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Key Points:7

• Unsupervised machine learning algorithm tracks evolving plume structures in ther-8
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regimes as a function of eruption source unsteadiness.13
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Abstract14

Volcanic eruption columns typically have unsteady source conditions, where mass and15

heat fluxes from the vent evolve or fluctuate on time scales from seconds to hours. How-16

ever, integral plume models routinely assume source conditions that are statistically sta-17

tionary, and the degree to which source unsteadiness influences the mechanics of column18

rise and air entrainment has not been established with quantitative predictions. We ad-19

dress this knowledge gap by examining eruptions with varying unsteady character at Sa-20

bancaya Volcano, Peru. Using a novel tracking algorithm based on spectral clustering,21

we track the spatiotemporal evolution of coherent turbulent structures in columns us-22

ing ground-based, thermal infrared imagery. For turbulent structures tracked in time and23

space, we calculate the power law decay exponent of excess temperature with height. In24

general, the starting pulses of transient events are characterized by power law exponents25

matching theoretical predictions for an instantaneous point release of buoyancy (i.e. a26

thermal), which evolve with sustained emissions to values consistent with steady plumes.27

Our results support previous findings from field evidence and laboratory experiments that28

entrainment and gravitational stability in unsteady volcanic columns are inadequately29

captured by time-averaging or constant entrainment coefficients. We propose a quan-30

titative definition for column source unsteadiness which captures the timing and mag-31

nitude of source fluctuations on time scales that influence entrainment mechanics, and32

which provisionally predicts our observed differences in power law behavior. We argue33

for systematic experimental and numerical studies of the relationship between source un-34

steadiness and entrainment to develop unsteady entrainment parameterizations for in-35

tegral plume models.36

Plain Language Summary37

Volcanic eruptions are routinely simulated as sustained, jet-like flows of gas and38

ash. However, most eruptions in nature are unsteady at the source vent, meaning the39

flow rate and heat content of erupted material varies substantially over time scales rang-40

ing from seconds to hours. This variation impacts mixing of eruption plumes with the41

background atmosphere (a process called entrainment), ultimately affecting how high42

plumes rise and where they disperse hazardous ash. To better understand how unsteady43

conditions influence eruption behavior and hazard, we analysed infrared camera imagery44

of eruption plumes at Sabancaya Volcano, Peru. By developing a new algorithm which45

tracks individual turbulent eddies in the rising plume, we measure how the heat content46

in the plumes evolve with entrainment of atmosphere. Our measurements show the plume47

mixing process evolving between theoretical predictions for sustained, jet-like flows and48

single, brief pulses, as a result of unsteady, evolving conditions at the plume source. We49

use our measurements to propose a mathematical framework for quantifying unsteadi-50

ness in volcanic plumes, enabling future experiments and computer simulations that in-51

clude unsteady effects. Ultimately, this will lead to improved forecasts of ash dispersal52

and resulting hazards for unsteady eruptions.53

1 Introduction54

Accurate, real-time characterization of the dynamics and behavior of explosive vol-55

canic eruptions is a cornerstone objective of modern volcano hazard monitoring. The type,56

timing and severity of hazards related to ash clouds and pyroclastic density currents de-57

pend on the gravitational stability, rise height and wind dispersal of eruption columns58

(Sparks & Wilson, 1976; Bonadonna et al., 2015; Cole et al., 2015; Prata & Rose, 2015).59

For example, initially dense volcanic jets of ash, pyroclasts and entrained gases can evolve60

to become positively buoyant plumes and generate tall convective columns through tur-61

bulent entrainment, mixing, and thermal expansion of ambient air into the column in-62

terior, and through particle loss and sedimentation. We use ‘jet” herein to refer to sus-63
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tained momentum-driven flows, while “plume” defines flows driven predominantly by the64

buoyancy of the erupted mixture, and “column” refers generally to buoyantly rising vol-65

canic flows. Evolution of volcanic columns above the vent and the resulting partition-66

ing of erupted ash and gas between buoyant, wind-dispersed clouds and locally destruc-67

tive pyroclastic density currents depend critically on the “vent source conditions” such68

as mass flow rate of magma, gas, content, vent shape, and particle size distribution, as69

well as local atmospheric stratification and wind profiles. (Sparks, 1986; Woods, 1988,70

1995, 2010; Koyaguchi et al., 2010; Degruyter & Bonadonna, 2013; Jessop & Jellinek,71

2014; Aubry et al., 2017; Lherm & Jellinek, 2019; Gilchrist & Jellinek, 2021). Assess-72

ment of characteristic or average vent source conditions that are critical inputs for erup-73

tion models is, however, challenging. In addition to being extremely challenging to ob-74

serve visually or infer, vent source conditions are typically time-varying, or “unsteady”.75

Fluctuations in vent source conditions on timescales of seconds to hours are ubiquitous76

during explosive volcanism, but their effects on eruption behavior are poorly understood77

and remain a core challenge in understanding the dynamics and hazards of volcanic columns78

and ash clouds (National Academies of Sciences, 2017).79

Conventional models of the dynamics of large eruption columns (e.g. Sparks & Wil-80

son, 1976; Sparks, 1986; Woods, 1988) are based on theory for statistically steady vent81

source conditions defined in terms of time-averaged mean mass, momentum and buoy-82

ancy fluxes. Intrinsically unsteady processes related to turbulent fluctuations are treated83

with insightful closures including the “entrainment hypothesis”, where the rate of tur-84

bulent atmospheric entrainment is proportional to the mean rise speed (Morton et al.,85

1956; Morton, 1959; Turner, 1986). Sustained Plinian eruptions, for example, are often86

approximated as steady buoyant plumes and analyzed with corresponding integral (1D)87

column models (Morton et al., 1956; Woods, 1988, 2010; Degruyter & Bonadonna, 2013;88

Woodhouse et al., 2013). In this framework, the time-averaged radial velocity, density,89

and temperature profiles across the plume are self-similar (i.e. of the same functional shape)90

with height and evolve with the release of gravitational potential energy and with pro-91

gressive turbulent entrainment (Morton et al., 1956). The statistically steady flows of92

jets and plumes also have opposite end-members, respectively instantaneous, point-releases93

of momentum (i.e. “puffs”, Richards, 1965) and buoyancy (i.e. a “thermal”, Morton et94

al., 1956; Turner & Taylor, 1957; Turner, 1986), as shown in Figure 1.95

How best to identify the behavior regimes in which time-averaging is appropriate96

in order to enable an analysis with steady-state column models is not straightforward,97

and unsteady source conditions span a continuum of behaviours. Over time scales of sec-98

onds to days, eruptions can evolve from approximately steady momentum-driven jets or99

buoyant plumes to discrete pulses or rising puffs and thermals (Anilkumar, 1993; Clarke,100

Voight, et al., 2002; Clarke, Neri, et al., 2002; Patrick et al., 2007; Patrick, 2007; Scase,101

2009; Webb et al., 2014; Chojnicki et al., 2014, 2015a, 2015b; Dürig et al., 2015; Wood-102

house et al., 2016; Tournigand, Taddeucci, et al., 2017). Evolution between regimes of103

steady and unsteady behavior occurs as conditions in the conduit evolve from the ini-104

tial opening of the vent, progressive fragmentation, modification of vent geometry, vary-105

ing access to external water, and depletion of available magma and volatile mass (Gonnermann106

& Manga, 2007; Carey et al., 2009; Hreinsdóttir et al., 2014; Houghton et al., 2015). Un-107

steady behavior is, for example, inherent in transient events (i.e. short-lived relative to108

the column rise time) such as Strombolian bursts (Patrick, 2007) and Vulcanian explo-109

sions (Clarke, Voight, et al., 2002; Clarke et al., 2009), but is also very common during110

sustained eruptions (Scase, 2009; Dürig et al., 2015). Discrete Vulcanian explosions char-111

acteristically produce thermals as well as predominantly momentum-driven starting jets112

(Turner, 1962) characterized by a rapid initial peak in vent mass and momentum fluxes,113

followed by periods of sustained flow or rapid decay (Clarke, Voight, et al., 2002; Patrick,114

2007; Scase, 2009; Chojnicki et al., 2014). Such evolving source fluxes drive evolutions115

between convective columns and collapsing pyroclastic density currents (Clarke, Neri,116

et al., 2002). Eruptive phases may be unsteady in time and also vary spatially: Clarke,117
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Figure 1. Example images of eruptive events at Sabancaya Volcano. Varying degrees of un-

steady or transient source behavior lead to complex evolutions of column governing dynamics

and morphology. (a-b) Theoretical geometry and theoretical temperature power law evolution

with height, in an unstratified ambient environment, above a virtual source for plumes (a) and

thermals (b). Dashed orange lines show the evolution of an effective column radius with height.

(c) A sustained plume characterized by low-amplitude fluctuations in mass flux about a well-

defined mean flow (May 25, 2018; Event 1 , this study). (d) A complex explosion fed by multiple

discrete pulses from the vent (May 27, 2018; not used in this study). (e) A highly transient,

Vulcanian-type explosion, characterized by a single dominant starting pulse which evolved into a

discrete vortex ring, followed by a small number of rapidly decaying secondary pulses (May 25,

2018, about 5 minutes after onset; Event 3, this study). In panels (c) to (e), orange dashed lines

highlight the overall column shape, and black dashed lines highlight coherent turbulent structures

that govern the largest scales of column motion and evolution.
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Voight, et al. (2002) noted the presence of multiple jet-like sources contributing to the118

total flux of Vulcanian eruptions at Soufrierre Hills volcano, and the spatial location of119

jet sources is frequently observed to vary in time (Webb et al., 2014). Unsteady or pul-120

sating source conditions are also characteristic of many hydrovolcanic eruptions, for ex-121

ample as a result of episodic explosions driven by molten-fuel-coolant interactions or dry-122

ing of volcanic vents (Brand & Clarke, 2009; Carey et al., 2009; Houghton et al., 2015;123

Zimanowski et al., 2015). Theoretical integral models of unsteady plumes have seen promis-124

ing developments in recent years (Scase et al., 2006; Scase, 2009; Craske & van Reeuwijk,125

2016; Woodhouse et al., 2016; Craske, 2017), but remain to be applied to the case of dense,126

particle laden flows typical of unsteady volcanic eruptions, which may involve mass flow127

rates that vary over orders of magnitude within seconds to minutes (Dürig et al., 2015;128

Tournigand, Taddeucci, et al., 2017).129

Entrainment of ambient atmosphere into turbulent columns is a consequence of lat-130

eral pressure variations and shear instability along the flow margins (Tritton, 1988). The131

largest overturning eddies engulf ambient air and turbulent motions at progressively smaller132

scales ultimately mix entrained air mechanically and thermally into the column interior133

as shown schematically in Figure 1 (Morton et al., 1956; Turner, 1986; Tritton, 1988).134

For jets, plumes, or thermals with self-similar cross-sectional profiles, the entrainment135

hypothesis relates the entrainment velocity of ambient air as linearly proportional to the136

mean axial rise speed v by an entrainment coefficient α (Figure 1a,b) (Morton et al., 1956;137

Turner, 1986). An alternative entrainment parameterization relates turbulent shear stresses138

to the square of axial column velocity, and has recently been employed in unsteady col-139

umn models in particular (Priestley & Ball, 1955; Morton, 1971; Craske & van Reeuwijk,140

2016; van Reeuwijk et al., 2016). Measured and simulated entrainment rates are gener-141

ally higher for plumes than for jets, and higher for pulsatory and instantaneous sources142

than those for both steady jets and plumes (Turner, 1962, 1986; Clarke, 2013; Chojnicki143

et al., 2015a). The coefficient α further varies depending on the assumed form of the ax-144

ial velocity and density profiles (Turner, 1962). Typical values for momentum-driven jets145

are 0.06 ≤ α ≤ 0.08, and for buoyant plumes 0.09 ≤ α ≤ 0.16 (Morton et al., 1956;146

Turner, 1973; Linden, 2000; Kaminski et al., 2005; Carazzo et al., 2006). By contrast,147

entrainment into discrete thermals is dominated by the overturn of a single, large vor-148

tex ring and α ≈ 0.25 (Turner, 1969).149

More generally, both observational and experimental studies show that variations150

in entrainment rates of ambient air into unsteady jets and plumes are governed by lo-151

cal balances of momentum and buoyancy among individual large, coherent vortices, the152

characteristics of which depend strongly on the time and spatial evolution of the vent153

source (Turner & Taylor, 1957; Turner, 1962; Kaminski et al., 2005; Carazzo et al., 2008a;154

Chojnicki et al., 2014, 2015b; Tournigand, Taddeucci, et al., 2017). The dependence of155

α on local conditions means that unsteadiness in source velocity and gas content can be156

expected to directly impact the entrainment, mixing, and thermal evolution of ash columns.157

Furthermore, the self-similarity of radial velocity and density profiles on which integral158

column models rely is known to develop only at some distance downstream of the source159

(Carazzo et al., 2006; Jessop et al., 2016), and is further perturbed by unsteady fluctu-160

ations in source conditions (Craske & van Reeuwijk, 2016). Many commonly applied col-161

umn models do not capture this complexity and are therefore not appropriately applied162

for conditions immediately above the vent elevation, which is significant given the im-163

portance of near-source dynamics in governing behaviors such as column collapse. There164

is a need for both observational and modelling approaches that account for the complex165

and unsteady evolution of volcanic flows near the source. Though routinely observed in166

explosive volcanism, a self-consistent description of unsteadiness and its consequences167

for entrainment in eruption columns remains elusive.168

Studies of explosive volcanism using ground-based infrared imagery frequently fo-169

cus on tracking the shape and height evolution of columns and relating these quantities170
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to theoretical predictions (Patrick et al., 2007; Harris, 2013; Valade et al., 2014; Webb171

et al., 2014; Bombrun et al., 2018; Tournigand et al., 2019). Here rather than directly172

attempting to measure entrainment via column morphology, we explore the use of a broad-173

band infrared camera to compare the temperature evolution of unsteady volcanic columns174

against theoretical predictions. The theoretical evolution with height of temperature and175

velocity profiles of thermals and steady plumes can be described solely as a function of176

distance from a virtual source height z0: a theoretical point at which a column has zero177

volume but finite buoyancy (see Figure 1). The evolution of buoyancy may be related178

to the column excess temperature ∆T through the reduced gravity:179

gβ∆T (z) = g
ρa(z)− ρp(z)

ρ0
, (1)180

where g is gravitational acceleration, β is the volumetric coefficient of thermal expan-181

sion and ρa and ρp are densities of the ambient air and column, and ρ0 is a reference den-182

sity. The local excess ∆T (z) is defined as the temperature above the background atmo-183

spheric profile Ta(z):184

∆T (z) = Tp(z)− Ta(z), (2)185

where Tp is the column absolute temperature. Note that the linear relation between tem-186

perature and density in Equation 1 applies for buoyant plumes where the ash mass frac-187

tion in the column is less than about a few tens of percent, which is generally the case188

for columns that are positively buoyant. These equations further assume that the ash189

contribution to bulk density is not changing very rapidly due to sedimentation, compared190

to rates of entrainment and gravitational potential energy release. On dimensional grounds,191

and assuming a steady and self-similar evolution, ∆T will evolve as a power law func-192

tion of altitude above the virtual source. The power law exponent B differs for plumes193

and thermals (Turner, 1969):194

∆Tplume(z) ∝ F
2/3
p (z − z0)

−5/3, (3)

∆Tthermal(z) ∝ Ft(z − z0)
−3, (4)

where Fp is the source buoyancy flux for a plume (units of m4/s3) and is the Ft total195

source buoyancy for thermals (units of m4/s2). The extent to which unsteady source con-196

ditions modify the thermal evolution of natural plumes to be between the steady-state197

plume and thermal limits is unexplored. An important consideration is that the form198

of Equations 3 and 4 strictly applies for plumes and thermals in unstratified ambient con-199

ditions. We apply our quantitative analysis below using Equations 3 and 4 over sufficiently200

limited altitude windows and assuming straight-sided solutions to the plume equations,201

such that we expect the unstratified solutions to provide a reasonable approximation (Caulfield202

& Woods, 1998; Kaye & Scase, 2011; Bhamidipati & Woods, 2017). However, we revisit203

this assumption in greater detail in Sections 3.7 and 5.1. We also neglect the effects of204

wind-driven stirring and entrainment, which are evident at altitudes above our analy-205

sis windows where thermal contrasts are small or unresolved. We note that for much taller206

columns than Events 1-3 or larger magnitude Plinian events, effects of stratification and207

wind should be included in this type of analysis.208

To track the time-varying evolution of velocity and temperature profiles, or char-209

acterize evolving or complex column morphologies as shown in Figure 1, we identify and210

track the turbulent structures associated with individual pulses from the source vent in211

thermal imagery. Our problem requires separating the largest turbulent motions aris-212

ing from individual column pulses from the complex and moving background of the col-213

umn exterior. The advent of advanced video segmentation (feature identification and clas-214

sification) algorithms including Recurrent Convolutional Neural Networks (R-CNN’s)215

and Long Short-Term Memory Networks (LSTM-CNN’s) provides a promising way for-216

ward for rapid and automated quantitative analyses of video and thermal imagery (e.g.217

Witsil & Johnson, 2020; Wilkes et al., 2022). However, such supervised machine learn-218

ing techniques require extensive training with well-curated data sets from field and lab-219
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oratory studies or simulations spanning the full range of spatio-temporal dynamics in-220

volved in the evolutions shown in Figure 1 and that we characterize in detail below. Such221

data currently do not exist. Consequently, we use a novel but time-intensive algorithm222

that combines spectral clustering, an unsupervised machine learning technique (von Luxburg,223

2007; Jia et al., 2014), with physics-informed constraints to automatically identify and224

track coherent and evolving column structures.225

We apply our structure tracking algorithm to track the rise of turbulent structures226

in thermal imagery from Sabancaya Volcano. We present analyses of 3 events: Event 1227

was a long-lived (about 4 hours total duration) sustained plume with quasi-periodic pulses228

at 20-30 s intervals; Event 2 was an “emergent explosion” (about 2-3 minutes duration)229

with an initial discrete vortex ring followed by quasi-periodic emissions at 12-20 s inter-230

vals; and Event 3 was a transient Vulcanian explosion dominated by a single initial pulse231

and followed by a decay period consisting of multiple subsequent pulses, and with broadly232

decreasing peak temperature over a period of about 30 s. We have three overarching goals:233

