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Abstract

The NASA Terra and Aqua satellites have been successfully operating for over two decades, exceeding their original 5-year design

life. However, the era of NASA’s Earth Observing System (EOS) may be coming to a close as early as 2023. Similarities between

the Moderate Resolution Imaging Spectroradiometer (MODIS), aboard Aqua and Terra, and the Visible Infrared Imaging

Radiometer Suite (VIIRS) sensors aboard the Suomi NPP, NOAA-20 and NOAA-21 satellites enable potential continuity of

long-term earth observational records in the VIIRS era. We conducted a comprehensive calibration and validation of the MODIS

MOD17 product, which provided the first global, continuous, weekly estimates of ecosystem gross primary productivity (GPP)

and annual estimates of net primary productivity (NPP). Using Bayesian model-data fusion, we combined an 18-year record of

tower fluxes with prior data on plant traits and hundreds of field measurements of NPP to benchmark MOD17 and to develop

the first terrestrial productivity estimates from VIIRS. The updated mean global GPP (NPP) flux from MOD17 and the new

VNP17 for 2012-2018 is 127 ±2.8 Pg C year-1 (58 ±1.1 Pg C year-1), which compares well with independent top-down and

bottom-up estimates. Both MOD17 and VNP17 depict upward productivity trends over recent decades, with 2000-2018 MOD17

GPP (NPP) rising by 0.47 (0.25) Pg C year-2 but slowing to 0.35-0.44 (0.11-0.13) Pg C year-2 over 2012-2021, with a greater

reduction in the NPP growth rate. The new VIIRS VNP17 product has the potential to extend these continuous estimates of

global, terrestrial primary productivity beyond 2030.
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Key Points:9

• Over two decades of global productivity estimates from MODIS cannot be con-10

tinued without use of VIIRS data.11
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• Both MOD17 and new VNP17 depict upward productivity trends and mean and14

interannual variability consistent with independent data.15
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Abstract16

The NASA Terra and Aqua satellites have been successfully operating for over two decades,17

exceeding their original 5-year design life. However, the era of NASA’s Earth Observ-18

ing System (EOS) may be coming to a close as early as 2023. Similarities between the19

Moderate Resolution Imaging Spectroradiometer (MODIS), aboard Aqua and Terra, and20

the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors aboard the Suomi NPP,21

NOAA-20 and NOAA-21 satellites enable potential continuity of long-term earth obser-22

vational records in the VIIRS era. We conducted a comprehensive calibration and val-23

idation of the MODIS MOD17 product, which provided the first global, continuous, weekly24

estimates of ecosystem gross primary productivity (GPP) and annual estimates of net25

primary productivity (NPP). Using Bayesian model-data fusion, we combined an 18-year26

record of tower fluxes with prior data on plant traits and hundreds of field measurements27

of NPP to benchmark MOD17 and to develop the first terrestrial productivity estimates28

from VIIRS. The updated mean global GPP (NPP) flux from MOD17 and the new VNP1729

for 2012-2018 is 127 ±2.8 Pg C year−1 (58 ±1.1 Pg C year−1), which compares well with30

independent top-down and bottom-up estimates. Both MOD17 and VNP17 depict up-31

ward productivity trends over recent decades, with 2000-2018 MOD17 GPP (NPP) ris-32

ing by 0.47 (0.25) Pg C year−2 but slowing to 0.35-0.44 (0.11-0.13) Pg C year−2 over 2012-33

2021, with a greater reduction in the NPP growth rate. The new VIIRS VNP17 prod-34

uct has the potential to extend these continuous estimates of global, terrestrial primary35

productivity beyond 2030.36

Plain Language Summary37

The NASA Terra and Aqua satellites have been successfully operating for over two38

decades, far longer than their original 5-year design life. However, one or both satellites39

may run out of fuel as early as 2023. These satellites carry the Moderate Resolution Imag-40

ing Spectroradiometer (MODIS) sensors, which are very similar to the Visible Infrared41

Imaging Radiometer Suite (VIIRS) sensors aboard newer satellites. The long record of42

MODIS data collected so far may therefore be extended by the VIIRS sensors, partic-43

ularly the global estimates of the amount of carbon in the atmosphere taken up and stored44

by plants. We used multiple independent datasets to figure out if and how the MODIS45

MOD17 computer model should be changed to improve its accuracy and to use data from46

VIIRS. The new VIIRS VNP17 data could extend our record of plant-atmosphere car-47

bon exchange beyond the year 2030.48

1 Introduction49

The Moderate Resolution Imaging Spectroradiometer (MODIS), carried by the Terra50

and Aqua satellites, is a key component of NASA’s Earth Observing System (EOS) (Justice51

et al., 2002), which has contributed observations of Earth’s land, atmosphere, and oceans52

for over two decades. Although Terra and Aqua have far exceeded their original 5-year53

design life, the end of the EOS era is near, as one or both of the satellites may run out54

of fuel as early as 2023. Because of the dozens of products derived from the 36 MODIS55

spectral bands, and because of the similarity of the Visible Infrared Imaging Radiome-56

ter Suite (VIIRS) sensor aboard the Suomi NPP and NOAA-20 satellites, there has long57

been interest in using VIIRS to provide continuity of land surface observations (Murphy58

et al., 2001; Xiong et al., 2020). MODIS-like observations will continue to be important59

for global studies of terrestrial productivity, including ecosystem monitoring (Y. Zhang,60

Song, et al., 2017; M. O. Jones et al., 2020) and agricultural studies (Skakun et al., 2018).61

Of particular interest are the on-going applications of MODIS to studies of the ter-62

restrial carbon cycle, beginning with the first global, continuous, weekly estimates of ecosys-63

tem gross primary productivity (GPP) and annual estimates of net primary productiv-64

ity (NPP): the Terra MODIS MOD17 product (Running et al., 2004; Zhao et al., 2005).65
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The MOD17 product, now exceeding 22 years of record, has been instrumental in diag-66

nosing increasing water limitations on carbon uptake (Zhao & Running, 2010), highlight-67

ing the role of humans in wildfire ignition (Balch et al., 2017), and constraining human68

appropriations of biomass (Erb et al., 2018), among other diverse applications. It is no69

coincidence that MOD17 was developed at the same time that direct, ecosystem-level70

measurements of canopy gas exchange from eddy covariance (EC) flux towers first be-71

came widely available (Baldocchi et al., 2001). The simple light-use efficiency (LUE) ap-72

proach allows for up-scaling the ecosystem-level estimate of GPP from towers using satel-73

lite observations of canopy vigor and gridded surface meteorological data (Ryu et al., 2019).74

Here, we confront the MOD17 GPP and NPP models with data in a comprehen-75

sive calibration and validation study. We also present the first calibration and assess-76

ment of the MOD17 algorithm for use with the VIIRS sensor, enabling continuity of multi-77

decadal GPP and NPP estimates. The independent observational data used in this study78

include eddy covariance (EC) tower CO2 fluxes, field surveys of productivity and biomass79

change, and a global database of species-level plant traits (Kattge et al., 2020). Previ-80

ous MOD17 calibration efforts prescribed a set of general biophysical response charac-81

teristics for major land cover types, defined in the model’s Biome Properties Look-up82

Table (BPLUT), and derived using a limited set of EC tower site observations as well83

as literature review, expert elicitation, and a smaller set of NPP estimates (Zhao et al.,84

2005). Here, we conducted a more extensive model calibration and formal analysis of model85

sensitivity and uncertainty in parameterization, which has been performed for similar86

diagnostic models (e.g., L. A. Jones et al., 2017; K. Zhang et al., 2019), but not yet for87

MOD17.88

2 Data and Methods89

Although there is a file-naming convention where “MOD” indicates a product gran-90

ule based on Terra MODIS data (only, as opposed to Aqua MODIS), we use “MOD17”91

throughout this paper to refer to the combined GPP/NPP algorithm, which is currently92

operational using MODIS observations from both EOS Terra and Aqua satellites.93

2.1 The MOD17 Algorithm94

As MOD17 has been discussed thoroughly in the literature, we give only a brief overview95

of the model here. A complete description is available in the MOD17 Collection 6.1 User’s96

Guide (Running & Zhao, 2021). MOD17 consists of three potentially independent sub-97

models: 8-day GPP, 8-day net photosynthesis (PSNnet), and annual NPP. 8-day com-98

posite products are given the designation MOD17A2H, for Terra MODIS, or MYD17A2H,99

for Aqua MODIS. Annual products, including annual GPP (the sum of one year’s 8-day100

GPP composites), are carried by MOD17A3H (or MYD17A3H). GPP is calculated us-101

ing a classic light-use efficiency (LUE) approach (Running et al., 2004; Yuan et al., 2014;102

