weak domain-90 wide response. In contrast, a more recent study by Beydoun and Hoose (2019) that used 91 a large channel-shaped domain (2000x120 km²) 3-D CRM found a comparatively large 92 decrease in domain-averaged precipitation in their RCE simulations with enhanced CCN 93 concentrations. They suggested that enhanced CCN concentrations lead to the weak-94 ened large-scale organization of convection, increased midlevel and upper-level clouds, 95 decreased radiative cooling, and decreased domain-averaged precipitation. 96

The difference in the above findings is likely influenced by the representation of large-97 scale dynamics and the geometry of the simulation domain, which could modulate convection-98 circulation interaction hence affect the overall AIEs. For example, a horizontal scale of 99 the model domain larger than 5000 km was suggested to be large enough to represent 100 the natural scale of large-scale organization of convection (Matsugishi & Satoh, 2022; 101 Patrizio & Randall, 2019; Yanase et al., 2022). Advances in computational resources have 102 allowed for global model simulations that explicitly simulate deep convection (Stevens 103 et al., 2019). These global convection-permitting models have been applied to investi-104 gate how clouds and convective processes couple to large-scale circulation and determine 105 cloud feedbacks and climate sensitivity (Wing et al., 2020). However, how is the coupling 106 of DCCs and large-scale circulations affected by enhanced aerosol concentrations has not 107 been fully understood. 108

This study aims to investigate the modulation of tropical convection-circulation interaction by AIEs in global simulations that simultaneously resolve the dynamical response of convection to changes in cloud microphysics and allow large-scale circulations to naturally develop since the horizontal scale is not artificially constrained by the domain size or shape. The modulation of tropical convection-circulation interaction by AIEs is demonstrated by analyzing the responses of moisture distribution, convection structures, and large-scale circulation to pollution. Section 2 introduces more details about the model and the experiment design. Section 3 describes the results, and the summary and discussion are presented in section 4.

¹¹⁸ 2 Model Description and Experiment Design

We use the Central Weather Bureau Global Forecast System (CWBGFS; Su et al., 119 2021a, 2021b; SU et al., 2022), which is a global convection-permitting model run at the 120 horizontal resolution of 15 km, to carry out our experiments. Deep convection in the CW-121 BGFS is represented by the unified relaxed Arakawa-Schubert scheme (URAS; Su et al., 122 2021b) in which the representation transitions from the parameterization to the explicit 123 simulation as the diagnosed convective updraft fraction increases (Arakawa & Wu, 2013; 124 Wu & Arakawa, 2014). Hence, the CWBGFS with the URAS can explicitly but efficiently 125 simulate deep convection and convection-circulation interaction on the global scale. This 126 model partially resolve circulations in organized convective systems and reproduce the 127 observed feature of convective systems that stronger extreme precipitation occurs in hor-128 izontally larger systems (Hamada et al., 2014; SU et al., 2022). 129

The CWBGFS uses the two-moment Predicted Particle Properties bulk microphysics 130 scheme (P3; Morrison & Milbrandt, 2015) to represent cloud microphysical processes, 131 including cloud-aerosol interaction. The aerosol concentration prescribed in P3 is fixed 132 throughout the integration and acts as CCN. Cloud-aerosol interaction is not included 133 in the URAS. In our simulations, the averaged percentage of precipitation produced by 134 explicitly simulated convection is more than 93~% over precipitation events stronger than 135 5 mm h^{-1} , indicating that most of the cloud-aerosol interactions associated with deep con-136 vection are resolved. The rest of the descriptions regarding physics suites and the dy-137 namic core of the CWBGFS can be found in Su et al. (2021a). 138

Two idealized non-rotating aqua-planet simulations configured in RCE are carried 139 out. Simulations in RCE have been extensively used to investigate feedback among clouds, 140 environmental moisture, radiation, and precipitation (Bretherton et al., 2005; Coppin 141 & Bony, 2015; Cronin & Wing, 2017; Emanuel et al., 2014; Holloway & Woolnough, 2016; 142 Pendergrass et al., 2016; Popke et al., 2013; Singh & O'Gorman, 2013, 2015; Wing & Emanuel, 143 2014; Wing et al., 2020), and therefore provide an ideal experimental setting to study 144 AIEs. Under certain circumstances, convection in RCE spontaneously self-organizes into 145 one or more moist ascending clusters surrounded by dry subsiding convection-free ar-146 eas in simulations configured in non-rotating RCE (convective self-aggregation (CSA); 147 C. Muller et al., 2022; Wing et al., 2017). We note that CSA occurs in the simulations 148 of van den Heever et al. (2011) and Beydoun and Hoose (2019). 149

The simulations are initialized with an analytic sounding (Wing et al., 2018) that 150 approximates the moist tropical sounding of Dunion (2011), and the initial horizontal 151 winds are set to zero. The initial surface pressure of all grid columns is 1014.8 hPa. The 152 incoming solar radiation (409.6 W m⁻²), the sea surface temperature (300 K), and the 153 surface albedo (0.07) are spatially uniform and constant in time. The simulations are 154 run for 120 days, and the random perturbation of temperature from 0.1 to 0.02 K is added 155 to the five lowest model levels in the first 20 days to speed up convection initiation. The 156 only difference between the two simulations is the prescribed spatially uniform aerosol 157 number mixing ratio set in P3. They are set at 3×10^8 kg⁻¹ and 3×10^{10} kg⁻¹, represent-158 ing the pristine and polluted scenarios, respectively. The scenarios here are referred to 159 the marine environment (Andreae, 2009) and the urban environment (Chang et al., 2021) 160 and are used to evaluate the upper bound of AIEs on convection-circulation interaction. 161 In the following section, 30 days of hourly output (days 90 to 120) are analyzed when 162 the simulation is in an RCE state. 163

The overall results of the pristine run are showcased in Fig. 1, demonstrating that our simulations resemble the global model simulations in the RCE model intercompar¹⁶⁶ ison project (Wing et al., 2018, 2020), in which convection self-organizing into multiple ¹⁶⁷ moist clusters (Fig. 1a). Fig. 1b shows the spatial distribution of column water vapor ¹⁶⁸ (CWV) of a moist cluster, indicating high heterogeneity that is coupled to spatial con-¹⁶⁹ vection structures. Precipitation stronger than 30 mm h⁻¹ (Fig. 1c) is found in a con-¹⁷⁰ vective system with intense resolved updrafts (>1 m s⁻¹) (Fig. 1d). Fig. 1 with more de-¹⁷¹ tail will be introduced in the following section.

Figure 1. A snapshot of moist clusters smaller (light blue shaded) and larger (navy shaded) than 1000 km of horizontal scale, convective systems (orange shaded), and distance to the nearest convective system (green contours of 375, 1125, 1875 km) of the pristine run on day 106.5 (a). Column water vapor (mm) and convective systems (black contours) in a moist cluster (b), which the domain is demonstrated by the black dashed lines in (a). Precipitation intensity (mm h^{-1}) of a convective system (c), which the domain is demonstrated by the white dashed lines in (b). The vertical profiles of mixed-phase cloud condensates (shaded) and vertical velocity (green contours of 0.1, 0.5, 1 m s⁻¹) (d) along the red dashed line in (c). See the context for the definition of moist clusters and convective systems. The horizontal scale is determined by the square root of the cluster's horizontal area.

172 **3 Results**

We start from demonstrating the response of moisture probability distribution to
enhanced CCN concentrations. In both runs, the distribution of CWV is bimodal (Fig.
2). The bimodality suggests the presence of an aggregated state (Arnold & Randall, 2015;
Tsai & Wu, 2017) which is maintained by large-scale circulation. The difference between
the two local maxima of the bimodality is smaller in the polluted run, suggesting AIEs

drive columns away from both moist and dry equilibria in the pristine run. We use the 178 CWV value that corresponds to the smallest value along the curve in Fig. 2 between the 179 local maxima at dry and moist CWV values as the threshold to define moist clusters (i.e., 180 43 mm in both runs). The difference in area coverage percentage of moist clusters in the 181 global domain between the two runs is less than 3 %. The moist clusters in the polluted 182 run are notably drier than that in the pristine run. Further, the number of moist clus-183 ters in the polluted run is 23 % more than that in the pristine run. Sixty-five percent 184 of moist clusters are smaller than 1000 km of horizontal scale in the polluted run, and 185 there are 45 % of them in the pristine run. 186

Figure 2. Probability distribution of column water vapor (black) and distance to the nearest convective system conditional sampled by column water vapor (red) from days 90 to 120. The gray line labels 43 mm of column water vapor, which is set as the criteria for defining a moist cluster.

We evaluate AIEs by first identifying the updraft regions of convective systems as 187 laterally connected columns of vertical velocity $>0.1 \text{ m s}^{-1}$ in any level between 700 to 188 400 hPa (Fig. 1a-b). A critical characteristic of tropical deep moist convection is the rapid 189 intensification of precipitation once CWV has exceeded a critical value, which charac-190 terizes the effect of water vapor on the buoyancy of clouds through entrainment (Bretherton 191 et al., 2004; Neelin et al., 2009; Peters & Neelin, 2006). Hence, we investigate the influ-192 ence of pollution on this precipitation-CWV dependency. Analyses among all updraft 193 regions with a given CWV indicate that both of our simulations mimic the precipitation-194 CWV dependency seen in nature, with a rapid increase in mixed-phase cloud conden-195 sate, updraft intensity (Fig. 3a-b), and precipitation (Fig. 3c) occurring in both simu-196 lations above a certain threshold in CWV. However, a distinct difference of the polluted 197 run from the pristine one is that the threshold CWV which heralds the increase in con-198

vective intensity occurs at a lower CWV value (57 mm) than it does in the pristine run (62 mm).

Fig. 3a-b show that the vertical profiles to the right of the CWV thresholds resem-201 ble the convection structures of deep convection at the developing and mature stage, and 202 the profiles to the left resemble deep convection at the dissipating stage, in which mixed-203 phase cloud condensates concentrate at mid-level free atmosphere beneath which weak 204 downdrafts due to water loading take place. In the dissipating stage, moisture in the pol-205 luted run is more heavily distributed over the mid-to-low free atmosphere (Fig. 3d). The 206 water vapor mixing ratio there is 1.5 g kg^{-1} more than that in the pristine run. The dif-207 ference may be caused by the stronger evaporation of raindrops as we found there is more 208 mass but nearly the same number of falling raindrops beneath clouds in the polluted run 209 leading to two times stronger surface precipitation (figure not shown). These raindrops 210 could be from the melting of graupel and hail since the warm-rain process is suppressed 211 due to pollution. 212

Past studies have shown that humidity in the lower free atmosphere is critical to 213 the onset of tropical deep convection (Derbyshire et al., 2004; Holloway & Neelin, 2009, 214 2010; Schiro et al., 2016; Tompkins, 2001). The enhanced moisture in the lower free at-215 mosphere increases the buoyancy of entraining plumes, leading to an increased chance 216 of deep convection. The signal of the exceeding moisture in the mid-to-low free atmo-217 sphere in the polluted run extends to the CWV regimes of developing and mature con-218 vection (Fig. 3d), in which the increase in moisture in the mid-to-high atmosphere re-219 flects the prevalence of convection (Fig. 3a-b). The modulated moisture distribution, orig-220 inating from the response of dissipating stage of convection to changes in cloud micro-221 physics, enhances conditional instability, potentially contributing to the development of 222 subsequent convection. Further investigations on the mechanism will be carried out in 223 the future. 224

Figure 3. Mass mixing ratio of cloud water and cloud ice (shaded) and vertical velocity (contours at 0, 0.1, 0.2, 0.5, 1, 2 m s⁻¹) within the updraft regions of convective systems conditional sampled by column water vapor of the pristine (a) and the polluted (b) run from days 90 to 120. Precipitation intensity of the two runs (c) and the difference of water vapor mixing ratio (polluted run minus the pristine run) (d) sampled by the same method. The red dotted line in (d) shows the contour of 0 g kg⁻¹. The red sticks along the x-axis show the CWV value of 57 and 62 mm

However, the highest CWV environment over the updraft regions (>67 mm) in the 225 pristine run is absent in the polluted run (Fig. 3). The polluted run has notably drier 226 moist clusters (Fig. 2), leading to the weaker maximum intensity of updraft and precip-227 itation (30 vs. 47 mm h^{-1}). As the moisture distribution is maintained by large-scale cir-228 culation, we investigate the influence of pollution on large-scale circulation by sorting 229 the distance to the nearest convective system and projecting horizontal winds in the di-230 rection pointing to the nearest system (green contours in Fig. 1a). Large-scale circula-231 tion has often been visualized with a streamfunction in moisture space when analyzing 232 self-aggergated runs to RCE (Arnold & Putman, 2018; Bretherton et al., 2005; Holloway 233 & Woolnough, 2016; C. Muller & Bony, 2015; C. J. Muller & Held, 2012). The stream-234 function analyzed in past studies is designed to investigate the energy transport between 235 dry areas and moist clusters but it does not represent circulation in physical space. It 236 is natural to analyze large-scale circulation in physical space when using a global convection-237 permitting model with an appropriate choice of the source of momentum and energy trans-238 port. The result shows that both runs exhibit typical structures of tropical circulation, 239 including low-level inflow, mid-level outflow, and deep convection outflow (Johnson et 240 al., 1999), but every component of the circulation is weaker in the polluted run (Fig. 4). 241

We trace the cause of the weaker large-scale circulation down to the influence of pollution on the geographical distribution of convective systems (i.e., updraft regions). In the polluted run, convective systems develop geographically closer to the meandering margin (i.e., 43 mm) of moist clusters, because CWV increases monotonically from dry areas toward moist clusters (Fig. 1b), and convection strength enhances more rapidly

as CWV increases in the polluted run (Fig. 3b). Fig. 2 shows that the average distance 247 from the edges of moist clusters to the nearest convective system in the pristine run is 248 1.5 times longer than that in the polluted run. Meanwhile, inhibiting the warm-rain pro-249 cess by pollution could increase the mid-level static stability as a result of a latent heat-250 ing dipole associated with the freezing water and melting ice above and below the freez-251 ing level. Previous studies suggested that an increase in mid-level static stability pro-252 motes detrainment (Johnson et al., 1999; Patrizio & Randall, 2019; Posselt et al., 2008, 253 2012). Overall, cloud condensates in the polluted run are more likely to be exported from 254 moist clusters to dry areas rather than stay in moist clusters and then re-evaporate. The 255 export of clouds impedes the moisture-convection feedback in which moistening environ-256 ment by convection plays a key role in favoring subsequent development of convection 257 (W. Grabowski & Moncrieff, 2004; Holloway & Neelin, 2009). The above inference is sup-258 ported by Fig. 4b, which shows that the exceeding cloud condensates in the polluted run 259 coincide with the mid-level outflow of the large-scale circulation. 260

Figure 4. Water vapor flux (shaded) and horizontal winds (contours from -4 to 4 m s⁻¹ with an interval of 1 m s⁻¹ using a color scale from maroon to white to navy) projected to the direction of pointing to the nearest convective system in the pristine (a) and the polluted (b) run from days 90 to 120. Positive values are vectors toward the system. The black and red dots in (b) show where the ratio of cloud water mixing ratio in the polluted run over the pristine one larger than 1 and 2, respectively

²⁶¹ 4 Summary and Discussion

This study investigates the response of tropical convection-circulation interaction 262 to enhanced CCN concentrations using non-rotating RCE simulations of a global convection-263 permitting model run at 15 km horizontal resolution. Deep convection in the model is 264 represented in a way that the explicit simulation of convection seeds cloud-aerosol in-265 teraction and is responsible for strong precipitation events. The simulations allow for the 266 large-scale organization of convection realistically inducing circulation without artificial 267 constraints of scale separation assumption, domain size, or domain shape. The novel find-268 ing in this study is that pollution facilitates the development of deep convection in a drier 269 environment, while the response of large-scale circulation limits the intensity of maxi-270 mum precipitation. Our results emphasize the importance of allowing atmospheric phe-271 nomena to evolve continuously across spatial and temporal scales in simulations when 272 investigating the response of tropical convection to changes in cloud microphysics. 273

274 Connecting our result to the existing driving and maintaining mechanisms of CSA 275 could inspire future investigation on the response of global warming to varied CCN concentrations since CSA is known to modulate climate sensitivity (Cronin & Wing, 2017).