1. Track, characterize and understand quantitatively the evolution of entrainment234

and thermal mixing driven by fluctuating vent source conditions, laying key prac-235

tical groundwork for near-real-time computer-vision and machine-learning based236

characterization of unsteady eruption column dynamics.237

2. Demonstrate how to use ground-based, broad-band infrared imagery to constrain238

the entrainment and mixing properties for unsteady eruptive phases and to iden-239

tify whether 1D models with parameterized average values for the entrainment co-240

efficient α might be applied to the three eruptive phases.241

3. Outline a broad framework to quantitatively define eruption source unsteadiness242

and its effect on column dynamics and column rise.243

This manuscript is organised as follows. In Section 2 we provide an overview of the244

field campaign and summarize the observed character of our three studied events. In Sec-245

tion 3 we overview pre-processing steps performed to maximize tracking algorithm per-246

formance, summarize the tracking results, and explain the data analysis approach used247

to understand how the tracking algorithm can reveal unsteady dynamics. In Sections 3.1-248

3.2 we first perform image pre-processing that includes projection into physical coordi-249

nates, image segmentation of columns edges from background using the plumeTracker250

algorithm of Bombrun et al. (2018), and fitting to an atmospheric temperature profile251

to correct for both error in absolute temperature measurement and atmospheric strat-252

ification. In Section 3.4, we outline our method to obtain time averaged thermal images,253

which we will later compare with the results of structure tracking to understand differ-254

ences in insights and interpretation obtained from evaluating unsteadiness versus time255

averaging approaches. In Section 3.5 we then summarize our algorithm based on spec-256

tral clustering to automatically track individual column pulses or coherent turbulent struc-257

tures, further details of which are outlined in Appendix B. In Sections 3.6 and 3.7, we258

outline an approach to understand information obtained from structure tracking in terms259

of the dynamical behavior of rising eruption columns. In particular, we apply a curve-260

fitting analysis to derive the power law exponent B for each tracked structure, compar-261

ing against results from time-averaged images and from theoretical predictions for steady262

plumes and thermals from Equations 3 and 4. Section 4 compares inferred unsteady source263

evolution against the results of structure tracking and curve fitting, for both time-averaged264

images and for a total of 26 tracked column “structures” across the three events. In Sec-265

tion 5 we then build a broad view of various measures for defining source unsteadiness266

in volcanic columns, and propose one quantitative metric for source unsteadiness as it267

relates to power law decay and entrainment behavior. Following from the above descrip-268

tion, readers may focus on the following sections according to interest: Sections 3.1-3.2269

and 3.5 contain detailed information on thermal imagery data processing and structure270

tracking, whereas data analysis related to column behavior and unsteadiness measure-271

–7–



manuscript submitted to Geochemistry, Geophysics, Geosystems

ments are primarily contained in Sections 3.3-3.4, 3.6-3.7, and the Results and Discus-272

sion sections.273

2 Observations and Data274

2.1 Field Deployment and Data Set Overview275

Sabancaya is a stratovolcano of andesitic to dacitic composition, and is a secondary276

edifice of the larger Ampato-Sabancaya Volcanic Complex in the Southern Volcanic Zone277

of the Peruvian Andes (Gerbe & Thouret, 2004; Samaniego et al., 2016). The most re-278

cent eruptive episode began in November 2016 with a sequence of Vulcanian explosions,279

following a 4 year period of precursory seismicity and gradually increasing heat flux and280

sulfur dioxide outgassing (Global Volcanism Program, 2013; Coppola et al., 2022). The281

ongoing (as of this writing) eruptive sequence has been characterized by episodic lava282

dome growth, recurrent (up to several 10s per day) Vulcanian explosions, and highly vari-283

able rates of degassing (Coppola et al., 2022). Coppola et al. (2022) noted a distinct ex-284

cess of outgassing volume relative to erupted magma volume, indicating relatively open285

system degassing fed by a shallow magma reservoir. The data we present here were recorded286

during Phase 3 of the eruption as identified by Coppola et al. (2022), lasting from Jan-287

uary 2018 to March 2019 and marked by a lack of growth in the summit lava dome and288

a relatively stable rate of about 20 explosions per day.289

During May 18 - 26, 2018, we recorded high-resolution, ground-based broadband290

thermal imagery of eruptive activity at Sabancaya. Eruptive activity during our obser-291

vation period was highly varied, ranging from emergent to impulsive explosions, tran-292

sient to pulsatory to approximately continuous, and involving emissions that were fre-293

quently ash-poor and gas-rich, though with significant variation within and between events.294

Though ash fall was present and recorded in the field by ash collectors and an optical295

disdrometer (Gilchrist, 2021), it was relatively minor across all events, consistent with296

previous interpretations of excess degassing during this eruptive phase (Ilanko et al., 2019;297

Coppola et al., 2022), and we do not report further on these data here. Some individ-298

ual eruptive phases transitioned continuously among these regimes in response to vent299

source conditions that varied in space and time, behavior that is qualitatively similar to300

events described in previous studies (e.g. Clarke, Voight, et al., 2002; Patrick, 2007; Webb301

et al., 2014) and consistent with activity at Sabancaya throughout the most recent erup-302

tive sequence (Global Volcanism Program, 2013; Coppola et al., 2022). Emissions were303

often observed simultaneously from multiple source regions within the crater. Despite304

fluctuations in vent source conditions, of particular and striking note was the regular re-305

currence interval of approximately 4.5 hours for the largest explosive events. These events306

were typically impulsive, relatively more abundant in ash and bombs, reaching heights307

between 1-4 km above the vent (about 6-9 km a.s.l.), with higher eruption velocities and308

temperatures frequently saturating the thermal camera at about 140°C. They were also309

often preceded by an obvious decay in emissions of water vapor and ash over a timescale310

of minutes to tens of minutes, and followed by sustained emission or periodic smaller ex-311

plosions for periods of minutes to hours. We exploit the time-varying nature of the ob-312

served events to explore the effects of unsteady source emission on the dynamics and evo-313

lution with height of the resulting eruption columns.314

Figure 2 shows a shaded digital elevation map (DEM) of the field area around Sa-315

bancaya. The DEM data were retrieved from the ALOS PALSAR data set via the Alaska316

Satellite Facility (ASF-DAAC, 2015, accessed 2018-09-17), and have a horizontal reso-317

lution of 12.5 meters. Thermal imagery was captured from observation sites 1 and 2 (slant318

distances to the vent location of 5.92 and 4.93 km, respectively), marked with yellow tri-319

angles. Thermal imagery was recorded using an Infratek VarioCam HD handheld ther-320

mal camera, with an average frame rate of 10 Hz (varying as a result of the internal op-321

eration of the camera). The thermal camera has a resolution of 768 by 1024 pixels, and322

–8–



manuscript submitted to Geochemistry, Geophysics, Geosystems

8 10 12 14 16 18 20

8

10

12

14

16

18

20

4600

4800

5000

5200

5400

5600

5800

6000

6200

AmpAmpAmpAmpAmpAmpatoatoatoatoatoatoatoatoatoatoatoatoAmpAmpAmpAmpAmpAmpAmpatoatoatoatoatoatoatoatoAmpAmpAmpAmpAmpAmpAmpAmpAmpAmpatoatoatoatoatoatoatoatoatoatoAmpAmpAmpatoatoatoAmpAmpatoatoAmpAmpatoatoatoatoatoatoatoatoatoatoato

ayaayaayaayaayaayaayaayaSabSabSabSabancancancancayaayaayaayaayaayaayaayaayaayaSabSabSabSabSabancancancancancancancayaayaayaayaancayaayaSabSabSabSab ayaayaayaayaancancSabSabancancancancayaayaayaSabSabSabSabSab ayaayaayaayaancancancancSabSabSab

SitSite 1e 1e 1e 1e 1SitSitSitSitSitSitSitSite 1e 1e 1SitSitSitSit

Ampato

Sabancaya

Site 1

Site 2

(a)

(b)

Camera
view field

Camera

centerlin
e

Vent

P
ro

je
ctio

n
 p

la
n

e

Reference

Figure 2. (a) Digital elevation map of the field area around Sabancaya Volcano. The vent

location is marked with a red “X”, and the blue “X” marks the location of the “reference” fea-

ture used for image projection into physical coordinates. Field observation sites are marked with

yellow triangles. The black star gives the pixel center for the MODIS atmospheric profile used

in analysis (see Section 3.2) for Events 1 and 3 (May 25, 2018, 12:34pm local time). The pixel

center of the AIRS atmospheric profile used for Event 2 (May 24, 11:27am local time) is outside

the map bounds to the East. (b) Cartoon of camera field geometry (not to scale), showing the

edifice and projection plane used to convert image pixel coordinates into spatial coordinates (see

Section 3.1 and Supplementary Information).
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a broadband frequency range of 7.5 to 14 µm, and the data were recorded as brightness323

temperatures Tb.324

The amplitude of recorded brightness temperatures can be affected by frequency-325

dependent scattering and absorption effects related to the lapse rate and water vapor326

content of the atmospheric volume between the camera and the erupting material, as well327

as the presence of water droplet clouds and aerosol particles along the optical path length.328

To correct for the lapse rate trend and retrieve the excess temperature according to Equa-329

tions 1-4, we remove atmospheric temperature profiles Ta(z) retrieved from the MODIS/Terra330

(Moderate Resolution Imaging Spectroradiometer, spatial resolution 5 km, Borbas (2015))331

and AIRS/Aqua (Atmospheric Infrared Sounder, spatial resolution 50 km, Teixeira (2013))332

satellite data sets for this location and time period. The atmospheric profiles are used333

to obtain the excess temperature ∆T (z). Casting the thermal imagery in the form of ∆T334

rather than absolute temperature or brightness temperature not only facilitates a qual-335

itative analysis of the evolution of physical and thermal properties of a column with height336

and time, particularly in terms of the character and timescales of mixing with ambient337

atmosphere, but also allows quantitative analysis of the power law thermal evolution,338

as we will show below (see Section 3.2).339

Table 1: Table of variables.

Variable Description Units

A Structure area m2 or pixels
A∗ Normalized amplitude of source fluctuation -
B Power law exponent of temperature evolution with height
C95 Courant number using 95th percentile velocity -
Cmode Courant number using velocity mode -
cp Pyroclast heat capacity J kg−1 K−1

dt Time step between video frames s
dx Projected horizontal pixel dimension m
dz Projected vertical pixel dimension m
E Column vertical power delivery J s−1

E′ Normalized magnitude of power fluctuation -
Ē Mean rate of power delivered at the column source J s−1

Fp Column source buoyancy flux m4s−3

Ft Thermal total source buoyancy m4s−2

i Vertical (row) pixel coordinate -
j Horizontal (column) pixel coordinate -
k Frame (time) coordinate -
L Radial length scale of the largest entraining eddies m
M Objective function data fit term -
nc Number of clusters -
nc0 Calculated optimum number of clusters -
nP Number of frames used in structure tracking memory -
npx Number of pixels in a cluster -
N Brunt-Väisälä frequency s−1

P Objective function memory fit term -
PT Objective function: temperature memory term -
PV Objective function: velocity memory term -
PA Objective function: area memory term -
PD Objective function: distance memory term -
Puµ Mean State Pulsation Number -
Pu0 Fluid Overturn Pulsation Number -
R Column radius m
R0 Vent radius or initial eddy radius m
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Continuation of Table 1

Variable Description Units

Ta Atmospheric background temperature K
Tb Brightness temperature K
Tp Column absolute temperature K
T̄i Cluster average pixel temperature K
∆T Excess temperature (after atmospheric profile removal) K
∆Tmode Mode scalar difference between Tb and Ta K
∆T95 Subscript denotes percentile of distribution (95th percentile here) K
∆Tsrc Excess temperature in a fixed image window immediately above crater rim K
∆T src Low-pass filtered ∆Tsrc, a proxy for mean heat flow K
∆T ′

src Normalized magnitude of fluctuation about the mean ∆T src -
t Time s
u Horizontal velocity m s−1

u⃗ Vector velocity field (u, v) m s−1

V̄i Cluster averaged vertical pixel velocity m s−1

v Vertical velocity m s−1

W Scalar parameter weight -
x Horizontal position (perpendicular to camera view) m
z Height above volcanic vent level m a.v.l.
z0 Height of column virtual source m a.v.l.
zmix Column mixing height or length scale m
ϵ Velocity tolerance scale for structure tracking -
ε Thermal infrared (broadband) column emissivity -
ξ Thermal infrared (broadband) atmospheric transmissivity -
λ Objective function regularization parameter -
ρ Column bulk density kg m−3

τmix Time scale for column source fluctuations to become well-mixed in mean flow s
τot Overturn time scale of large eddies s
τrise Characteristic column rise time to the neutral buoyancy level s
Ω Objective function for optimization -

340

2.2 Thermal Imagery of Unsteady Eruption Processes341

Here we analyze three recorded events spanning the range of unsteady character342

we observed (Figure 3, ordered from the most steady (Event 1) to the most transient (Event343

3)). Events 1 and 2 were recorded from observation site 1, Event 3 was recorded from344

observation site 2 (see Figure 2a). The visual character and temporal evolution of the345

three events are summarized in Figure 3. To obtain a proxy of column source evolution346

with time for each event, we define a narrow windowed region of the images at a fixed347

height immediately above the crater rim as the “source window” (highlighted in blue in348

the image frames of Figure 3(a-c)). We use the statistics of excess temperature ∆Tsrc349

within this region as a useful proxy for the time-evolution of mass and energy flux from350

the volcanic vent, following Patrick et al. (2007). The source window therefore provides351

a picture of the character of time dependence or unsteadiness at the column source (Fig-352

ure 3(d-f)).353

Event 1 was a sustained ash plume lasting for a period of about 4 hours from about354

05:50 to about 10:00 on May 25 (we use local time, UTC -05:00, throughout), with typ-355

ical rise velocities of about 5-10 m/s. Though less dominated by distinct pulses at the356

source than Events 2 and 3, Event 1 had quasi-periodic fluctuations in source temper-357

ature at intervals of 10-30 seconds (dominantly about 15-18 s). Event 2, on May 24 at358
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Figure 3. Three eruption events with varying character, duration, and degree of unsteady

source behavior. The left column of panels - (a) through (c) - shows two example thermal im-

ages from each event, and the right column of panels - (d) through (f) - shows the corresponding

time-evolution of “source” excess temperature ∆Tsrc within a thin “source window” (highlighted

in blue in the thermal images). Vertical grey bars in the right column highlight the times corre-

sponding to images in the left column. All times are given from the event start, except for Event

1, which shows video time for the data shown because the event was very long-lived. Dark blue

and orange lines show the median and mean ∆T , respectively, of pixels in the source window,

and the dark and light blue shaded regions give the 25-75 and 5-95 percentile ranges. The light

blue line at the bottom, and the green line at the top each give the respective minimum and

maximum ∆T . Note the flattened peaks of the hottest pixels for Events 2 and 3, indicating sat-

uration of the thermal camera. See Section 3.3 for details on how the column source data are

retrieved.

–12–



manuscript submitted to Geochemistry, Geophysics, Geosystems

10:30, was an emergent starting plume, with a main duration of about 120 seconds and359

rise velocities of about 10 m/s, followed by continued low-intensity ash and gas emissions360

for a period of about 10 minutes with rise velocities of 5 m/s, eventually transitioning361

to continuous steam-dominated emission. As shown in Figure 3e, the main phase dur-362

ing the first 120 seconds was characterized by quasi-periodic pulses of hot material at363

intervals of about 10-20 seconds (dominant 10-15 s). Event 3 occurred on May 25 at 15:10364

, and was highly impulsive and short-lived (peak mass flux occurred within the first 15365

to 20 seconds, and emission largely ceased within about 60 to 90 seconds), and was broadly366

characteristic of a Vulcanian-type explosion (Clarke et al., 2015). Minimum velocities367

in the starting jet were estimated at 40 m/s, and the event was accompanied by the fall-368

out of blocks and bombs following ballistic trajectories. Three to four distinct pulses of369

hot material followed the initial pulse, at intervals of approximately 7-12 seconds and370

with rise velocities typically 15-20 m/s, superposed on a continuous decay in mean source371

temperatures, as shown in Figure 3f.372

Importantly, for all of the studied events the distinctive peaks in heat content in373

the source window are apparent in the visible column as coherent vortices, which rise374

and cool as they mix turbulently with entrained atmosphere. Based on the observed evo-375

lution of rise height and spreading rates (Patrick, 2007; Webb et al., 2014), Event 3 is376

the only event with an obvious momentum-driven gas-thrust phase, though it was only377

captured in time lapse thermal imagery (frame rate of about 0.25 Hz) rather than full378

video (see Section 4.1). No momentum-driven phase is apparent for either of Events 1379

and 2, which together with relatively minor ash-fall is suggestive that the activity was380

driven by relatively gas rich and ash-poor eruptive phases. Because of the lack of obvi-381

ous momentum-phases in the three studied events, we will chiefly focus on theory for buoyancy-382

driven flows (plumes and thermals) herein. We note however that the effect of momentum-383

driven phases would need to be accounted for in applying our methods to volcanic events384

more broadly.385

3 Methods386

In this section we summarize steps used in the structure tracking workflow and quan-387

titative data analysis. In Sections 3.1 to 3.4 we outline the thermal imagery data prepa-388

ration steps that facilitate our later quantitative analysis. An overview of the tracking389

algorithm is given in Section 3.5, and additional details of the internal function and de-390

sign are in Appendix B. Quantitative results and implications for column dynamics are391

described in Section 3.6 and beyond.392

3.1 Workflow Overview393

The goal of the methods workflow is to track the location in time of coherent tur-394

bulent structures in the column and assess quantitatively their thermal evolution and395

mixing properties as a function of time and height above the vent. Accordingly, the pri-396

mary output data products of the workflow are:397

1. Excess temperature and 2D velocity fields (∆T, u, v) = f(x, z, t).398

2. Column source (near-vent) time history of velocity and temperature informa-399

tion (e.g. Figure 3d-f).400

3. Location in physical coordinates (x, z, t), as well as velocity and temperature statis-401

tics of tracked column structures.402

4. Evolution of radius or area and temperature with height for each tracked struc-403

ture and for the time-averaged column.404

To obtain the above outputs, the data processing and analysis workflow is summa-405

rized in Figure A1, and includes the following main steps:406
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1. Data preparation, including conversion to MATLAB format, image stabilization,407

and obtaining binary image masks separating column pixels from background/foreground408

using the plumeTracker code (Bombrun et al., 2018). Details of these steps409

can be found in Supplementary Information Section 1.1 and 1.2.410

2. Projection and interpolation of image pixels into regularly sampled spatial co-411

ordinates (x, z, t) on a vertical plane relative to the volcanic vent (Figure 2b and412