Madani et al., 2017), where the carbon (C) uptake by plants is assumed to be propor-103

tional to canopy absorbed photosynthetically active radiation (APAR) under prevailing104

daytime environmental conditions for diel or longer time scales. Low temperatures or105

high vapor pressure deficit (VPD) reduce the efficiency of photosynthetic C uptake, thus,106

MOD17 GPP is described as a product of APAR, the light-use efficiency under optimal107

conditions (εmax), and environmental scalars:108

GPP = APAR× εmax × f(Tmin)× f(VPD) (1)109

Where f(Tmin) and f(VPD) are numbers on [0, 1] representing the decline in εmax110

due to low daily minimum temperatures and high VPD, respectively. These environmen-111

tal scalars are represented as linear ramp functions, where limiting conditions are inter-112

polated between zero (completely limiting, i.e., photosynthesis cannot occur) and one113

(non-limiting). The key parameters in modeling GPP, in addition to εmax, are the Tmin114
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and VPD values that indicate the width of the ramp function and, consequently, the slope115

that determines how much εmax is reduced for a unit decrease in Tmin or unit increase116

in VPD.117

Daily (or 8-day) net photosynthesis is calculated as GPP less maintenance respi-118

ration (RM ) from leaves and fine roots. Leaf RM is based on a Q10 function (Tjoelker119

et al., 2001) and the current leaf C mass, which is estimated instantaneously as leaf area120

index (LAI) divided by specific leaf area (SLA). Fine root RM is also based on a Q10121

function and the fine root C mass is based on an allometric relationship with the leaf C122

mass. The same Q10 ≡ 2 is used for fine roots and livewood whereas leaves use a temperature-123

acclimated equation (ibid.). Notably, as MOD17 does not track biomass allocation, live-124

wood respiration and growth respiration, RG, are not included in PSNnet. Annual NPP125

does account for RG and livewood RM , estimating livewood C mass through an allomet-126

ric relationship with annual maximum leaf C mass. Based on empirical studies, RG is127

estimated to consume 25% of annual NPP; thus, annual NPP is calculated as:128

NPP = GPP−RM −RG =
1

1.25
(GPP−RM ) (2)129

The complete list of parameters is included in Table 1. Each of the parameters is130

defined separately for 11 distinct plant functional types (PFTs), based on the MODIS131

MCD12Q1 Type 2 International Geosphere-Biospehre Programme (IGBP) land-cover132

classification (Friedl & Sulla-Menashe, 2019; Sulla-Menashe et al., 2019).133

MOD17 Collection 6.1 (C61) depends on surface meteorological data including mean134

and minimum daily air temperature, photosynthetically active radiation (PAR), atmo-135

spheric pressure, and the water vapor mixing ratio. These inputs are derived from the136

NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing Sys-137

tem 5 (GEOS-5), Forward Processing for Instrument Teams (GEOS FP-IT). It also de-138

pends on driver data from MOD15A2H (Myneni et al., 2015), a record of LAI and the139

fraction of the canopy absorbing PAR (fPAR). Taken together, these data determine the140

surface cover available to harvest light for C (CO2) uptake and the environmental con-141

straints on that process.142

In this re-processing, there are some significant departures from earlier versions of143

MOD17. First, C61 and all previous versions of MOD17 used an estimate of short-wave144

radiation (GMAO “SWGNT”) that is likely too low to be used in calculating PAR. Es-145

timation of PAR is based on irradiance measurements indicating that approximately 45%146

of the daily (short-wave) solar irradiance is within the PAR waveband, 400-700 nm (Meek147

et al., 1984). However, MOD17 has historically used 45% of net short-wave radiation for148

calculating PAR, which might be an underestimate, as SWGNT accounts for surface albedo.149

Based on GMAO data over 2000-2017, the incoming daily short-wave irradiance (GMAO150

“SWGDN”) is always greater than or equal to SWGNT. Previous MOD17 calibration151

(Zhao et al., 2005, 2006) has likely compensated for this underestimation of PAR.152

Here, we re-calibrate MOD17 using GMAO SWGDN instead of SWGNT. In ad-153

dition, whereas C61 and prior versions have fixed fine-root and livewood Q10 values at154

2, we make these free parameters during model calibration, based on prior evidence that155

suggest this fixed value may be suboptimal (see “Model-Data Fusion”). Prior to calibra-156

tion, we conducted a global sensitivity analysis of MOD17’s free parameters, based on157

the Sobol’ variance-based decomposition method (Sobol’, 2001). This was performed in158

Python using SALib (Herman & Usher, 2017; Iwanaga et al., 2022), and obtains the pro-159

portion of the total variance in GPP or NPP that is contributed directly by a given pa-160

rameter or by an interaction between that parameter and any combination of other pa-161

rameters.162
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2.2 Model Calibration Data163

For GPP model calibration, we used a globally representative network of 352 eddy164

covariance (EC) flux towers from the FLUXNET/La Thuile synthesis collection (Baldocchi,165

2008). Based on a recent analysis of EC tower footprints (Chu et al., 2021), we chose a166

conservative tower footprint of 1.5 km, or a 3-by-3 grid of 500-m pixels centered on the167

tower. This area is used to integrate fPAR and LAI observations at 500-m scale and smooth168

the resulting GPP predictions through spatial averaging. Tower daily gap-filled GPP data169

were smoothed using a 2-day moving window filter with zero phase offset and observa-170

tions were discarded when PAR was below 0.1 MJ m−2 per day. fPAR and LAI data were171

filtered to remove spurious spikes; low-quality fPAR and LAI data, based on the qual-172

ity check (QC) band, were filled in from an fPAR or LAI climatology. Then, 8-day fPAR173

and LAI were interpolated to daily time steps using forward and backward filling. In ad-174

dition to MODIS MOD15A2H fPAR and LAI, daily surface meteorological data were com-175

piled for tower sites for the years 2000 through 2017 from the Modern-Era Retrospec-176

tive Re-analysis (MERRA-2, Gelaro et al., 2017).177

MOD17 is calibrated separately for each PFT. Each FLUXNET site is assigned a178

dominant PFT, the class that makes up the majority of 500-m pixels within the 1.5-km179

tower footprint. Tower sites used for model calibration were screened to ensure PFT con-180

sistency between the local tower footprints and overlying MOD17 windows. Calibration181

for a given PFT uses just those FLUXNET sites where that PFT is dominant (Table 2).182

Because no FLUXNET site is located within a majority-DNF canopy, we assigned to this183

PFT two majority-ENF sites that have DNF pixels within a 3-km radius. CSH is also184

poorly represented among FLUXNET sites, dominant at only 2 sites. We assigned 3 other185

sites that have CSH pixels within the 1.5-km footprint, but which are dominant elsewhere.186

Table 2: The plant functional type (PFT) classification used in MOD17, which is based
on the MODIS MCD12Q1 Type 2 classification. The number of FLUXNET sites with
each PFT as the dominant ground cover (i.e., majority of 500-m pixels within a 1.5-km
footprint) is also included.

Plant Functional Type (PFT) Abbreviation Number of FLUXNET sites
Evergreen needleleaf forest ENF 30
Evergreen broadleaf forest EBF 22
Deciduous needleleaf forest DNF 2
Deciduous broadleaf forest DBF 32
Mixed forest MF 33
Closed shrublands CSH 5
Open shrublands OSH 15
Woody savannas WSV 47
Savannas SAV 35
Grasslands GRS 77
Croplands CRO 54

Annual NPP parameters have never before been directly calibrated against obser-187

vations, with model misfit quantified by the difference between predictions and field es-188

timates of NPP. Here, we use a multi-decadal inventory of global NPP estimates collected189

by the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).190

This “Multi-Biome” collection and other field datasets (Table 3) describe above-ground,191

below-ground, and/or total NPP at over 1,600 field sites, providing a basis for global cal-192

ibration of terrestrial carbon models. There are some challenges, however.193

Few of the datasets in this collection provide details on the land-use or manage-194

ment history and fewer still provide specific years or year ranges for the NPP estimates;195
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Figure 1: Boxplots of mean annual NPP, by Plant Functional Type (PFT), for the Cal-
Val (“Inventory”) data and the MsTMIP ensemble mean, based on a majority resampling
of land-cover data to MsTMIP’s half-degree grid. Numbers at top indicate the total num-
ber of site-years for the Inventory data. Whiskers show the minimum and maximum of
each dataset. Sites with reported mean annual NPP greater than 2,385 g C m−2 year−1
were discarded.

the estimates span a range of years from 1936 to 2006. Sites in the inventory were clas-196

sified into PFT groups based, first, on the reported biome or vegetation type; if no such197

information was provided, the site coordinates were used to map the PFT class from the198

MCD12Q1 Type 2 global mosaic for year 2015. A small number of sites were excluded199

because they did report intensive management histories (fertilizer, irrigation, mowing,200

or burning). NPP estimates from Gower et al. (2012) and Olson et al. (2013) were grouped201

by site (unique name or coordinates) and averaged. Because CSH describes such a small202

proportion of the global land domain (Madani et al., 2017), additional, randomly cho-203

sen CSH sites from the NPP validation datasets were added to the calibration dataset.204