- ²⁷⁷ The possible connections include:
- The export of mid-level cloud condensates could weaken the radiatively driven subsidence over the dry areas that drives CSA (Beydoun & Hoose, 2019; Bretherton et al., 2005; C. J. Muller & Held, 2012; Wing & Emanuel, 2014; Holloway & Woolnough, 2016).
- 282
 2. The response of cold pool dynamics to cloud microphysics has received considerable attention in the literature (Z. J. Lebo & Morrison, 2014; Seigel et al., 2013; Storer et al., 2014; Su et al., 2020; Tao et al., 2007; van den Heever & Cotton, 2007). Cold pools associated with the closer-to-edge convective systems in the polluted run could mix low-level dry areas and moist clusters more effectively, weakening the CSA (Jeevanjee & Romps, 2013; C. Muller & Bony, 2015).

Past studies (Arnold & Randall, 2015; Khairoutdinov & Emanuel, 2018) indicated 288 that the large-scale organization of convection (i.e., CSA) in non-rotating RCE simula-289 tions and MJO-like (i.e., Madden-Julian Oscillation; Madden & Julian, 1971) disturbance 290 in rotating RCE simulations share the same driving mechanism (i.e., cloud-radiation feed-291 backs) in which AIEs can be critical. One of the characteristics of MJO propagation is 292 that MJOs suffer from a barrier effect when it propagates over the Maritime Continent 293 (MC) (Kim et al., 2014; Zhang & Ling, 2017). The development of convective systems 294 over the water in the MC region plays a crucial role in carrying the MJO signal through 295 the MC (Ling et al., 2019). Around the globe, MC is a major source of different types 296 of aerosol (Reid et al., 2012; Salinas et al., 2013; Shpund et al., 2019). The modulation 297 of the size of moist clusters and the geographical distribution of convective systems by 298 enhanced CCN concentrations potentially provides a new perspective on the existing MJO 299 theories (Jiang et al., 2020; Zhang, 2013). A possible approach for the investigation is 300 to evaluate sub-seasonal hindcasts of an active MJO event with different aerosol emis-301 sion scenarios. 302

³⁰³ 5 Open Research

The model output data of a temporal snapshot, the Fortran program that computes vertical atmospheric profiles conditional sampled by column water vapor and the distance to the nearest convective system, and the GrADS plotting scripts in this study are available at https://doi.org/10.6084/m9.figshare.22149617.v1.

308 Acknowledgments

³⁰⁹ Chien-Ming Wu and Chun-Yian Su's efforts were supported by National Science and Technology Council (NSTC) in Taiwan grant 111-2111-M-002-012-NSTC. Wei-Ting Chen was
³¹¹ supported by Ministry of Science and Technology (MOST) in Taiwan grant 109-2628³¹² M-002-003-MY3. J. Peters was supported by National Science Foundation (NSF) grants
³¹³ AGS-1928666, AGS-1841674, and the Department of Energy Atmospheric System Re³¹⁴ search (DOE ASR) grant DE-SC0000246356. We thank Dr. Jen-Her Chen in Central
³¹⁵ Weather Bureau for his support of this work.

316 **References**

- Abbott, T. H., & Cronin, T. W. (2021, January). Aerosol invigoration of atmospheric convection through increases in humidity. *Science*, 371 (6524), 83-85.
 Retrieved from https://doi.org/10.1126/science.abc5181 doi: 10.1126/ science.abc5181
- Anber, U. M., Wang, S., Gentine, P., & Jensen, M. P. (2019, September). Probing the response of tropical deep convection to aerosol perturbations using

323	idealized cloud-resolving simulations with parameterized large-scale dynam-
324	ics. Journal of the Atmospheric Sciences, 76(9), 2885–2897. Retrieved from
325	https://doi.org/10.1175/jas-d-18-0351.1 doi: 10.1175/jas-d-18-0351.1
326	Andreae, M. O. (2009, January). Correlation between cloud condensation nuclei
327	concentration and aerosol optical thickness in remote and polluted regions. At-
328	mospheric Chemistry and Physics, 9(2), 543-556. Retrieved from https://doi
329	.org/10.5194/acp-9-543-2009 doi: 10.5194/acp-9-543-2009
330	Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo,
331	K. M., & Silva-Dias, M. A. F. (2004, February). Smoking rain clouds over the
332	amazon. Science, 303(5662), 1337-1342. Retrieved from https://doi.org/
333	10.1126/science.1092779 doi: 10.1126/science.1092779
334	Arakawa, A. (2004, July). The cumulus parameterization problem: Past, present,
335	and future. Journal of Climate, 17(13), 2493–2525. Retrieved from
336	https://doi.org/10.1175/1520-0442(2004)017<2493:ratcpp>2.0.co:2
337	doi: 10.1175/1520-0442(2004)017(2493:ratcpp)2.0.co:2
338	Arakawa A & Wu C $-M$ (2013 July) A unified representation of deep moist
330	convection in numerical modeling of the atmosphere part i <i>Journal of the At</i> -
340	mospheric Sciences $70(7)$ 1977–1992 Retrieved from https://doi.org/10
341	1175/jas-d-12-0330.1 doi: 10.1175/jas-d-12-0330.1
340	Arnold N P & Putman W M (2018 April) Nonrotating convective self-
342	aggregation in a limited area AGCM Journal of Advances in Modeling Earth
344	Sustems $10(4)$ $1029-1046$ Retrieved from https://doi.org/10.1002/
345	2017ms001218 doi: 10.1002/2017ms001218
246	Arnold N P & Bandall D A (2015 October) Global-scale convective aggre-
340	gation: Implications for the madden-julian oscillation Journal of Advances in
348	Modeling Earth Systems $7(4)$ 1499–1518 Retrieved from https://doi.org/
340	10.1002/2015ms000498 doi: 10.1002/2015ms000498
350	Beydown H & Hoose C (2019 April) Aerosal-cloud-precipitation interactions
251	in the context of convective self-aggregation Journal of Advances in Modelina
252	Earth Systems 11(4) 1066–1087 Retrieved from https://doi.org/10.1029/
353	2018ms001523 doi: 10.1029/2018ms001523
254	Bretherton C S Blossev P N & Khairoutdinov M (2005 December) An
355	energy-balance analysis of deep convective self-aggregation above uniform SST
356	Journal of the Atmospheric Sciences 62(12) 4273–4292 Retrieved from
357	https://doi.org/10.1175/jas3614.1 doi: 10.1175/jas3614.1
358	Bretherton C S Peters M E & Back L E (2004 April) Relationships be-
350	tween water vapor path and precipitation over the tropical oceans
360	nal of Climate $17(7)$ 1517–1528 Betrieved from https://doi.org/
361	10.1175/1520-0442(2004)017<1517:rbwvpa>2.0.co:2 doi: 10.1175/
362	1520-0442(2004)017(1517:rbwvpa)2.0.co:2
363	Chang Y-H Chen W-T Wu C-M Moseley C & Wu C-C (2021 Novem-
364	ber). Tracking the influence of cloud condensation nuclei on summer diurnal
365	precipitating systems over complex topography in taiwan. Atmospheric Chem-
366	istry and Physics, 21(22), 16709–16725. Retrieved from https://doi.org/
367	10.5194/acp-21-16709-2021 doi: 10.5194/acp-21-16709-2021
368	Chen, PJ., Chen, WT., Wu, CM., & Yo, TS. (2021, May). Convective cloud
369	regimes from a classification of object-based CloudSat observations over asian-
370	australian monsoon areas. Geophysical Research Letters, 48(10). Retrieved
371	from https://doi.org/10.1029/2021g1092733 doi: 10.1029/2021g1092733
372	Coppin, D., & Bony, S. (2015, December). Physical mechanisms controlling the
373	initiation of convective self-aggregation in a general circulation model. <i>Jour-</i>
374	nal of Advances in Modeling Earth Sustems. 7(4). 2060–2078. Retrieved from
375	https://doi.org/10.1002/2015ms000571 doi: 10.1002/2015ms000571
376	Cronin, T. W., & Wing, A. A. (2017, December). Clouds, circulation, and climate
377	sensitivity in a radiative-convective equilibrium channel model. Journal of Ad-

378	vances in Modeling Earth Systems, 9(8), 2883–2905. Retrieved from https://
379	doi.org/10.1002/2017ms001111 doi: 10.1002/2017ms001111
380	Derbyshire, S., Beau, I., Bechtold, P., Grandpeix, JY., Piriou, JM., Redelsperger,
381	JL., & Soares, P. (2004, October). Sensitivity of moist convection to envi-
382	ronmental humidity. Quarterly Journal of the Royal Meteorological Society,
383	130(604), 3055-3079. Retrieved from https://doi.org/10.1256/qj.03.130
384	doi: 10.1256/qj.03.130
385	Dunion, J. P. (2011, February). Rewriting the climatology of the tropical north
386	atlantic and caribbean sea atmosphere. $Journal of Climate, 24(3), 893-$
387	908. Retrieved from https://doi.org/10.1175/2010jcli3496.1 doi:
388	10.1175/2010jcli 3496.1
389	Emanuel, K., Wing, A. A., & Vincent, E. M. (2014, February). Radiative-
390	convective instability. Journal of Advances in Modeling Earth Systems, $6(1)$,
391	75-90. Retrieved from https://doi.org/10.1002/2013ms000270 doi:
392	10.1002/2013 ms 000270
393	Fan, J., & Khain, A. (2021, January). Comments on "do ultrafine cloud condensa-
394	tion nuclei invigorate deep convection?". Journal of the Atmospheric Sciences,
395	78(1), 329-339. Retrieved from https://doi.org/10.1175/jas-d-20-0218.1
396	doi: 10.1175/jas-d-20-0218.1
397	Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T.,
398	de Souza, R. A. F. (2018, January). Substantial convection and pre-
399	cipitation enhancements by ultrafineaerosol particles. Science, 359(6374),
400	411-418. Retrieved from https://doi.org/10.1126/science.aan8461 doi:
401	10.1126/science.aan8461
402	Fan, J., Wang, Y., Rosenfeld, D., & Liu, X. (2016, October). Review of
403	aerosol-cloud interactions: Mechanisms, significance, and challenges. Jour-
404	nal of the Atmospheric Sciences, 73(11), 4221–4252, Retrieved from
405	https://doi.org/10.1175/jas-d-16-0037.1 doi: 10.1175/jas-d-16-0037.1
406	Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. B., Ovchin-
407	nikov. M. (2009. November). Dominant role by vertical wind shear in regulat-
408	ing aerosol effects on deep convective clouds. <i>Journal of Geophysical Research</i> .
409	11/(D22). Retrieved from https://doi.org/10.1029/2009id012352 doi:
410	10.1029/2009id012352
411	Forster P Storelymo T Armour K Collins W Dufresne J-L Frame D
412	Zhang H (2021) The earth's energy budget climate feedbacks and cli-
412	mate sensitivity [Book Section] In V Masson-Delmotte et al. (Eds.) <i>Climate</i>
413	change 2021: The physical science basis contribution of working aroun i to
415	the sixth assessment report of the intergovernmental panel on climate change
416	(p. 923–1054). Cambridge, United Kingdom and New York, NY, USA: Cam-
417	bridge University Press. doi: 10.1017/9781009157896.009
419	Grahowski W & Moncrieff M (2004 October) Moisture-convection feedback in
410	the tropics Quarterly Journal of the Royal Meteorological Society 130(604)
419	$3081-3104$ Betrieved from https://doi org/10_1256/gi_03_135 doi: 10
421	1256/ai 03 135
422	Grahowski W W (2018 October) Can the impact of aerosols on deep convec-
422	tion be isolated from meteorological effects in atmospheric observations? <i>Lowr</i> -
423	nal of the Atmospheric Sciences 75(10) 3347-3363 Betrieved from https://
424	doi org/10 1175/jas-d-18-0105 1 doi: 10 1175/jas-d-18-0105 1
425	Crahowski W W & Morrison H (2020 July) Do ultrafino cloud condensation
426	(2020, 300). Do utraine cloud condensation puclei invigorate doep convection? <i>Journal of the Atmospheric Sciences</i> $\frac{77}{7}$
427	2567-2583 Retrieved from https://doi.org/10.1175/jog-d-20-0012.1.doi.
428	10 1175/jas d 20 0019 1
429	10.1110/Jao-u-20-0012.1 Crohomali W. W. & Monnigon H. (2021 January) Dorbuto (correspondents of the set
430	trafino cloud condensation nuclei invitorate doop convection?" Lower of the
431	Atmospheric Sciences 78(1) 241 250 Detrieved from https://def.arg/10
432	Autospheric Sciences, 70(1), 541–550. Retrieved non nucps://doi.org/10

433	.1175/jas-d-20-0315.1 doi: 10.1175/jas-d-20-0315.1
434	Hamada, A., Murayama, Y., & Takayabu, Y. N. (2014, October). Regional charac-
435	teristics of extreme rainfall extracted from TRMM PR measurements. Journal
436	of Climate, 27(21), 8151-8169. Retrieved from https://doi.org/10.1175/
437	jcli-d-14-00107.1 doi: 10.1175/jcli-d-14-00107.1
438	Hartmann, D. L., Moy, L. A., & Fu, Q. (2001, December). Tropical convection and
439	the energy balance at the top of the atmosphere. Journal of Climate, $14(24)$,
440	4495–4511. Retrieved from https://doi.org/10.1175/1520-0442(2001)
441	014<4495:tcateb>2.0.co;2 doi: 10.1175/1520-0442(2001)014(4495:
442	tcateb $2.0.co; 2$
443	Holloway, C. E., & Neelin, J. D. (2009, June). Moisture vertical structure, col-
444	umn water vapor, and tropical deep convection. Journal of the Atmospheric
445	Sciences, 66(6), 1665–1683. Retrieved from https://doi.org/10.1175/
446	2008jas2806.1 doi: 10.1175/2008jas2806.1
447	Holloway, C. E., & Neelin, J. D. (2010, April). Temporal relations of column water
448	vapor and tropical precipitation. <i>Journal of the Atmospheric Sciences</i> , 67(4).
449	1091-1105. Retrieved from https://doi.org/10.1175/2009jas3284.1 doi:
450	10.1175/2009jas3284.1
451	Holloway, C. E., & Woolnough, S. J. (2016, February). The sensitivity of convective
452	aggregation to diabatic processes in idealized radiative-convective equilib-
453	rium simulations. Journal of Advances in Modeling Earth Systems, 8(1).
454	166-195. Retrieved from https://doi.org/10.1002/2015ms000511 doi:
455	10.1002/2015ms000511
456	Houze B A (2004 December) Mesoscale convective systems <i>Beviews of Geo</i> -
457	<i>nhusics.</i> /2(4). Retrieved from https://doi.org/10.1029/2004rg000150
451	doi: 10.1029/2004rg000150
450	Houze B A Basmussen K L Zuluaga M D & Brodzik S B (2015 Septem-
459	her) The variable nature of convection in the tropics and subtropics: A legacy
400	of 16 years of the tropical rainfall measuring mission satellite <i>Reviews of</i>
401	Geonhusics 53(3) 994–1021 Retrieved from https://doi org/10 1002/
463	2015rg000488 doi: 10.1002/2015rg000488
463	Igel A L & van den Heever S C (2021 August) Invigoration or enervation of
404	convective clouds by aerosols? Geophysical Research Letters 48(16) Retrieved
465	from https://doi.org/10_1029/2021g1093804_doi: 10_1029/2021g1093804
467	Jeevaniee N & Romps D M (2013 March) Convective self-aggregation cold
407	pools and domain size Geophysical Research Letters $10(5)$ 994–998 Be-
400	trieved from https://doi org/10 1002/grl 50204 doi: $10.1002/grl 50204$
409	Jiang X Adames $\hat{\Delta}$ F Kim D Maloney F D Lin H Kim H Klinga-
470	man N P (2020 August) Fifty years of research on the madden-julian
471	oscillation: Recent progress challenges and perspectives Iournal of Geo-
472	nhusical Research: Atmospheres 125(17) Retrieved from https://doi org/
473	10 1029/2019id030911 doi: 10 1029/2019id030911
474	Johnson R H. Rickanbach T M. Rutladga S A. Ciosialski P F. & Schu
475	bort W H (1000 August) Trimodal characteristics of tropical convoc
476	tion Lowrad of Climate 19(8) 2307–2418 Botriovod from https://
477	doi org/10_1175/1520-0442(1999)01262397:tcotc>2_0_co:2doi:
478	$101175/15200442(1000)012/2307\cdottcotc/2.0.co.2$
479	Khain A P. BanMacha N. & Delroyaky A (2008 June) Easters determining the
480	impact of aerosols on surface provinitation from clouds: An attempt at close
481	ention <i>Journal of the Atmospheric Sciences</i> , 65(6), 1791–1748. Retrieved from
482	t = 1.25 + 1.2
483	Khairoutdinov M F & Francuol K (2012 December) Intracesconal workshilter in
484	a cloud normitting near global equatorial equaplanet model. <i>Lowrool of the At</i>
485	a croud-permitting near-ground equatorial aquapranet model. Journal of the Al- mospheric Sciences 75(12) 4327-4355 Rotrieved from https://doi.org/10
486	$1175/i_{12}=d_{-1}18=0152$ 1 doi: 10.1175/i_20.d.18.0152.1
487	.11/3/Jas-a-10-0132.1 uoi. 10.11/3/Jas-a-10-0132.1