Supplementary Information Section 1.3).413

3. Estimate 2D velocity flow field using Optical Flow Analysis (Sun et al., 2014)414

(Supplementary Information Section 2).415

4. Fit and remove satellite-derived atmospheric temperature profiles from the ther-416

mal imagery (Section 3.2 and Supplementary Information 3).417

5. Retrieve temperature and velocity statistics with time for the column source (Sec-418

tion 3.3).419

6. Generate time-averaged thermal images to compare tracking results with a steady-420

plume approximation (Section 3.4).421

7. Run structure tracking algorithm to track coherent column structures (Section422

3.5 and Appendix B).423

8. Statistical analysis and curve fitting of temperature and velocity data for tracked424

structures (Sections 3.6 and 3.7).425

Here, we briefly summarize the initial data pre-processing steps (1)-(4), and give426

a broad overview of the structure tracking algorithm used in step 7. After initial con-427

version to MATLAB data format, image registration correction was performed as nec-428

essary when windy field conditions or user operation caused shaking of the camera. To429

retrieve the dimensions and velocities of column structures, we project images in verti-430

cal and horizontal pixel coordinates (i, j) onto respective spatial coordinates (z, x) in a431

vertical plane centered above the volcanic vent as shown in Figure 2b. We use the lo-432

cation of a recognizable reference point on the volcanic edifice (shown in Figures 2, 3a,433

and Figure S2) to calculate the tilt and azimuth of the camera field of view, then cal-434

culate (z, x) for individual pixels in the thermal imagery using geometrical relationships435

(Harris, 2013) (See Supplementary Information Section 1.3 for a complete description436

of the projection equations). We numerically propagate uncertainty in the positions of437

the vent and reference feature to estimate uncertainty in pixel dimensions and absolute438

position. The projection process results in resolutions of about 3.4±0.06and 2.7±0.06439

m per pixel from Observation Sites 1 and 2, respectively, and absolute positional errors440

of less than 60 m for ash column elements. Absolute positional errors result primarily441

from uncertainty in the absolute positions of the reference feature and vent, and are im-442

portant only for matching satellite-derived atmospheric profiles to the data. For track-443

ing of column structures and assessing their evolution with height, relative positional er-444

ror is of greater importance and is primarily influenced by the distance between column445

elements and the assumed projection plane above the vent. In Section 3.2 and Supple-446

mentary Information Section 3.1 we discuss estimates of relative positional error in cases447

where column features lie outside of the projection plane.448

We use the plume tracking and segmentation algorithm of Bombrun et al. (2018)449

to obtain binary masks of eruption columns for all video frames, which we use to isolate450

column elements for later analysis. Then, to enable quantitative analysis of image data,451

particularly filtering of optical flow velocity fields, we interpolate each frame onto a reg-452

ular grid in spatiotemporal coordinates (x, z, t). In particular, we linearly interpolate spa-453

tial coordinates (x, z) onto a regular grid in the projection plane. We then resample the454

resulting gridded images in time using a piecewise cubic Hermite interpolation (Carlson455

& Fritsch, 1985), since the raw image frames are recorded with slightly variable time-456

steps. The result is a 3D array of brightness temperature data Tb with dimensions (i, j, k) →457

(z, x, t). Next, we estimate the 2D velocity field u⃗ = (u, v), since our structure track-458

ing algorithm uses combined velocity and temperature information to detect and track459
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the pixel groups corresponding to coherent turbulent structures. We use an Optical Flow460

Analysis toolbox (Sun et al., 2014; Tournigand, Taddeucci, et al., 2017; Smith et al., 2021),461

which produces a displacement vector between subsequent frames for all pixels in units462

of pixels/frame. Displacements are converted to velocities in m/s using the projection463

mapping described above (See Supplementary Information Section 2 for complete de-464

tails).465

3.2 Atmospheric Profile Removal466

To obtain ∆T and enable a quantitative analysis based on Equations 1 and 2, we467

remove the atmospheric temperature profile Ta(z) from the raw brightness temperature468

data Tb, while also applying a correction for the difference between Tb and the absolute469

column temperature Tp. Figure 4 gives an overview of the approach and results for this470

atmospheric profile fit and removal step, and further details of the methods are outlined471

in Supplementary Information Section 3. Figure 4a shows a schematic representation of472

the expected evolution with height of Tp(z) in purple. The processes governing turbu-473

lent entrainment and column rise will thermally mix ambient atmosphere with the erupt-474

ing column such that ∆T asymptotically approaches 0 at large height above the vent.475

Therefore a region exists where the excess temperature ∆T is sufficiently small that it476

lies within the range of column temperatures as recorded by the thermal camera. In this477

region, bracketed by horizontal, purple dashed lines in Figure 4a-d, the column is suf-478

ficiently well-mixed that the brightness temperature trend dTb/dz is effectively indistin-479

guishable from dTa/dz, provided that the following assumptions hold:480

1. the column remains thermally opaque such that no background radiation is in-481

cluded in column pixels;482

2. the height estimates of column elements following image projection are accurate483

to within about 150-300 m (corresponding to a temperature change of ∼1 to 2 K484

following the lapse rate);485

3. combined emmissivity and transmissivity (εξ) in the camera waveband is relatively486

constant with height above the vent.487

Note that this does not require that the column is at thermal equilibrium with the at-488

mosphere, as positive values of ∆T of a few K are still sufficient to drive buoyant rise.489

For the transient events, however, as the mass flux from the vent decays, column rise slows490

as Tp(z) approaches thermal equilibrium with the atmosphere such that as t → ∞, ∆T →491

0 at all heights. The atmospheric profile fit is determined using the subset of pixels suf-492

ficiently “well-mixed” to estimate a correction factor ∆Tmode, which we describe below.493

For comparison to the theoretical picture of panel (a), panels (b)-(d) in Figure 4 show494

probability density functions (PDFs) of Tb(z) for pixels within the ash columns of Events495

1 to 3, respectively, compared against the satellite-derived temperature profiles. The at-496

mospheric profiles are interpolated from the raw satellite vertical resolution (about 1.2497

to 1.4 km) onto the z coordinate of the image projection plane.498

Due to radiative losses in the camera waveband from column grey-body emissiv-499

ity ε and atmospheric transmissivity ξ , we expect that Tb underestimates the value of500

Tp, as shown by the blue line in Figure 4a. Tb is related to Tp by the Stefan-Boltzmann501

Law:502

T 4
b = (εξ)T 4

p . (5)503

Here, because the values of ε and ξ are unknown for an ash-laden column, we estimate504

∆T using a linear approximation for absolute temperature to recast Equation 2 as505

∆T ≈ Tb −∆Tmode − Ta, (6)506

where ∆Tmode is assumed constant (Figure 4a). Note that the approximation in Equa-507

tion 6 follows from assumption (3) above provided that the range of ∆T is relatively small,508
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Figure 4. Atmospheric profile removal. (a) Schematic evolution with height for absolute col-

umn temperatures Tp(z) (purple line gives the mean, shaded field gives the approximate range)

relative to the atmospheric stratification (dashed orange line) for a steady plume. An equivalent

brightness temperature trend Tb(z) as recorded by a thermal camera is shown in blue. (b)-(d)

Probability density function (PDF) profiles of Tb(z) for Events 1-3, respectively, where each PDF

is derived from column pixels at a fixed height for all image frames. (c),(d) shows late-time fil-

tered pixels for Events 2 and 3. Interpolated satellite atmospheric profiles are shown in orange

before (dashed line) and after (solid line) addition of ∆Tmode. The blue points show the mode

of Tb at each altitude. (e) Example Tb for a single frame at t = 240 s after the onset of Event

3, highlighting portions of the frame that are filtered to obtain an estimate of ∆Tmode. (f) ∆T

as obtained from Equation 6, for the same frame as in (e). (g) PDF’s of Tb − Ta for Event 1: all

column pixels (blue), and fitted pixels with all filters applied (orange). Vertical dashed grey line

give the estimate of ∆Tmode based on the filtered peak half-maximum. (h) As in (g) for Event 2.

The yellow line gives the PDF for all column pixels after t = 164 s (a “late-time” filter only). (i)

As in (g) for Event 3. The yellow line gives the PDF for all column pixels after t = 200 s.
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say less than 100 to 200 K, because the effects on radiative heat transfer of broadband509

emissivity and transmissivity scale as T
1/4
b . This approximation is therefore not valid510

for magmatic temperatures in general, but is reasonable in our case since the highest tem-511

peratures we record are about 400 K (the upper limit of the thermal camera gain set-512

ting we employed). For example, assuming that the satellite atmospheric profile gives513

the true temperature (about 267 to 275 K between 6500 and 7500 m a.s.l.), then for the514

largest estimated magnitude of ∆Tmode = −12.4 K (Event 3, Figure 4d), Equation 5515

implies a combined emission and transmission loss (εξ) ≈ 0.83. In this case, the max-516

imum error introduced to our ∆T approximation for the hottest (unsaturated) pixels is517

about 7 K, and typically less than about 2 K. In Supplementary Information Section 3.4518

we further demonstrate that this approximation has a negligible impact on our quan-519

titative results for power law temperature decay.520

To calculate ∆T for each event, we perform careful data filtering steps to obtain521

the subset of column pixels within the “well-mixed” region, and use these data as a ref-522

erence to fit the atmospheric profile and obtain the correction ∆Tmode. In particular, we523

apply data filters to remove pixels that are:524

1. near to the visible edge of the ash column and which are likely to be highly oblique525

and partially transparent. A distance of 20 pixels, or about 10 to 25% of the col-526

umn radius in the fitting region, is sufficient in practice.527

2. still at elevated temperature above background following emission from the vent.528

We manually choose a height for each event below which pixels are removed, and529

this is shown by the bottom dashed purple line in Figure 4(b)-(d).530

3. have large uncertainty in height above the vent. Height uncertainty is calculated531

automatically for each event, as described in Supplementary Information Section532

3.1. The approximate cutoff height, which may vary in x, t, is shown by the top533

dashed purple line in panels (b)-(d).534

4. at early time when column temperatures are highest, for the transient Events 2535

and 3 only, since those pixels are most dissimilar to the background atmosphere.536

We choose frames greater than 164 s and 200 s after the start of Events 2 and 3,537

respectively (c.f. Figure 3). This step minimizes ∆T values and maximizes the height538

window obtained from steps 2 and 3 above.539

Figure 4e shows typical results of the pixel filtering for a single example frame of540

Event 3. The manual filter of near-vent pixels and the automatic filter of pixels with large541

height uncertainty are shaded in purple, and the filter to remove transparent pixels is542

shown near the column edge. The remaining pixels outlined in red in the column mid-543

dle region are those that can reliably be used to match the atmospheric profile trend dTa/dz.544

Subtracting Ta(z) from these data therefore removes the stratification trend and pro-545

duces a population of pixels for which ∆T is close to 0. The difference Tb−Ta is plot-546

ted as probability density functions for each event in Figure 4, panels (g)-(i) for differ-547

ent subsets of pixels. Pixels with all filters applied PDFs show a single peak at -10.8 K,548

-2.2 K, and -12.4 K for Events 1, 2, and 3, respectively. From the description above and549

as shown in panel (a), we expect the filtered pixels will retain some positive ∆T , i.e. el-550

evated above temperatures corresponding to Ta. For simplicity, we choose the more neg-551

ative half-maxima of the filtered peaks (i.e. the value of Tb−Ta at which the PDF peak552

reaches half of its maximum probability) as the estimate of ∆Tmode for each event. These553

values correspond to -12.8 K, -3.0 K, and -13.6 K, for Events 1, 2, and 3, respectively,554

and are shown with dashed grey lines in panels (g)-(i). In Supplementary Information555

Section 3.3, we give further rationale for this choice of ∆Tmode by showing that column556

temperatures at any given height tend statistically towards local minima that coincide557

approximately with this choice of the peak half-maxima. The ∆Tmode correction pro-558

vides a readily-identified and adjustable threshold ∆T value below which pixels are likely559

to be partially transparent, capturing background atmospheric emission and therefore560
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not representative of the plume thermal mixing process. This choice also facilitates the561

power-law fitting process outlined in Section 3.7.562

3.3 Column Source Time-series Retrieval563

To investigate time-evolving column source behavior as shown in Figure 3, we choose564

an image window that is as close as possible to the vent but excludes all edifice pixels,565

and has a height approximately equivalent to the dimension of the largest entraining ed-566

dies which we will track. Typically for a single vent source this corresponds to the ra-567

dius of the column. For Event 3, which has a complex source consisting of multiple vents568

and consequently eddy structures that are often much smaller than the apparent column569

radius, we use a correspondingly smaller window height as shown in Figure 3c. The left570

and right limits of the source window are dictated by the boundaries of the column mask571

for a given frame, and thus vary with time. Once the exact window position as a func-572

tion of time is defined, we retrieve statistical information of the temperature and veloc-573

ity fields within the window for all frames. These outputs include the mean, median, min-574

imum, maximum, variance, and the 25-75 and 5-95 percentile ranges as shown in Fig-575

ure 3d-f. This procedure captures variations in source temperature and velocity on time576

scales most relevant for resolving entrainment processes and, furthermore, sets the pre-577

ferred initial dimensions of a moving window used for structure tracking, since the co-578

herent column structures of interest are approximately of this length scale. The result-579

ing temperature time-series at the source ∆Tsrc(t) is used, in turn, to detect the initi-580

ation and duration of the largest pulses of hot material from the vent.581

A goal of this analysis is to estimate the thermal evolution of bulk (or interior) col-582

umn temperature with time and height, which varies with fluctuations in source mass583

and buoyancy fluxes. Since the camera records temperatures at the outer edges of ed-584

dies, the hottest temperatures visible in an apparent structure at any time are represen-585

tative of material emerging from the hot interior of the ash column as a result of the over-586

turning motions of eddies at various scales during turbulent mixing. Consequently, vari-587

ations in peak temperature are proxies for relative variations in mass or buoyancy flux588

(Patrick et al., 2007; Gaudin et al., 2017). As shown in Figure 3d-f, the maximum val-589

ues of ∆T (shown in green lines) are overprinted with relatively low amplitude, high fre-590

quency variability (periods of less than about 2 to 5 seconds) that arise from fluctuations591

in the velocity field related to turbulence and accelerations over scales much smaller than592

the largest eddies. By contrast, we find that the smoothed time series given by the 75th593

and 95th percentiles are more effective for capturing variability related to the largest vent594

source pulses, jets and plume/thermal motions. Consequently in the analyses below, we595

will make use of these percentiles of ∆T to constrain the hottest column interior tem-596

perature variations related explicitly to entrainment and thermal mixing by the largest597

turbulent motions as erupted material rises. For automating pulse detection, we employ598

a simple short-term-average/long-term-average (STA/LTA) detection method similar to599

that used in seismic event detection (Sharma et al., 2010), using the time series of tem-600

perature variance in the source window. Since the number of events and structures we601

track is relatively small, in many cases we manually refine the choice of the first frame602

of the detected pulse for which to initiate the structure tracking algorithm. Automation603

of the detection step is, in principal, relatively straightforward and any number of de-604

tection algorithms could be employed for larger data sets.605

3.4 Time-averaged Images606

Studies of volcanic column dynamics routinely use long-time-averaged measurements607

of flow properties as an effective means of “removing” the effect of turbulent fluctuations608

and enabling direct comparison to predictions from steady plume theory, and this ap-609

proach has also been applied to ground-based thermal imagery of volcanic columns (e.g.610

Patrick et al., 2007; Cerminara et al., 2015). Time-averaging is, in principle, a useful tech-611
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nique that is easily applied to field observations and experimental data. However, time-612

averaging is not a straightforward exercise for unsteady eruptive regimes where varia-613

tions about notional mean properties are non-stationary, can exceed the mean itself, and614

where the column vertical temperature profile at any one time is the integrated result615

of a continuously evolving source condition. How best to choose the time intervals over616

which to carry out time-averaging such that essential thermal mixing properties of the617

three basic flow regimes in Figure 3 are readily identified and distinguished is, for ex-618

ample, unclear.619

To explore the extent to which time-averaging of thermal data captures the essen-620

tial characteristics of plume/thermal flow regimes with varying unsteady character, we621

produce time-averaged images of the three studied events for comparison with the re-622

sults of our time-dependent tracking algorithm, which we discuss next. Specifically, we623

will compare reconstructed thermal evolutions with height produced by both methods.624

We construct time-averaged images for each event by first selecting an appropriate av-625

eraging interval. For the approximately steady Event 1, the mean-flow is easily defined626

and we use the full 5-minute span of data shown in Figure 3d. For Event 2, we select the627

period following the starting pulse that is dominated by highly pulsatory flow (i.e. large628

fluctuations about the mean, 47 to 150 seconds in Figure 3e) as an intermediate flow regime629

between the approximately steady flow of Event 1 and the strongly transient flow of Event630

3. For Event 3, which is characterized by both pulsatory and rapidly decaying vent source631

conditions, we average over the first 54 seconds, which excludes the early development632

of the starting pulse that was not captured with full resolution video, but includes the633

rest of the starting pulse rise and the subsequent 4-5 large pulses (Figure 3f, see also Re-634

sults section). After filtering out pixels with large height uncertainty and background635

temperature values according to Section 3.2, we take a time-average of both the tem-636

perature and velocity fields for all pixels that lie within column masks, averaging all quan-637

tities over the full duration of the time windows described above. We further discuss the638

resulting time-averaged images and their quantitative analysis in Section 4.2.639

3.5 Structure Tracking of Turbulent Structures640

The primary output of the structure tracking algorithm is the “segmentation” (la-641

beling) of pixel groups belonging to individual, coherent, turbulent structures rising from642

the vent. Once structures have been identified and tracked, their temperature and ve-643

locity statistics with height and time are retrieved for further analysis. The result is a644

measure of the structure evolution from the point in time at which it was emitted from645

the vent. Even assuming highly accurate optical flow velocity retrieval, 2D velocity fields646

derived from optical flow analysis cannot be used alone for structure tracking because647

transient turbulent accelerations and instabilities related to mechanical effects of both648

entrainment and thermal mixing involve significant flow components normal to the imag-649

ing plane and rotational motions that have strong downwards components (see below).650