In addition, data compiled by Campioli et al. (2015) and Luo et al. (2021) were added205

to the ORNL calibration dataset, after removing sites that were duplicated from the ORNL206

data, resulting in a total of 1,646 annual NPP measurements for calibration and valida-207

tion (“Cal-Val”).208

As we cannot exclude the possibility that some sites are intensively managed to209

boost productivity (e.g., by fertilization or irrigation), we removed NPP samples that210

fell outside the PFT-group range of global mean (1980-2000) annual NPP, which was211

derived from a fusion of annual FLUXCOM NEE (Jung et al., 2020) and heterotrophic212

respiration (RH) data from X. Tang et al. (2020). After also accounting for sites that213

fall outside of the MODIS global land domain (i.e., have no fPAR or LAI data), this re-214

sulted in a final total of 951 valid NPP measurements. The NPP Cal-Val data show ex-215

pected differences by PFT and the median NPP agrees well with previously reported biome-216

level averages (e.g., Kicklighter et al., 1999; Zaks et al., 2007), and also with the Multi-217

Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP, Huntzinger218

et al., 2013) “BG1” simulation (time-varying climate, land-cover, CO2, and nitrogen de-219

position) ensemble mean (Figure 1). Reported values in DNF canopy (209-410 g C m−2220
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year−1) are low but consistent with reports from field measurements in forest stands (Kushida221

et al., 2007; Ji et al., 2020).222

Corresponding NPP model meteorological drivers for 1980-2000 were obtained from223

the MERRA-2 re-analysis (Gelaro et al., 2017), which is derived from the GEOS-5 land224

model. As most sites do not specify the exact year of the NPP measurement, we used225

daily data from a randomly chosen year between 1980-2000 for each site, for the corre-226

sponding calendar day of a 365-day year, so as to capture the real, within-site, intra-annual227

variability in environmental drivers (as opposed to reducing the variance by using a cli-228

matology). As MOD17 does not have any state tracked between time steps, and as mod-229

eled NPP is calculated over the synthetic, 365-day year at each site, there are no issues230

with using different days for consecutive years. Because there are no MODIS data prior231

to 2000, MODIS fPAR and LAI climatologies were calculated for the 2000-2005 period232

for use in calibrating annual NPP.233

2.3 Model-Data Fusion234

The parameters in the MOD17 BPLUT, itemized in Table 1, were previously de-235

rived from literature review and some empirical studies. Today, there are numerous, di-236

rect ecological observations that can be used to inform model development and calibra-237

tion, including extensive EC flux tower data and measured plant traits. We consulted238

the global TRY database (Kattge et al., 2020) for plant traits relevant to MOD17 pa-239

rameters and developed prior parameter distributions for use in a Bayesian model-data240

fusion. Specifically, using Markov Chain Monte Carlo (MCMC), the observed distribu-241

tions of plant traits were used as priors for estimating the likelihood of MOD17 param-242

eters given the difference between modeled and observed GPP or NPP. Details of how243

plant traits informed priors are available in the Supplement.244

Likelihood-ratio tests indicated that the SLA prior for each PFT was significantly245

different from the pooled distribution (i.e., based on values from all PFTs). We decided246

to fix SLA at its prior mean (from the TRY database), given the thousands of species247

observations for this parameter, because SLA was revealed to be the most sensitive model248

parameter and we believe the TRY data to be more reliable for fixing this parameter than249

the relatively small number of field NPP estimates.250

Model calibration was performed using MCMC with the Differential Evolution Metropo-251

lis sampler described by Ter Braak and Vrugt (2008) and Vrugt et al. (2009), as imple-252

mented in the PyMC framework (Salvatier et al., 2016). Between 100,000 and 200,000253

samples were drawn from the posterior for each of three chains, based on a root-mean254

squared error (RMSE) pseudo-likelihood function. Chains were qualitatively assessed for255

convergence and required burn-in; thinning to remove autocorrelation was one in every256

20 (for GPP) or 200 (for NPP) samples. The optimal posterior point estimate, used in257

the updated BPLUT, was chosen as the mean a posteriori estimate.258

2.4 Inter-calibration for the VIIRS Sensor259

Within the 2000-2017 period for which FLUXNET data are available, the SNPP260

VIIRS mission provides data for 5 years (2012-2017). Because the VIIRS record is much261

shorter than the MODIS record, and also because of differences in fPAR and LAI be-262

tween the corresponding VNP15A2H and MOD15A2H products, we opted to calibrate263

MOD17 for VIIRS differently. Instead of using data fusion for calibration against ob-264

served NPP (as with the updated MODIS MOD17 product), we derived bias-correction265

coefficients based on systematic differences in fPAR and LAI between the two sensors266

and apply these to the updated MOD17 BPLUT. The ratio between mean MOD15A2H267

fPAR and mean VNP15A2H fPAR is used as a multiplier to adjust the εmax parame-268

ter in the resulting VNP17 BPLUT while the ratio between mean MOD15A2H LAI and269
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mean VNP15A2H LAI is used as a multiplier to adjust the SLA parameter. Besides εmax270

and SLA, the updated MOD17 and new VNP17 BPLUT would be the same.271

In deriving both coefficients, because GPP is only accumulated for part of the year272

(but RM continues year-round), we calculated mean fPAR and LAI only during the grow-273

ing season, defined as days when the daily temperature constraint on GPP (defined by274

Tmin,←) is above zero. The input fPAR and LAI data to this process are the 5-km gap-275

filled datasets used for global simulation (see “Global Boundary Conditions” section).276

The fPAR-based εmax coefficients range from 0.965 (ENF) to 1.01 (OSH) and the LAI-277

based SLA coefficients range from 1.007 (WSV) to 1.076 (EBF), confirming the consis-278

tency in fPAR, LAI values between MOD15A2H and VNP15A2H (Xu et al., 2018; Yan279

et al., 2021).280

2.5 Global Boundary Conditions281

To verify that global carbon use efficiency (CUE), or NPP:GPP ratios, are reason-282

able, we conducted global simulations of GPP and NPP using the re-calibrated BPLUT.283

To overcome resource limitations, global simulations were conducted at 5-km scale from284

2000-2021 (for MODIS) or 2012-2021 (for VIIRS). This approach is similar to previous285

MOD17 global simulations conducted at 1-degree resolution (Zhao et al., 2005). The global286

5-km dominant PFT is defined as the majority land-cover type within a 5-km window287

over the MODIS MCD12Q1 (500-m) grid. We then created gap-filled 5-km fPAR and288

LAI time series using the approach of Zhao et al. (2005); the gap filling addresses data289

gaps from either cloud contamination or missing data during non-retrieval periods due290

to lower solar altitude at high latitudes during winter. Based on these 5-km, multi-year291

runs, the average annual GPP, NPP, and CUE were calculated within each PFT group.292

2.6 Model Validation293

Some GPP data were withheld during model calibration. For most PFTs, between294

20 and 25 site-years of (daily) EC flux tower data, for up to 5 different tower sites, were295

reserved for validation. Because there are few sites where the majority of land-cover pix-296

els are MF, GRS, DNF, or CSH, only 15 site-years are used for MF and GRS canopies297

and only 4 site-years are used for DNF and CSH. Each site-year reserved had valid data298

on at least 97% of data-days, ensuring that nearly complete years were used. Any miss-299

ing days (3% or less) were interpolated by forward-backward filling to ensure an annual300

total based on 365 days.301

For NPP model validation, because of the dearth of reliable NPP measurements,302

we used a 3-fold cross-validation to simultaneously estimate best-fit parameters and goodness-303

of-fit. In combination with MCMC, this means that a random subset of the NPP mea-304

surements was reserved in each fold and that nine chains (three folds times three chains305

in each fold) were obtained. Chains within a fold were pooled and the posterior mean306

parameters were used to calculate the goodness-of-fit, including bias, root mean-squared307

error (RMSE), and Pearson’s correlation. These metrics were then averaged across folds308

to obtain the final goodness-of-fit values.309

Three official MOD17 products were validated: MOD17A2H daily GPP, MOD17A3H310

annual GPP, and MOD17A3H annual NPP. Validation metrics include RMSE, normal-311

ized RMSE (nRMSE), unbiased RMSE, and Pearson’s correlation coefficient; these were312

computed for products based on the MOD17 C61 BPLUT, updated MOD17 BPLUT and313

new VNP17 BPLUT. For MOD17A2H, daily tower GPP fluxes were aggregated (summed)314

to 8-day intervals matching the MOD17A2H 8-day GPP. For MOD17A3H annual GPP,315

because there are so few towers with valid data for at least 97% of days per year, we did316

not use the reserved validation sites only; instead, all tower sites with valid data were317
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used. This may overestimate the accuracy of the updated annual GPP product, since318

the annual GPP validation dataset includes several data points used in calibration.319