488	Kim, D., Kug, JS., & Sobel, A. H. (2014, January). Propagating versus non-
489	propagating madden-julian oscillation events. Journal of Climate, $27(1)$,
490	111-125. Retrieved from https://doi.org/10.1175/jcli-d-13-00084.1
491	doi: 10.1175/jcli-d-13-00084.1
492	Koren, I., Feingold, G., & Remer, L. A. (2010, September). The invigoration
493	of deep convective clouds over the atlantic: aerosol effect, meteorology or
494	retrieval artifact? Atmospheric Chemistry and Physics, 10(18), 8855–
495	8872. Retrieved from https://doi.org/10.5194/acp-10-8855-2010 doi:
496	10.5194/acp-10-8855-2010
497	Koren, I., Martins, J. V., Remer, L. A., & Afargan, H. (2008, August), Smoke invig-
498	oration versus inhibition of clouds over the amazon. Science, 321 (5891), 946–
400	949 Retrieved from https://doi.org/10.1126/science.1159185 doi: 10
500	1126/science 1159185
500	Lebo Z (2018 February) A numerical investigation of the notential effects of
501	acrosol-induced warming and undraft width and slope on undraft intensity
502	in doop convective clouds I_{averal} of the Atmospheric Sciences $75(2)$ 535-
503	554 Betrieved from https://doi.org/10.1175/jog-d-16-0268.1 doi:
504	$10.1175 / j_{og} d 16.0368 1$
505	I. I. J. Marrian II. (2014 March) Demonstral effects of concerline structure
506	tions on simulated idealized excell lines — Monthly Westley Device 140(2)
507	tions on simulated idealized squall lines. Monthly weather Review, $142(3)$,
508	991-1009. Retrieved from https://doi.org/10.11/5/mwr-d-13-00156.1
509	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
510	Ling, J., Zhang, C., Joyce, R., ping Xie, P., & Chen, G. (2019, March). Possible role
511	of the diurnal cycle in land convection in the barrier effect on the MJO by the
512	maritime continent. Geophysical Research Letters, $4b(5)$, $3001-3011$. Retrieved
513	from https://doi.org/10.1029/2019g1081962 doi: 10.1029/2019g1081962
514	Madden, R. A., & Julian, P. R. (1971, July). Detection of a 40–50 day oscillation
515	in the zonal wind in the tropical pacific. Journal of the Atmospheric Sciences,
516	28(5), 702-708. Retrieved from https://doi.org/10.1175/1520-0469(1971)
517	028<0702:doadoi>2.0.co;2 doi: $10.1175/1520-0469(1971)028(0702:doadoi>2$
518	.0.co;2
519	Manabe, S., & Strickler, R. F. (1964, July). Thermal equilibrium of the atmosphere
520	with a convective adjustment. Journal of the Atmospheric Sciences, $21(4)$,
521	361–385. Retrieved from https://doi.org/10.1175/1520-0469(1964)
522	021<0361:teotaw>2.0.co;2 doi: 10.1175/1520-0469(1964)021(0361:
523	teotaw/2.0.co;2
524	Matsugishi, S., & Satoh, M. (2022, May). Sensitivity of the horizontal scale
525	of convective self-aggregation to sea surface temperature in radiative con-
526	vective equilibrium experiments using a global nonhydrostatic model.
527	Journal of Advances in Modeling Earth Systems, $14(5)$. Retrieved from
528	https://doi.org/10.1029/2021ms002636 doi: $10.1029/2021ms002636$
529	Morrison, H., & Milbrandt, J. A. (2015, January). Parameterization of cloud micro-
530	physics based on the prediction of bulk ice particle properties. part i: Scheme
531	description and idealized tests. Journal of the Atmospheric Sciences, $72(1)$,
532	287-311. Retrieved from https://doi.org/10.1175/jas-d-14-0065.1 doi:
533	10.1175/jas-d-14-0065.1
534	Muller, C., & Bony, S. (2015, July). What favors convective aggregation and why?
535	Geophysical Research Letters, 42(13), 5626–5634. Retrieved from https://doi
536	.org/10.1002/2015g1064260 doi: 10.1002/2015g1064260
537	Muller, C., Yang, D., Craig, G., Cronin, T., Fildier, B., Haerter, J. O., Sher-
538	wood, S. C. (2022, January). Spontaneous aggregation of convective
539	storms. Annual Review of Fluid Mechanics, 54(1), 133–157. Retrieved
540	from https://doi.org/10.1146/annurev-fluid-022421-011319 doi:
541	10.1146/annurev-fluid-022421-011319
542	Muller, C. J., & Held, I. M. (2012, August). Detailed investigation of the self-

 10.1178/jaz-d-11-0257.1 doi: 10.1176/jaz-d-11-0257.1 Neclin, J. D., Peters, O., & Hales, K. (2009, August). The transition to strong convection. Journal of the Atmospheric Sciences, 66 (8), 2367-2384. Retrieved from https://doi.org/10.1175/2009jaz9802.1 Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006, October). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134 (10), 2702-2721. Retrieved from https://doi.org/10.1175/mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of acrosol-cloud correlation in a pristine maritime environment. Gcophysical Research Letters, 44 (11), 5774-5781. Retrieved from https://doi.org/10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491-8498. Retrieved from https://doi.org/10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of acrosol invigoration for dcep convective cloud lifecycle properties based on geostationary satellite. Journal of Gcophysical Research: Atmospheres, 126 (9). Retrieved from https://doi.org/10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2016j0571285 doi: 10.1002/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Mature Physics, 2(6), 393-396. Retrieved from https://doi.org/10.1029/2016g1071285 Peters, D., & Nevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Model	543 544	aggregation of convection in cloud-resolving simulations. Journal of the At- mospheric Sciences, 69(8), 2551–2565. Retrieved from https://doi.org/
 Neelin, J. D., Peters, O., & Hales, K. (2009, August). The transition to strong convection. Journal of the Atmospheric Sciences, 66(8), 2367–2384. Retrieved from https://doi.org/10.1175/2009jas2962.1 Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006, October). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134(10), 2702–2721. Retrieved from https://doi.org/10.1175/mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment. Geophysical aerosol-cloud correlation in a pristine maritime environment. Geophysical aerosol-cloud correlation in a pristine maritime environment. Geophysical Research Letters, 44(11), 5774–5781. Retrieved from https://doi.org/10.1002/2017g1073267 Niu, F., & Li, Z. (2012, Spetember). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491–8498. Retrieved from https://doi.org/10.5194/acp-12-8491-2012 doi: 10.1019/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geosphysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/10.1029/2019/a042475 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1022/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link between extreme precipitation and convective organization in a awarning climate: Global radiative-convective equilibrium revision of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https:	545	10.1175/jas-d-11-0257.1 doi: 10.1175/jas-d-11-0257.1
 vection. Journal of the Atmospheric Sciences, 66 (8), 2367–2384. Retrieved from https://doi.org/10.1175/2009jas2962.1 doi: 10.1175/2009jas2962.1 nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006, October). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134 (10), 2702–2721. Retrieved from https://doi.org/10.1175/ mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment. Geophysical Research Letters, 44 (11), 5774–5781. Retrieved from https://doi.org/ 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top tempera- ture and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12 (18), 8491–8498. Retrieved from https://doi.org/ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmosphers, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warning climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1022/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2	546	Neelin, J. D., Peters, O., & Hales, K. (2009, August). The transition to strong con-
 from https://doi.org/10.11/s/2009ja82962.1 doi: 10.11/s/2009ja82902 J Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006, October). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134 (10), 2702–2721. Retrieved from https://doi.org/10.1175/mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment. Geophysical Research Letters, 44(11), 5774–5781. Retrieved from https://doi.org/ 10.1002/2017g1073267 doi: 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491–8498. Retrieved from https://doi.org/ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on gcostationary stallite. Journal of Geophysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Padrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergnass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link between extreme precipitation and convective organization in a atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1022/2016g1071285 Petters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1022/2016g1071285 Petters, O., & Neelin, J. D. (2006, May). Critical phenomen	547	vection. Journal of the Atmospheric Sciences, 66(8), 2367–2384. Retrieved
 Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006, October). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134(10), 2702–2721. Retrieved from https://doi.org/10.1175/mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment. Geophysical Research Letters, 44(11), 5774–5781. Retrieved from https://doi.org/10.1002/2017g1073267 doi: 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491–8498. Retrieved from https://doi.org/10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pah, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geophysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1029/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1029/2015_m500191 Poskel, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection,	548	from https://doi.org/10.1175/2009jas2962.1 doi: 10.1175/2009jas2962
 Neshtt, S. W., Chelin, R., & Ruthedge, S. A. (2000, October). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134(10), 2702–2721. Retrieved from https://doi.org/10.1175/mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment. Geophysical Research Letters, 44(11), 5774–5781. Retrieved from https://doi.org/10.1002/2017g1073267 doi: 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491–8498. Retrieved from https://doi.org/10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geophysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link betwee extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1029/2012ms000191 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J	549	
 and rainfall characteristics of IYAMA precipitation features. Monthly Weather Review, 13/4 (10), 2702–2721. Retrieved from https://doi.org/10.1175/ mwr3200.1 doi: 10.1175/mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristime maritime environment. Geophysical Research Letters, 44(11), 5774–5781. Retrieved from https://doi.org/ 10.1002/2017g1073267 doi: 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top tempera- ture and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491–8498. Retrieved from https://doi.org/ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 4/3(2). Retrieved from https://doi.org/10.1002/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10 .1028/2012me000191 doi: 10.1038/nphys314 Pokselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the inte	550	Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006, October). Storm morphology
 Revew, 134 (10), 2402-2421. Retrieved from https://doi.org/10.1175/ mwr3200.1 doi: 10.1175/mwr3200.1 Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment. Geophysical Research Letters, 44 (11), 5774-5781. Retrieved from https://doi.org/ 10.1002/2017g1073267 doi: 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top tempera- ture and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491-8498. Retrieved from https://doi.org/ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi: 10.1002/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10 .1028/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circula	551	and rainfall characteristics of TRMM precipitation features. Monthly Weather
 ⁸³⁵ InWF3200.1 doi: 10.113/INWF3200.1 ⁸³⁶ Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment. <i>Geophysical</i> <i>Research Letters</i>, 44 (11), 5774–5781. Retrieved from https://doi.org/ 10.1002/2017g1073267 doi: 10.1002/2017g1073267 ⁸³⁷ Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top tempera- ture and precipitation rate with aerosols over the global tropics. <i>Atmospheric Chemistry and Physics</i>, 12(18), 8491–8498. Retrieved from https://doi.org/ 10.5194/acp-12-6491-2012 doi: 10.5194/acp-12-8491-2012 ⁸³⁶ Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. <i>Journal of Geo- physical Research: Atmospheres</i>, <i>126</i>(9). Retrieved from https://doi.org/ 10.1029/2020j0034275 doi: 10.1029/2020j0034275 ⁸³⁶ Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. <i>Journal of Advances in Modeling Earth Systems</i>, <i>11</i>(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 ⁸³⁷ Pentergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warning climate: Global radiative-convective equilibrium simulations. <i>Geophysical Research Let- ters</i>, <i>43</i>(21). Retrieved from https://doi.org/10.1002/2016g1071285 ⁸³⁶ Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. <i>Nature Physics</i>, <i>2</i>(6), 393–396. Retrieved from https://doi.org/10 .1028/2012ms000191 doi: 10.1029/2012ms000191 ⁸³⁶ Poselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction betweven tropical convection, radiation, and the large-scale circ	552	<i>Review</i> , 134 (10), 2702–2721. Retrieved from https://doi.org/10.1175/
 Nishali, N., & Sherwood, S. C. (2017, Jule). A clouderestoring nodel study of acrosol-cloud correlation in a pristine maritime environment. Geophysical Research Letters, 44 (11), 5774-5781. Retrieved from https://doi.org/ 10.1002/2017g1073267 doi: 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top tempera- ture and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491-8498. Retrieved from https://doi.org/ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 303-396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt,	553	$\frac{1}{10000000000000000000000000000000000$
 Actosociolad correlation a prising matchine environment. Corpugatal Research Letters, 44 (11), 574–5781. Retrieved from https://doi.org/ 10.1002/2017g1073267 doi: 10.1002/2017g1073267 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top tempera- ture and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491–8498. Retrieved from https://doi.org/ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S. C., & Stephens, G., L (2008, Apri	554	Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of
 Pintsendri Detters, 44 (11), 1014-0101. The line tender from https://doi.org/ Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491-8498. Retrieved from https://doi.org/ D.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geophysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 9(6), 393-396. Retrieved from https://doi.org/10.1029/2012ms000191 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from h	555	Research Letters //(11) 5774–5781 Betrioved from https://doi.org/
 Niu, F., & Li, Z. (2012, September). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491–8498. Retrieved from https://doi.org/10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geophysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link between extreme precipitation and convective organization in a warning climate: Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1029/2012ms00191 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10.1029/2012ms00191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 Posselt, D. J., v	550	$10.1002/2017a_{10}73267$ doi: 10.1002/2017a_{10}73267
 Ku, F., & Li, Z. (1012, Gepender). Systematic on a transitions of columber of the properties of the endotropy of the second secon	557	Niu \mathbf{F} fr Li 7 (2012 September) Systematic variations of aloud ton tempore
 ²⁵⁷ Chemistry and Physics, 12(18), 8491-8498. Retrieved from https://doi.org/ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012 ²⁵⁸ Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 ²⁵⁹ Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 ²⁵⁰ Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi: 10.1002/2016g1071285 ²⁵¹ Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 ²⁵² Poters, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 ²⁵³ Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jc1i4167.1 doi: 10.1175/2011jcli4167.1 ²⁵⁴ Posselt, D. J., van den Heever, S. C.,	558	ture and precipitation rate with aerosols over the global tropics <u>Atmospheric</u>
 ⁵⁰⁰ Contentsby and Physics 19(16), 10(10) 0005 0005. Number 94 (2011) 0005 10(10) ⁵⁰¹ 10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-84191-2012 ⁵⁰² Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geophysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/10.1029/2020jd034275 doi: 10.1029/2020jd034275 ⁵⁰⁴ Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 ⁵⁰⁷ Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 doi: 10.1002/2016gl071285 doi: 10.1003/2016gl071285 ⁵⁰⁵ Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10.1038/nphys314 doi: 10.1038/nphys314 ⁵⁰⁶ Popset, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 ⁵⁰⁷ Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2017gl03029 doi: 10.1020/2010gl03029 ⁵⁰⁸ Reit, J. J., van den	559	Chemistry and Physics 12(18) 8491-8498 Retrieved from https://doi.org/
 Pan, Z., Rosenfeld, D., Zhu, Y., Mao, F., Gong, W., Zang, L., & Lu, X. (2021, May). Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S. Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1	561	10.5194/acp-12-8491-2012 doi: 10.5194/acp-12-8491-2012
 May. Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. Journal of Geo- physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E.	562	Pan Z Rosenfeld D Zhu Y Mao F Gong W Zang L & Lu X (2021
 cloud lifecycle properties based on geostationary satellite. Journal of Geophysical Research: Atmospheres, 126(9). Retrieved from https://doi.org/10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	563	May). Observational quantification of aerosol invigoration for deep convective
 physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi: 10.1002/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g103029 doi: 10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire	564	cloud lifecycle properties based on geostationary satellite. Journal of Geo-
 ⁵⁶⁶ 10.1029/2020jd034275 doi: 10.1029/2020jd034275 ⁵⁶⁷ Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, <i>11</i>(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 ⁵⁷¹ Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. <i>Geophysical Research Let- ters</i>, <i>43</i>(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi: 10.1002/2016g1071285 ⁵⁷⁵ Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. <i>Nature Physics</i>, <i>2</i>(6), 393–396. Retrieved from https://doi.org/10. 1038/nphys314 doi: 10.1038/nphys314 ⁵⁸⁶ Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. <i>Journal of Advances</i> <i>in Modeling Earth Systems</i>, <i>5</i>(1), 1–14. Retrieved from https://doi.org/10. .1029/2012ms000191 doi: 10.1029/2012ms000191 ⁵⁸⁷ Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. <i>Journal of Climate</i>, <i>25</i>(2), .557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 ⁵⁸⁹ Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. <i>Geophysical Research Letters</i>, <i>35</i>(8). Retrieved from https://doi.org/10.1029/2007g103029 doi: 10.1029/2007g1033029 ⁵⁹⁰ Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analy	565	physical Research: Atmospheres, 126(9). Retrieved from https://doi.org/
 Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self- aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical converal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	566	10.1029/2020jd034275 doi: 10.1029/2020jd034275
 aggregation to domain size. Journal of Advances in Modeling Earth Systems, 11(7), 1995–2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43 (21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	567	Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-
 11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 doi: 10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	568	aggregation to domain size. Journal of Advances in Modeling Earth Systems,
 doi: 10.1029/2019ms001672 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi: 10.1002/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 doi: 10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	569	11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672
 Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be- tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Let- ters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 doi: 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1-14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	570	doi: 10.1029/2019ms001672
 tween extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10.1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	571	Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be-
 Global radiative-convective equilibrium simulations. Geophysical Research Letters, 43(21). Retrieved from https://doi.org/10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	572	tween extreme precipitation and convective organization in a warming climate:
 ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi: 10.1002/2016g1071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip- itation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 doi: 10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	573	Global radiative-convective equilibrium simulations. Geophysical Research Let-
 10.1002/2016gl071285 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10.1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	574	ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi:
 Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precipitation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10.1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10.1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	575	10.1002/2016gl 071285
 itation. Nature Physics, 2(6), 393–396. Retrieved from https://doi.org/10 .1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	576	Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip-
 1038/nphys314 doi: 10.1038/nphys314 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 doi: 10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	577	itation. Nature Physics, $2(6)$, 393-396. Retrieved from https://doi.org/10
 Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change in a radiative-convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	578	.1038/nphys314 doi: 10.1038/nphys314
 in a radiative-convective equilibrium version of ECHAM6. Journal of Advances <i>in Modeling Earth Systems</i>, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 doi: 10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	579	Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change
 in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10 .1029/2012ms000191 doi: 10.1029/2012ms000191 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	580	in a radiative-convective equilibrium version of ECHAM6. Journal of Advances
 ⁵⁸². 1029/2012ms000191 doi: 10.1029/2012ms000191 ⁵⁸³ Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). ⁵⁸⁴ Changes in the interaction between tropical convection, radiation, and the ⁵⁸⁵ large-scale circulation in a warming environment. Journal of Climate, 25(2), ⁵⁸⁶ 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: ⁵⁸⁷ 10.1175/2011jcli4167.1 ⁵⁸⁸ Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- ⁵⁹⁰ modal cloudiness and tropical stable layers in simulations of radiative con- ⁵⁹⁰ vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from ⁵⁹¹ https://doi.org/10.1029/2007gl033029 doi: 10.1029/2007gl033029 ⁵⁹² Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., ⁵⁹³ Maloney, E. D. (2012, February). Multi-scale meteorological conceptual ⁵⁹⁴ analysis of observed active fire hotspot activity and smoke optical depth in 	581	in Modeling Earth Systems, 5(1), 1–14. Retrieved from https://doi.org/10
 Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	582	.1029/2012ms000191 doi: 10.1029/2012ms000191
 Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of Climate, 25(2), 557-571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	583	Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January).
 large-scale circulation in a warming environment. Journal of Climate, 25 (2), 557–571. Retrieved from https://doi.org/10.1175/2011jcli4167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. Geophysical Research Letters, 35 (8). Retrieved from https://doi.org/10.1029/2007g1033029 doi: 10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	584	Changes in the interaction between tropical convection, radiation, and the
 557-571. Retrieved from https://doi.org/10.1175/2011jcl14167.1 doi: 10.1175/2011jcli4167.1 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. <i>Geophysical Research Letters</i>, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 doi: 10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	585	large-scale circulation in a warming environment. Journal of Climate, 25(2),
 Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. <i>Geophysical Research Letters</i>, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	586	337-371. Retrieved from https://doi.org/10.1175/2011jc114167.1 doi:
 Posselt, D. J., van den Heever, S. C., & Stepnens, G. L. (2008, April). Iri- modal cloudiness and tropical stable layers in simulations of radiative con- vective equilibrium. <i>Geophysical Research Letters</i>, 35(8). Retrieved from https://doi.org/10.1029/2007gl033029 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	587	10.1170/2011 (COMPANDING COMPANDING COMPANDINA COMPANDINA COMPANDINA COMPANDINA COMPA
 ⁵³⁹ hodal cloudness and tropical stable layers in simulations of radiative con- vective equilibrium. <i>Geophysical Research Letters</i>, 35(8). Retrieved from https://doi.org/10.1029/2007g1033029 ⁵⁹² Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., ⁵⁹³ Maloney, E. D. (2012, February). Multi-scale meteorological conceptual ⁵⁹⁴ analysis of observed active fire hotspot activity and smoke optical depth in 	588	Posseit, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April).
 ⁵⁹⁰ https://doi.org/10.1029/2007gl033029 doi: 10.1029/2007gl033029 ⁵⁹² Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., ⁵⁹³ Maloney, E. D. (2012, February). Multi-scale meteorological conceptual ⁵⁹⁴ analysis of observed active fire hotspot activity and smoke optical depth in 	589	voctive equilibrium — Coonducted Research Letters 25(8) — Betrieved from
 Reid, J. S., Xian, P., Hyer, E. J., Flatau, M. K., Ramirez, E. M., Turk, F. J., Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	590	https://doi.org/10.1029/2007g1033029_doi: $10.1029/2007g1033029$
 Maloney, E. D. (2012, February). Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in 	591	Poid I S Yian D Hyper F I Flatay M K Pamiroz F M Turk F I
analysis of observed active fire hotspot activity and smoke optical depth in	592	Malonev E. D. (2012 February) Multi-scale meteorological concentual
and you of observed derive me houspet derivey and billoke optical depth in	594	analysis of observed active fire hotspot activity and smoke optical depth in
the maritime continent. Atmospheric Chemistry and Physics, 12(4), 2117–	595	the maritime continent. Atmospheric Chemistry and Physics, 12(4), 2117–
⁵⁹⁶ 2147. Retrieved from https://doi.org/10.5194/acp-12-2117-2012 doi:	596	2147. Retrieved from https://doi.org/10.5194/acp-12-2117-2012 doi:
	597	10.5194/acp-12-2117-2012
10.5104/apr 12.9117.9019	597	10.5194/ acp-12-2117-2012