To track the motions of the dominant overturning structures that govern entrainment,651

we therefore use a combined spectral clustering and optimization technique to identify652

and isolate, on a frame-by-frame basis, groupings of pixels with similar velocity and tem-653

perature characteristics that move as coherent structures. Here we give an overview of654

the guiding principles in the tracking algorithm development and briefly describe the es-655

sential steps of the algorithm workflow, which are outlined in Figure 5. We describe the656

internal function of the algorithm in greater detail in Appendix B.657

Spectral clustering is an “unsupervised” machine learning technique for classify-658

ing unlabeled data, and is similar to other clustering approaches in that it finds group-659

ings with ‘similar’ properties. The choice of a metric for ‘similarity’ is a key element of660

all clustering algorithms. Here, we use spectral clustering to identify coherent structures661

in thermal imagery by the similarity of pixels, without relying on the absolute accuracy662

of pixel temperatures or velocities. Clustering alone, however, does not robustly capture663
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coherent eddies in their entirety because the complex internal motions and temperature664

fields in such structures are inherently heterogeneous. In particular, maximum temper-665

atures and vertical velocities occur at the upper leading edge of eddies and result from666

flow emerging from within the eddy interior, whereas rotating motions arising from eddy667

overturn and air entrainment give strong horizontal and downward velocities, as well as668

colder temperatures along eddy margins and trailing edges. As a result, large variances669

in both velocity magnitude and direction, and bi-modal temperature distributions are670

basic features of these large eddies as a whole, and clustering alone tends to divide ed-671

dies between the relatively hot, rising leading edges and the relatively cold and down-672

turning trailing regions (see for example, Figure 5b,c). We navigate this image analy-673

sis challenge by introducing an optimization step in our clustering algorithm that adds674

physical constraints related to the heat transfer properties of eddy structures of inter-675

est. Finally, because the column flow is continuous and differences between frames are676

small, using the “memory” of cluster location, temperature, and velocity field from pre-677

ceding frames during the optimization step enables the tracking algorithm to capture the678

evolution of the entire structure. Accordingly, the “tracked structure” for any given time679

step, or image frame, is the combination of both the selected (optimized) cluster and pixel680

locations of the tracked structure from previous time steps.681

The heat transfer properties of turbulent structures depend on their location, size,682

excess temperature and rise speed. Accordingly, we cluster our image data using the 5-683

variable space (i, j,∆T, u, v), where each variable is normalized to its standard devia-684

tion. We establish similarity with a ‘Similarity Graph’ that defines relationships among685

data points in a local neighbourhood, and which consists of a set of nodes (data points686

in our 5-variable space) and edges (weighted connections among similar data points) (von687

Luxburg, 2007; Saxena et al., 2017). We use the Matlab implementation of spectral clus-688

tering, which includes the following components: (1) The initial similarity graph is con-689

structed using a k-nearest-neighbours (Cover & Hart, 1967) approach to assign edges,690

and assigns the edge weights of each connection, or similarity, according to the Euclidean691

distance between data points. (2) A normalized, random-walk graph Laplacian matrix692

is constructed from the initial similarity graph (Shi & Malik, 2000), which serves to re-693

duce data dimensionality and enhance the contrast between data clusters (von Luxburg,694

2007; Saxena et al., 2017). (3) Finally, a clustering step using the k-Means method (MacQueen,695

1967; Saxena et al., 2017) is performed, using the eigenvectors of the Laplacian matrix696

as input variables. A major advantage of spectral clustering over other clustering meth-697

ods is that no strong assumptions are made on the form of data clusters (von Luxburg,698

2007). As a consequence, for the complex and frequently non-convex shapes of structures699

in our data space, we found that for capturing the shape of column structures in their700

entirety, spectral clustering generally outperformed other clustering methods that were701

tested during development (see Appendix B for further details on algorithm development).702

However, the Matlab implementation of spectral clustering is computationally expen-703

sive to perform for data sets of greater than about 10,000 points, and we consequently704

employ a frame-by-frame approach for the clustering step rather than incorporating time705

information.706

Spectral clustering forms the core of our tracking algorithm. However, the novel707

aspects of its implementation arise from careful selection of the data input and cluster708

output using physics-based constraints. Specifically, the goal is to track the largest, hottest,709

and fastest moving turbulent structures in the visible column. Physically, such structures710

will carry most of the heat (and driving buoyancy) flux and deliver a vertical heat flow711

E:712

E = πL2ρvcp∆T. (7)713

Here ρ is the bulk density of the erupting gas-particle mixture, cp is its bulk specific heat714

capacity (approximately that of the pyroclasts), and L is the characteristic radius or length715

scale of the largest turbulent eddies. We take the characteristic scale length for L to be716

1/2 the diameter of a plume or thermal, consistent with expectations from the entrain-717
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Figure 5. Structure tracking algorithm overview (see text for detailed description). (a) Track-

ing initialization includes identifying a starting frame and initial detection window, and perform-

ing an initial clustering step to identify the structure of interest. (b) For each subsequent frame,

the coldest pixels (the 30th percentile by default) are first filtered out, then the algorithm per-

forms spectral clustering of remaining pixels within the tracking window using different choices

for the number of clusters nc. (c) An optimization of candidate clusters identifies which output

cluster maximizes the apparent energy flux (equation 7) and also matches the structure memory

from previous frames. (d) In the final step, the structure memory from previous frames (dark

blue line) is “warped” towards the optimized cluster (magenta line) by comparing their relative

positions and allowing the memory boundaries to move within a physically realistic maximum

velocity (as determined statistically from the data set velocity fields). The resulting “warped

memory” (light blue line) is taken as the tracked structure.

ment assumption (Turner, 1986). The thermal evolution of such rising structures with718

atmospheric entrainment and mixing governs the overall evolution of eruption columns:719

the excess temperature ∆T , velocity field u⃗, and 2D area of structures A ∼ L2 as vis-720

ible in the thermal imagery are consequently the most important variables for cluster-721

ing and tracking.722

For each tracked structure, the tracking algorithm proceeds in 4 main steps and723

produces a single “track”, or record of the structure position in time and space. The steps724

are summarized here and described in greater detail in Appendix B. Step 1, initializa-725

tion, is performed once for the first frame of each track, while steps 2-4 occur for all sub-726

sequent frames. Steps 2-4 proceed until a stopping criteria is reached.727

1. Initialization (Figure 5a). Select a detection window (generally a visible re-728

gion of the column immediately above the volcanic vent - i.e. the “source win-729
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dow” shown in Figure 3), and perform an initial clustering step to identify a struc-730

ture of interest at track time tk = 0. Estimate the optimum number of clus-731

ters nc0, and initialize a tracking window: a moving sub-region of the frame de-732

rived from the detection window, centered on the tracked structure and which733

defines the subset of data to use in clustering steps.734

2. Spectral clustering (Figure 5b). First filter cold pixels or non-column pix-735

els from the tracking window; pixels below the 30th percentile of values within736

the tracking window are initially filtered by default, but this value is adjusted737

automatically as the target structure cools, to ensure that pixels in the target738

structure are not removed. Perform clustering of the remaining data as described739

above, repeating over a range of values of nc (typically nc0 − 1 to nc0 + 1).740

3. Optimization (Figure 5c). Among all identified candidate clusters, choose741

the cluster that both maximizes the apparent vertical energy flux and best matches742

the characteristics of the tracked structure in previous time steps (referred to743

hereafter as the “tracking memory”). This step is accomplished using the ob-744

jective function745

Ω = M + λ||P ||, (8)746

where M is a “data” term that optimizes for maximum heat flow, P is the “prior”747

term which evaluates similarity with the tracked cluster from previous time steps,748

and λ is a scalar regularization parameter which tunes the relative importance749

of the two terms. The algorithm tracks the cluster that minimizes the cost func-750

tion Ω. We describe each of the terms of Ω and its implementation in detail in751

Appendix B.752

4. Memory Warping (Figure 5d). Define the “tracked structure” for this time753

step as pixels that match both the selected cluster and tracking memory (i.e. the754

structure as identified in previous time steps) to within a position tolerance de-755

fined by the Optical Flow velocities. This step effectively prevents the bound-756

aries of the structure from evolving at a nonphysical rate. Physically and prac-757

tically, the clustering and optimization steps identify the hot “leading front” of758

the target structure, while the memory warping step retains information on the759

colder trailing edge. The combined components of clustering/optimization and760

memory warping therefore comprise the entire turbulent structure of interest.761

Finally, update or “warp” the tracking memory locations using Optical Flow ve-762

locity fields, and similarly move and resize the tracking window as needed to con-763

tinue following the tracked structure.764

To stop tracking a particular structure, it is appropriate to employ multiple stopping con-765

ditions including the when the structure tracks outside of the frame, or when data thresh-766

olds such as a maximum height uncertainty or minimum excess temperature are exceeded.767

Here we employ all of these, and also in some cases manually truncate individual tracks768

as necessary, for example when the tracked structure becomes obviously occluded or en-769

gulfed by another part of the column. The clustering and optimization steps make use770

of scalar weights (for clustering variables and the prior term P , respectively, see Appendix771

B for details). The choice of these weights, the regularization parameter λ, and selec-772

tion of data for curve fitting (see Section 3.7 below) require careful user oversight and773

are reasons our workflow remains user-intensive.774

3.6 Eddy Temperature and Size Retrieval775

Once a complete track has been obtained, the next step is to retrieve its size and776

temperature evolution as a function of height. Figure 6 shows an example single track777

from Event 1 to outline the process of obtaining R(z) and ∆T (z). To obtain R(z), for778

each frame we take the pixel area of the tracked object and calculate the radius of an779

equivalent area circle, converting this value to a length in meters using the pixel dimen-780

sions. The corresponding height for each radius measurement is taken as the centroid781
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of the tracked object. To obtain ∆T (z), we take a statistical distribution (i.e. the mean782

and 5th, 25th, 75th, and 95th percentiles, as for the source window in Section 3.3) of all783

tracked pixels for all frames at a fixed height. Practically, taking temperature distribu-784

tions for a tracked structure along a fixed height is computationally similar to creating785

the time-averaged thermal images. Both operations sample the 3D array of ∆T along786

the (x, t) dimensions, but only labeled pixels are sampled in the case of the tracked struc-787

ture, whereas all column pixels are sampled when creating time-averaged images. This788

sampling method allows a direct comparison of height evolution for a tracked structure,789

which is associated with the onset of a single pulse at the vent source, with estimates790

obtained from time-averaged images, which contain information for all source times within791

the averaging window. In Figure 6 and subsequent figures below and in the Supplemen-792

tary Information, plots of the time evolution of ∆T show the data distributions in terms793

of mean (dark line), percentiles (5-95 and 25-75 in light and dark gray shaded areas, re-794

spectively). We highlight the 95th percentile in blue since we use these values for the sub-795

sequent curve fitting and power law exponent retrievals.796

3.7 Virtual Source Estimation and Power Law Fitting797

The structure tracking algorithm retrieves information on the evolution of large tur-798

bulent structures with high time resolution comparable to eddy overturn times, and a799

central challenge is to understand the extent to which evolving behavior is influenced by800

source unsteadiness or is consistent with turbulent fluctuations inherent to statistically801

steady turbulent plumes. Here we outline a first order method to distinguish unsteadi-802

ness contributions, in which we obtain estimates of the power law exponent B govern-803

ing the evolution of ∆T with height both in individually tracked structures and in time-804

averaged images. We first note that in tracking turbulent structures and applying spread-805

ing rate and temperature decay fits as described above, we implicitly make the hypoth-806

esis that the individual structures behave in a manner that is self-similar and reflects the807

bulk flow properties, at least in an ensemble averaged sense. The extent to which vir-808

tual source locations and power-law fits agree between tracked structures and time-averaged809

images may variously indicate (a) whether the above hypothesis is correct and the flow810

is broadly self-similar in its evolution, or (b) whether the effects of source unsteadiness811

are significant and preclude accurate characterization of the flow using time-averaging812

approaches. We return to these assumptions in interpreting our results in Section 5.813

The steps to obtain power law fits are broadly: (1) apply a linear regression fit to814

the measured radius to obtain both spreading rate estimates and location of the virtual815

source z0, and (2) apply a power law fit of the form816

∆T95 = c1(z − z0)
B + c2. (9)817

As described in Section 1, plumes and thermals are predicted to evolve as a power law818

with distance downstream from a non-physical virtual source and assuming the effects819

of stratification are relatively small. Kaye and Scase (2011) show that for conditions in820

which the straight-sided solutions to the plume rise equations exist (i.e. radius growth821

is linear with height), the power law relation in Equation 3 is valid for purely buoyancy822

driven flows. In practice, this assumption generally requires that the altitude range over823

which we apply power law fits is less than both the scale height of atmospheric strati-824

fication and the maximum rise height of a plume or thermal (Caulfield & Woods, 1998;825

Bhamidipati & Woods, 2017). As we show below, the process of virtual source estima-826

tion below explicitly relies on column conditions for which rise is effectively straight-sided827

and the power law relations are reasonable approximations. We further discuss these as-828

sumptions as a potential source of error in Section 5.1. Finally, we note that in apply-829

ing Equations 1 and 9, we make the common pseudo-gas assumption in which fine ash830

particles (typically less than mm scale) are carried by the flow and contribute to the ef-831

fective bulk density of the column (e.g. Jaupart & Tait, 1990; Woods, 1995). Simple cal-832

culations show that we may safely assume changes to bulk density and temperature are833
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Figure 6. Example tracking results for a single track of Event 1. (a) 6 example frames out-

lining the tracked structure. (b) Overview of radius and temperature reconstruction for the track

as a function of height. The radius is determined for each frame by calculating the radius of a

circle of equivalent area to the track outline, and a corresponding height is taken from the outline

centroid. The subset of data plotted as points are those used to find the virtual source using a

linear regression. The excess temperature is reconstructed by taking the statistical distribution

(mean and percentiles) for all pixels at a fixed height (i.e. a given height contains information for

all frames that contain track pixels at that height).
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dominated by entrainment and gravitational potential energy release, so long as the loss834

of particles due to sedimentation is not much more than order 10% of the total mass load835

of fine particles over the first few hundred meters of column rise. This assumption is con-836

sistent with the observed minor ash fall and inferred excess gas content at Sabancaya837

and with expectations from simple integral models (e.g. Girault et al., 2014).838

Estimation of the virtual source location is critical to accurate estimation of the839

power law exponent B. A variety of methods are available to estimate the virtual source840

location in experimental and theoretical plume studies (Hunt & Kaye, 2001; Ciriello &841

Hunt, 2020), however the majority of these rely on a priori knowledge of the source buoy-842

ancy, mass, or momentum fluxes. These quantities are not easily characterized in field843

settings because of the particularly large uncertainties in column axial velocities and par-844

ticle volume fractions (Patrick et al., 2007; Aubry et al., 2021). Consequently, we use the845

simplest approach, which is to extrapolate a linear fit to the column radius, taking the846

virtual source as the location at which the radius R(z) = 0 (e.g. Figure 1). The mea-847

sure of the column radius itself, however, may be defined in multiple ways. For instance,848

the well-posed unsteady integral model of Woodhouse et al. (2016) uses Gaussian widths849

to define boundaries, whereas the unsteady model of Craske and van Reeuwijk (2016)850

uses top-hat widths defined from integral fluxes. In the case of our observed columns in851

the field, we can measure column radius as the Gaussian half-width of horizontal veloc-852

ity or temperature profiles, or as the half-width of the visible column boundaries. All853

of these measure should yield a similar virtual source location, given two assumptions:854

(1) the column radial profiles of velocity and temperature evolve in a manner that is ap-855

proximately self-similar with height, and (2) the velocity and temperature profiles are856

of similar characteristic length scale (Kaminski et al., 2005; van Reeuwijk et al., 2016;857

Ciriello & Hunt, 2020). The first assumption is necessary for the theoretical power-law858

solutions which we seek to be valid (Morton et al., 1956). We take the second assump-859

tion since we do not have information on the internal profiles of the column, and can only860

approximate Gaussian profiles using imagery of the outer regions of the column that we861

observe.862

For all heights in the time-averaged images, we take the visible column radius as863

the half-width of the column masks, and we fit Gaussian curves to the image horizon-864

tal temperature and vertical velocity profiles. Though these Gaussian profiles are matched865

to the column exterior rather than the true interior profiles, they in general yield radius866

values that are quite close to the expected value of about 50-60% of the visible radius867

derived from the width of the column masks (Turner, 1962; Patrick, 2007). We now have868

in total three different estimates of R(z), though the uncertainty in these measures is869

difficult to quantify and likely varies considerably within and across different events. For870

example, the mask width measure obtained from column boundary tracking (Bombrun871

et al., 2018) may be influenced by complex shapes arising from local wind shear, tran-872

sient eddies, or other cloud structures separated from the main vertical flow. Such ef-873

fects frequently result in radius estimates that are not consistently linearly increasing874

with height (see for example the time-averaged results for Events 2 and 3 in Section 4.2).875

Similarly, the quality of the Gaussian profile fits depends on the extent to which visible876

of elements at the column exterior correspond (on average) to internal flow profiles, and877

on the accuracy of the Optical Flow algorithm in determining the velocity field (see for878

example the complex, multi-vent source region of Event 3). These complexities are the879

reason we seek multiple radius measures, and since we have no a priori reason to have880

higher confidence in any one measure, we average the three radius estimates to obtain881

a result for R(z) that reduces the impact of outliers in any one measure. For compar-882

ison, we also report results obtained from each of the different radius measures (see Sec-883

tion 4.2). For the individually tracked column structures, as described above we find that884

both the simplest and most successful radius measure is simply to take the radius of the885

circle with area equal to the outlined area of the tracked structure (the exceptions are886
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the starting pulses of Events 1 and 2, for which the mask-width approach described above887

is also applicable).888

To obtain z0 for both tracked structures and time-averaged images, we apply a lin-889

ear regression fit to the radius measures described above. For each case, however, it is890

necessary to choose manually the subset of R and ∆T data for which to apply linear and891

power law fits, respectively. Here we describe the rationale and results for manual se-892

lection of track data, and for additional details we refer to the manuscript Supplemen-893

tary Information. In particular, Supplementary Videos 1-3 show detailed tracking results894

of our three events, and data selection and fitting for all tracks are shown in Supplemen-895

tary Information Figures S8-S14. As highlighted by blue points plotted over the radius896

data of Figure 6b, the tracking results of column structures typically include sections in897

which the eddy structure displays a clear linear trend in growth, as is expected for self-898

similar flow and entrainment in both plumes and thermals. These subsets of data show-899

ing linear growth are used to perform linear regression to determine the virtual source900

location.901

The radius trend in the example of Figure 6b clearly deviates from linear growth902

above about 375 m. This break from a measure of linear growth is common across all903

tracks and occurs for a variety of reasons, most of which are associated with the com-904

plex 3-dimensional turbulent flow and include: occlusion, engulfment, or coalescence with905

other column eddies, large uncertainty in the height position, strong distortion by wind906

(typically above 500 to 1000 m above the vent in our field data, see Figures 3 and 9),907

or poor accuracy of the tracking algorithm (e.g. excluding part of the eddy structure or908

deviating to another one). Curves for ∆T also contain sections of poor data quality or909

high noise, most frequently due to saturation of pixels at high temperatures and due to910

local turbulent fluctuations of thermally heterogeneous eddies in the column. Occlusion,911

engulfment, or poor tracking quality also in many cases affect ∆T curves, though the912

effect is less significant than for R(z) since retrieval of the temperature data does not913

require accurately capturing the shape of the target structure. As a result of these com-914

plications, it is necessary to manually select segments R and ∆T data of a given track915

for the purposes of our curve fitting. It is worth emphasizing that deviations from lin-916

ear trends in R are most commonly associated with tracking performance or features of917

turbulence, rather than any obvious change in column dynamical behavior. Consequently918

deviations from linearity in the radius measures do not provide unambiguous informa-919

tion on the validity of the straight-sided plume equations, and temperature curves are920

furthermore reliable over larger height ranges in general. To ensure quality power law921

fits in B, we therefore use separate manually chosen height limits for fitting R and ∆T922