We also validated MOD17 and VNP17 interannual NPP predictions against one320

top-down and three bottom-up estimates of global, annual NPP. First, the 2020 Global321

Carbon Budget (Friedlingstein et al., 2020) provides mean monthly NEE (2000-2016)322

based on atmospheric inversion on a 1-degree global, equirectangular grid. We calculated323

total annual NEE from these data and then resampled them onto a 0.5-degree grid to324

combine with global, up-scaled estimates of RH from X. Tang et al. (2020); NPP is then325

calculated as RH−NEE (“GCB2020”). Second, we estimated total annual NPP (2000-326

2017) from the TRENDYv7 ensemble mean monthly GPP and RA fields (Le Quéré et327

al., 2018; Sitch et al., 2015), on a 1-degree grid. Third, the ensemble mean NPP (2000-328

2010) from MsTMIP (BG1 simulation), on a 0.5-degree grid, was used as another bottom-329

up estimate (Huntzinger et al., 2013). Fourth, the up-scaled flux-tower estimates from330

FLUXCOM, driven by remote sensing and surface meteorological data (“RS+METEO”),331

were also compared, based on driver data from ERA5 (Jung et al., 2020). These inde-332

pendent estimates were compared to MOD17 and VNP17 annual NPP and their corre-333

spondence quantified by RMSE and Pearson’s correlation coefficient.334

To compute global annual fluxes from the independent GCB2020, TRENDYv7, MsT-335

MIP, and FLUXCOM datasets, given their coarse spatial resolution and lack of equal-336

area projection, we projected the annual data onto a 9-km Equal-Area Scalable Earth337

Grid (EASE-Grid 2.0) using nearest-neighbor resampling. Then, after masking the data338

to a similarly resampled MCD12Q1 land area map, totaled the flux densities after scal-339

ing each pixel by its land area. This may result in slightly different estimates than re-340

ported in the literature for these products, but was ultimately necessary as those pub-341

lications do not always report annual flux estimates.342

2.7 Uncertainty Analysis343

To quantify uncertainty in MOD17 GPP estimates, we applied error propagation344

by computing the Jacobian, J , of the GPP model with respect to fPAR and εmax, sep-345

arately, for each PFT. The variance in GPP due to model inputs or parameters θ is given:346

σ2
GPP(θ) = JθCJT

θ (3)347

where C is the error covariance matrix. To quantify the separate contributions of348

fPAR and εmax, this equation reduces to a scalar product, where C is the error in fPAR349

or εmax. We focused on fPAR and εmax because the error in these parameters is known.350

fPAR error is given as 10 fPAR units (Myneni, 2018) and the standard error in the εmax351

posterior is assumed to be representative. To facilitate uncertainty quantification, we also352

assume that errors in fPAR and εmax are uncorrelated. We used Gaussian error prop-353

agation to estimate the uncertainty in annual GPP due to the compensating errors in354

daily GPP estimates. Overall uncertainty was calculated by pooling data for all PFTs,355

using only the GPP validation data, which effectively stratifies the data so approximately356

equal site-days are included from each PFT.357

To quantify uncertainty in MOD17 annual NPP estimates, we use a Monte Carlo358

approach because is it is much more difficult to compute partial derivatives of the NPP359

model. We repeatedly sampled from the posterior NPP parameters, with replacement,360

calculating the RMSE in mean annual NPP based on the Cal-Val dataset. The coeffi-361

cient of variation in RMSE is then reported, separately, for each PFT.362

3 Results363

The Sobol’ sensitivity analysis indicates that more than 80% of the variance in the364

GPP model is determined by the εmax parameter alone (Figure 2). The upper bounds365
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Figure 2: Sobol’ sensitivity metrics for the MOD17 GPP (a) and NPP (b) models. The
direct effect of the parameter on model estimates is indicated by S1; the total effect (in-
cluding higher-order interactions) is indicated by ST. Tmin,← and VPD← refer to the
lower (left-hand) bounds of minimum temperature and VPD; the left-hand bound is the
temperature (VPD) at which photosynthesis is completely limited (unlimited) by tem-
perature (VPD). Tmin,→ and VPD→ refer to the upper (right-hand) bounds of minimum
temperature and VPD; the right-hand bound is the temperature (VPD) at which photo-
synthesis is completely unlimited (limited) by temperature (VPD).

of the environmental constraints, Tmin,→ and VPD→, are more important than the lower366

bounds and have weak, second-order effects through εmax. The annual NPP model has367

a strong direct effect of SLA (42%) but also moderately strong total effects from the fine368

root-leaf ratio (froot_leaf_ratio) and base RM for fine roots. These sensitivities are369

partly reflected in the model-data fusion results. In the GPP calibration, the posterior370

distributions for the environmental scalars are fairly flat, resembling the uniform priors371

and indicating that the observed GPP data are consistent with a wide range of thresh-372

olds for Tmin and VPD. Similarly, the Q10_livewood mean a posteriori estimate was close373

to the prior mean for most PFTs.374
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3.1 Optimal Parameters for BPLUT375

The posterior distributions were compared to the C61 BPLUT and the wider lit-376

erature, assessing both consistency with the previous product and realism. As an addi-377

tional boundary condition, the mean global CUE values for each PFT were expected to378

be close to 0.46 (Collalti & Prentice, 2019) and much lower for EBF (Malhi, 2012). Dur-379

ing NPP calibration, to ensure realism in the BPLUT values and the simulated, global380

CUE values, we rejected some of the mean a posteriori (MAP) estimates after calibra-381

tion. When the MAP was rejected, it was replaced either by the prior mean for that PFT382

(Table S7) or by the MAP of a similar PFT. The updated MOD17 BPLUT and new VNP17383

BPLUT can be found in the Supplement (Tables S9, S10).384

Given the low sensitivity of the GPP model to the lower bounds of the environ-385

mental scalars (Figure 2), we opted to fix these at their C61 values; upper bounds re-386

mained free parameters during MOD17 calibration. The VPD→ posterior likelihood in-387

creased rapidly with VPD but, above ca. 3000 Pa the posterior flattens out. The Tmin,→388

posteriors are more complex, with most PFTs showing little sensitivity to this param-389

eter. Consequently, the optimal values for both VPD→ and Tmin,→ were chosen as the390

maximum a posteriori estimate, as the mean (or median), given a uniform prior, tends391

to fall near the middle of the prior bounds. The εmax posteriors were symmetric and the392

prior mean was within the interquartile range (IQR) for all PFTs. The results are con-393

sistent with Madani et al. (2017), but the optimal εmax appears to be significantly lower394

than its C61 value for shrublands and savannas, higher for croplands, and otherwise sim-395

ilar to C61 (Figure S9).396

Consistent with the literature, the livewood Q10 posterior is narrow and resembles397

the prior. The fine-root Q10 posterior varies widely among PFTs, which is partly a re-398

flection of the uncertainty in the literature. Deciduous canopies and Mixed Forest have399

the highest Q10_froot values. As Q10_froot is not likely to be less than 1.0 (Atkin et400

al., 2000), the posterior was rejected in favor of the prior in such cases. Posterior RM401

for leaves and fine roots were generally lower than the prior means from TRY but within402

the range of the C61 BPLUT. The NPP data indicate that the optimal leaf RM rate com-403

pares well with C61 for woody forest PFTs; however, posterior means for other PFTs were404

higher than the C61 value and close to the prior mean. The fine-root RM posteriors vary405

widely and few are close to their C61 values. The posterior livewood RM , however, com-406

pares well with the C61 BPLUT and the prior mean, except for EBF and shrublands,407

where it is significantly higher. The livewood_mr_base prior mean for EBF was used408

in place of the MAP.409

3.2 Validation against Tower Fluxes and Field Data410

The C61 annual GPP (MOD17A3H) estimates compare well with tower annual GPP411

among those sites with nearly complete years (Table 4). Under-estimation of GPP is ap-412

parent for ENF, but C61 also over-estimates GPP in medium-productivity EBF (Table413

S11). C61 GPP performs best in ENF, EBF, and GRS (nRMSE within 13-17%) but most414

severely under-estimates GPP in ENF and MF (nRMSE ≥ 49%). C61 8-day GPP (MOD17A2H),415

divided into daily units, indicates the algorithm performs best in shrublands, WSV, and416

GRS (nRSME ≤ 7%) and worst in CRO (nRMSE = 26%) because of under-estimation417

(mean bias = −1.2 g C m−2 day−1) (Table S13).418

GPP bias and RMSE were both reduced overall in the Updated product (Table 4),419

with the greatest improvements made at highly productive DBF and CRO sites (Table420

S13). Daily GPP improved for most PFTs, while annual GPP generally improved only421

for herbaceous and forested canopies. High negative bias in annual GPP was significantly422

reduced for ENF, GRS, and CRO (-196, -174 and -9 g C m−2 year−1 after recalibration,423

respectively). C61 MOD17 generally under-estimates GPP, particularly at high mag-424

nitudes (Heinsch et al., 2006; Y. Zhang et al., 2008), and slightly over-estimates annual425
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Figure 3: Comparison of mean annual GPP (left) and NPP (right) from the
overlapping 10-year period for MODIS MOD17 and VIIRS VNP17 (2012-2021),
based on global, 5-km simulations.