598	Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
599	S., Andreae, M. O. (2008, September). Flood or drought: How do
600	aerosols affect precipitation? Science, 321 (5894), 1309–1313. Retrieved from
601	https://doi.org/10.1126/science.1160606 doi: 10.1126/science.1160606
602	Salinas, S. V., Chew, B. N., Miettinen, J., Campbell, J. R., Welton, E. J., Reid,
603	J. S., Liew, S. C. (2013, March). Physical and optical characteristics of
604	the october 2010 haze event over singapore: A photometric and lidar analy-
605	sis. Atmospheric Research, 122, 555-570. Retrieved from https://doi.org/
606	10.1016/j.atmosres.2012.05.021 doi: 10.1016/j.atmosres.2012.05.021
607	Schiro, K. A., Neelin, J. D., Adams, D. K., & Lintner, B. R. (2016, September).
608	Deep convection and column water vapor over tropical land versus tropical
609	ocean: A comparison between the amazon and the tropical western pacific.
610	Journal of the Atmospheric Sciences, 73(10), 4043–4063. Retrieved from
611	https://doi.org/10.1175/jas-d-16-0119.1 doi: 10.1175/jas-d-16-0119.1
612	Seigel, R. B., van den Heever, S. C., & Saleeby, S. M. (2013, April). Mineral
613	dust indirect effects and cloud radiative feedbacks of a simulated idealized
614	nocturnal squall line. Atmospheric Chemistry and Physics, 13(8), 4467–
615	4485. Retrieved from https://doi.org/10.5194/acp-13-4467-2013 doi:
616	10.5194/acp-13-4467-2013
617	Shpund, J., Khain, A., & Rosenfeld, D. (2019, August). Effects of sea sprav on mi-
618	crophysics and intensity of deep convective clouds under strong winds. <i>Jour-</i>
619	nal of Geophysical Research: Atmospheres, 124(16), 9484–9509. Retrieved from
620	https://doi.org/10.1029/2018jd029893 doi: 10.1029/2018jd029893
621	Singh, M. S., & O'Gorman, P. A. (2013, August). Influence of entrainment
622	on the thermal stratification in simulations of radiative-convective equilib-
623	rium. Geophysical Research Letters, 40(16), 4398–4403. Retrieved from
624	https://doi.org/10.1002/grl.50796 doi: 10.1002/grl.50796
625	Singh, M. S., & O'Gorman, P. A. (2015, June). Increases in moist-convective up-
626	draught velocities with warming in radiative-convective equilibrium. Quarterly
627	Journal of the Royal Meteorological Society, 141(692), 2828–2838. Retrieved
628	from https://doi.org/10.1002/qj.2567 doi: 10.1002/qj.2567
629	Sobel, A. H., Nilsson, J., & Polvani, L. M. (2001, December). The weak temper-
630	ature gradient approximation and balanced tropical moisture waves. Journal
631	of the Atmospheric Sciences, 58(23), 3650-3665. Retrieved from https://doi
632	.org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/
633	1520-0469(2001)058(3650:twtgaa)2.0.co;2
634	Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X.,
635	Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric
636	general circulation modeled on non-hydrostatic domains. Progress in Earth
637	and Planetary Science, $6(1)$. Retrieved from https://doi.org/10.1186/
638	s40645-019-0304-z doi: 10.1186/s40645-019-0304-z
639	Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations
640	of aerosol-induced convective invigoration in the tropical east atlantic. Jour-
641	nal of Geophysical Research: Atmospheres, 119(7), 3963–3975. Retrieved from
642	https://doi.org/10.1002/2013jd020272 doi: 10.1002/2013jd020272
643	Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The
644	impacts of cloud condensation nuclei on the extreme precipitation of a mon-
645	soon coastal mesoscale convection system. Terrestrial, Atmospheric and
646	Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/
647	tao.2019.11.29.01 doi: $10.3319/tao.2019.11.29.01$
648	SU, CY., CHEN, WT., WU, CM., & MA, HY. (2022). Object-based eval-
649	uation of tropical precipitation systems in DYAMOND simulations over the
650	maritime continent. Journal of the Meteorological Society of Japan. Ser. II,
651	100(4), 647-659. Retrieved from https://doi.org/10.2151/jmsj.2022-033
652	doi: 10.2151/jmsj.2022-033

- Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. (2021a, July). The effects of
 the unified parameterization in the CWBGFS: the diurnal cycle of precipitation over land in the maritime continent. *Climate Dynamics*, 58 (1-2),
 223–233. Retrieved from https://doi.org/10.1007/s00382-021-05899-2
 doi: 10.1007/s00382-021-05899-2
- Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. (2021b, October). Implementation of the unified representation of deep moist convection in the CWBGFS.
 Monthly Weather Review, 149(10), 3525–3539. Retrieved from https:// doi.org/10.1175/mwr-d-21-0067.1 doi: 10.1175/mwr-d-21-0067.1
- Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., & Zhang, C. (2012, April). Impact of aerosols on convective clouds and precipitation. *Reviews of Geophysics*, 50(2). Retrieved from https://doi.org/10.1029/2011rg000369 doi: 10.1029/2011rg000369
- Tao, W.-K., & Chern, J.-D. (2017, April). The impact of simulated mesoscale
 convective systems on global precipitation: A multiscale modeling study. Journal of Advances in Modeling Earth Systems, 9(2), 790–809. Retrieved from
 https://doi.org/10.1002/2016ms000836 doi: 10.1002/2016ms000836
- Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., & Simpson, J. (2007, December). Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. *Journal of Geophysical Research*, *112* (D24). Retrieved from https://doi.org/10.1029/2007jd008728 doi: 10.1029/2007jd008728
- 675
 Tompkins, A. M. (2001, March). Organization of tropical convection in low vertical wind shears: The role of water vapor. Journal of the Atmospheric Sciences, 58(6), 529–545. Retrieved from https://doi.org/10.1175/1520-0469(2001) 058<0529:ootcil>2.0.co;2

 677
 058<0529:ootcil>2.0.co;2

 678
 .co;2
 - Tsai, W.-M., & Wu, C.-M. (2017, September). The environment of aggregated deep convection. Journal of Advances in Modeling Earth Systems, 9(5), 2061–2078. Retrieved from https://doi.org/10.1002/2017ms000967 doi: 10.1002/2017ms000967

680

681

682

683

- van den Heever, S. C., & Cotton, W. R. (2007, June). Urban aerosol impacts on downwind convective storms. Journal of Applied Meteorology and Climatology, 46(6), 828-850. Retrieved from https://doi.org/10.1175/jam2492.1 doi: 10.1175/jam2492.1
- van den Heever, S. C., Stephens, G. L., & Wood, N. B. (2011, April). Aerosol
 indirect effects on tropical convection characteristics under conditions of ra diative-convective equilibrium. Journal of the Atmospheric Sciences, 68(4),
 699-718. Retrieved from https://doi.org/10.1175/2010jas3603.1 doi:
 10.1175/2010jas3603.1
- Varble, A. (2018, April). Erroneous attribution of deep convective invigoration to aerosol concentration. Journal of the Atmospheric Sciences, 75(4), 1351–1368. Retrieved from https://doi.org/10.1175/jas-d-17-0217.1 doi: 10.1175/ jas-d-17-0217.1
- Wing, A. A., Emanuel, K., Holloway, C. E., & Muller, C. (2017, February). Convective self-aggregation in numerical simulations: A review. Surveys in Geophysics, 38(6), 1173–1197. Retrieved from https://doi.org/10.1007/s10712
 -017-9408-4 doi: 10.1007/s10712-017-9408-4
- Wing, A. A., & Emanuel, K. A. (2014, February). Physical mechanisms controlling
 self-aggregation of convection in idealized numerical modeling simulations.
 Journal of Advances in Modeling Earth Systems, 6(1), 59–74. Retrieved from
 https://doi.org/10.1002/2013ms000269 doi: 10.1002/2013ms000269
- Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., & Ohno, T. (2018, March). Radiative-convective equilibrium model intercomparison project. *Geoscientific Model Development*, 11(2), 793-813. Retrieved from https://