(see Table S2 for fit height limits for each track, and Figures S8 - S14 for fit results.)923

Fortunately, it is generally straight-forward to identify results of good quality track-924

ing in video of the tracked structures, minimizing user subjectivity in the selection of high-925

quality data for curve fitting. Linear trends in the growth of radii measurements con-926

sistently correlate with periods where the tracking algorithm obviously follows the vis-927

ible boundary of a well-defined turbulent eddy structure, and it is generally easy to iden-928

tify in the video imagery when the target structure is occluded, engulfed, or strongly wind-929

distorted, or when the algorithm fails to adequately track its visible shape. For both R930

and ∆T curves, we also automatically exclude data points for which more than 90% of931

pixels at that height exceed the height uncertainty thresholds described in Section 3.2.932

Additionally in the case of temperature curves, we automatically exclude points for which933

more than 10% of pixels are saturated to ensure that the statistical distributions of pixel934

temperatures are not to severely biased. In the case of all three events, there is a height935

above which wind effects begin to dominate the flow behavior, which is readily appar-936

ent from examining the time-averaged images shown in Figure 9. This occurs at about937

600, 400, and 600 m above vent level for Events 1, 2, and 3, respectively. Above these938

heights, radius measures are generally unreliable and largely excluded (in fact the indi-939
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vidually tracked structures frequently distort or break up at these heights to the point940

that the tracked outlines are no longer usable, as can be seen in Figures S8-S14 and in941

Supplementary Videos 1-3). Temperature values in most cases remain of good quality942

over larger height ranges than radius measures. For temperature curves, the manual se-943

lection process is more straight forward and usually only requires identifying the height944

at which decay resembling power law behavior clearly begins, which often occurs some-945

what above the initial track detection either due to saturation of the hottest pixels near946

the vent, or because power law behavior is established only after the first one or two eddy947

overturns.948

Once manual data selection is finalized, we proceed with the final curve fitting pro-949

cedure to obtain z0 and B. From the linear regression fit for R(z), we set z0 as the point950

at which R(z) = 0. The confidence interval is determined as the values of z for which951

the upper and lower 95% prediction intervals for R(z) are each equal to zero. To obtain952

B, we then apply the power law fit using the MATLAB Curve Fitting Toolbox. Uncer-953

tainty in z0 has the largest control on the resulting B estimate, so we perform the power954

law fit for each of the upper, central, and lower estimates of z0. The result is three sep-955

arate estimates for B, each with their own confidence intervals. We take our best esti-956

mate for B as the central value derived from the best estimate z0, and the confidence957

interval for B is defined by the minimum and maximum of the 95% confidence intervals958

across all three power law fits.959

4 Results960

4.1 Overview of Three Events and Structure Tracking Results961

In this section, we summarize the results of both structure tracking and source win-962

dow analysis for each of the three eruptive events. We then discuss in detail the results963

of curve-fitting and power law retrieval for the time-averaged thermal images. Finally,964

we summarize the results of virtual source estimation and power law exponent retrieval965

for the set of 26 individually tracked structures across the three events to examine their966

time-evolving character. The time-averaged image results facilitate a comparison of the967

steady or time-independent picture of plume dynamics against the results for time-evolving968

tracked structures. In particular, if the power law exponent is indicative of entrainment969

behavior as either thermal-like or steady plume-like, then comparison of B exponents970

between the time-averaged images and the time-evolving results of tracked structures will971

shed light on the importance of time-dependence in the evolving column sources. In do-972

ing so, our goal is to highlight the extent to which one or the other entrainment regime973

dominates the behavior, and/or the extent to which time averaging produces results that974

are representative of the governing dynamics. In this section we highlight the quantita-975

tive results from structure tracking and time-averaging, and revisit their comparison and976

interpretation in the discussion section.977

Figure 7 shows a summary of the essential characteristics of Event 1, including its978

source emission time-series ∆Tsrc and the timing and height of tracked turbulent struc-979

tures. The same data for Events 2 and 3 are shown in Figure 8. In general, the algorithm980

successfully outlines relatively hot column structures that are expected to dominate the981

energy flux. The tracked structures tend towards rounded or circular on average, but fre-982

quently take on complex and rapidly evolving shapes. Panel (b) shows the position of983

the top or leading front of each tracked structure overlaid on a “rise diagram” (the max-984

imum row-wise ∆T for each frame as a function of time and height above the vent, fol-985

lowing Gaudin et al. (2017); Tournigand, Taddeucci, et al. (2017); Smith et al. (2021)).986

For a detailed view of the tracking algorithm performance, see Supplementary Videos987

1, 2, and 3, which correspond to each of the studied events. By Equation 7, the source988

time-series data in panel (c) are useful as a proxy for the power E delivered from the vent.989

Viewed this way, the effect of fluctuations in heat and velocity (source signals for the mo-990
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Figure 7. Summary of tracking results and source history for Event 1. (a) Sample thermal

images with overlaid outlines of tracked structures. Lines at the bottom of each frame highlight

the corresponding frame time in panel (b). (b) “Rise diagram” for Event 1, which shows the

maximum column ∆T along a horizontal profile at each height and time. Black dashed lines show

the top height of tracked structures. Colored circles show the time at which the tracked structure

is centered in the source window (dotted black lines are also plotted that connect the first tracked

frame to the time of the structure’s first appearance, to highlight cases where the source window

and initial tracking window do not coincide, which occurs for some tracks in Events 2 and 3),

and the source window limits are shown with a black horizontal line. (c) Normalized tempera-

ture profiles in the source window, showing 95th (grey) and 75th (red) percentiles, and standard

deviation (blue). The dashed lines show low-pass filtered curves to approximate the mean excess

temperature trend ∆T src. Vertical colored lines correspond to tracked structure start times in

panel (b), and match the color of outlined structures in panel (a) frames. The gray shaded bar at

the bottom of the panel shows the time span of averaging for generating the corresponding time-

averaged image for this event. (d) The same curves as in (c), with the mean (low-pass filtered)

curves removed to give the relative magnitude of fluctuation about the mean ∆T ′
src. The black

curve shows the average of the three normalized curves.
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Figure 8. Summary of tracking results and source history for Events 2 and 3. (a-d) As for

Figure 7 for Event 2. (e-h) As for Figure 7 for Event 3. The data gap at early time for Event 3

represents a time frame in which the thermal camera was capturing only time lapse frames about

every 4 seconds. (i) Percentage of saturated pixels in the Event 3 source window as a function of

time. –29–



manuscript submitted to Geochemistry, Geophysics, Geosystems

mentum and buoyancy fluxes) delivered at the vent source can be observed in the rise991

history of individual turbulent structures. To characterize and understand relationships992

between fluctuations in the source signals and the thermal evolution of tracked struc-993

tures with entrainment during their rise, it is instructive to consider the magnitude of994

temperature fluctuations about an effective mean. To this end, we apply a zero phase,995

low pass filter to each source time series, using a cutoff period equal to 2 times the av-996

erage overturn time of the largest eddies, or about 75, 55, and 40 s for Events 1, 2, and997

3, respectively. The resulting proxy for a “mean” heat flux carried by tracked structures998

∆T src is shown for each time series with a dashed line.999

Finally, in panel (d) we introduce a semi-quantitative measure for the relative mag-1000

nitude of thermal fluctuations about this mean:1001

∆T ′
src =

∆Tsrc −∆T src

∆T src

. (10)1002

To produce a representative ∆T ′
src that captures the relative timing and magnitude of1003

fluctuations at the column source, we average together the three normalized ∆T ′
src mea-1004

sures, shown by the black line. This averaging scheme is an attempt to account for our1005

limited, exterior view of the column by preserving the long period oscillations, which are1006

assumed to be associated with bulk plume diameter-scale changes and emerge best in1007

the standard deviation measure, while emphasizing the importance of the high temper-1008

ature percentile modes which are most representative of the column interior. For the largest1009

pulses of Event 1 that give rise to our tracked structures, a typical amplitude from peak1010

to trough over the averaging window for ∆T ′
src is 0.3 to 0.7.1011

For Events 2 and 3 in Figure 8, the tracking results and source time series show1012

significantly more variation in time, beginning with the onset of an initial large pulse.1013

For Event 3, the initial onset was captured only with time-lapse imagery at approximately1014

4 second intervals, as shown with in vertical bars in the first seconds of panel (f). The1015

first two tracks (we will often refer to tracked structures as simply “tracks” from here1016

on) for this event therefore begin with the first full-resolution video frames at about 16.51017

seconds after the event onset, and the timing of emergence for the first two tracks are1018

inferred to within about 2 seconds as shown with the black dotted lines. The data for1019

Event 3 also suffer from significant pixel saturation at early times as the eruptive tem-1020

peratures were much hotter for this Event than the previous two, as shown by the per-1021

centage of saturated pixels in the source window in panel (i). As a consequence, the am-1022

plitudes of the three earliest peaks captured are notably suppressed in panel (h), and we1023

can only infer the amplitude of ∆T ′
src for the starting pulse, which we will address fur-1024

ther in the discussion section. From the change in pixel saturation alone, however, it is1025

easy to conclude that the amplitude of this temperature peak is greater than the start-1026

ing pulse of Event 2, which never saturates more than about 1 to 2% of pixels.1027

As initially described in Section 2.2, for Events 2 and 3 in Figure 8, the starting1028

pulse structure is significantly larger and of higher temperature and velocity than sub-1029

sequent pulses. They evolve within the first 400 to 600 meters above the vent into large1030

vortex rings through strong overturning motions and a correspondingly rapid areal ex-1031

pansion. Pulsatory emissions follow the initial starting pulses. For Event 2 (Figure 8a-1032

e), the radius and rise velocity of the initial front are about 2 and 1.5 times higher than1033

the average for following pulses, respectively, and we estimate a fluctuation amplitude1034

∆T ′
src of the starting peak of 2.4. Tracked structures for Event 2 following the starting1035

pulse have generally consistent rise velocities of about 7 to 10 m/s. In the period follow-1036

ing the initial onset, the ∆Tsrc time series shows a period of sustained, pulsatory behav-1037

ior over about 120 to 150 seconds, though with a mean value that is more variable than1038

for Event 1 (Figure 8c). ∆T ′
src amplitudes range between about 0.3 to 1, somewhat higher1039

and with greater variation than for Event 1 (Figure 8d). For Event 3 (Figure 8e-i), the1040

mean source temperature ∆Tsrc decays rapidly to near zero within about 80 to 90 sec-1041

onds of the event onset (panel (g)), and the rate of this decay is likely underrepresented1042
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due to pixel saturation. The effects of the decaying source are also apparent in the ve-1043

locity of tracked structures. Though individually they rise with approximately constant1044

velocity, each subsequent pulse in Event 3 is slower than the previous, decreasing from1045

initial velocities of 16 to 18 m/s down to about 7 m/s for the last tracked structure. Fi-1046

nally, we note that for Event 2, the time-averaging window is from about 45 to 150 sec-1047

onds, focusing on the character of the pulsatory emissions following the starting pulse,1048

whereas for Event 3 the time-averaging is done from the start of the video at 16 s after1049

onset to about 72 s, and therefore captures in whole or in part the evolution of the dom-1050

inant pulses. In the following subsection, we highlight the essential features of the time1051

averaged images, including the results of virtual source estimation and power law curve1052

fits for ∆T (z).1053

4.2 Power Law analysis: Thermal Evolution of Time-Averaged Images1054

Figure 9 shows the time averaged thermal images and velocity fields for all three1055

events in the left-most column, together with curve fits for column radius and excess tem-1056

perature decay (second and third columns, respectively). The final column on the right1057

shows the results of virtual source location and power law exponent estimation. We will1058

first describe the essential features of the images and radius and temperature profiles for1059

all three events, and will then discuss the curve fit results. The excess temperature fields1060

show a spatially-varying and monotonic cooling with eruption height. The comparatively1061

unsteady Events 2 and 3 show vertical evolutions in the temperature, velocity fields, and1062

radius that are more complex than in the case of the relatively steady Event 1. This is1063

a result of both shorter averaging times and more complex flow fields in these events.1064

In particular, Events 2 and 3 have, on average, larger fluctuation magnitudes arising from1065

individual pulses which produce additional noise in time-averaging. In addition, the Event1066

1 time-averaged image is averaged over 308 s, approximately 3 and 6 times the averag-1067

ing length of Events 2 and 3, respectively, which yields vertical trends that are more smooth1068

as apparent in the trend of ∆T95 for this event. The source region of the Event 3 aver-1069

aged thermal image is also characterized by 3 spatially distinct temperature peaks im-1070

mediately above the vent, representative of the multiple source jets that contributed to1071

the ash column. The effects of wind are apparent in the time-averaged velocity field vec-1072

tors overlaid in blue on the averaged thermal images, becoming increasingly significant1073

typically above about 400 to 600 meters above vent level (a.v.l.). Above this region in1074

all three events (with the exception of the Event 2 and 3 starting pulses), the combina-1075

tion of wind-driven and buoyancy-driven turbulent mixing cause most individually tracked1076

structures to become thermally indistinguishable from the bulk column, and most tracks1077

are stopped by around 600 m a.v.l. For Event 1, wind causes bending of the column im-1078

mediately above the vent, an effect which increases in magnitude above about 500 m.1079

This effect is also apparent in the estimates of radius with altitude, which are approx-1080

imately linear below this height.1081

In the case of the steady Event 1, the long time-span of averaging and relatively1082

smaller fluctuation magnitudes in the decay curve are reflected in the narrow width of1083

the confidence interval for the power law fit (Figure 9a, third column). Though less well1084

constrained than for Event 1, the curve fits are of good quality for Events 2 and 3. In1085

the right most column for each time-averaged image are the estimated values of z0 (top)1086

and B (bottom). Recalling from Section 3.7 that we apply multiple measures of radius1087

to obtain the most robust z0 estimates possible, here we show each of the measures for1088

column radius in the second column, and the corresponding z0 estimates for each in the1089

right-most column. The virtual source for Events 1 and 2 are relatively more shallow and1090

each lie at about 200 m below the vent, reflecting the similar size of these two columns1091

(each about 200 meters across immediately above the vent). In contrast, for Event 3, the1092

multi-jet source of which is about 300 meters across, the estimated virtual source is about1093

600 m below vent level. The radii measured in the time-averaged image are largely de-1094

fined by the combined (i.e. averaged) width of multiple, complex sources that feed a sin-1095
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Figure 9. Time-averaged image results for (a) Event 1, (b) Event 2, and (c) Event 3. For

each event from left to right, the first column shows time-averaged ∆T (colors) and u⃗ (vectors

overlain in light blue), and the second shows four different measures of column radius versus

height above vent z, with linear fit confidence interval as dashed lines. The plotted points (may

appear as thicker lines) show the subset of data used for the linear fit. The third column shows

the distribution of ∆T (z) in gray with power law fit confidence interval for ∆T95 in blue. Note

that these represent confidence intervals for a single fit (recall that three fits are performed over

the estimated range of z0), but the intervals themselves do not vary significantly for differing

values of z0 and resulting B estimates. Finally, the right-most column shows estimates of the

time-averaged virtual source position z0 and power law exponent B, using the four measures of

column radius. The values of z0 correspond to the 95% prediction interval for each of the linear

fits to radius in the second column. In each of the plots for B, the theoretical values for power

law exponents are given by the dashed line for plumes (B = −5/3) and dotted line for thermals

(B = −3). –32–
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gle dominant ring vortex. As we will show below, this feature of the method has signif-1096

icant consequences for the prediction of the time-averaged z0 relative to z0 for the in-1097

dividual pulses of material which make up this event.1098

The best estimate B exponents resulting from the average radius measure (blue1099

colors in middle column of Figure 9) for each of the three time-averaged events lie on or1100

very close to either the thermal or plume predictions from theory. In particular, the value1101

we obtain for Event 1 is -2.0±0.3, comparable to the expected steady plume value of -1102

1.67. The unsteady Events 2 and 3 give time-averaged B exponents that overlie values1103

predicted for pure thermals: -3.2±0.7 and -2.9±0.3, respectively. The results for time-1104

averaged images therefore appear broadly in line with predictions of Morton et al. (1956)1105

for the steady plume of Event 1 and the highly transient Event 3. For Event 2, we chose1106

the time averaging window to capture the period of pulsatory flow after the starting pulse1107

to test for plume-like entrainment dynamics (Turner, 1962). We note, in addition, that1108

across all of the different methods for measuring column radius, the resulting estimates1109

of B are correlated with the estimated z0 (deeper virtual source location yields a more1110

negative B), emphasizing the leverage that the column virtual source estimation exerts1111

on the power law results. We address this control on our results and their interpretation1112

in Section 5.1. As we will show in the next section, the time-evolving dynamics that give1113

rise to the averaged behavior are more complex than is apparent here.1114

4.3 Power Law analysis: Thermal Evolution of Tracked Structures1115

We now show the virtual source and power law fit results for the 26 tracked struc-1116

tures, comparing them with the time-averaged results shown in the previous section. Fig-1117

ure 10 shows the combined results of quantitative analyses for all three studied events,1118

for both time-averaged images and individually tracked structures. To obtain the aver-1119

age z0, dR/dz, and B for tracked structures, we apply a weighted mean, in which the1120

weights are inversely proportional to the magnitude of the root mean square error for1121

the corresponding track curve fit (shown by the color of each data point for tracked struc-1122

tures). We take the standard deviation of individual results as the average uncertainty.1123

We highlight with gray circles cases where the tracking algorithm has a known poor per-1124

formance. For z0 and dR/dz, this occurs when the shape or location of the structure is1125

poorly tracked. In contrast, poor tracking affecting estimates of B occurs, for example,1126

when other hot column structures are falsely identified as being part of the target struc-1127

ture, or when a tracked structure is engulfed or occluded by another. In these cases, the1128

∆T decay curves show large fluctuations and power law fits are generally poor.1129

The virtual source of the time-averaged image for Event 1 is somewhat deeper (-1130

234 m) than for individual tracks (panel (b)), which average at -109 m. The spreading1131

rate dR/dz for both the averaged image and tracked structures agree well at around 0.24,1132

which is notably higher than values predicted for pure plumes of 0.11 to 0.15 (Turner,1133

1962; Patrick, 2007). For B exponents, the individual tracks of Event 1 range between1134

about -1 and -3, and the average track result is -1.7±0.7, in a very close match to the1135

expected plume value of -5/3, though with significant scatter. The source time series for1136