NPP, particularly in forested areas (Table S15). After re-calibration, GPP bias is reduced426

but is systematically similar to C61, while NPP bias is almost eliminated in individual427

PFTs, save for ENF, which has a strong, negative mean bias (Table S15). This also leads428

to an overall negative bias in the updated product (Table 4).429

Annual NPP skill is improved in the MOD17 update, compared to C61 (Table 4,430

Figures S10-S11). C61 Annual NPP (MOD17A3H) performs best in shrublands, savan-431

nas, and herbaceous canopies (nRMSE ≤ 17 percent) and this pattern is similar for the432

updated product, though DNF, DBF, and MF are also considerably improved (Table S15).433

The magnitude of annual NPP RMSE in C terms is small (∼ 0.7 g C m−2 day−1) but434

performance varies widely by PFT, with the greatest nRMSE values in forest canopies.435

In the update, spatial correlation in annual NPP is improved for all PFTs (≥ 0.5) ex-436

cept ENF. Annual NPP RMSE was also improved for all PFTs, except ENF.437

Plant CUE (NPP:GPP ratio) is an emergent property of ecosystems simulated by438

MOD17. When the new annual GPP and NPP products are combined, we find that the439

BPLUT updates lead to substantial changes in CUE from C61. In terms of agreement440

with the MsTMIP ensemble, the updates improve plant CUE for all PFTs except DNF,441

SAV, and GRS (Figure S12). When compared to the measured CUE values compiled by442

Collalti and Prentice (2019) for woody plants, the updates improve plant CUE for all443

PFTs except EBF (Figure S13), for which median CUE is 0.49 (0.40 in MsTMIP ensem-444

ble, 0.44 in C61, and 0.37 in the update).445

At global extent, the new VNP17 annual GPP and NPP products are very sim-446

ilar to the updated MOD17 products (Figure 3). The new VIIRS VNP17 BPLUT was447

used in the same validation scheme as for MOD17 GPP and NPP. However, because VI-448

IRS fPAR and LAI data are only available starting in 2012 and many FLUXNET sites449

do not report data after 2012, there are far fewer site-weeks or site-years to use for val-450

idating VNP17 daily GPP than for MOD17. In particular, majority-DNF sites are not451

represented in the 2012-2017 period and no majority-DBF sites have years with at least452

97% of valid data-days within this span. When using a common validation data mask,453

it is apparent that the VNP17 BPLUT produces daily GPP estimates quite similar to454

the updated MOD17 BPLUT (Table 4), except that VNP17 shows potential degrada-455
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tion in MF and improvement in OSH and a less-negative overall bias (Tables S13, S14).456

VNP17 annual NPP estimates, however, are generally less accurate than for MOD17,457

with particularly high RMSE in ENF, OSH, WSV, and SAV compared to the updated458

MOD17 (Tables S15, S16). Compared to the statistics in Table 4, when the longer val-459

idation record available to MODIS MOD17 is used instead, there is a more substantial460

improvement over C61 in daily GPP RMSE (2.69 g C m−2 day−1 for C61 versus 2.34461

for the Updated BPLUT) and correlation (0.77 for C61 versus 0.84 for the Updated BPLUT).462

Table 5: Root-mean squared difference (RMSD) in annual NPP (g C m−2 year−1)
at FLUXNET sites for each product, compared to independent NPP datasets.

NPP Dataset C61 MOD17 Update New VNP17
Global Carbon Budget (2000-2016) 341 272 276
TRENDYv7 Ensemble (2000-2017) 331 327 289
MsTMIP Ensemble (2000-2010) 341 313 n.a.

Compared to the independent NPP estimates at FLUXNET sites from bottom-up463

and top-down approaches, the updated MOD17 and VNP17 products also show substan-464

tial reductions in annual NPP RMSE over C61 (Table 5); again, VNP17 is very similar465

to MOD17 in this respect (Table S17). When broken out by PFT (Tables S18-S20), it’s466

clear the updated MOD17 has improved skill in annual NPP for some of the most pro-467

ductive PFTs: EBF (C61 mean RMSE= 717 g C m−2 year−1, updated MOD17 mean468

RMSE= 548 average across independent datasets), DBF (C61 mean RMSE= 247, up-469

dated MOD17 mean RMSE= 195), and CRO (C61 mean RMSE= 304, updated MOD17470

mean RMSE= 272). Most importantly, the overall GPP and NPP magnitudes are very471

similar between VNP17 and the updated MOD17 (Figure 3).472
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Figure 4: Comparison of mean annual NPP (2000-2010) across four products:
the updated MOD17 product, based on the 5-km global simulation and resam-
pled to 0.5-degrees; the TRENDYv7 ensemble mean, at 1-degree resolution; the
MsTMIP ensemble mean at 0.5-degrees; and the synthetic NPP estimate from the
2020 Global Carbon Budget and Tang et al. (2020). In the MOD17 image, land
areas not simulated in MOD17 (e.g., barren lands) are filled with zero annual
NPP.

3.3 Mean, Trend, and Interannual Variability473

The mean global GPP flux (2000-2018) in the updated MOD17 product is 127 ±2.8474

Pg C year−1, which compares well with that of the TRENDYv7 ensemble mean over the475

same period (126 ±2.4 Pg C year−1), and is an increase over the estimate from C61 (119476

±2.9 Pg C year−1). If we consider the period 2012-2018, mean global GPP flux from the477

new VNP17 is quite similar to the updated MOD17 estimate, 129.6 ±1.7 versus 129.7478

±1.7 Pg C year−1, and both are higher than the C61 estimate over the same period (121.6479

±1.6 Pg C year−1). Mean global NPP flux from the new products over 2012-2018 is 58.4-480

58.5 ±1.1 Pg C year−1, compared to 60.7 ±1.1 in C61 (Table S21).481

The updated MOD17 and new VNP17 annual NPP estimates exhibit strong spa-482

tial correlation (Figures 4, 5, and S14-S16) with bottom-up estimates from the TRENDYv7483

(MOD17 r = 0.85, VNP17 r = 0.86) and MsTMIP ensembles (MOD17 r = 0.79) and484

also compares well with the top-down, global synthesis of NPP based on the Global Car-485

bon Budget (MOD17 and VNP17 r = 0.71). Annual GPP estimates from both prod-486

ucts show even stronger spatial correlations with TRENDYv7 (MOD17 and VNP17 r =487

0.91). In terms of global, interannual NPP and RA variability, MOD17 compares very488

well to the TRENDYv7 and MsTMIP ensembles, with the vast majority of the global489

land domain exhibiting strong, positive correlations (Figure S17); VNP17 IAV is very490
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Figure 5: Comparison of interannual correlation in NPP between the updated
MOD17 product (based on the 5-km global simulation) and the MsTMIP ensem-
ble mean at 0.5-degrees or the TRENDYv7 ensemble mean at 1-degree resolution.
The MOD17 product was resampled to match either product.

similar to that of MOD17 (Figures S18-S21). Negative correlations are found mainly in491

humid, tropical regions where IAV is low and persistent cloud cover leads to more re-492

liance on fPAR climatology.493

We also compared MOD17 C61 and the updated MOD17 to the MsTMIP and TRENDYv7494

ensemble means in terms of interannual variation (IAV) in GPP and NPP (Figure 6).495

All products show a significant, upward trend, based on Theil-Sen median trend esti-496

mates. MOD17 C61 and the updated MOD17 display increasing GPP (NPP) trends of497

0.45 and 0.47 (0.27 and 0.25) Pg C year−2, respectively, over 2000-2018 compared with498

0.41 (0.21) Pg C year−2 for the TRENDYv7 ensemble means. Trends are lower in the499

period 2012-2021; for MOD17 C61, the updated MOD17, and the new VNP17 we find500

GPP (NPP) trends of 0.38, 0.44, and 0.35 (0.17, 0.13, 0.11) Pg C year−2. For the uni-501

fied period of 2000-2010 (VNP17 drops out), both MOD17 products show greater IAV502

in GPP and NPP than MsTMIP and TRENDYv7. The IAV is slightly lower in the up-503

dated MOD17 compared to C61, which may reflect the bias-variance trade-off, i.e., a ten-504

dency in model calibration toward a narrower range of parameter variability.505

3.4 Uncertainty Analysis506

The error propagation indicates that a substantial portion of the error in daily and507

annual GPP estimates comes from error in fPAR (Tables S22, S23); at least 1.0 g C m−2508

day−1 for all PFTs and greater than 1.5 g C m−2 day−1 for most. Uncertainty in εmax509

is a negligible part of the error in GPP estimates, accounting for less than 0.12 g C m−2510

day−1 in both MOD17 and VNP17, though with the greatest impact on EBF. The mag-511

nitude of the fPAR error contribution is generally proportional to the total error by PFT.512