708	doi.org/10.5194/gmd-11-793-2018 doi: 10.5194/gmd-11-793-2018
709	Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, MS., Arnold, N. P.,
710	Zhao, M. (2020, September). Clouds and convective self-aggregation
711	in a multimodel ensemble of radiative-convective equilibrium simulations.
712	Journal of Advances in Modeling Earth Systems, 12(9). Retrieved from
713	https://doi.org/10.1029/2020ms002138 doi: 10.1029/2020ms002138
714	Wu, CM., & Arakawa, A. (2014, May). A unified representation of deep moist con-
715	vection in numerical modeling of the atmosphere. part II. Journal of the At-
716	mospheric Sciences, 71(6), 2089–2103. Retrieved from https://doi.org/10
717	.1175/jas-d-13-0382.1 doi: 10.1175/jas-d-13-0382.1
718	Yanase, T., Nishizawa, S., Miura, H., & Tomita, H. (2022, September). Character-
719	istic form and distance in high-level hierarchical structure of self-aggregated
720	clouds in radiative-convective equilibrium. Geophysical Research Letters,
721	49(18). Retrieved from https://doi.org/10.1029/2022gl100000 doi:
722	10.1029/2022gl100000
723	Yuan, J., & Houze, R. A. (2010, November). Global variability of mesoscale con-
724	vective system anvil structure from a-train satellite data. Journal of Climate,
725	23(21), 5864–5888. Retrieved from https://doi.org/10.1175/2010jcli3671
726	.1 doi: $10.1175/2010$ jcli3671.1
727	Zhang, C. (2013, December). Madden–julian oscillation: Bridging weather and cli-
728	mate. Bulletin of the American Meteorological Society, 94(12), 1849–1870. Re-
729	trieved from https://doi.org/10.1175/bams-d-12-00026.1 doi: 10.1175/
730	bams-d-12-00026.1
731	Zhang, C., & Ling, J. (2017, May). Barrier effect of the indo-pacific maritime con-
732	tinent on the MJO: Perspectives from tracking MJO precipitation. Journal of
733	Cirmate, 3U(9), 5459-5459. Ketrieved from https://doi.org/10.11/5/jcli
734	-d-16-0614.1 doi: 10.11/6/JCII-d-16-0614.1

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Modulation of Tropical Convection-circulation Interaction by Aerosol Indirect Effects in a Global Convection-permitting Model

Chun-Yian $Su^{1,2}$, Chien-Ming Wu^2 , Wei-Ting Chen², and John M. Peters¹

¹Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA ²Department of Atmospheric Sciences, National Taiwan University, Taipei city, Taiwan

Key Points:

1

2

3

4

5

6

8

9	•	Simulations of the global convection-permitting model provide a new perspective
10		on aerosol indirect effects.
11	•	Pollution facilitates the development of deep convection in a drier environment.
12	•	The response of large-scale circulation to pollution limits the intensity of maxi-
13		mum precipitation.

Corresponding author: Chien-Ming Wu, mog@as.ntu.edu.tw

14 Abstract

Observations suggest tropical convection intensifies when aerosol concentrations enhance, 15 but quantitative estimations of this effect remain highly uncertain. Leading theories for 16 explaining the intensification are based on the dynamical response of convection to changes 17 in cloud microphysics independently from possible changes in the environment. Here, 18 we provide a new perspective on aerosol indirect effects on tropical convection by using 19 a global convection-permitting model that realistically simulates convection-circulation 20 interaction. Simulations of radiative-convective equilibrium show that pollution facili-21 tates the development of deep convection in a drier environment, but cloud condensates 22 are more likely to be exported from moist clusters to dry areas, impeding the large-scale 23 moisture-convection feedback and limiting the intensity of maximum precipitation (30 24 vs. 47 mm h⁻¹). Our results emphasize the importance of allowing atmospheric phenom-25 ena to evolve continuously across spatial and temporal scales in simulations when inves-26 tigating the response of tropical convection to changes in cloud microphysics. 27

²⁸ Plain Language Summary

How does air pollution affect thunderstorm intensity over the tropical ocean? Past 29 studies have proposed different opinions but generally neglect the interplay between the 30 development of thunderstorms and the long-range movement of air that redistributes the 31 Earth's thermal energy and moisture. Here, we address this question by investigating 32 33 results from numerical experiments in which the global domain is used to simulate the response of individual thunderstorms and large-scale air motion to pollution. Our results 34 show that tropical thunderstorms with given moisture are more vigorous under the pol-35 luted scenario. However, pollution makes the thunderstorms keep less moisture in their 36 surroundings, limiting the maximum intensity of thunderstorms and weakening the large-37 scale air motion that supplies moisture to thunderstorms. Our results suggest that the 38 interplay between the development of thunderstorms and the long-range movement of 39 air is crucial in determining the effects of pollution in the tropical atmosphere. 40

41 **1** Introduction

Deep convective clouds (DCCs) play a critical role in the global climate system via 42 their role in the Earth's energy budget (Arakawa, 2004; Hartmann et al., 2001). They 43 can aggregate into organized convective systems that span hundreds to a thousand kilo-44 meters (Houze, 2004) and contribute significantly to tropical rainfall (Chen et al., 2021; 45 Houze et al., 2015; Nesbitt et al., 2006; Tao & Chern, 2017; Yuan & Houze, 2010). Ob-46 servations suggest that updrafts of tropical DCCs can be invigorated by enhanced aerosol 47 concentrations that arise from human activities and natural sources (Andreae et al., 2004; 48 Koren et al., 2008; Niu & Li, 2012; Pan et al., 2021; Storer et al., 2014). By acting as 49 cloud condensate nuclei (CCN) or ice nuclei (IN), aerosols change cloud properties by 50 influencing cloud microphysics and dynamics, meanwhile influencing cloud-radiation feed-51 backs (i.e., aerosol indirect effects (AIEs); see reviews of Fan et al. (2016) and Tao et al. 52 (2012)). A deeper understanding of AIEs on tropical DCCs and organized convective sys-53 tems could improve the prediction of extreme precipitation events in global weather and 54 climate models. However, the underlying mechanisms of how the updrafts are invigo-55 rated remain elusive and are often debated (Fan et al., 2018; Fan & Khain, 2021; W. W. Grabowski 56 & Morrison, 2020, 2021; Igel & van den Heever, 2021). A particular challenge of under-57 standing AIEs using observations is that the observed aerosol concentrations in the en-58 vironments of DCCs often covary with other meteorological factors, such as convective 59 available potential energy and vertical wind shear (W. W. Grabowski, 2018; Nishant & 60 Sherwood, 2017; Varble, 2018), and the influences of meteorological and aerosol variabil-61 ity are difficult to disentangle from one another. Further, there is evidence from simu-62 lations that AIEs on DCCs vary as a function of meteorological conditions such as shear 63

and humidity (Fan et al., 2009; van den Heever & Cotton, 2007; Khain et al., 2008; Koren et al., 2010; Z. Lebo, 2018), which further complicates our ability to isolate the aerosol
effects from other meteorological processes. AIEs are underrepresented in global climate
models because of these knowledge gaps, which contributes to considerable uncertainty
in estimating human climate forcing (Forster et al., 2021).

To investigate the aerosol indirect effects on DCCs that interact with their surround-69 ing environment, Abbott and Cronin (2021) carried out simulations using a small do-70 main (128x128 km²) three-dimension cloud-resolving model (3-D CRM) with parame-71 72 terized large-scale dynamics under the weak temperature gradient (WTG) approximation (Sobel et al., 2001). Abbott and Cronin (2021) suggested that enhanced CCN con-73 centrations produce clouds that mix more condensed water into the surrounding air. This 74 enhances the environment favorably for subsequent convection by moistening the free 75 troposphere and reducing the deleterious effects of entrainment. The humidity-entrainment 76 mechanism they proposed is distinct from past work, which linked stronger updrafts with 77 latent heat released by cloud condensation (Fan et al., 2018) or freezing (Rosenfeld et 78 al., 2008) independently from possible changes in the environment. Anber et al. (2019) 79 also used a small domain (192x192 km²) 3-D CRM with parameterized large-scale dy-80 namics to carry out simulations with different number concentrations of CCN but found 81 a contrasting result. In their simulations, convection and mean precipitation get weaker 82 when the CCN concentration increases. They suggested that the changes are associated 83 with the modulation of coupling between convective processes and large-scale motions 84 that overall reduces surface enthalpy fluxes. 85

Using a large domain (10000 km) two-dimension CRM configured in radiative-convective 86 equilibrium (RCE; Manabe & Strickler, 1964), van den Heever et al. (2011) found a weak 87 response of the large-scale organization of convection and the domain-averaged precip-88 itation to enhanced CCN concentrations. They suggested that AIEs on the three trop-89 ical cloud modes are opposite in sign, offsetting each other, thus producing a weak domain-90 wide response. In contrast, a more recent study by Beydoun and Hoose (2019) that used 91 a large channel-shaped domain (2000x120 km²) 3-D CRM found a comparatively large 92 decrease in domain-averaged precipitation in their RCE simulations with enhanced CCN 93 concentrations. They suggested that enhanced CCN concentrations lead to the weak-94 ened large-scale organization of convection, increased midlevel and upper-level clouds, 95 decreased radiative cooling, and decreased domain-averaged precipitation. 96

The difference in the above findings is likely influenced by the representation of large-97 scale dynamics and the geometry of the simulation domain, which could modulate convection-98 circulation interaction hence affect the overall AIEs. For example, a horizontal scale of 99 the model domain larger than 5000 km was suggested to be large enough to represent 100 the natural scale of large-scale organization of convection (Matsugishi & Satoh, 2022; 101 Patrizio & Randall, 2019; Yanase et al., 2022). Advances in computational resources have 102 allowed for global model simulations that explicitly simulate deep convection (Stevens 103 et al., 2019). These global convection-permitting models have been applied to investi-104 gate how clouds and convective processes couple to large-scale circulation and determine 105 cloud feedbacks and climate sensitivity (Wing et al., 2020). However, how is the coupling 106 of DCCs and large-scale circulations affected by enhanced aerosol concentrations has not 107 been fully understood. 108

This study aims to investigate the modulation of tropical convection-circulation interaction by AIEs in global simulations that simultaneously resolve the dynamical response of convection to changes in cloud microphysics and allow large-scale circulations to naturally develop since the horizontal scale is not artificially constrained by the domain size or shape. The modulation of tropical convection-circulation interaction by AIEs is demonstrated by analyzing the responses of moisture distribution, convection structures, and large-scale circulation to pollution. Section 2 introduces more details about the model and the experiment design. Section 3 describes the results, and the summary and discussion are presented in section 4.

¹¹⁸ 2 Model Description and Experiment Design

We use the Central Weather Bureau Global Forecast System (CWBGFS; Su et al., 119 2021a, 2021b; SU et al., 2022), which is a global convection-permitting model run at the 120 horizontal resolution of 15 km, to carry out our experiments. Deep convection in the CW-121 BGFS is represented by the unified relaxed Arakawa-Schubert scheme (URAS; Su et al., 122 2021b) in which the representation transitions from the parameterization to the explicit 123 simulation as the diagnosed convective updraft fraction increases (Arakawa & Wu, 2013; 124 Wu & Arakawa, 2014). Hence, the CWBGFS with the URAS can explicitly but efficiently 125 simulate deep convection and convection-circulation interaction on the global scale. This 126 model partially resolve circulations in organized convective systems and reproduce the 127 observed feature of convective systems that stronger extreme precipitation occurs in hor-128 izontally larger systems (Hamada et al., 2014; SU et al., 2022). 129

The CWBGFS uses the two-moment Predicted Particle Properties bulk microphysics 130 scheme (P3; Morrison & Milbrandt, 2015) to represent cloud microphysical processes, 131 including cloud-aerosol interaction. The aerosol concentration prescribed in P3 is fixed 132 throughout the integration and acts as CCN. Cloud-aerosol interaction is not included 133 in the URAS. In our simulations, the averaged percentage of precipitation produced by 134 explicitly simulated convection is more than 93~% over precipitation events stronger than 135 5 mm h^{-1} , indicating that most of the cloud-aerosol interactions associated with deep con-136 vection are resolved. The rest of the descriptions regarding physics suites and the dy-137 namic core of the CWBGFS can be found in Su et al. (2021a). 138

Two idealized non-rotating aqua-planet simulations configured in RCE are carried 139 out. Simulations in RCE have been extensively used to investigate feedback among clouds, 140 environmental moisture, radiation, and precipitation (Bretherton et al., 2005; Coppin 141 & Bony, 2015; Cronin & Wing, 2017; Emanuel et al., 2014; Holloway & Woolnough, 2016; 142 Pendergrass et al., 2016; Popke et al., 2013; Singh & O'Gorman, 2013, 2015; Wing & Emanuel, 143 2014; Wing et al., 2020), and therefore provide an ideal experimental setting to study 144 AIEs. Under certain circumstances, convection in RCE spontaneously self-organizes into 145 one or more moist ascending clusters surrounded by dry subsiding convection-free ar-146 eas in simulations configured in non-rotating RCE (convective self-aggregation (CSA); 147 C. Muller et al., 2022; Wing et al., 2017). We note that CSA occurs in the simulations 148 of van den Heever et al. (2011) and Beydoun and Hoose (2019). 149

The simulations are initialized with an analytic sounding (Wing et al., 2018) that 150 approximates the moist tropical sounding of Dunion (2011), and the initial horizontal 151 winds are set to zero. The initial surface pressure of all grid columns is 1014.8 hPa. The 152 incoming solar radiation (409.6 W m^{-2}), the sea surface temperature (300 K), and the 153 surface albedo (0.07) are spatially uniform and constant in time. The simulations are 154 run for 120 days, and the random perturbation of temperature from 0.1 to 0.02 K is added 155 to the five lowest model levels in the first 20 days to speed up convection initiation. The 156 only difference between the two simulations is the prescribed spatially uniform aerosol 157 number mixing ratio set in P3. They are set at 3×10^8 kg⁻¹ and 3×10^{10} kg⁻¹, represent-158 ing the pristine and polluted scenarios, respectively. The scenarios here are referred to 159 the marine environment (Andreae, 2009) and the urban environment (Chang et al., 2021) 160 and are used to evaluate the upper bound of AIEs on convection-circulation interaction. 161 In the following section, 30 days of hourly output (days 90 to 120) are analyzed when 162 the simulation is in an RCE state. 163

The overall results of the pristine run are showcased in Fig. 1, demonstrating that our simulations resemble the global model simulations in the RCE model intercompar¹⁶⁶ ison project (Wing et al., 2018, 2020), in which convection self-organizing into multiple ¹⁶⁷ moist clusters (Fig. 1a). Fig. 1b shows the spatial distribution of column water vapor ¹⁶⁸ (CWV) of a moist cluster, indicating high heterogeneity that is coupled to spatial con-¹⁶⁹ vection structures. Precipitation stronger than 30 mm h⁻¹ (Fig. 1c) is found in a con-¹⁷⁰ vective system with intense resolved updrafts (>1 m s⁻¹) (Fig. 1d). Fig. 1 with more de-¹⁷¹ tail will be introduced in the following section.

Figure 1. A snapshot of moist clusters smaller (light blue shaded) and larger (navy shaded) than 1000 km of horizontal scale, convective systems (orange shaded), and distance to the nearest convective system (green contours of 375, 1125, 1875 km) of the pristine run on day 106.5 (a). Column water vapor (mm) and convective systems (black contours) in a moist cluster (b), which the domain is demonstrated by the black dashed lines in (a). Precipitation intensity (mm h^{-1}) of a convective system (c), which the domain is demonstrated by the white dashed lines in (b). The vertical profiles of mixed-phase cloud condensates (shaded) and vertical velocity (green contours of 0.1, 0.5, 1 m s⁻¹) (d) along the red dashed line in (c). See the context for the definition of moist clusters and convective systems. The horizontal scale is determined by the square root of the cluster's horizontal area.