Event 2 highlights its more unsteady and pulsatory nature relative to Event 1, charac-1137

terized by a dominant initial pulse followed by a series of about 6 to 7 large pulses and1138

subsequent decay of source temperatures and/or mass flux (see also Figure 3b,e).1139

For Event 2, the range of virtual source estimates are very similar to those for Event1140

1 for both time-averaged images and individual tracks, and the apparent spreading an-1141

gles are also in excellent agreement between the time-averaged result and individual tracks.1142

The spreading rate for the starting pulse structure is 0.25±0.02 and the average for all1143

tracks is 0.22±0.02. Despite similar virtual source depths to Event 1, the B exponents1144

of individual tracks differ substantially from the time-averaged result. In particular, the1145

starting pulse track of Event 2 has a B exponent of -3.1±0.5, which is similar to the B1146
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result for the time-averaged image, whereas all subsequent tracks except Track 5 are sim-1147

ilar to (within error) or greater than the expected value for plumes of B = −5/3.1148

1149
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Figure 10. Tracking and power law fit results as a function of time for (a-d) Event 1, (e-h)1150

Event 2, and (i-l) Event 3. Note time on the vertical axis for all panels. The first column on the1151

left shows event source time series with ∆T75 (black) and ∆T95 (grey) percentiles, normalized1152

to the maximum value of ∆T95. Blue dashed lines give the start times of individually tracked1153

structures. The second, third, and fourth columns give, respectively, the virtual source height z0,1154

spreading rate dR/dz, and power law exponent B for all tracked structures and time-averaged1155

images. Tracked structures are numbered in order on the right-hand axes. In all panels the 95%1156

confidence bounds and averaging time span for time averaged image results are shown by the1157

gray shaded regions, with central estimate as the dark gray line. The blue shaded regions give1158

the average of all individually tracked structures. Results for each tracked structure are given by1159

data points with error bars. Data points for tracked structures are coloured by the root mean1160

square error of the curve fit (the linear model fit of R(z) for the cases of z0 and dR/dz, and the1161

power law model fit for the case of B), normalized to the mean value. Finally, gray circles outline1162

data points for which we manually identified poor quality of tracking and/or data fitting (see1163

also Supplementary Figures S8-S14 for manual quality checks). Manual labels are used as a guide1164

only, but otherwise are not applied to quantitative analysis.1165

Event 3 is the most transient in terms of a rapid evolution of the mean tempera-1166

ture field, and is dominated by a large initial explosion followed by rapid and continu-1167

ous decay of source flux (Figure 10). Notably, the time-averaged virtual source of Event1168

3 is substantially deeper than the results derived from tracked structures (panel (j)). This1169

result is partly related to the small sizes of individual tracked structures, which are cor-1170

related with the size of the multiple vent sources. Indeed, the virtual source locations1171

for all tracked structures are particularly shallow, consistent, and centered directly at1172

the vent elevation. The spreading rate for the starting pulse track of Event 3 is 0.25±0.01,1173

and the B exponent is -3.0±0.2, which is in excellent agreement with the expected value1174

for pure thermals as well the result for the time-averaged image of Event 3. As is the1175

case for Event 2, the time-evolving trend for Event 3 is that of an initial dominant pulse1176

followed by pulses with apparently more plume-like behavior, as inferred from B values.1177

The weighted average B for all Event 3 tracks is -2.1±0.6, but with the starting pulse1178

removed is -1.9±0.4. As is the case for Event 2, the B estimate for the starting pulse track1179

of Event 3 matches the result of the time-averaged image, whereas the subsequent tracked1180

structures give values more in line with expectations for steady plumes.1181

5 Discussion1182

In this section we briefly review the essential results of the virtual source estima-1183

tion and power law fits for tracked structures and time-averaged images, and discuss the1184

key sources of uncertainty in retrieving the power law behavior of the eruption columns,1185

highlighting key steps to mitigate uncertainty. We then interpret our quantitative vir-1186

tual source location and power law results in terms of the column dynamics governing1187

unsteady behavior. In the rest of the section that follows, we outline measures for defin-1188

ing column source unsteadiness, and propose a quantitative definition that is most rel-1189

evant to turbulent entrainment dynamics. We make preliminary comparisons of our un-1190

steadiness measure against our observational results, and in this context we compare and1191

interpret the results of structure tracking and time-averaging while laying out key im-1192

plications and future lines of inquiry in directly linking column evolution to unsteady1193

source behavior. We discuss implications of unsteady behavior for numerical plume mod-1194

els that use entrainment parameterizations, and conclude by discussing the merits, draw-1195

backs, and future directions for our structure tracking algorithm with general applica-1196

tions for volcanic plume monitoring using machine-learning.1197
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5.1 Virtual Source Estimation Dominates B Uncertainty1198

Our interpretation of thermal or steady plume entrainment mechanics rests on ac-1199

curate B values, and we identify four possible sources of error in our power law estima-1200

tion:1201

1. Radiative effects including gray-body column emission, atmospheric transmission1202

loss, or background emission.1203

2. Enhancement of entrainment by wind.1204

3. Virtual source location.1205

4. Effects of atmospheric stratification.1206

For radiative effects, we described previously in Section 3.2 (see also Supplemen-1207

tary Information Section 3.4) that for likely ranges of combined emission and transmis-1208

sion loss (ϵξ), our power law results are negligibly affected. Wind and wind shear are po-1209

tentially significant drivers of altered entrainment mechanics, since wind effects can en-1210

hance turbulent motions and drive additional entrainment (Hewett et al., 1971; Bursik,1211

2001; Contini & Robins, 2004; Devenish et al., 2010; Degruyter & Bonadonna, 2012, 2013;1212

Woodhouse et al., 2013; Aubry et al., 2017). Although modest winds with mean speeds1213

comparable to or less than the column rise speed do not alter B (Aubry et al., 2017),1214

Hewett et al. (1971) show that the column excess temperature ∆T ∝ z−2 in the spe-1215

cial case of very strong winds that are of order ten times the column rise speed. Since1216

for curve fitting we specifically selected altitude ranges below heights at which the wind1217

velocity dominates column rise, this condition is not met in our power law estimation,1218

even for the slowest rise speeds in the steady plume. Furthermore, the expected mag-1219

nitude of change to B for steady plumes of about -0.3 is for most cases similar to our1220

measurement error and cannot explain B variations on the scale of the difference between1221

steady plume and thermal regimes.1222

Rapid shape changes of turbulent structures (e.g. the structure is engulfed or oc-1223

cluded by another), or erroneous tracking (e.g. the structure is not accurately outlined)1224

contribute much greater noise to radius estimates than the above considerations of wind1225

and radiative effects, and we must choose our radius fits with care (see Sections 3.6 and1226

3.7, and Figures S8-S14). The magnitude of reported uncertainty in B exponents is con-1227

sequently a combined result of both uncertainty in z0 and the quality of the power law1228

fit. Figure 11 shows our estimates of B for all tracked structures as functions of z0 (nor-1229

malized to the estimated vent radius R0). For perfect estimation of the virtual source1230

location, we expect that B should have no functional dependence on z0. Indeed for a fixed1231

vent radius, we might expect that the wider spreading angle for a thermal corresponds1232

to a shallower virtual source location (see Figure 1), though we do not expect to see such1233

a trend in our data from Sabancaya since the vent size and location was observed to vary1234

between and during eruptive events. Though there is considerable scatter, an apparent1235

linear trend in B as a function of z0 for Events 1 and 2 is suggestive that the range in1236

our B estimates are strongly influenced by scatter in virtual source location estimates.1237

To highlight the sensitivity of B to the virtual source location, Figure 11b shows1238

B estimates for 2 example tracks from each of Event 1 and 2, using a range of assumed1239

z0 values. Significantly, the average B result for tracks of both events (shown with di-1240

amond symbols) lies on the expected value for steady plumes and matches the general1241

trend in z0. This observation suggests that virtual sources may be best represented by1242

an ensemble average of track results, rather than by the estimates for individual tracks.1243

The need for some degree of averaging is not surprising, since ensemble or time averag-1244

ing is implicit in theoretical studies of plumes, including entrainment formulations (Morton1245

et al., 1956; Turner, 1986). In this case, the number of tracks (or equivalently time span)1246

to use for averaging is a critical consideration, since we must capture both the essential1247

parameters of the flow as well as time-variations induced by source unsteadiness. For the1248
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Figure 11. Normalized virtual source height z0/R0 versus power law exponent B. (a) B

versus z0 for all tracked structures, including the track averages (shown with diamond sym-

bols, corresponding to blue fields in Figure 10). The track average results for both z0 and B are

weighted according to the RMS error as described in Section 4.3. Symbols are colored by both

Event number and the track quality check value. A QC value of 0 (faded symbols) results from

any of (1) poor R(z) tracking or poor ∆T fit (see gray circled symbols in Figure 10), (2) a B

result with uncertainty that spans both plume and thermal regimes. Theoretical B values for

steady plumes and thermals are marked with black dashed and dotted lines, respectively, and the

starting pulses of Events 2 and 3 are highlighted with black circles. (b) Sensitivity analysis of B

for different choices of z0, using four example tracks. Symbols reproduce the same results from

panel (a) for each of Event 1, tracks 4 and 7, and Event 2, tracks 1 and 3, which are B values

obtained while using the best estimate of z0 for each track. The diamond symbols are the corre-

sponding track averages for Events 1 and 2, as for panel (a). Solid lines show how the estimated

B value changes for each track for varying values of z0.
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starting pulses of Events 2 and 3, however, the increase in buoyancy or momentum flux1249

is effectively infinite, such that no track average is representative. We return to this dis-1250

cussion of virtual sources and appropriate use of averaging below in Section 5.2.1251

As outlined in Sections 1 and 3.7, in applying our power law fits we have assumed1252

that straight-sided solutions to the equations exist for which the power laws are valid1253

in the presence of stratification. For the power laws to be valid approximations, the height1254

range over which we apply power law fits must be much less than both the character-1255

istic scale height over which stratification parameter N varies (Caulfield & Woods, 1998;1256

Kaye & Scase, 2011) and the total rise height of the column (Bhamidipati & Woods, 2017).1257

As discussed previously, most curve fits are limited to less than about 600 m above the1258

vent, the principle exceptions being the starting pulses of Events 2 and 3, which continue1259

until about 1500 and 2000 m a.v.l., respectively. From the fastest local rate of change1260

with height in dN/dz for the satellite atmospheric profiles within our analysis windows,1261

the shortest possible scale height for any atmospheric profile is about 4 km, which is sig-1262

nificantly greater than even the largest analysis window and we do not expect a strong1263

influence from varying strength of stratification.1264

The maximum column heights are roughly 2 km for Events 1 and 2, and 3-3.5 km1265

for Event 3 (see images of Events 1 and 3 in Figure 1), though the heights are notably1266

influenced by wind. Therefore, our analysis windows are typically about 1/4 to 1/2 the1267

total rise height. Over these height ranges we cannot fully rule out the influence of strat-1268

ification on column rise, however again we expect that where linear fits in radius are valid,1269

the effects of stratification are sufficiently small that the power laws provide a reason-1270

able approximation. The sole exception in which the range of the power law fit approaches1271

the total column height is for the starting pulse of Event 2, and as we discuss below, the1272

interpretation of the power law fit for that track is indeed somewhat ambiguous. In Fig-1273

ure 11, the track average B values are consistent with expectations for plumes and ther-1274

mals in unstratified media, though a possible bias is present for the cluster of tracks for1275

which B ∼ −1, particularly for the steady Event 1. For strong influence from strati-1276

fication, we might expect a more rapid fall off in the column density deficit with height1277

(g′ in Equation 1) and therefore more negative B values. A more positive B value is in1278

principle possible where, say, the main effect of stratification is to reduce the efficiency1279

of atmospheric entrainment. However in following from our discussion above, we can-1280

not separate such an effect from uncertainty in the virtual source location, and a com-1281

plete analysis of the effects of stratification in this analysis must be left to future work.1282

5.2 Times Scales and Magnitudes of Unsteadiness1283

A precise definition of unsteadiness is challenging. Various treatments and defini-1284

tions of unsteadiness have been employed which depend on the application of interest.1285

In the context of monitoring or analysing the behavior of eruption columns, a critical1286

open question remains: over which time scales and magnitudes of unsteadiness are mod-1287

els based on steady dynamics insufficient to capture the essential column behavior in terms1288

of, say, column stability or height of rise, cloud spreading, or ash dispersal? The rate and1289

magnitude of unsteady source variations for consideration ranges from those compara-1290

ble to the fluctuations inherent in statistically steady turbulence (e.g., Anilkumar, 1993;1291

Woitischek, Edmonds, & Woods, 2021) to approximately infinite for the onset of a start-1292

ing plume or discrete thermal (Turner, 1962; Delichatsios, 1979; Bhamidipati & Woods,1293

2017), a span of regimes which to our knowledge is not covered by existing unsteady in-1294

tegral models (e.g. Scase, 2009; Woodhouse et al., 2016; Craske & van Reeuwijk, 2016).1295

In this section and the section that follows, we discuss various timescales of unsteadi-1296

ness as observed in our thermal imagery and their relevance for understanding column1297

behavior, and propose one quantitative measure of unsteadiness as it relates to the be-1298

havior of our observed events at Sabancaya volcano. The chief goal is to build towards1299

a broad and unified view of key concepts and knowledge gaps in unraveling unsteady col-1300
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umn behavior, and thereby motivate directions for future experimental and numerical1301

studies.1302

Figure 12, modified from Gilchrist (2021, Figures 5.1 and 5.3), shows schematically1303

the key time scales governing the eruptive behaviors for Events 1-3 and potential met-1304

rics for unsteadiness involving source variability in both time and amplitude. For a schematic1305

source time series we use the power delivered by the vent E (Equation 7) by way of demon-1306

stration, which is a measure of total thermal buoyancy flux, but similar principles ap-1307

ply for momentum flux in jets and both properties are readily combined for buoyant jets1308

(Gilchrist, 2021, Chapter 5). Formally, the steady plume model of Morton et al. (1956)1309

implies that the characteristic time scales of variation in the mean flow are longer than1310

both1311

1. the characteristic turnover time of the largest turbulent eddies τot that govern at-1312

mospheric entrainment,1313

2. the time τrise ≤ 1/N required for the column to reach its level of neutral buoy-1314

ancy, where N is the stratification Brunt-Väisälä frequency (Woods, 2010).1315

Consistent with assumed Gaussian radial profiles of velocity and density, source fluctu-1316

ations on time scales much shorter than τot will be indistinguishable from the natural1317

fluctuations of the turbulent flow field and will not significantly alter the radially-averaged1318

column dynamics or related consequences including column height oscillations. The sec-1319

ond condition based on τrise is required to associate the properties of the spreading um-1320

brella cloud (e.g. height, volume flux) with the instantaneous conditions at the vent (Scase,1321

2009).1322

A third flow time scale potentially important for understanding the control of the1323

source unsteadiness on conditions in the rising column is the time τmix for thermal vari-1324

ations imparted at the source to travel vertically at a speed v0 and become stirred and1325

mixed radially or axially through progressive effects of merging, entrainment and tur-1326

bulent diffusion over a “mixing length” zmix. Recent unsteady integral plume models1327

have shown that source pulses will both propagate and expand in size at a rate propor-1328

tional to t3/4 (Scase, 2009; Craske & van Reeuwijk, 2016). Therefore depending on the1329

time scale of fluctuations at the source, pulses may be expected to interact as they ex-1330

pand and propagate downstream. For example, for a column with unsteady source fluc-1331

tuations about an approximately stationary mean, the action of axial merging of struc-1332

tures combined with turbulent diffusive processes suggests the hypothesis that for time1333

scales ≫ τmix and heights ≫ zmix, unsteady fluctuations may become indistinguish-1334

able from an effective mean flow. We observe at least visually and qualitatively that sev-1335

eral of our tracked structures merge and become thermally indistinguishable. The dif-1336

fering virtual source regions we obtain for tracked structures and time-averaged image1337

of Event 3, for instance (Figure 10j), suggest that initially separate pulses from the mul-1338

tiple source vents merge higher in the column. However this merging is further influenced1339

by wind-driven mixing at altitude and we cannot determine from our data alone whether1340

the pulses remain internally distinct in terms of integral buoyancy or momentum flux1341

fluctuations in the rising column. A scale for τmix depends on the mechanism for mo-1342

mentum and heat exchange, and how best to define it on the basis of our thermal data1343

is unclear. In the special case where radial and axial mixing of a propagating axisym-1344

metric perturbation with radius R is, for example, reliably captured through an isotropic1345

turbulent diffusivity κt, an upper bound on the mixing time τmix ∼ R2/κt and zmix ∼1346

R2/κtv0. Alternatively, where the turbulent cascade underlying κt is incompletely-developed1347

or where incomplete or highly anisotropic thermal mixing is a basic property of the un-1348

steady rise of tracked structures, from the kinematics of mixing a lower bound on τmix1349

is the time corresponding to where the rates of stretching, thinning and diffusive smooth-1350

ing of temperature variations are highest (Ottino, 1989). For approximately spherical1351

thermals of size ∼ R rising over a distance ∼ R at speed v0, pure shear strain rates are1352
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concentrated where flow divergence occurs at the tops of tracked structures. The nor-1353

mal strain rate ∂vz/∂z ∼ v0/R implies an e-fold time R/v0 that is comparable to the1354

eddy turnover time τot. More generally and whatever its definition, it is unknown whether1355

τmix must be much shorter than timescales of source fluctuations or column rise to en-1356

sure thorough mixing such that source unsteadiness does not contribute significantly to1357

natural variations in, say, the maximum column heights. This important topic is the fo-1358

cus of future experiments and numerical studies and we do not discuss it further here.1359

Recognizing the characteristic flow time scales defined in Figure 12, we can com-1360

pare three possible metrics for unsteadiness. We define the mean source power Ē as the1361

magnitude averaged over a time scale that is long compared to the eddy overturn time.1362

We note that Ē can be usefully cast as an enthalpy flux if thermal buoyancy and mo-1363

mentum fluxes are included as separate contributions. Where Ē varies smoothly over the1364

duration of eruptive phase a time scale of unsteadiness is the characteristic rate of change1365

of Ē:1366

τµ ≈ Ē

∣∣∣∣
dĒ

dt

∣∣∣∣
−1

. (11)1367

To capture effects of an oscillating source flux during statistically stationary (or approx-1368

imately stationary) periods within eruptive phase, we define the time scale for fluctu-1369

ation about the mean τpulse to be the peak to peak pulsation interval. As τpulse becomes1370

much smaller than τot, subsequent pulses increasingly interact with one another and the1371

flow becomes approximately a steady plume with corresponding entrainment rates. By1372

contrast, as τpulse becomes much larger than τot pulses become increasingly distinct (e.g.1373

Woitischek, Edmonds, & Woods, 2021). Finally, from Figures 7 and 8 the magnitude of1374

fluctuations in E′ can be much larger than plausible Ē, and in many volcanic events may1375

span multiple orders of magnitude (e.g. Tournigand, Taddeucci, et al., 2017). It is, thus,1376

important to consider also the magnitude of fluctuation about the mean A∗ = E′/Ē.1377

Fluctuations in temperature and velocity that are very small compared to Ē will tend1378

to be indistinguishable from turbulence at the scales of tracked structures or the column1379

radius. Where large magnitude pulses are both widely separated in time and E′ ≫ Ē,1380

they can evolve to rise as discrete thermals (Gilchrist, 2021).1381

5.3 Observational Insights On Time Averaging and Column Unsteady1382

Evolution1383

The characteristic time scales and unsteadiness parameters we have outlined above1384

give us a means to evaluate the appropriateness of our time-averaging of thermal images1385

to obtain power law fits. The definition of unsteadiness employed by (Scase, 2009) con-1386

siders source evolutions that are long compared with τot but short compared with τrise,1387

and which propagate through the column as pulses of momentum or buoyancy. This def-1388

inition implies that the column conditions at their maximum height do not represent the1389

instantaneous source condition, and leads us to working criteria for when time-averaged1390

images should be expected to deliver results that are representative of the governing dy-1391

namics. Rigorously, the image averaging time must be1392

1. ≫ τot to remove the effect of turbulent fluctuation;1393

2. ≫ τrise as defined from the base to the top of the view field;1394

3. ≪ τµ, such that averaging does not combine information from different source regimes.1395

If the above three criteria are met, then time-averaging is likely both appropriate and1396

easier than tracking of individual column structures. By contrast, time-dependent track-1397

ing methods are likely required to capture the governing dynamics for events with short1398

durations, including Vulcanian type explosions, or large magnitude source pulsations such1399

those typical of phreatomagmatic eruptions. In the case of our time-averaged images,1400

these conditions are easily met for Event 1, but only partially met for Events 2 and 3.1401
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Figure 12. Characteristic flow time scales and measures of unsteadiness. (a) Illustration of

column shape characteristics and flow time scales in an evolving unsteady eruption, similar to

a Vulcanian explosion such as Event 3. An initial pulse exits the vent and overturns in a time

τot set by the exit velocity and vent diameter. A second pulse exits the vent and the two pulses

may interact depending on the pulse interval τpulse. The time scale for pulse interaction may

be approximated as τmix, and pulses propagate to the maximum column height over time τrise.