The error budget for annual NPP estimates generally corresponds to the sensitiv-513

ity analysis: uncertainty in SLA is usually the largest source of error in NPP estimates,514

among free parameters (Tables S24, S25). However, some PFTs have large error contri-515

butions from other parameters. Uncertainty in Q10_froot is a major contributor to un-516

certainty in annual NPP for both ENF and EBF and the greatest contributor for CRO.517

Uncertainty in froot_mr_base is a major source of uncertainty in ENF and GRS, while518

uncertainty in leaf_mr_base is a major source for WSV. Uncertainty in SLA has sur-519

prisingly little impact on annual NPP estimates in shrublands; no model parameters an-520
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Figure 6: Interannual variation (IAV) in GPP, NPP (annual flux minus in-
terannual mean) for the MOD17 products, shown alongside that of the Multi-
Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and
TRENDYv7 ensemble means.
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alyzed here contributed major uncertainty to estimates for this PFT, which is found pre-521

dominantly at high latitudes.522

4 Discussion523

Prudent use of models requires that they are regularly evaluated, checking both524

the model predictions (validation) and assumptions (verification) against independent525

data. MOD17 is a good candidate for continued use in the VIIRS era, but requires val-526

idation and verification to contextualize its estimates of ecosystem productivity. Here,527

independent data on plant traits have been combined with GPP and NPP measurements528

from flux towers and field surveys to improve both the accuracy and the realism of MOD17.529

4.1 Inferring the Optimal Biome Properties530

Retrospectively, plant trait data from TRY and the literature allow for a qualita-531

tive validation of the MOD17 Collection 6.1 (C61) BPLUT. We found that maximum532

LUE (εmax) compared well to the global optimum LUE defined by Madani et al. (2017)533

for most PFTs, but C61 εmax is likely too high for shrubland and savanna, and too low534

for croplands (Gan et al., 2021). Some studies have suggested higher εmax in ENF (Coops535

et al., 2007) and in shrublands (J. Chen et al., 2014) while others find, as indicated here,536

it should be lower (Yuan et al., 2014; Madani et al., 2017). Previous generations of the537

MOD17 BPLUT used a comparatively small number of EC towers (and years of obser-538

vation) in calibration, which may have led to biased εmax estimates. Even among the ex-539

panded FLUXNET collection, there are only five CSH tower sites, three of which are within540

2 km of one another, and all in regions of high aridity. Overall, lower εmax in arid re-541

gions is expected (Garbulsky et al., 2010). This may explain the severe decrease in εmax542

for CSH, relative to the C61 BPLUT, which is greater than the corresponding decrease543

in the better-represented OSH canopy.544

While the TRY database indicates that RM for all tissues should be higher than545

that of the C61 BPLUT (Figure S9, Table S7), posterior estimates are generally some-546

where in the middle. Livewood RM in C61 is close to that indicated by TRY. SLA in547

the C61 BPLUT also compares well to prior observations from TRY for evergreen and548

herbaceous (GRS and CRO) canopies but is too low otherwise. SLA values from TRY549

may seem high compared to field measurements of SLA (e.g., leaf area per unit leaf dry550

mass) but are consistent with the range of SLA in C terms (leaf area per unit leaf C),551

as the TRY database includes many values above 100 m2 kg C−1 (Figure S8). Posterior552

SLA values also compare very well to a review by Wright and Westoby (2001).553

The peculiarities of calibration results for CSH point to a larger issue with MOD17:554

too many poorly defined PFTs. Given that CSH is a tiny proportion (0.2%) of the global555

land surface (Madani et al., 2017), it is reasonable to ask whether this class should be556

combined with OSH in a global “Shrublands” class. This is especially salient in light of557

evidence that multiple PFTs may be over-differentiated (Yuan et al., 2014) and that en-558

vironmental filtering (Funk et al., 2017) may lead to more robust plant response than559

static and somewhat arbitrary functional types (Y. Liu et al., 2021). One practical con-560

sequence is that the prior mean for SLA in both OSH and CSH may be too high, as in-561

dicated by the low posterior RM rates in these PFTs.562

Our uncertainty analysis of the NPP sub-model largely follows the sensitivity anal-563

ysis but also emphasizes where parameters could be better constrained. SLA is the most564

important parameter for NPP estimation in MOD17 as, despite its relatively high cer-565

tainty (Figure S9, based on prior information from TRY), it has the greatest impact on566

NPP error. Leaf properties in croplands are particularly uncertain (Figure S22), likely567

due to the wide variety of global crop types. Future LUE models like MOD17 might ben-568
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efit from modeling SLA instead of using a fixed value, given the sensitivity of SLA to569

phenology and environmental conditions (Gong & Gao, 2019; Z. Liu et al., 2022).570

4.2 Performance of Global GPP and NPP Products571

Relative to C61, model-data fusion lead to improvements in 8-day and annual GPP572

and annual NPP flux estimates, based on reserved EC tower data, NPP cross-validation573

with field data, and independent bottom-up and top-down NPP estimates. Since 2012,574

the persistent negative GPP bias of MOD17 was reduced by at least 0.5 g C m−2 day−1575

and by over 50 g C m−2 year−1; over a longer record, bias was reduced by more than576

twice as much (Table 4). These improvements put the updated MOD17 and new VNP17577

8-day GPP product on par with other data-driven approaches combining satellite and578

flux-tower data (Joiner et al., 2018). Global annual GPP flux estimates in the new prod-579

ucts (mean 2012-2021 annual GPP flux of 130 ±1.5 Pg C year−1) are higher than the580

estimates of C61 (122 ±1.4 Pg C year−1) and other satellite-based estimates but are more581

in line with oxygen isotope studies (Welp et al., 2011), recent syntheses (J. M. Chen et582

al., 2012; Piao et al., 2013; Anav et al., 2015) (Figure 7), and bottom-up studies (Madani583

et al., 2018, 2020), particularly for years since 2012 (Y. Zhang, Xiao, et al., 2017). The584

new GPP estimates also agree better with TRENDYv7 (128.6 ±1.4 for 2012-2021).585

Annual NPP skill (nRMSE) was improved by almost 2 percentage points, a reduc-586

tion in RMSE of about 30 g C m−2 year−1. The updated and new products’ reduction587

in global annual NPP flux (58.4-58.6 ±0.9 Pg C year−1 for 2012-2021) is more consis-588

tent with estimates from the MsTMIP ensemble and combined results from the Global589

Carbon Budget (2020) and up-scaled soil respiration data (X. Tang et al., 2020); it’s also590

closer than C61 to the estimate from the meta-analysis by Ito (2011) (56.2 ±14.3 Pg C591

year−1). However, the mean annual NPP flux from the TRENDYv7 ensemble mean is592

higher and closer to the original estimate of MOD17 C61 (Table S21), as is the median593

of the spread in TRENDYv7 models (Figure 7). The inter-model spread of TRENDYv7594

and earlier syntheses (Cramer et al., 1999; Ito, 2011) suggests persistent high uncertainty595

in any model’s representation of terrestrial NPP. It also suggests at least the possibil-596

ity that the field estimates of NPP used here (Table 3) may not be too large, despite con-597

cerns about their reliability and representativeness (Clark et al., 2001; Zhao et al., 2006).598

The greatest strength of the MOD17 and VNP17 products is their long period of599

record, allowing an examination of interannual variability and trends. The strong increase600

in NPP observed over 2000-2010 (Figure 6) is inconsistent with the report of a reduc-601

tion in NPP by Zhao and Running (2010). This could be attributed to a difference in602

the climate drivers used in different versions of MOD17 and the sensitivity of GPP to603

prevailing weather conditions (Zhao et al., 2006). The 1-km estimates of MOD17 Col-604

lection 5.1, from 2000 to 2015, used by Zhao and Running (2010) were driven by NCEP605

reanalysis data (Kanamitsu et al., 2002) whereas the operational MOD17 (and future606

VNP17) products use GMAO data; these differences have led to different anomalies in607

GPP and NPP (Zhao et al., 2005). The uncertainty in LUE models like MOD17 due to608

climate drivers merits further exploration.609

However, even after recalibration, MOD17 and the new VNP17 GPP products still610

show large negative biases (Table 4). Previous studies have established that MOD17 gen-611

erally under-estimates GPP (Heinsch et al., 2006; Coops et al., 2007; Propastin et al.,612