172 **3 Results**

We start from demonstrating the response of moisture probability distribution to
enhanced CCN concentrations. In both runs, the distribution of CWV is bimodal (Fig.
2). The bimodality suggests the presence of an aggregated state (Arnold & Randall, 2015;
Tsai & Wu, 2017) which is maintained by large-scale circulation. The difference between
the two local maxima of the bimodality is smaller in the polluted run, suggesting AIEs

drive columns away from both moist and dry equilibria in the pristine run. We use the 178 CWV value that corresponds to the smallest value along the curve in Fig. 2 between the 179 local maxima at dry and moist CWV values as the threshold to define moist clusters (i.e., 180 43 mm in both runs). The difference in area coverage percentage of moist clusters in the 181 global domain between the two runs is less than 3 %. The moist clusters in the polluted 182 run are notably drier than that in the pristine run. Further, the number of moist clus-183 ters in the polluted run is 23 % more than that in the pristine run. Sixty-five percent 184 of moist clusters are smaller than 1000 km of horizontal scale in the polluted run, and 185 there are 45 % of them in the pristine run. 186

Figure 2. Probability distribution of column water vapor (black) and distance to the nearest convective system conditional sampled by column water vapor (red) from days 90 to 120. The gray line labels 43 mm of column water vapor, which is set as the criteria for defining a moist cluster.

We evaluate AIEs by first identifying the updraft regions of convective systems as 187 laterally connected columns of vertical velocity $>0.1 \text{ m s}^{-1}$ in any level between 700 to 188 400 hPa (Fig. 1a-b). A critical characteristic of tropical deep moist convection is the rapid 189 intensification of precipitation once CWV has exceeded a critical value, which charac-190 terizes the effect of water vapor on the buoyancy of clouds through entrainment (Bretherton 191 et al., 2004; Neelin et al., 2009; Peters & Neelin, 2006). Hence, we investigate the influ-192 ence of pollution on this precipitation-CWV dependency. Analyses among all updraft 193 regions with a given CWV indicate that both of our simulations mimic the precipitation-194 CWV dependency seen in nature, with a rapid increase in mixed-phase cloud conden-195 sate, updraft intensity (Fig. 3a-b), and precipitation (Fig. 3c) occurring in both simu-196 lations above a certain threshold in CWV. However, a distinct difference of the polluted 197 run from the pristine one is that the threshold CWV which heralds the increase in con-198

vective intensity occurs at a lower CWV value (57 mm) than it does in the pristine run (62 mm).

Fig. 3a-b show that the vertical profiles to the right of the CWV thresholds resem-201 ble the convection structures of deep convection at the developing and mature stage, and 202 the profiles to the left resemble deep convection at the dissipating stage, in which mixed-203 phase cloud condensates concentrate at mid-level free atmosphere beneath which weak 204 downdrafts due to water loading take place. In the dissipating stage, moisture in the pol-205 luted run is more heavily distributed over the mid-to-low free atmosphere (Fig. 3d). The 206 water vapor mixing ratio there is 1.5 g kg^{-1} more than that in the pristine run. The dif-207 ference may be caused by the stronger evaporation of raindrops as we found there is more 208 mass but nearly the same number of falling raindrops beneath clouds in the polluted run 209 leading to two times stronger surface precipitation (figure not shown). These raindrops 210 could be from the melting of graupel and hail since the warm-rain process is suppressed 211 due to pollution. 212

Past studies have shown that humidity in the lower free atmosphere is critical to 213 the onset of tropical deep convection (Derbyshire et al., 2004; Holloway & Neelin, 2009, 214 2010; Schiro et al., 2016; Tompkins, 2001). The enhanced moisture in the lower free at-215 mosphere increases the buoyancy of entraining plumes, leading to an increased chance 216 of deep convection. The signal of the exceeding moisture in the mid-to-low free atmo-217 sphere in the polluted run extends to the CWV regimes of developing and mature con-218 vection (Fig. 3d), in which the increase in moisture in the mid-to-high atmosphere re-219 flects the prevalence of convection (Fig. 3a-b). The modulated moisture distribution, orig-220 inating from the response of dissipating stage of convection to changes in cloud micro-221 physics, enhances conditional instability, potentially contributing to the development of 222 subsequent convection. Further investigations on the mechanism will be carried out in 223 the future. 224

Figure 3. Mass mixing ratio of cloud water and cloud ice (shaded) and vertical velocity (contours at 0, 0.1, 0.2, 0.5, 1, 2 m s⁻¹) within the updraft regions of convective systems conditional sampled by column water vapor of the pristine (a) and the polluted (b) run from days 90 to 120. Precipitation intensity of the two runs (c) and the difference of water vapor mixing ratio (polluted run minus the pristine run) (d) sampled by the same method. The red dotted line in (d) shows the contour of 0 g kg⁻¹. The red sticks along the x-axis show the CWV value of 57 and 62 mm

However, the highest CWV environment over the updraft regions (>67 mm) in the 225 pristine run is absent in the polluted run (Fig. 3). The polluted run has notably drier 226 moist clusters (Fig. 2), leading to the weaker maximum intensity of updraft and precip-227 itation (30 vs. 47 mm h⁻¹). As the moisture distribution is maintained by large-scale cir-228 culation, we investigate the influence of pollution on large-scale circulation by sorting 229 the distance to the nearest convective system and projecting horizontal winds in the di-230 rection pointing to the nearest system (green contours in Fig. 1a). Large-scale circula-231 tion has often been visualized with a streamfunction in moisture space when analyzing 232 self-aggergated runs to RCE (Arnold & Putman, 2018; Bretherton et al., 2005; Holloway 233 & Woolnough, 2016; C. Muller & Bony, 2015; C. J. Muller & Held, 2012). The stream-234 function analyzed in past studies is designed to investigate the energy transport between 235 dry areas and moist clusters but it does not represent circulation in physical space. It 236 is natural to analyze large-scale circulation in physical space when using a global convection-237 permitting model with an appropriate choice of the source of momentum and energy trans-238 port. The result shows that both runs exhibit typical structures of tropical circulation, 239 including low-level inflow, mid-level outflow, and deep convection outflow (Johnson et 240 al., 1999), but every component of the circulation is weaker in the polluted run (Fig. 4). 241

We trace the cause of the weaker large-scale circulation down to the influence of pollution on the geographical distribution of convective systems (i.e., updraft regions). In the polluted run, convective systems develop geographically closer to the meandering margin (i.e., 43 mm) of moist clusters, because CWV increases monotonically from dry areas toward moist clusters (Fig. 1b), and convection strength enhances more rapidly

as CWV increases in the polluted run (Fig. 3b). Fig. 2 shows that the average distance 247 from the edges of moist clusters to the nearest convective system in the pristine run is 248 1.5 times longer than that in the polluted run. Meanwhile, inhibiting the warm-rain pro-249 cess by pollution could increase the mid-level static stability as a result of a latent heat-250 ing dipole associated with the freezing water and melting ice above and below the freez-251 ing level. Previous studies suggested that an increase in mid-level static stability pro-252 motes detrainment (Johnson et al., 1999; Patrizio & Randall, 2019; Posselt et al., 2008, 253 2012). Overall, cloud condensates in the polluted run are more likely to be exported from 254 moist clusters to dry areas rather than stay in moist clusters and then re-evaporate. The 255 export of clouds impedes the moisture-convection feedback in which moistening environ-256 ment by convection plays a key role in favoring subsequent development of convection 257 (W. Grabowski & Moncrieff, 2004; Holloway & Neelin, 2009). The above inference is sup-258 ported by Fig. 4b, which shows that the exceeding cloud condensates in the polluted run 259 coincide with the mid-level outflow of the large-scale circulation. 260

Figure 4. Water vapor flux (shaded) and horizontal winds (contours from -4 to 4 m s⁻¹ with an interval of 1 m s⁻¹ using a color scale from maroon to white to navy) projected to the direction of pointing to the nearest convective system in the pristine (a) and the polluted (b) run from days 90 to 120. Positive values are vectors toward the system. The black and red dots in (b) show where the ratio of cloud water mixing ratio in the polluted run over the pristine one larger than 1 and 2, respectively

²⁶¹ 4 Summary and Discussion

This study investigates the response of tropical convection-circulation interaction 262 to enhanced CCN concentrations using non-rotating RCE simulations of a global convection-263 permitting model run at 15 km horizontal resolution. Deep convection in the model is 264 represented in a way that the explicit simulation of convection seeds cloud-aerosol in-265 teraction and is responsible for strong precipitation events. The simulations allow for the 266 large-scale organization of convection realistically inducing circulation without artificial 267 constraints of scale separation assumption, domain size, or domain shape. The novel find-268 ing in this study is that pollution facilitates the development of deep convection in a drier 269 environment, while the response of large-scale circulation limits the intensity of maxi-270 mum precipitation. Our results emphasize the importance of allowing atmospheric phe-271 nomena to evolve continuously across spatial and temporal scales in simulations when 272 investigating the response of tropical convection to changes in cloud microphysics. 273

274 Connecting our result to the existing driving and maintaining mechanisms of CSA 275 could inspire future investigation on the response of global warming to varied CCN concentrations since CSA is known to modulate climate sensitivity (Cronin & Wing, 2017).

- The possible connections include:
- The export of mid-level cloud condensates could weaken the radiatively driven subsidence over the dry areas that drives CSA (Beydoun & Hoose, 2019; Bretherton et al., 2005; C. J. Muller & Held, 2012; Wing & Emanuel, 2014; Holloway & Woolnough, 2016).
- 282
 2. The response of cold pool dynamics to cloud microphysics has received considerable attention in the literature (Z. J. Lebo & Morrison, 2014; Seigel et al., 2013; Storer et al., 2014; Su et al., 2020; Tao et al., 2007; van den Heever & Cotton, 2007). Cold pools associated with the closer-to-edge convective systems in the polluted run could mix low-level dry areas and moist clusters more effectively, weakening the CSA (Jeevanjee & Romps, 2013; C. Muller & Bony, 2015).

Past studies (Arnold & Randall, 2015; Khairoutdinov & Emanuel, 2018) indicated 288 that the large-scale organization of convection (i.e., CSA) in non-rotating RCE simula-289 tions and MJO-like (i.e., Madden-Julian Oscillation; Madden & Julian, 1971) disturbance 290 in rotating RCE simulations share the same driving mechanism (i.e., cloud-radiation feed-291 backs) in which AIEs can be critical. One of the characteristics of MJO propagation is 292 that MJOs suffer from a barrier effect when it propagates over the Maritime Continent 293 (MC) (Kim et al., 2014; Zhang & Ling, 2017). The development of convective systems 294 over the water in the MC region plays a crucial role in carrying the MJO signal through 295 the MC (Ling et al., 2019). Around the globe, MC is a major source of different types 296 of aerosol (Reid et al., 2012; Salinas et al., 2013; Shpund et al., 2019). The modulation 297 of the size of moist clusters and the geographical distribution of convective systems by 298 enhanced CCN concentrations potentially provides a new perspective on the existing MJO 299 theories (Jiang et al., 2020; Zhang, 2013). A possible approach for the investigation is 300 to evaluate sub-seasonal hindcasts of an active MJO event with different aerosol emis-301 sion scenarios. 302

³⁰³ 5 Open Research

The model output data of a temporal snapshot, the Fortran program that computes vertical atmospheric profiles conditional sampled by column water vapor and the distance to the nearest convective system, and the GrADS plotting scripts in this study are available at https://doi.org/10.6084/m9.figshare.22149617.v1.

308 Acknowledgments

³⁰⁹ Chien-Ming Wu and Chun-Yian Su's efforts were supported by National Science and Technology Council (NSTC) in Taiwan grant 111-2111-M-002-012-NSTC. Wei-Ting Chen was
³¹¹ supported by Ministry of Science and Technology (MOST) in Taiwan grant 109-2628³¹² M-002-003-MY3. J. Peters was supported by National Science Foundation (NSF) grants
³¹³ AGS-1928666, AGS-1841674, and the Department of Energy Atmospheric System Re³¹⁴ search (DOE ASR) grant DE-SC0000246356. We thank Dr. Jen-Her Chen in Central
³¹⁵ Weather Bureau for his support of this work.

316 **References**

- Abbott, T. H., & Cronin, T. W. (2021, January). Aerosol invigoration of atmospheric convection through increases in humidity. *Science*, 371 (6524), 83-85.
 Retrieved from https://doi.org/10.1126/science.abc5181 doi: 10.1126/ science.abc5181
- Anber, U. M., Wang, S., Gentine, P., & Jensen, M. P. (2019, September). Probing the response of tropical deep convection to aerosol perturbations using

323	idealized cloud-resolving simulations with parameterized large-scale dynam-
324	ics. Journal of the Atmospheric Sciences, 76(9), 2885–2897. Retrieved from
325	https://doi.org/10.1175/jas-d-18-0351.1 doi: 10.1175/jas-d-18-0351.1
326	Andreae, M. O. (2009, January). Correlation between cloud condensation nuclei
327	concentration and aerosol optical thickness in remote and polluted regions. At-
328	mospheric Chemistry and Physics, 9(2), 543-556. Retrieved from https://doi
329	.org/10.5194/acp-9-543-2009 doi: 10.5194/acp-9-543-2009
330	Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo,
331	K. M., & Silva-Dias, M. A. F. (2004, February). Smoking rain clouds over the
332	amazon, Science, 303(5662), 1337–1342. Retrieved from https://doi.org/
333	10.1126/science.1092779 doi: 10.1126/science.1092779
334	Arakawa A (2004 July) The cumulus parameterization problem: Past present
335	and future <i>Journal of Climate</i> 17(13) 2493–2525 Retrieved from
336	https://doi.org/10.1175/1520-0442(2004)017<2493:ratcpp>2.0.co:2
227	doi: 10.1175/1520-0442(2004)017/2493:ratepp>2.0.00;2
330	Arakawa A & Wu C M (2013 July) A unified representation of deep moist
338	convection in numerical modeling of the atmosphere part i <i>Lowral of the At</i>
339	most beric Sciences $\gamma_0(7)$ 1077–1002 Retrieved from https://doi.org/10
340	1175/ias-d-12-0330 1 doi: 10.1175/ias-d-12-0330.1
341	Arnold N D & Dutman W M (2018 April) Nonrotating convertive self
342	aggregation in a limited area ACCM Journal of Advances in Modeling Earth
343	Systems $10(A)$ $1020-1046$ Betrieved from https://doi.org/10.1002/
344	2017mg001218 doi: 10.1002/2017mg001218
345	Arnold N P & Bandall D A (2015 October) Clobal scale convective aggre
346	gation: Implications for the madden julian oscillation — <i>Iowrnal of Advances in</i>
347	gation. Infinitations for the madden-junal oscillation. <i>Journal of Advances in</i> Modeling Forth Systems $\gamma(A)$ 1400 1518 – Batriaved from https://doi.org/
348	10, 1002/2015 ma $2000/08$ doi: 10.1002/2015 ma $2000/08$
349	Perdown H f_r Hoose $C = (2010 \text{ April})$ Acrossl cloud precipitation interactions
350	in the context of convective cells approaching. <i>Lewrond of Advances in Medeling</i>
351	Forth Systems 11(4) 1066 1087 Detrieved from https://doi.org/10.1020/
352	2018ma001522 doi: 10.1020/2018ma001523
353	Protheston C S Plager D N & Khairoutdiney M (2005 December) An
354	operation of deep convective self accretion above uniform SST
355	Lowrnal of the Atmospheric Sciences $69(12)$ $4273-4202$ Botrioved from
350	1000000000000000000000000000000000000
357	Brotherton C S Deters M F fr Back I F (2004 April) Belationships be
358	twoon water vapor path and precipitation over the tropical oceans
359	ral of Climate 17(7) 1517-1528 Botrioved from https://doi.org/
360	$10 \ 1175/1520-0442(2004) 017(1517)$
360	1520-0.0442(2004)017/1517 rbwypa $2.0.00,2$ dol. $10.1170/1520$
302	Chang V H Chan W T Wu C M Mosolay C k Wu C C (2021 Novom
363	ber) Tracking the influence of cloud condensation nuclei on summer diurnal
304	precipitating systems over complex topography in taiwan Atmospheric Chem-
305	<i>ietry and Physics</i> 21(22) 16700–16725 Betrieved from https://doi.org/
367	10.5194/acp-21-16709-2021 doi: $10.5194/acp-21-16709-2021$
307	Chen P I Chen W T Wy C M k Vo T S (2021 May) Convertive cloud
368	regimes from a classification of object based CloudSat observations over asian
309	australian monsoon areas Geophysical Research Letters (8(10) Retrieved
371	from https://doi_org/10_1029/2021g1092733_doi-10_1020/2021g1002733
371	Coppin D & Rony S (2015 December) Physical mechanisms controlling the
312	initiation of convective self-aggregation in a general circulation model
3/3	nal of Advances in Modeling Earth Systems $7(A)$ 2060–2078 Retrieved from
3/4 27F	https://doi org/10 1002/2015mc000571 doi: 10.1002/2015mc000571
276	Cronin T W & Wing A A (2017 December) Clouds circulation and climate
3/0	sensitivity in a radiative-convective equilibrium channel model Lowered of Ad
511	sensitivity in a radiative convective equilibrium channel model. Journal of Au-