(b) Schematic of the source time series for total heat energy flux at the vent, highlighting dif-

ferent measures of fluctuation or time variance in the source conditions. These which include

the amplitude of fluctuation A∗, fluctuation time scale τpulse, and the time scale for variation of

the non-fluctuating component τµ. All parameters may vary over the course of an the eruption,

and the distinction between fluctuating and non-fluctuating components is determined by the

averaging length. (c) Summary of flow time scales and unsteadiness measures as shown here and

discussed in the text. Modified from Figures 5.1 and 5.3 of Gilchrist (2021).
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The rise times for the 3 events within the corresponding view field of the time averaged1402

images (about 900 to 1200 m, Figure 9) are about 160, 90, and 80 s, respectively. Us-1403

ing the estimated mean source time series ∆T src for these events, estimates of τµ for the1404

three events are respectively about 600, 150, and 80 s. Finally, recall the averaging times1405

are respectively 308, 103, and 54 s. From these simple estimates, the averaging time spans1406

for Events 2 and 3 do not meet the second criterion for rise time, and are of the same1407

order of magnitude as the mean flow evolution time. The rise diagram and source his-1408

tory comparisons in Figure 8 indicate that for these events variations in the source con-1409

ditions are included in the time averaging, while information from the initial starting pulses1410

still dominates the top of the view field. In short, the condition of Scase (2009) that the1411

characteristics of the upper cloud are associated with those of the source region is not1412

met for Events 2 and 3, and time averaging is likely not a reliable means of capturing1413

the thermal evolution.1414

Comparing virtual sources, B values, and heat flow of tracks versus time-averaged1415

images additionally highlights the dominance of the starting pulses in influencing time-1416

averaged results and unsteady behavior. Following a similar line of reasoning to Equa-1417

tion 7, if we assume that the thermal energy contained in each turbulent structure is pro-1418

portional to its volume, i.e. Epulse ∝ ∆TR3, then we estimate that the starting pulses1419

of Events 2 and 3 carry roughly 2 to 12 and 4 to 12 times, respectively, the average heat1420

of subsequent pulses. We note that this is a minimum estimate for the saturated pulses1421

of Event 3 due to the uncertain magnitude of the initial temperatures. Accordingly, the1422

column morphology recorded in the time averaged images will be largely determined by1423

the history of the starting pulses. This dominance of the starting pulse heat flux may1424

explain why B for the time averaged images of these events match the tracking result1425

for each of the starting pulses rather than the average tracking result (e.g. Figure 10).1426

It is worth noting, however, that whereas the virtual source, spreading rate, and B value1427

all agree for the time-averaged image and starting pulse of Event 2, the time-averaged1428

virtual source of Event 3 is substantially different than that inferred for all tracks includ-1429

ing the starting pulse, and we return to this observation below.1430

For Event 2, the starting pulse virtual source is deeper (z0/R0 ≈ −3.4) than the1431

ensemble average for all tracks (z0/R0 ≈ −1.4). From Figure 11b, we can infer that if1432

the track ensemble average virtual source is adopted, the resulting exponent estimate1433

for the starting pulse of Event 2 would be B ≈ −2.5. Both radius and temperature fits1434

for this track are of high quality, however, and the larger radius of the starting pulse (about1435

double that of subsequent pulses for both Events 2 and 3) suggests that a deeper vir-1436

tual source is expected, given the similar spreading rate to other tracks for Event 2 (Fig-1437

ure 10g). Either choice of virtual source location may therefore be appropriate for the1438

Event 2 starting pulse. Event 2 is qualitatively similar in behavior to that of a “start-1439

ing plume” with sustained emission following initial onset (Turner, 1962; Patrick, 2007),1440

which is characterized by an initial leading vortex that is continuously fed by steady flow1441

from below. Because of this additional supply of heat, the power law behavior for the1442

front of starting plumes is predicted to follow a similar trend to steady plumes (Turner,1443

1962), assuming constant flux following the onset. For Event 2, the ∆Tsrc and rise his-1444

tory data (Figure 8, panels (b) and (c)) indicate that the starting pulse is followed ap-1445

proximately 25 seconds later by a second pulse, which eventually intercepts the start-1446

ing pulse at a height of about 400 to 600 m a.v.l. From these considerations and avail-1447

able data, as well as the potential effects of stratification discusses above, the extent to1448

which the turbulent evolution of the starting front of Event 2 is dominated by an ini-1449

tial discrete pulse or by subsequent, sustained emissions is ambiguous, and it is reason-1450

able to interpret the starting pulse of Event 2 as either in the thermal regime or an in-1451

termediate regime approaching that of a starting plume.1452

In contrast for Event 3, the rapid decay of emissions following the starting pulse1453

suggests that subsequent flow pulses are, in general, both slower and of much smaller mag-1454

–43–



manuscript submitted to Geochemistry, Geophysics, Geosystems

nitude than the starting pulse, such that the thermal-like entrainment mechanics of the1455

starting pulse dominate its cooling. Like Event 2, the starting pulse of Event 3 has a sim-1456

ilar spreading rate but much larger dimension relative to subsequent pulses. However,1457

unlike Event 2, this property does not correspond to a lower virtual source location. As1458

noted above, the large disparity between virtual source locations of tracked structures1459

versus time-averaged image for this event is insightful, since it suggests that unlike Event1460

2 the time-averaged image result does not simply reflect the dominance of the starting1461

pulse. From both our quantitative results and careful inspection of the thermal videos1462

(see Supplementary Videos 1-3), we interpret these features of Event 3 as arising for two1463

reasons: (1) The high virtual source of the starting pulse may be the only obvious sig-1464

nature of a momentum-thrust region among any of the three events, because the tran-1465

sition to buoyant flow, with larger corresponding spreading rates, occurs some distance1466

above the vent; and (2) the multiple vent sources and rapid evolution apparent in the1467

source time-series contribute to a complex source and bulk flow that is highly unsteady1468

in both space and time and is likely not self-similar (see our hypothesis for tracking struc-1469

tures in Section 3.7). Caution is therefore warranted in applying models based on assump-1470

tions of self-similarity to such an event and even short time or track ensemble averages1471

may be misleading, particularly near the source where the flow is rapidly developing. These1472

observations are one reason why we pose the mixing time scale τmix as potentially im-1473

portant, since it suggests that there may be a finite height above which comparatively1474

simple integral models for plumes or thermals can be reasonably applied.1475

5.4 Towards a Quantitative Metric For Unsteadiness1476

As we have highlighted above, various definitions of unsteadiness may arise from1477

considering multiple differing time scales and characteristic flow parameters. Through1478

our tracking and quantitative analysis of coherent turbulent structures, the question re-1479

mains which regime of source unsteadiness governs the transition of entrainment behav-1480

ior from steady plume to thermal. Since our aim is to capture entrainment mechanics1481

of unsteady plumes from their thermal evolution, here we propose an unsteadiness pa-1482

rameter that incorporates essential source variations on time scales related to column1483

entrainment and thermal mixing behavior. In particular, the starting pulses of Events1484

2 and 3 must be unsteady by definition, but have somewhat different time evolutions af-1485

ter their onset. Event 2 emissions are relatively sustained according to τµ, but with large1486

fluctuation amplitudes. Event 3 also has large amplitude fluctuations, but with a more1487

obvious decay in the mean temperature. Accordingly, we define a “Mean State Pulsa-1488

tion Number” Puµ that compares the pulsation interval and mean flow time scales, mod-1489

ulated by the magnitude of the enthalpy flux carried by the fluctuations:1490

Puµ =
τpulse
τµ

A∗. (12)1491

In proposing this quantitative measure of unsteadiness, our choice of flow and averag-1492

ing time scales depends on the problem to be solved. The resilience of the mean flow tem-1493

perature and velocity fields to enthalpy fluctuations particularly in this limit depend not1494

just on the time scale over which they are imparted, but also their magnitude, which gov-1495

erns the available thermal and mechanical energy. Thus, we apply τpulseA
∗ to form the1496

numerator of Equation 12. For the denominator, if capturing variation in the column1497

spreading height related to a monotonic shift in Ē is the goal, then τµ is potentially in-1498

sightful, and Puµ → 0 implies the mean heat flow rate Ē is increasingly statistically1499

steady, or that the time interval and/or magnitude of fluctuations are small. Where τpulse →1500

τµ, there are strong interactions between the fluctuating and ‘mean’ flows. Usefully, Equa-1501

tion 12 as written predicts that for Puµ → 1, the time interval and magnitude of pulses1502

increases such that flow behavior approaches that of discrete thermals, and for Puµ →1503

0 approaches a sustained plume. On the other hand, where variations in column spread-1504

ing height are related to oscillations about a statistically stationary Ē, τµ → ∞ and1505

has little meaning. In this case, fluctuations with periods close to the eddy overturn time1506
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Figure 13. Power Law exponents as a function of the Mean State Pulsation Number Puµ.

Color scheme as in Figure 11: symbols are colored by both Event number and the track quality

check value. A QC value of 0 (faded symbols) results from any of (1) poor R(z) tracking or poor

∆T fit (see gray circled symbols in Figure 10), or (2) a B result with uncertainty that spans both

plume and thermal regimes. Diamonds show the track averages, weighted according to the fit

RMS error as in Section 4.3 and Figure 11, and square symbols show the track averages when

weighted by multiplying with A∗ (normalized to its maximum value). Arrows highlight the shift

in average result between the two average weights.
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may be of greater utility than for understanding local entrainment rates and gravitational1507

stability immediately above the vent. An alternative Pulsation Number based on source1508

fluctuations using τot may be chosen instead (Gilchrist, 2021),1509

Pu0 =
τpulse
τot

A∗. (13)1510

This alternative definition is the subject of investigations by Gilchrist (2021, Chapter1511

5), and we do not discuss it further here.1512

In considering Puµ, the definition of Ē, and consequently both τµ and A∗, depends1513

critically on a choice of averaging time, which is distinct from the averaging time span1514

used to obtain the time-averaged thermal images. As an example, suppose that the mo-1515

mentum or buoyancy flux as function of time for a single discrete thermal is defined by1516

a Gaussian pulse (or in the extreme limit, a delta function). The mean magnitude of the1517

flux function is not well defined and depends on the length of averaging time. That is,1518

the average magnitude of a unit Gaussian pulse over ±3 standard deviations is 0.42, and1519

over ±5 standard deviations is 0.25. Within this ambiguity, however, there is an oppor-1520

tunity to encode additional information via a flexible choice of averaging time scale. To1521

capture critical local variations in turbulent mixing and entrainment, here we use the1522

low pass filter cutoff period employed in Section 4.1 of ∼ 2τot. Averaging instead over1523

the column mixing time τmix may highlight fluctuations that influence, for example, the1524

transition from momentum to buoyancy driven column rise, and averaging over the col-1525

umn rise time τrise captures unsteadiness that influences dynamics in the spreading cloud.1526

For our tracked structures, we estimate A∗ as the fluctuation in vertical power accord-1527

ing to:1528

A∗ = ∆T ′
src

v0R
2
0

v̄0R̄2
0

, (14)1529

where for ∆T ′
src we take the peak value associated with each pulse, and R0 and v0 are1530

the initial radius and maximum rise velocity of each tracked structure. The rise veloc-1531

ity v̄0 is the ensemble average v0 across all tracks in a single event, and a representative1532

value for R̄0 is obtained from the time averaged images.1533

We calculate Puµ for all tracked structures, using ∆T ′
src and ∆T src as proxies for1534

E′ and Ē to obtain the relevant time scales. For each tracked pulse, we estimate τpulse1535

as the average time interval to the preceding and following pulses. For the starting pulses1536

of Events 2 and 3, which do not have a preceding pulse but are unsteady by definition,1537

we approximate the preceding pulse interval as 2 times the rise time of ∆Tsrc to its ini-1538

tial peak value. Figure 13 shows our calculated B for all tracked structures, as well as1539

the average of tracks for each event, as a function of Puµ. As Puµ approaches order 1,1540

the weighted pulsation interval τpulseA
∗ approaches a similar magnitude to the time scale1541

of change for the mean flow τµ, which implies that the flow is dominated by an individ-1542

ual pulse. For the track results shown here, τµ has the greatest influence on the value1543

of Puµ (see Figure S15 for the value of each variable in Equation 12 for all tracks).1544

For our tracked structures in Figure 13, the two starting pulses of Events 2 and 31545

have B values corresponding to a those of a thermal and Puµ ∼ 1, consistent with start-1546

ing pulses which are unsteady by definition. Puµ is a potential metric for unsteadiness,1547

however, our interpretation of the data hinges on the data points associated with the two1548

starting pulses of Events 2 and 3. As a consequence, although Puµ is a promising met-1549

ric, from these data alone, we cannot demonstrate with confidence that Puµ is the most1550

appropriate generalized definition of source unsteadiness. Nevertheless, our result and1551

discussion of various available unsteadiness metrics motivates further experimental and1552

numerical studies to understand the evolution of entrainment regimes as a function of1553

unsteadiness measures described in Figure 12.1554
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5.5 Implications for Modeling Column Behavior1555

Both the analysis presented here, as well as previous observational and experimen-1556

tal work (e.g. Patrick, 2007; Chojnicki et al., 2015a, 2015b; Tournigand, Peña Fernan-1557

dez, et al., 2017) highlight that evolutions between thermal- or plume-like states dur-1558

ing unsteady eruptions can occur rapidly, over a number of time scales, and result in large1559

variations in the local rate of entrainment into volcanic columns. Furthermore, rapid vari-1560

ations in both density and velocity on time scales comparable to the overturn time τot1561

may be characteristic of multi-phase flows (Anilkumar, 1993). Our estimates of the power1562

law decay of ∆T in unsteady columns, together with the above discussion on definitions1563

of unsteadiness support the hypothesis that volcanic columns evolve among the regimes1564

of steady plumes, unsteady plumes, or discrete thermals, depending on the magnitude1565

and timing of fluctuations in source momentum or buoyancy flux. Unsteadiness on times1566

scales comparable to τot may be of critical importance in determining the early evolu-1567

tion of volcanic eruption columns, impacting entrainment and local heterogeneity in ve-1568

locity and particle volume fraction. These column properties influence, in turn, column1569

gravitational stability and the formation of pyroclastic density currents, rise height, and1570

ash dispersal (Gilchrist, 2021).1571

The unsteady integral plume models of Scase (2009) and Woodhouse et al. (2016)1572

carefully consider the downstream propagation of changes in source conditions on timescales1573

much longer than the eddy overturn time. Woodhouse et al. (2016) suggest that for pure1574

plumes driven by buoyancy forces, the entrainment schemes of Morton et al. (1956) re-1575

main appropriate, while for momentum driven jets the evolution of self-similarity pro-1576

files is accounted for by a non-constant entrainment coefficient (Bloomfield & Kerr, 2000;1577

Kaminski et al., 2005). Recent theoretical advances in generalizing turbulent entrain-1578

ment parameterizations highlight the local and evolving nature of entrainment rates (Kaminski1579

et al., 2005; Carazzo et al., 2008b; van Reeuwijk & Craske, 2015; Craske & van Reeuwijk,1580

2016; van Reeuwijk et al., 2021). A key knowledge gap for future studies is to test the1581

functional dependence of local entrainment rates on quantified and time-dependent source1582

unsteadiness history which spans the full range of unsteady character which occurs in1583

volcanic events. Establishing a functional relationship between entrainment rates and1584