2012; Sjöström et al., 2013; J. Chen et al., 2014; Huang et al., 2018), especially in grass-613

lands (Zhu et al., 2018) and in highly productive regions (Wang & Ogawa, 2017), and614

that this may be explained by a failure to account for diffuse PAR (Guan et al., 2022).615

Although it has been suggested that εmax should be increased (Wang & Ogawa, 2017;616

Huang et al., 2018), this model-data fusion is consistent with the previous global anal-617

ysis of Madani et al. (2017) indicating that εmax should be decreased for low-productivity618

shrublands and savannas and increased in DBF, MF, and croplands, relative to C61. This619
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Figure 7: Comparison of MOD17 and VNP17 annual GPP and NPP fluxes with
estimates from different models, as synthesized by Anav et al. (2015), for GPP,
or represented by the inter-model spread of NPP estimates from the TRENDYv7
ensemble.

may reflect subsequent improvements in the gap-filled MOD15A2HGF fPAR and LAI620

data. Notably, the updated MOD17 and new VNP17 BPLUT both substantially reduced621

the negative bias in croplands, which was found to be severe in Collection 6 (Huang et622

al., 2018).623

Annual NPP estimates were improved, over C61, to a greater degree than 8-day624

or annual GPP estimates (reduction in nRMSE of 0.4-1.0% for GPP but 1.2-1.9% for625

NPP), likely because there are more parameters to optimize in the NPP model. How-626

ever, in the updated MOD17 and new VNP17 products, there is a large negative bias627

in ENF, likely introduced when fine-root RM was increased to reduce the spuriously high628

CUE that emerged from global simulations. Leaf RM and SLA (based on prior infor-629

mation from hundreds of species in TRY) are already both low for this PFT and the cross-630

validation RMSE is very low (compared to other PFTs); consequently, there are few op-631

tions to mitigate this bias and avoid unrealistically high CUE values. The simultaneous632

improvement in annual NPP RMSE but decline in correlation likely reflects the sensi-633

tivity of NPP to local conditions that may not be adequately reflected by the 11 PFTs634

used in MOD17.635

Another source of NPP variability is the variation in plant traits (and BPLUT pa-636

rameters) themselves, over time and along environmental gradients, which is currently637

not reflected in the MOD17 model structure. SLA has been shown to vary with mois-638

ture and nutrient availability (Dwyer et al., 2014), and the spatial and temporal vari-639

ation in SLA, if accounted for, might reduce estimated NPP magnitudes (Verheijen et640

al., 2015). It has also been established that fine-root respiration is at least partly cou-641

pled with canopy photosynthetic uptake (Högberg et al., 2001; Drake et al., 2008; Lynch642

et al., 2013).643

How do the new products compare to previous generations? It is difficult to com-644

pare to previous performance assessments in carbon units (e.g., RMSE) because the quan-645

tity depends on the relative productivity of the EC tower sites included; more produc-646
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tive sites would generally lead to a higher RMSE. For example, the high RMSE of 8-day647

GPP in croplands (Table 13) exaggerates the overall RMSE estimated here (Table 4).648

As an alternative, normalized quantities have been used inconsistently, and while “rel-649

ative error” (Heinsch et al., 2006) is a common choice, it is also highly sensitive to very650

low EC tower flux magnitudes. We suggest that only normalized RMSE, relative to the651

reported range of tower observations, be compared to other assessments. These would652

suggest that C61 is an improvement over earlier versions and the updated MOD17 BPLUT653

a further improvement. R. Tang et al. (2015), for example, find Collection 6 annual GPP654

biases generally twice as large as estimated here for C61, and nRMSE values significantly655

higher as well, based on less than half as many EC tower sites. Sjöström et al. (2013)656

found an overall Collection 5.1 GPP RMSE, compared to flux towers in Africa, of 2.58657

g C m−1 d−1, higher than our estimate of 2.25 g C m−1 d−1 for C61. The performance658

is sensitive to the driver data used and is generally much better when tower-observed659

surface meteorology is used (Coops et al., 2007; J. Chen et al., 2014), though some have660

found otherwise (Wang & Ogawa, 2017).661

Error propagation indicates that error in MOD17 and VNP17 GPP estimates is662

primarily due to error in fPAR retrievals, as in multiple previous studies (Propastin et663

al., 2012; Fu et al., 2017; Wang & Ogawa, 2017). Given the low sensitivity of these mod-664

els to environmental scalars, this suggests that dynamic changes in MOD17 modeled GPP665

are largely a function of changes in canopy extent and vigor, conveyed by changes in fPAR.666

This feature of LUE models has been an advantage during the EOS era and allowed mod-667

els like MOD17 to capture trends in the land carbon sink (Figure 6) that are otherwise668

missed by purely data-driven approaches like FLUXCOM (Yang et al., 2022). And yet,669

given the modest improvement in the new MOD17 product compared to C61, it’s also670

apparent that the accuracy of these global LUE models is strongly tied to the quality671

of input datasets, in addition to uncertainty in model parameters and model structure.672

5 Conclusion673

We combined prior information on plant productivity and respiration traits with674

eddy covariance estimates of GPP and field estimates of NPP for the recalibration of MOD17,675

the first model to provide global, continuous, weekly estimates of ecosystem productiv-676

ity. This effort culminated in the final reprocessing of MODIS MOD17 and the devel-677

opment of new VNP17 GPP and NPP products based on VIIRS data. Relative to the678

current MODIS C61 MOD17 data, the updated MOD17 parameters substantially reduce679

the negative bias in 8-day GPP, by more than 1.2 g C m−2 day−1; the RMSE in annual680

GPP was reduced by 42 g C m−2 year−1 and RMSE in annual NPP was reduced by 36681

g C m−2 year−1 while maintaining or improving global correlations in the spatial pat-682

tern of GPP and NPP fluxes.683

The combined records of the updated MOD17 and new VNP17 products enable684

weekly-to-annual terrestrial productivity estimates to be continued through 2030 and685

beyond. The updated estimates of mean global GPP and NPP for 2012-2021, 130.1 ±1.6686

and 58.6 ±0.9 (respectively) agree very well with other bottom-up estimates. The long,687

extant record of MOD17 and VNP17 indicate that terrestrial productivity is increasing688

over recent decades (2000-2018), with GPP increasing annually by 0.47 Pg C year−2 and689

NPP by 0.25 Pg C year−2. These trends are supported by independent, bottom-up es-690

timates and all the models examined here do indicate that the rate of increase in GPP691

and NPP may be slowing down in recent years.692

Open Research Section693

The 5-km global simulation outputs (for both MOD17 and the new VNP17) and694

the driver data required to run, calibrate, and validate MOD17 at FLUXNET sites (with695

the exception of tower fluxes, which we are not licensed to reproduce) are available at696
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<https://doi.org/10.5281/zenodo.7682806>. The repository of the MOD17 algo-697

rithm’s Python and C source code is available on GitHub at <https://github.com/arthur-e/MOD17>.698
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Key Points:9

• Over two decades of global productivity estimates from MODIS cannot be con-10

tinued without use of VIIRS data.11

• We performed a comprehensive calibration and validation, and sensitivity and un-12

certainty analyses of MODIS MOD17 and new VIIRS VNP17.13

• Both MOD17 and new VNP17 depict upward productivity trends and mean and14

interannual variability consistent with independent data.15
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Abstract16

The NASA Terra and Aqua satellites have been successfully operating for over two decades,17

exceeding their original 5-year design life. However, the era of NASA’s Earth Observ-18

ing System (EOS) may be coming to a close as early as 2023. Similarities between the19

Moderate Resolution Imaging Spectroradiometer (MODIS), aboard Aqua and Terra, and20

the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors aboard the Suomi NPP,21

NOAA-20 and NOAA-21 satellites enable potential continuity of long-term earth obser-22

vational records in the VIIRS era. We conducted a comprehensive calibration and val-23

idation of the MODIS MOD17 product, which provided the first global, continuous, weekly24

estimates of ecosystem gross primary productivity (GPP) and annual estimates of net25

primary productivity (NPP). Using Bayesian model-data fusion, we combined an 18-year26

record of tower fluxes with prior data on plant traits and hundreds of field measurements27

of NPP to benchmark MOD17 and to develop the first terrestrial productivity estimates28

from VIIRS. The updated mean global GPP (NPP) flux from MOD17 and the new VNP1729

for 2012-2018 is 127 ±2.8 Pg C year−1 (58 ±1.1 Pg C year−1), which compares well with30

independent top-down and bottom-up estimates. Both MOD17 and VNP17 depict up-31

ward productivity trends over recent decades, with 2000-2018 MOD17 GPP (NPP) ris-32

ing by 0.47 (0.25) Pg C year−2 but slowing to 0.35-0.44 (0.11-0.13) Pg C year−2 over 2012-33