378	vances in Modeling Earth Systems, 9(8), 2883–2905. Retrieved from https://
379	doi.org/10.1002/2017ms001111 doi: 10.1002/2017ms001111
380	Derbyshire, S., Beau, I., Bechtold, P., Grandpeix, JY., Piriou, JM., Redelsperger,
381	JL., & Soares, P. (2004, October). Sensitivity of moist convection to envi-
382	ronmental humidity. Quarterly Journal of the Royal Meteorological Society,
383	130(604), 3055-3079. Retrieved from https://doi.org/10.1256/qj.03.130
384	doi: 10.1256/qj.03.130
385	Dunion, J. P. (2011, February). Rewriting the climatology of the tropical north
386	atlantic and caribbean sea atmosphere. $Journal of Climate, 24(3), 893-$
387	908. Retrieved from https://doi.org/10.1175/2010jcli3496.1 doi:
388	10.1175/2010jcli 3496.1
389	Emanuel, K., Wing, A. A., & Vincent, E. M. (2014, February). Radiative-
390	convective instability. Journal of Advances in Modeling Earth Systems, $6(1)$,
391	75-90. Retrieved from https://doi.org/10.1002/2013ms000270 doi:
392	10.1002/2013 ms 000270
393	Fan, J., & Khain, A. (2021, January). Comments on "do ultrafine cloud condensa-
394	tion nuclei invigorate deep convection?". Journal of the Atmospheric Sciences,
395	78(1), 329-339. Retrieved from https://doi.org/10.1175/jas-d-20-0218.1
396	doi: 10.1175/jas-d-20-0218.1
397	Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T.,
398	de Souza, R. A. F. (2018, January). Substantial convection and pre-
399	cipitation enhancements by ultrafineaerosol particles. Science, 359(6374),
400	411-418. Retrieved from https://doi.org/10.1126/science.aan8461 doi:
401	10.1126/science.aan8461
402	Fan, J., Wang, Y., Rosenfeld, D., & Liu, X. (2016, October). Review of
403	aerosol-cloud interactions: Mechanisms, significance, and challenges. Jour-
404	nal of the Atmospheric Sciences, 73(11), 4221–4252, Retrieved from
405	https://doi.org/10.1175/jas-d-16-0037.1 doi: 10.1175/jas-d-16-0037.1
406	Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. B., Ovchin-
407	nikov. M. (2009. November). Dominant role by vertical wind shear in regulat-
408	ing aerosol effects on deep convective clouds. <i>Journal of Geophysical Research</i> .
409	11/(D22). Retrieved from https://doi.org/10.1029/2009id012352 doi:
410	10.1029/2009id012352
411	Forster P Storelymo T Armour K Collins W Dufresne J-L Frame D
412	Zhang H (2021) The earth's energy budget climate feedbacks and cli-
412	mate sensitivity [Book Section] In V Masson-Delmotte et al. (Eds.) <i>Climate</i>
413	change 2021: The physical science basis contribution of working aroun i to
415	the sixth assessment report of the intergovernmental panel on climate change
416	(p. 923–1054). Cambridge, United Kingdom and New York, NY, USA: Cam-
417	bridge University Press. doi: 10.1017/9781009157896.009
419	Grahowski W & Moncrieff M (2004 October) Moisture-convection feedback in
410	the tropics Quarterly Journal of the Royal Meteorological Society 130(604)
419	$3081-3104$ Betrieved from https://doi org/10_1256/gi_03_135 doi: 10
421	1256/ai 03 135
422	Grahowski W W (2018 October) Can the impact of aerosols on deep convec-
422	tion be isolated from meteorological effects in atmospheric observations? <i>Lowr</i> -
423	nal of the Atmospheric Sciences 75(10) 3347-3363 Betrieved from https://
424	doi org/10 1175/jas-d-18-0105 1 doi: 10 1175/jas-d-18-0105 1
425	Crahowski W W & Morrison H (2020 July) Do ultrafino cloud condensation
426	(2020, 300). Do utraine cloud condensation puclei invigorate doep convection? <i>Journal of the Atmospheric Sciences</i> $\frac{77}{7}$
427	2567-2583 Retrieved from https://doi.org/10.1175/jog-d-20-0012.1.doi.
428	10 1175/jas d 20 0019 1
429	10.1110/Jao-u-20-0012.1 Crohomali W. W. & Monnigon H. (2021 January) Dorbuto (correspondents of the set
430	trafino cloud condensation nuclei invitorate doop convection?" Lower of the
431	Atmospheric Sciences 78(1) 241 250 Detrieved from https://def.arg/10
432	Autospheric Sciences, 70(1), 541–550. Retrieved non nucps://doi.org/10

433	.1175/jas-d-20-0315.1 doi: 10.1175/jas-d-20-0315.1
434	Hamada, A., Murayama, Y., & Takayabu, Y. N. (2014, October). Regional charac-
435	teristics of extreme rainfall extracted from TRMM PR measurements. Journal
436	of Climate, 27(21), 8151-8169. Retrieved from https://doi.org/10.1175/
437	jcli-d-14-00107.1 doi: 10.1175/jcli-d-14-00107.1
438	Hartmann, D. L., Moy, L. A., & Fu, Q. (2001, December). Tropical convection and
439	the energy balance at the top of the atmosphere. Journal of Climate, $14(24)$,
440	4495–4511. Retrieved from https://doi.org/10.1175/1520-0442(2001)
441	014<4495:tcateb>2.0.co;2 doi: 10.1175/1520-0442(2001)014(4495:
442	tcateb $2.0.co; 2$
443	Holloway, C. E., & Neelin, J. D. (2009, June). Moisture vertical structure, col-
444	umn water vapor, and tropical deep convection. Journal of the Atmospheric
445	Sciences, 66(6), 1665–1683. Retrieved from https://doi.org/10.1175/
446	2008jas2806.1 doi: 10.1175/2008jas2806.1
447	Holloway, C. E., & Neelin, J. D. (2010, April). Temporal relations of column water
448	vapor and tropical precipitation. <i>Journal of the Atmospheric Sciences</i> , 67(4).
449	1091-1105. Retrieved from https://doi.org/10.1175/2009jas3284.1 doi:
450	10.1175/2009jas3284.1
451	Holloway, C. E., & Woolnough, S. J. (2016, February). The sensitivity of convective
452	aggregation to diabatic processes in idealized radiative-convective equilib-
453	rium simulations. Journal of Advances in Modeling Earth Systems, 8(1).
454	166-195. Retrieved from https://doi.org/10.1002/2015ms000511 doi:
455	10.1002/2015ms000511
456	Houze B A (2004 December) Mesoscale convective systems <i>Beviews of Geo</i> -
457	<i>physics.</i> /2(4). Retrieved from https://doi.org/10.1029/2004rg000150
451	doi: 10.1029/2004rg000150
450	Houze B A Basmussen K L Zuluaga M D & Brodzik S B (2015 Septem-
459	her) The variable nature of convection in the tropics and subtropics: A legacy
400	of 16 years of the tropical rainfall measuring mission satellite <i>Reviews of</i>
401	Geonhusics 53(3) 994–1021 Retrieved from https://doi org/10 1002/
463	2015rg000488 doi: 10.1002/2015rg000488
463	Igel A L & van den Heever S C (2021 August) Invigoration or enervation of
404	convective clouds by aerosols? Geophysical Research Letters 48(16) Retrieved
465	from https://doi.org/10_1029/2021g1093804_doi: 10_1029/2021g1093804
467	Jeevaniee N & Romps D M (2013 March) Convective self-aggregation cold
407	pools and domain size Geophysical Research Letters $10(5)$ 994–998 Be-
400	trieved from https://doi org/10 1002/grl 50204 doi: $10.1002/grl 50204$
409	Jiang X Adames $\hat{\Delta}$ F Kim D Maloney F D Lin H Kim H Klinga-
470	man N P (2020 August) Fifty years of research on the madden-julian
471	oscillation: Recent progress challenges and perspectives Iournal of Geo-
472	nhusical Research: Atmospheres 125(17) Retrieved from https://doi org/
473	10 1029/2019id030911 doi: 10 1029/2019id030911
474	Johnson R H. Rickanbach T M. Rutladga S A. Ciosialski P F. & Schu
475	bort W H (1000 August) Trimodal characteristics of tropical convoc
476	tion Lowrad of Climate 19(8) 2307–2418 Botriovod from https://
477	doi org/10_1175/1520-0442(1999)01262397:tcotc>2_0_co:2doi:
478	$101175/15200442(1000)012/2307\cdottcotc/2.0.co.2$
479	Khain A P. BanMacha N. & Delroyaky A (2008 June) Easters determining the
480	impact of aerosols on surface provinitation from clouds: An attempt at close
481	ention <i>Journal of the Atmospheric Sciences</i> , 65(6), 1791–1748. Retrieved from
482	t = 1.25 + 1.2
483	Khairoutdinov M F & Francuol K (2012 December) Intracesconal workshilter in
484	a cloud normitting near global equatorial equaplanet model. Lowrad of the At
485	a croud-permitting near-ground equatorial aquapranet model. Journal of the Al- mospheric Sciences 75(12) 4327-4355 Rotrieved from https://doi.org/10
486	$1175/i_{12}=d_{-1}18=0152$ 1 doi: 10.1175/i_{12}=d_{-1}18=0152 1 doi: 10.1175/i_{12}=d_{-1}18=0152 1
487	.11/3/Jas-a-10-0132.1 uoi. 10.11/3/Jas-a-10-0132.1

488	Kim, D., Kug, JS., & Sobel, A. H. (2014, January). Propagating versus non-
489	propagating madden-julian oscillation events. Journal of Climate, $27(1)$,
490	111-125. Retrieved from https://doi.org/10.1175/jcli-d-13-00084.1
491	doi: 10.1175/jcli-d-13-00084.1
492	Koren, I., Feingold, G., & Remer, L. A. (2010, September). The invigoration
493	of deep convective clouds over the atlantic: aerosol effect, meteorology or
494	retrieval artifact? Atmospheric Chemistry and Physics, 10(18), 8855–
495	8872. Retrieved from https://doi.org/10.5194/acp-10-8855-2010 doi:
496	10.5194/acp-10-8855-2010
497	Koren, I., Martins, J. V., Remer, L. A., & Afargan, H. (2008, August), Smoke invig-
498	oration versus inhibition of clouds over the amazon. Science, 321 (5891), 946–
400	949 Retrieved from https://doi.org/10.1126/science.1159185 doi: 10
500	1126/science 1159185
500	Lebo Z (2018 February) A numerical investigation of the notential effects of
501	acrosol-induced warming and undraft width and slope on undraft intensity
502	in deep convective clouds $Iowrad of the Atmospheric Sciences 75(2) 535-$
503	554 Betrieved from https://doi.org/10.1175/jog-d-16-0268.1 doi:
504	$10.1175 / j_{og} d 16.0368 1$
505	I. I. J. Marrian II. (2014 March) Demonstral effects of concerline structure
506	tions on simulated idealized excell lines — Monthly Westley Device 140(2)
507	tions on simulated idealized squall lines. Monthly weather Review, $142(3)$,
508	991-1009. Retrieved from https://doi.org/10.11/5/mwr-d-13-00156.1
509	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
510	Ling, J., Zhang, C., Joyce, R., ping Xie, P., & Chen, G. (2019, March). Possible role
511	of the diurnal cycle in land convection in the barrier effect on the MJO by the $C_{\rm eff}$
512	maritime continent. Geophysical Research Letters, $4b(5)$, $3001-3011$. Retrieved
513	from https://doi.org/10.1029/2019g1081962 doi: 10.1029/2019g1081962
514	Madden, R. A., & Julian, P. R. (1971, July). Detection of a 40–50 day oscillation
515	in the zonal wind in the tropical pacific. Journal of the Atmospheric Sciences,
516	28(5), 702-708. Retrieved from https://doi.org/10.1175/1520-0469(1971)
517	028<0702:doadoi>2.0.co;2 doi: $10.1175/1520-0469(1971)028(0702:doadoi>2$
518	.0.co;2
519	Manabe, S., & Strickler, R. F. (1964, July). Thermal equilibrium of the atmosphere
520	with a convective adjustment. Journal of the Atmospheric Sciences, $21(4)$,
521	361–385. Retrieved from https://doi.org/10.1175/1520-0469(1964)
522	021<0361:teotaw>2.0.co;2 doi: 10.1175/1520-0469(1964)021(0361:
523	teotaw/2.0.co;2
524	Matsugishi, S., & Satoh, M. (2022, May). Sensitivity of the horizontal scale
525	of convective self-aggregation to sea surface temperature in radiative con-
526	vective equilibrium experiments using a global nonhydrostatic model.
527	Journal of Advances in Modeling Earth Systems, $14(5)$. Retrieved from
528	https://doi.org/10.1029/2021ms002636 doi: $10.1029/2021ms002636$
529	Morrison, H., & Milbrandt, J. A. (2015, January). Parameterization of cloud micro-
530	physics based on the prediction of bulk ice particle properties. part i: Scheme
531	description and idealized tests. Journal of the Atmospheric Sciences, $72(1)$,
532	287-311. Retrieved from https://doi.org/10.1175/jas-d-14-0065.1 doi:
533	10.1175/jas-d-14-0065.1
534	Muller, C., & Bony, S. (2015, July). What favors convective aggregation and why?
535	Geophysical Research Letters, 42(13), 5626–5634. Retrieved from https://doi
536	.org/10.1002/2015g1064260 doi: 10.1002/2015g1064260
537	Muller, C., Yang, D., Craig, G., Cronin, T., Fildier, B., Haerter, J. O., Sher-
538	wood, S. C. (2022, January). Spontaneous aggregation of convective
539	storms. Annual Review of Fluid Mechanics, 54(1), 133–157. Retrieved
540	from https://doi.org/10.1146/annurev-fluid-022421-011319 doi:
541	10.1146/annurev-fluid-022421-011319
542	Muller, C. J., & Held, I. M. (2012, August). Detailed investigation of the self-