Puµ or a related unsteadiness metric via laboratory experiments or direct numerical sim-1585

ulations (e.g. Gilchrist, 2021) would, in turn, enable more robust field-based character-1586

ization of unsteady volcanic activity, and facilitate the development and implementation1587

of unsteady integral models which account for the order of magnitude variations in source1588

mass flux typical of volcanic eruption columns.1589

5.6 On The Uses of Spectral Clustering for Automated Structure Track-1590

ing in Volcanic Columns1591

Our algorithm for tracking coherent turbulent structures has enabled for the first1592

time a quantitative study of the power law behavior of temperature decay in rising vol-1593

canic columns. This application offers a path towards real-time characterization of vol-1594

canic column dynamics under rapidly evolving conditions in both space and time. The1595

power law analysis for plumes and thermals we apply here is an initial attempt to re-1596

solve the effects of unsteadiness on rising column dynamics, but the structure tracking1597

algorithm may be more usefully applied to compare the propagation of unsteady pulses1598

with more complete unsteadiness theory (e.g. Craske & van Reeuwijk, 2016), estimate1599

local, time-dependent entrainment rates directly (Tournigand, Taddeucci, et al., 2017),1600

or relate instantaneous source mass fluxes to evolving plume heights (e.g. Hreinsdóttir1601

et al., 2014; Dürig et al., 2015, 2018). In its current prototype state, obtaining accurate1602

segmentation and tracking of target structures coupled with application of robust quan-1603

titative analysis is in practice user intensive. For example, care is required in the choice1604

of weighting parameters for the tracking optimization (Section B3) and in quality checks1605

of the retrieved radius and temperature profiles (Section 3.7) prior to and during curve-1606
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fitting analysis. The uncertainty and effort cost in these steps, however, could be elim-1607

inated with a combination of further development of the tracking algorithm, using so-1608

phisticated data inversion techniques (e.g. Cerminara et al., 2015) or, for example, en-1609

semble averaging multiple tracks over appropriately chosen time scales. A trained neu-1610

ral network, furthermore, would likely be both more accurate and more efficient than our1611

spectral clustering algorithm, but requires training using an appropriately labeled and1612

sufficiently extensive data set. Therefore perhaps the most effective use of our tracking1613

algorithm is in the creation of labeled and curated tracking data sets that could be used1614

to train supervised machine learning algorithms such as R-CNNs or LSTM-CNNs. Most1615

other steps in our workflow, such as spatial projection, atmospheric profile removal, and1616

curve analysis are then in principle straight forward to fully automate. Moreover, the1617

same principles for capturing time-dependent eruption dynamics apply for other mon-1618

itoring techniques for which relationships between measured source properties and col-1619

umn dynamic states can be established, such as Doppler radar (e.g. Bonadonna et al.,1620

2011; Donnadieu, 2012; Freret-Lorgeril et al., 2020), video or UV imagery (e.g. Woitis-1621

chek, Mingotti, et al., 2021; Woitischek, Edmonds, & Woods, 2021), or acoustic mon-1622

itoring (e.g. De Angelis et al., 2019; Watson et al., 2021). We underscore the conclusions1623

of other recent studies and emphasize the value of multi-instrument, community data1624

sets to create rapid-analysis AI tools for real time monitoring of volcanic columns (Cigna1625

et al., 2020; Dye & Morra, 2020; Witsil & Johnson, 2020; Korolev et al., 2021; Guerrero Tello1626

et al., 2022; Wilkes et al., 2022).1627

6 Conclusions1628

We have used ground-based, thermal infrared imagery to quantitatively link vol-1629

canic eruption column temperature decay to the power law predictions of canonical the-1630

ories for steady plumes and discrete thermals (Morton et al., 1956; Turner, 1962), and1631

have furthermore linked the spatiotemporal evolution of thermal buoyancy to unsteady1632

temporal fluctuations in the vent heat flux. To do so, we have developed a novel struc-1633

ture tracking algorithm based on spectral clustering, which tracks the evolution in height1634

and time of individual coherent, turbulent vortices. We have focused our analysis on three1635

events of varying unsteady character at Sabancaya Volcano, Peru, including a steady plume,1636

a quasi-pulsatory starting plume, and a transient Vulcanian explosion. Our efforts sup-1637

port the following key results and conclusions:1638

1. The sustained plume can be reasonably described by an appropriate average power1639

law behavior corresponding to predictions from steady plume theory (∆T ∝ z−5/3),1640

despite significant fluctuation at the source vent.1641

2. The two relatively more unsteady or transient events are characterized by ther-1642

mal evolutions broadly consistent with an initial thermal-like pulse (∆T ∝ z−3)1643

followed by a transition towards steady plume-like behavior during sustained or1644

decaying phases, though neither event obviously follows expected behavior for a1645

starting plume.1646

3. Power law analysis of column evolutions with height and time requires careful, in-1647

dependent estimation of the column virtual source location, which may be achieved1648

with greater accuracy with e.g. ensemble or time averaging over time scales much1649

shorter than the time scale for evolution of the mean flow τµ.1650

4. Quantitative analysis of time-averaged images is appropriate specifically when the1651

averaging time is long compared to the column rise time (τrise; which may cor-1652

respond either to the column buoyancy level or height of the camera view field),1653

but short compared to the time scale for evolution in source conditions (τµ). Where1654

these criteria are not met, the time-averaged image properties (e.g. column radius,1655

apparent virtual source location, temperature decay) will be dominated by the largest1656

and most energetic source pulses, and will not capture complex evolutions in source1657

conditions for events that are unsteady in space and time.1658
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5. Unsupervised machine learning techniques are an effective tool for quantitative1659

and high-temporal-resolution analysis of unsteady column dynamics. They are also1660

useful for generating labeled training data sets which facilitate the development1661

of fast, effective neural networks for real-time monitoring and analysis.1662

From the above conclusions, we highlight the following key implications:1663

1. Both the relative magnitude and timing of variations in source mass, momentum,1664

and buoyancy fluxes drive evolutions between steady-plume, unsteady plume, or1665

discrete thermal rise regimes, with corresponding variations in entrainment rate1666

and buoyancy evolution.1667

2. Quantitative measures of source unsteadiness must therefore be developed that1668

predict variations in entrainment and which account for both the magnitude and1669

timing of source fluctuations. Here we have proposed the Mean State Pulsation1670

Number Puµ, which incorporates information on fluctuations on time scales com-1671

parable to the overturn time of the largest turbulent eddies, as well as evolutions1672

in the mean source fluxes (i.e. over timescales significantly longer than the eddy1673

overturn time). In our definition, we argue that volcanic columns with Puµ ≪1674

1 will have entrainment rates that match those of steady plumes, whereas for Puµ →1675

1, variations in vent source fluxes are of sufficient magnitude that pulses of erupted1676

material will rise and entrain air in a manner similar to that of discrete thermals,1677

with corresponding modifications to gravitational stability and rise height.1678

3. Laboratory experiments and numerical modeling of unsteady columns can pro-1679

vide critical insight on systematic variations in entrainment as a function of Puµ,1680

or similar unsteadiness metrics. An essential goal in such efforts is to link unsteady1681

entrainment parameterizations in integral models to both local balances of mo-1682

mentum and buoyancy and the history of source unsteadiness.1683

Open Research1684

Satellite atmospheric profile products from the MODIS/Terra and AIRS/Aqua satel-1685

lites were obtained from NASA at https://www.earthdata.nasa.gov (Teixeira, 2013; Bor-1686

bas, 2015) Digitial Elevation Model data used in Figure 2 were obtained from the Alaska1687

Satellite Facility (ASF-DAAC, 2015). Thermal data (brightness temperatures, optical1688

flow velocity fields, and atmospheric profiles) and results of analysis (e.g. structure track-1689

ing positions, retrieved temperature and radius profiles, curve fitting results, and calcu-1690

lated source unsteadiness metrics) are available at figshare under Creative Commons Li-1691

cence (CC BY 4.0) at:1692

https://doi.org/10.6084/m9.figshare.21936582.1693

A code package containing the core functions of the workflow is licensed under the1694

GNU General Public License v3.0, and published on Github: https://github.com/colinrr/locust.git1695

(Rowell, 2023)1696

Appendix A Methods Workflow1697

In Figure A1 we show a graphical overview of the methods workflow, highlighting1698

the manuscript sections containing details on each.1699

Appendix B Tracking of Coherent Turbulent Structures1700

Here we provide additional details on the key steps in the feature tracking algo-1701

rithm as summarized in Figure 5. Further documentation and code can be found in the1702

code repository listed in the Open Research Section.1703
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B1 Structure Tracking: Initialization1704

Initiating structure tracking requires selection of a starting frame and tracking win-1705

dow (sub-region of the frame containing a structure of interest), as shown in Figure 5a.1706

These may be automatically chosen using the source detection method of Section 3.3 (a1707

pulse detection identifies the starting frame, and the source detection window defines the1708

initial region of interest). In practice, for the relatively small subset of events presented1709

here, we initially detect sources of interest using this method, and where needed refine1710

the choice of exact start frame and detection window location manually to ensure a test-1711

ing data set for the tracking algorithm with structures that are both clearly detected and1712

relatively long-lived and continuous in terms of visibility at the column exterior. Option-1713

ally, it is also possible to define an initial guess (shown by the purple outline in Figure1714

5a) to target a specific structure. This initial guess is used as a surrogate “tracking mem-1715

ory” for the starting frame optimization (see below for a full explanation of optimiza-1716

tion and tracking memory). The code performs initial clustering and optimization on1717

the data values contained in the detection window (see Sections B2 and B3 below). An1718

important step here is to estimate the preferred number of clusters nc0, which can be1719

determined from the approximate size of the structures of interest. For example, for a1720

circular eddy of radius L, column radius R, and an initial detection window covering the1721

full width of the visible column (i.e. window length l ≈ 2R), then the ratio of the eddy1722

area to that of the rectangular detection window in the thermal image is1723

1

nc0
=

πL2

4aR2
, (B1)1724

where a = h/l is the aspect ratio of the detection window. For L = R/2 (typical for1725

the largest eddies) and window aspect ratios of 0.5 to 1, this gives an optimal number1726

of clusters 2.5 ≲ nc0 ≲ 5. Similar logic holds for a detection window of arbitrary size,1727

and in practice the best tracking results were indeed obtained for 2 ≤ nc ≤ 5.1728

B2 Structure Tracking: Spectral Clustering1729

Consistent with Equation 7 we use five variables to guide a physically-based spec-1730

tral clustering step: horizontal and vertical position (x, z), excess temperature ∆T , and1731

horizontal and vertical velocity (u, v). For each frame, these values are retrieved for all1732

pixels within the tracking window. We filter out the coldest pixels (30% by default), which1733

usually correspond to column edges or colder, lower velocity column elements outside1734

the large vortices of interest. Next, remaining variables are normalized by their standard1735

deviation across all pixels. We then apply weights to each variable to emphasize their1736

relative importance for choosing clusters. Excess temperature and vertical velocity are1737

the most important properties for characterizing the heat flux carried by rising struc-1738

tures. The spatial position variables, while necessary to ensure coherent (i.e. not frag-1739

mented) clusters, are the least important in distinguishing and tracking coherent rising1740

structures. Accordingly, default weights for the cluster variables are W (x, z,∆T, u, v) =1741

(0.5, 0.5, 2, 1, 1.5). After weighting, we then perform spectral clustering for a range of nc1742

(generally nc0 − 1 to nc0 + 1), recording pixel locations and the average values of the1743

five target variables for all resulting clusters.1744

B3 Structure Tracking: Cluster Optimization1745

The optimization step selects the cluster containing the set of pixels carrying the1746

highest apparent heat flow (i.e. clusters that are high excess temperature and velocity1747

and contain the largest possible number of pixels), that also minimizes differences with1748

the tracked structure of previous time steps (i.e. the tracking memory). In particular,1749

for all candidate clusters obtained during the clustering step, we calculate the objective1750

function1751

Ω = M + λ||P ||, (B2)1752
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where M is a “data” term that optimizes for maximum heat flow, P is the “prior” term1753

which evaluates similarity with the tracked cluster from previous time steps, and λ is a1754

scalar regularization parameter which tunes the relative importance of the two terms.1755

The algorithm tracks the cluster that minimizes Ω. The data optimization term1756

M = 1−
[

T̄iV̄iAi

max(T̄ V̄ A)

]
, (B3)1757

where the subscript i denotes a single candidate cluster, and T̄i, V̄i, and Ai are the nor-1758

malized mean pixel temperature, mean vertical velocity, and area (expressed as number1759

of pixels) of the cluster, respectively. The prior term P is the calculated difference be-1760

tween candidate clusters and instances of the tracked structure from previous frames,1761

and contains four contributions:1762

∥P∥ =
[
(wTPT )

2 + (wV PV )
2 + (wAPA)

2 + (wDPD)2
]1/2

. (B4)1763

The scalars wT , wV , wA, wD are weights for the individual prior terms with default val-1764

ues of (0.5, 0.25, 0.5, 2), respectively. These weights are distinct from the weights used1765

for clustering in Section B2. The components of the prior term measure similarity with1766

the tracked structure of previous time steps for temperature (PT ), vertical velocity (PV ),1767

area (PA), and position (PD). These terms are, respectively,1768

PT =

|
npx∑

j=1

Tj −
npx∑

j=1

TP,j |

npx∑

j=1

TP,j

, (B5)

PV =
∥V̄ − V̄P ∥

V̄P
, (B6)

PA =
∥A−AP ∥

AP
, (B7)

PD =
1

npxϵC95

npx∑

j=1

Dj , (B8)

where npx is the number of pixels in a candidate cluster, subscript j denotes a pixel (i.e.1769

summation over all pixels in a cluster), subscript P denotes the memory or “prior” struc-1770

ture. The first three prior terms (Equations B5 to B7) ensure that the target structure1771

has similar temperature, velocity, and size to the tracked structure of previous frames.1772

Dj is the computed Euclidean distance of a candidate cluster pixel to the nearest pixel1773

of the prior tracked structure, and is zero for pixels that overlap with the prior struc-1774

ture. In the normalization factor for PD,i, C95 = v95
dt
dx is the pixel grid Courant Num-1775

ber, v95 is the 95th percentile (for the full video sequence) of Optical Flow vertical ve-1776

locity, and ϵ is a scalar tolerance with a default value of 2.5. As an example, for a max-1777

imum rise velocity of 30 m/s, pixel dimension dx = 3 m, frame interval dt = 0.1 s, and1778

tolerance ϵ = 2.5, the grid speed dx
dt is 75 m/s and ϵC95 = 1, which indicates that tracked1779

structures are required to move at most about 1 pixel per frame on average. The final1780

term PD,i therefore favors tracked structures for which the motion between frames does1781

not greatly exceed realistic flow velocities. The Courant number velocity tolerance is also1782

imposed in the warping step used to obtain the final tracked structure, as described be-1783

low.1784

The prior values (TP , VP , AP , D) are calculated using instances of the tracked struc-1785

ture from nP previous frames (or for all previous frames at early time when fewer than1786

nP frames have been tracked). Importantly, the memory must capture a sufficient num-1787

ber of frames to both robustly detect the structure motion and to average out physical1788
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and unphysical noise in the detected clusters related to small fluctuations in the veloc-1789

ity field and in the Courant number. This requirement prevents minor variations in the1790

detected clusters from sending the tracking algorithm off course from the target eddy1791

structure. Here nP is calculated internally using the modal Courant number as nP =1792

|(u, v)|modedt/dx, where |(u, v)|mode is the estimated mode of the absolute Optical Flow1793

velocity field for all frames, which is generally much slower than the motion of the rel-1794

atively fast and hot large turbulent eddies. For the three video sequences shown here,1795

nP varies from 5 to 9. (TP , VP , AP ) are determined from the mean value of the tracked1796

structure across the previous nP frames. To determine D, the prior structure is consid-1797

ered to include pixels that were included in the tracked structure for at least 3 of the pre-1798

ceding nP frames. The resulting “prior mask” gives the outline of the structure from the1799

previous time step and is outlined in dark blue in Figure 5d.1800

As with many optimization schemes, the choice of weights in the clustering and op-1801

timizations steps, and the regularization λ can have a significant impact on results. The1802

default weights as listed were chosen based on the relative importance of variables. For1803

example, the hottest features are consistently those emerging from the leading front of1804

overturning structures, so temperature is the most robust measure for tracking the mo-1805

tion of the front and therefore has the largest weight. Also as a consequence, the loca-1806

tion of structure fronts are generally robustly tracked using the default weight param-1807

eters. Capturing accurately the shape of structures is more challenging and in many in-1808

stances required manual adjustment of the weights, or possible the regularization λ or1809

velocity tolerance ϵ. User suggestions for the adjustment of weights are included in the1810

code documentation.1811

B4 Structure Tracking: Memory Warping and Tracking Window Up-1812

date1813

To obtain the final tracked structure, we first select pixels that are within the dis-1814

tance tolerance ϵC95 of the prior mask boundary, for pixels that are external (not included1815

in the prior mask) and internal (included in the prior mask). This selection represents1816

a physical limit for how much the turbulent structure should translate or deform within1817

a single time step, based on their flow velocity. For pixels that lie within the new selected1818

cluster, we add pixels outside the prior mask that are within the distance limit, and sim-1819

ilarly remove prior pixels that are within this limit but are not in the selected cluster.1820

This results in a small layer of pixels added at the structure leading edge and removed1821

at the structure trailing tail, as shown in Figure 5d. The “warped mask” resulting from1822

this process is defined as the “tracked structure” for the current frame, and is added to1823

the prior memory as the most recent frame. Next, since tracked structures evolve in both1824

position and shape, the position memory of the structure pixels from the previous nP1825

frames must also be updated at each time step in order for the distance optimization term1826

PD give accurate results (cumulative motions of about 1 to 5 pixels are typical over nP1827

frames). This step creates a prediction for the position and size of the structure in the1828

next time step that will be used in the next cluster optimization. The pixel positions in1829

structure memory are updated by translating them using the Optical Flow velocity field1830

and rounding to the nearest pixel position. Finally, the tracking window position and1831

size must be updated, since the turbulent structures both move and grow in size with1832

progressive entrainment. The window changes position following the tracked structure1833

centroid while maintaining a minimum distance from its leading edge, and adjusts its1834

size to maintain the optimum number of clusters given by Equation B1. The aspect ra-1835

tio is also adjusted to continually match the tracked structure. It is otherwise rectan-1836

gular, except where truncated by encountering the boundaries of the column mask (Fig-1837

ure 5d). Changes in the tracking window between time steps are again limited by the1838

velocity tolerance ϵC95.1839
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B5 Structure Tracking: Pixel Exclusion1840

For the purpose of data analysis on the tracked structures, it is preferable to en-1841

sure that any given pixel is only ever included in a single tracked structure so that all1842

tracked structures have entirely separate data and their boundaries do not overlap. Ini-1843

tial tracked structures do overlap in some cases, typically when the trailing tail of a struc-1844

ture captures a part of the following structure, and generally not by more than a few per-1845

cent of all tracked pixels. To correct for this overlap, we perform a final step to manu-1846

ally exclude pixels that are included in more than one structure. For each tracked struc-1847

ture, all pixels that are also included in a following structure at any given time step are1848

removed.1849
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Zimanowski, B., Büttner, R., Dellino, P., White, J. D. L., & Wohletz, K. H.2250

(2015, January). Chapter 26 - Magma–Water Interaction and Phreatomag-2251

matic Fragmentation. In H. Sigurdsson (Ed.), The Encyclopedia of Volca-2252

noes (Second Edition) (pp. 473–484). Amsterdam: Academic Press. doi:2253

10.1016/B978-0-12-385938-9.00026-22254

–61–