543 544	aggregation of convection in cloud-resolving simulations. Journal of the At- mospheric Sciences, $69(8)$, $2551-2565$. Retrieved from https://doi.org/
545	10.1175/jas-d-11-0257.1 doi: 10.1175/jas-d-11-0257.1
546	Neelin, J. D., Peters, O., & Hales, K. (2009, August). The transition to strong con-
547	vection. Journal of the Atmospheric Sciences, 66(8), 2367–2384. Retrieved
548	from https://doi.org/10.1175/2009jas2962.1 doi: 10.1175/2009jas2962
549	
550	Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006, October). Storm morphology
551	and rainfall characteristics of TRMM precipitation features. <i>Monthly Weather</i>
552	<i>Review</i> , 134(10), 2702–2721. Retrieved from https://doi.org/10.1175/
553	mwr3200.1 dol: 10.11/9/mwr3200.1
554	Nishant, N., & Sherwood, S. C. (2017, June). A cloud-resolving model study of
555	aerosol-cloud correlation in a pristine maritime environment. Geophysical
556	Research Letters, 44 (11), 5774-5781. Retrieved from https://doi.org/
557	Niu E l_{2} [2012 Contember) Creterational of cloud ten tempera
558	Nu, F., & Li, Z. (2012, September). Systematic variations of cloud top tempera-
559	Chamistry and Physica 19(18) 8401 8408 Detrioyed from https://doi.org/
560	105194/3cp = 12 = 8491 = 2012 doi: $105194/3cp = 12 = 8491 = 2012$
501	Pan 7 Reconfield D. Zhu V. Mao F. Cong W. Zang I. & Lu X. (2021)
562	May) Observational quantification of aerosal invigoration for deep convective
503	cloud lifecycle properties based on geostationary satellite
565	<i>physical Research: Atmospheres</i> 126(9) Retrieved from https://doi.org/
566	10.1029/2020id034275 doi: 10.1029/2020id034275
567	Patrizio, C. R., & Randall, D. A. (2019, July). Sensitivity of convective self-
568	aggregation to domain size. Journal of Advances in Modeling Earth Systems.
569	11(7), 1995-2019. Retrieved from https://doi.org/10.1029/2019ms001672
570	doi: 10.1029/2019ms001672
571	Pendergrass, A. G., Reed, K. A., & Medeiros, B. (2016, November). The link be-
572	tween extreme precipitation and convective organization in a warming climate:
573	Global radiative-convective equilibrium simulations. Geophysical Research Let-
574	ters, 43(21). Retrieved from https://doi.org/10.1002/2016g1071285 doi:
575	10.1002/2016gl071285
576	Peters, O., & Neelin, J. D. (2006, May). Critical phenomena in atmospheric precip-
577	itation. Nature Physics, 2(6), 393-396. Retrieved from https://doi.org/10
578	.1038/nphys314 doi: 10.1038/nphys314
579	Popke, D., Stevens, B., & Voigt, A. (2013, January). Climate and climate change
580	in a radiative-convective equilibrium version of ECHAM6. Journal of Advances
581	in Modeling Earth Systems, $5(1)$, 1–14. Retrieved from https://doi.org/10
582	.1029/2012ms000191 doi: $10.1029/2012$ ms000191
583	Posselt, D. J., van den Heever, S., Stephens, G., & Igel, M. R. (2012, January).
584	Changes in the interaction between tropical convection, radiation, and the
585	large-scale circulation in a warming environment. Journal of Climate, $25(2)$,
586	557-571. Retrieved from https://doi.org/10.1175/2011jc1i4167.1 doi:
587	10.1175/2011 jch4167.1
588	Posselt, D. J., van den Heever, S. C., & Stephens, G. L. (2008, April). Tri-
589	modal cloudiness and tropical stable layers in simulations of radiative con-
590	bttma: (/doi org/10.1020/2007g1022020 doi: 10.1020/2007g1022020
591	nttps://doi.org/10.1029/2007g1033029 doi: 10.1029/2007g1035029
592	Melonay, F. D. (2012) February Multi coole metocoological concentual
593	analysis of observed active fire hotspot activity and smoke optical conceptual
594	the maritime continent $Atmospheric Chemistry and Physics 10(\Lambda) - 2117_{-}$
595 506	2147 Retrieved from https://doi org/10.5194/acp-12-2117-2012 doi:
597	10.5194/acp-12-2117-2012
	/ 1

590	Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
599	S., Andreae, M. O. (2008, September). Flood or drought: How do
600	aerosols affect precipitation? Science, 321 (5894), 1309–1313. Retrieved from
601	https://doi.org/10.1126/science.1160606 doi: 10.1126/science.1160606
602	Salinas, S. V., Chew, B. N., Miettinen, J., Campbell, J. R., Welton, E. J., Reid,
603	J. S., Liew, S. C. (2013, March). Physical and optical characteristics of
604	the october 2010 haze event over singapore: A photometric and lidar analy-
605	sis. Atmospheric Research, 122, 555-570. Retrieved from https://doi.org/
606	10.1016/j.atmosres.2012.05.021 doi: 10.1016/j.atmosres.2012.05.021
607	Schiro, K. A., Neelin, J. D., Adams, D. K., & Lintner, B. R. (2016, September).
608	Deep convection and column water vapor over tropical land versus tropical
609	ocean: A comparison between the amazon and the tropical western pacific.
610	Journal of the Atmospheric Sciences, 73(10), 4043–4063. Retrieved from
611	https://doi.org/10.1175/jas-d-16-0119.1 doi: 10.1175/jas-d-16-0119.1
612	Seigel, R. B., van den Heever, S. C., & Saleeby, S. M. (2013, April). Mineral
613	dust indirect effects and cloud radiative feedbacks of a simulated idealized
614	nocturnal squall line. Atmospheric Chemistry and Physics, 13(8), 4467–
615	4485. Retrieved from https://doi.org/10.5194/acp-13-4467-2013 doi:
616	10.5194/acp-13-4467-2013
617	Shpund, J., Khain, A., & Rosenfeld, D. (2019, August). Effects of sea spray on mi-
618	crophysics and intensity of deep convective clouds under strong winds. <i>Jour-</i>
619	nal of Geophysical Research: Atmospheres, 124(16), 9484–9509. Retrieved from
620	https://doi.org/10.1029/2018jd029893 doi: 10.1029/2018jd029893
621	Singh, M. S., & O'Gorman, P. A. (2013, August). Influence of entrainment
622	on the thermal stratification in simulations of radiative-convective equilib-
623	rium. Geophysical Research Letters, 40(16), 4398–4403. Retrieved from
624	https://doi.org/10.1002/grl.50796 doi: 10.1002/grl.50796
625	Singh, M. S., & O'Gorman, P. A. (2015, June). Increases in moist-convective up-
626	draught velocities with warming in radiative-convective equilibrium. Quarterly
627	Journal of the Royal Meteorological Society, 141(692), 2828–2838. Retrieved
628	from https://doi.org/10.1002/qj.2567 doi: 10.1002/qj.2567
629	Sobel, A. H., Nilsson, J., & Polvani, L. M. (2001, December). The weak temper-
630	ature gradient approximation and balanced tropical moisture waves. Journal
631	of the Atmospheric Sciences 58(23) 3650-3665 Betrieved from https://doi
632	.org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/
632 633	.org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/ 1520-0469(2001)058<3650:twtgaa>2.0.co;2
632 633 634	.org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/ 1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X.,
632 633 634 635	.org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/ 1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric
632 633 634 635 636	 .org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth
632 633 634 635 636 637	 .org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. <i>Progress in Earth and Planetary Science</i>, 6(1). Retrieved from https://doi.org/10.1186/
632 633 634 635 636 637 638	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. <i>Progress in Earth and Planetary Science</i>, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z
632 633 634 635 636 637 638 639	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. <i>Progress in Earth and Planetary Science</i>, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations
632 633 634 635 636 637 638 639 640	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. <i>Progress in Earth and Planetary Science</i>, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. <i>Jour-</i>
632 633 634 635 636 636 637 638 639 640 641	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from
632 633 634 635 636 637 638 639 640 641 642	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. <i>Progress in Earth and Planetary Science</i>, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. <i>Journal of Geophysical Research: Atmospheres</i>, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272
632 633 634 635 636 637 638 639 640 641 642 643	 .org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. <i>Progress in Earth and Planetary Science</i>, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. <i>Journal of Geophysical Research: Atmospheres</i>, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The
632 633 634 635 636 637 638 639 640 641 642 643 644	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a mon-
632 633 634 635 636 637 638 639 640 641 642 643 644	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058(3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058(3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/tao.2019.11.29.01
632 633 634 635 636 637 638 639 640 641 642 643 644 644 644 644 646 647	 .org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/tao.2019.11.29.01 SU, CY., CHEN, WT., WU, CM., & MA, HY. (2022). Object-based eval-
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649	 org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058(3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058(3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/tao.2019.11.29.01 SU, CY., CHEN, WT., WU, CM., & MA, HY. (2022). Object-based evaluation of tropical precipitation systems in DYAMOND simulations over the
632 633 634 635 636 637 638 639 640 641 642 643 644 645 644 645 646 647 648 649 650	 org/10.1175/1520-0469(2001)058(3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058(3650:twtgaa)2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/tao.2019.11.29.01 SU, CY., CHEN, WT., WU, CM., & MA, HY. (2022). Object-based evaluation of tropical precipitation systems in DYAMOND simulations over the maritime continent. Journal of the Meteorological Society of Japan. Ser. II,
632 633 634 635 636 637 638 639 640 641 642 643 644 645 644 645 646 647 648 649 650 651	 org/10.1175/1520-0469(2001)058(3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058(3650:twtgaa)2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 doi: 10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/tao.2019.11.29.01 SU, CY., CHEN, WT., WU, CM., & MA, HY. (2022). Object-based evaluation of tropical precipitation systems in DYAMOND simulations over the maritime continent. Journal of the Meteorological Society of Japan. Ser. II, 100(4), 647-659. Retrieved from https://doi.org/10.2151/jmsj.2022-033
632 633 634 635 636 637 638 639 640 641 642 643 644 645 644 645 646 647 648 649 650 651 652	 b) distributed from https://doi.org/10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 doi: 10.1175/1520-0469(2001)058<3650:twtgaa>2.0.co;2 Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Zhou, L. (2019, September). DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1). Retrieved from https://doi.org/10.1186/s40645-019-0304-z doi: 10.1186/s40645-019-0304-z Storer, R. L., van den Heever, S. C., & L'Ecuyer, T. S. (2014, April). Observations of aerosol-induced convective invigoration in the tropical east atlantic. Journal of Geophysical Research: Atmospheres, 119(7), 3963-3975. Retrieved from https://doi.org/10.1002/2013jd020272 Su, CY., Chen, WT., Chen, JP., Chang, WY., & Jou, B. JD. (2020). The impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terrestrial, Atmospheric and Oceanic Sciences, 31(2), 131-139. Retrieved from https://doi.org/10.3319/tao.2019.11.29.01 SU, CY., CHEN, WT., WU, CM., & MA, HY. (2022). Object-based evaluation of tropical precipitation systems in DYAMOND simulations over the maritime continent. Journal of the Meteorological Society of Japan. Ser. II, 100(4), 647-659. Retrieved from https://doi.org/10.2151/jmsj.2022-033

- Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. (2021a, July). The effects of
 the unified parameterization in the CWBGFS: the diurnal cycle of precipitation over land in the maritime continent. *Climate Dynamics*, 58 (1-2),
 223–233. Retrieved from https://doi.org/10.1007/s00382-021-05899-2
 doi: 10.1007/s00382-021-05899-2
- Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. (2021b, October). Implementation of the unified representation of deep moist convection in the CWBGFS.
 Monthly Weather Review, 149(10), 3525–3539. Retrieved from https:// doi.org/10.1175/mwr-d-21-0067.1 doi: 10.1175/mwr-d-21-0067.1
- Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., & Zhang, C. (2012, April). Impact of aerosols on convective clouds and precipitation. *Reviews of Geophysics*, 50(2). Retrieved from https://doi.org/10.1029/2011rg000369 doi: 10.1029/2011rg000369
- Tao, W.-K., & Chern, J.-D. (2017, April). The impact of simulated mesoscale
 convective systems on global precipitation: A multiscale modeling study. Journal of Advances in Modeling Earth Systems, 9(2), 790–809. Retrieved from
 https://doi.org/10.1002/2016ms000836 doi: 10.1002/2016ms000836
- Tao, W.-K., Li, X., Khain, A., Matsui, T., Lang, S., & Simpson, J. (2007, December). Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. *Journal of Geophysical Research*, *112* (D24). Retrieved from https://doi.org/10.1029/2007jd008728 doi: 10.1029/2007jd008728
- 675
 Tompkins, A. M. (2001, March). Organization of tropical convection in low vertical wind shears: The role of water vapor. Journal of the Atmospheric Sciences, 58(6), 529–545. Retrieved from https://doi.org/10.1175/1520-0469(2001) 058<0529:ootcil>2.0.co;2

 677
 058<0529:ootcil>2.0.co;2

 678
 .co;2
 - Tsai, W.-M., & Wu, C.-M. (2017, September). The environment of aggregated deep convection. Journal of Advances in Modeling Earth Systems, 9(5), 2061–2078. Retrieved from https://doi.org/10.1002/2017ms000967 doi: 10.1002/2017ms000967

680

681

682

683

- van den Heever, S. C., & Cotton, W. R. (2007, June). Urban aerosol impacts on downwind convective storms. Journal of Applied Meteorology and Climatology, 46(6), 828-850. Retrieved from https://doi.org/10.1175/jam2492.1 doi: 10.1175/jam2492.1
- van den Heever, S. C., Stephens, G. L., & Wood, N. B. (2011, April). Aerosol
 indirect effects on tropical convection characteristics under conditions of ra diative-convective equilibrium. Journal of the Atmospheric Sciences, 68(4),
 699-718. Retrieved from https://doi.org/10.1175/2010jas3603.1 doi:
 10.1175/2010jas3603.1
- Varble, A. (2018, April). Erroneous attribution of deep convective invigoration to aerosol concentration. Journal of the Atmospheric Sciences, 75(4), 1351–1368. Retrieved from https://doi.org/10.1175/jas-d-17-0217.1 doi: 10.1175/ jas-d-17-0217.1
- Wing, A. A., Emanuel, K., Holloway, C. E., & Muller, C. (2017, February). Convective self-aggregation in numerical simulations: A review. Surveys in Geophysics, 38(6), 1173–1197. Retrieved from https://doi.org/10.1007/s10712
 -017-9408-4 doi: 10.1007/s10712-017-9408-4
- Wing, A. A., & Emanuel, K. A. (2014, February). Physical mechanisms controlling
 self-aggregation of convection in idealized numerical modeling simulations.
 Journal of Advances in Modeling Earth Systems, 6(1), 59–74. Retrieved from
 https://doi.org/10.1002/2013ms000269 doi: 10.1002/2013ms000269
- Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., & Ohno, T. (2018, March). Radiative-convective equilibrium model intercomparison project. *Geoscientific Model Development*, 11(2), 793-813. Retrieved from https://

708	doi.org/10.5194/gmd-11-793-2018 doi: 10.5194/gmd-11-793-2018
709	Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, MS., Arnold, N. P.,
710	Zhao, M. (2020, September). Clouds and convective self-aggregation
711	in a multimodel ensemble of radiative-convective equilibrium simulations.
712	Journal of Advances in Modeling Earth Systems, 12(9). Retrieved from
713	https://doi.org/10.1029/2020ms002138 doi: 10.1029/2020ms002138
714	Wu, CM., & Arakawa, A. (2014, May). A unified representation of deep moist con-
715	vection in numerical modeling of the atmosphere. part II. Journal of the At-
716	mospheric Sciences, 71(6), 2089–2103. Retrieved from https://doi.org/10
717	.1175/jas-d-13-0382.1 doi: 10.1175/jas-d-13-0382.1
718	Yanase, T., Nishizawa, S., Miura, H., & Tomita, H. (2022, September). Character-
719	istic form and distance in high-level hierarchical structure of self-aggregated
720	clouds in radiative-convective equilibrium. Geophysical Research Letters,
721	49(18). Retrieved from https://doi.org/10.1029/2022gl100000 doi:
722	10.1029/2022gl100000
723	Yuan, J., & Houze, R. A. (2010, November). Global variability of mesoscale con-
724	vective system anvil structure from a-train satellite data. Journal of Climate,
725	23(21), 5864–5888. Retrieved from https://doi.org/10.1175/2010jcli3671
726	.1 doi: $10.1175/2010$ jcli3671.1
727	Zhang, C. (2013, December). Madden–julian oscillation: Bridging weather and cli-
728	mate. Bulletin of the American Meteorological Society, 94(12), 1849–1870. Re-
729	trieved from https://doi.org/10.1175/bams-d-12-00026.1 doi: 10.1175/
730	bams-d-12-00026.1
731	Zhang, C., & Ling, J. (2017, May). Barrier effect of the indo-pacific maritime con-
732	tinent on the MJO: Perspectives from tracking MJO precipitation. Journal of
733	Cirmate, 3U(9), 5459-5459. Ketrieved from https://doi.org/10.11/5/jcli
734	-d-16-0614.1 doi: 10.11/6/JCII-d-16-0614.1