2021, with a greater reduction in the NPP growth rate. The new VIIRS VNP17 prod-34

uct has the potential to extend these continuous estimates of global, terrestrial primary35

productivity beyond 2030.36

Plain Language Summary37

The NASA Terra and Aqua satellites have been successfully operating for over two38

decades, far longer than their original 5-year design life. However, one or both satellites39

may run out of fuel as early as 2023. These satellites carry the Moderate Resolution Imag-40

ing Spectroradiometer (MODIS) sensors, which are very similar to the Visible Infrared41

Imaging Radiometer Suite (VIIRS) sensors aboard newer satellites. The long record of42

MODIS data collected so far may therefore be extended by the VIIRS sensors, partic-43

ularly the global estimates of the amount of carbon in the atmosphere taken up and stored44

by plants. We used multiple independent datasets to figure out if and how the MODIS45

MOD17 computer model should be changed to improve its accuracy and to use data from46

VIIRS. The new VIIRS VNP17 data could extend our record of plant-atmosphere car-47

bon exchange beyond the year 2030.48

1 Introduction49

The Moderate Resolution Imaging Spectroradiometer (MODIS), carried by the Terra50

and Aqua satellites, is a key component of NASA’s Earth Observing System (EOS) (Justice51

et al., 2002), which has contributed observations of Earth’s land, atmosphere, and oceans52

for over two decades. Although Terra and Aqua have far exceeded their original 5-year53

design life, the end of the EOS era is near, as one or both of the satellites may run out54

of fuel as early as 2023. Because of the dozens of products derived from the 36 MODIS55

spectral bands, and because of the similarity of the Visible Infrared Imaging Radiome-56

ter Suite (VIIRS) sensor aboard the Suomi NPP and NOAA-20 satellites, there has long57

been interest in using VIIRS to provide continuity of land surface observations (Murphy58

et al., 2001; Xiong et al., 2020). MODIS-like observations will continue to be important59

for global studies of terrestrial productivity, including ecosystem monitoring (Y. Zhang,60

Song, et al., 2017; M. O. Jones et al., 2020) and agricultural studies (Skakun et al., 2018).61

Of particular interest are the on-going applications of MODIS to studies of the ter-62

restrial carbon cycle, beginning with the first global, continuous, weekly estimates of ecosys-63

tem gross primary productivity (GPP) and annual estimates of net primary productiv-64

ity (NPP): the Terra MODIS MOD17 product (Running et al., 2004; Zhao et al., 2005).65
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The MOD17 product, now exceeding 22 years of record, has been instrumental in diag-66

nosing increasing water limitations on carbon uptake (Zhao & Running, 2010), highlight-67

ing the role of humans in wildfire ignition (Balch et al., 2017), and constraining human68

appropriations of biomass (Erb et al., 2018), among other diverse applications. It is no69

coincidence that MOD17 was developed at the same time that direct, ecosystem-level70

measurements of canopy gas exchange from eddy covariance (EC) flux towers first be-71

came widely available (Baldocchi et al., 2001). The simple light-use efficiency (LUE) ap-72

proach allows for up-scaling the ecosystem-level estimate of GPP from towers using satel-73

lite observations of canopy vigor and gridded surface meteorological data (Ryu et al., 2019).74

Here, we confront the MOD17 GPP and NPP models with data in a comprehen-75

sive calibration and validation study. We also present the first calibration and assess-76

ment of the MOD17 algorithm for use with the VIIRS sensor, enabling continuity of multi-77

decadal GPP and NPP estimates. The independent observational data used in this study78

include eddy covariance (EC) tower CO2 fluxes, field surveys of productivity and biomass79

change, and a global database of species-level plant traits (Kattge et al., 2020). Previ-80

ous MOD17 calibration efforts prescribed a set of general biophysical response charac-81

teristics for major land cover types, defined in the model’s Biome Properties Look-up82

Table (BPLUT), and derived using a limited set of EC tower site observations as well83

as literature review, expert elicitation, and a smaller set of NPP estimates (Zhao et al.,84

2005). Here, we conducted a more extensive model calibration and formal analysis of model85

sensitivity and uncertainty in parameterization, which has been performed for similar86

diagnostic models (e.g., L. A. Jones et al., 2017; K. Zhang et al., 2019), but not yet for87

MOD17.88

2 Data and Methods89

Although there is a file-naming convention where “MOD” indicates a product gran-90

ule based on Terra MODIS data (only, as opposed to Aqua MODIS), we use “MOD17”91

throughout this paper to refer to the combined GPP/NPP algorithm, which is currently92

operational using MODIS observations from both EOS Terra and Aqua satellites.93

2.1 The MOD17 Algorithm94

As MOD17 has been discussed thoroughly in the literature, we give only a brief overview95

of the model here. A complete description is available in the MOD17 Collection 6.1 User’s96

Guide (Running & Zhao, 2021). MOD17 consists of three potentially independent sub-97

models: 8-day GPP, 8-day net photosynthesis (PSNnet), and annual NPP. 8-day com-98

posite products are given the designation MOD17A2H, for Terra MODIS, or MYD17A2H,99

for Aqua MODIS. Annual products, including annual GPP (the sum of one year’s 8-day100

GPP composites), are carried by MOD17A3H (or MYD17A3H). GPP is calculated us-101

ing a classic light-use efficiency (LUE) approach (Running et al., 2004; Yuan et al., 2014;102

Madani et al., 2017), where the carbon (C) uptake by plants is assumed to be propor-103

tional to canopy absorbed photosynthetically active radiation (APAR) under prevailing104

daytime environmental conditions for diel or longer time scales. Low temperatures or105

high vapor pressure deficit (VPD) reduce the efficiency of photosynthetic C uptake, thus,106

MOD17 GPP is described as a product of APAR, the light-use efficiency under optimal107

conditions (εmax), and environmental scalars:108

GPP = APAR× εmax × f(Tmin)× f(VPD) (1)109

Where f(Tmin) and f(VPD) are numbers on [0, 1] representing the decline in εmax110

due to low daily minimum temperatures and high VPD, respectively. These environmen-111

tal scalars are represented as linear ramp functions, where limiting conditions are inter-112

polated between zero (completely limiting, i.e., photosynthesis cannot occur) and one113

(non-limiting). The key parameters in modeling GPP, in addition to εmax, are the Tmin114
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and VPD values that indicate the width of the ramp function and, consequently, the slope115

that determines how much εmax is reduced for a unit decrease in Tmin or unit increase116

in VPD.117

Daily (or 8-day) net photosynthesis is calculated as GPP less maintenance respi-118

ration (RM ) from leaves and fine roots. Leaf RM is based on a Q10 function (Tjoelker119

et al., 2001) and the current leaf C mass, which is estimated instantaneously as leaf area120

index (LAI) divided by specific leaf area (SLA). Fine root RM is also based on a Q10121

function and the fine root C mass is based on an allometric relationship with the leaf C122

mass. The same Q10 ≡ 2 is used for fine roots and livewood whereas leaves use a temperature-123

acclimated equation (ibid.). Notably, as MOD17 does not track biomass allocation, live-124

wood respiration and growth respiration, RG, are not included in PSNnet. Annual NPP125

does account for RG and livewood RM , estimating livewood C mass through an allomet-126

ric relationship with annual maximum leaf C mass. Based on empirical studies, RG is127

estimated to consume 25% of annual NPP; thus, annual NPP is calculated as:128

NPP = GPP−RM −RG =
1

1.25
(GPP−RM ) (2)129

The complete list of parameters is included in Table 1. Each of the parameters is130

defined separately for 11 distinct plant functional types (PFTs), based on the MODIS131

MCD12Q1 Type 2 International Geosphere-Biospehre Programme (IGBP) land-cover132

classification (Friedl & Sulla-Menashe, 2019; Sulla-Menashe et al., 2019).133

MOD17 Collection 6.1 (C61) depends on surface meteorological data including mean134

and minimum daily air temperature, photosynthetically active radiation (PAR), atmo-135

spheric pressure, and the water vapor mixing ratio. These inputs are derived from the136

NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing Sys-137

tem 5 (GEOS-5), Forward Processing for Instrument Teams (GEOS FP-IT). It also de-138

pends on driver data from MOD15A2H (Myneni et al., 2015), a record of LAI and the139

fraction of the canopy absorbing PAR (fPAR). Taken together, these data determine the140

surface cover available to harvest light for C (CO2) uptake and the environmental con-141

straints on that process.142

In this re-processing, there are some significant departures from earlier versions of143

MOD17. First, C61 and all previous versions of MOD17 used an estimate of short-wave144

radiation (GMAO “SWGNT”) that is likely too low to be used in calculating PAR. Es-145

timation of PAR is based on irradiance measurements indicating that approximately 45%146

of the daily (short-wave) solar irradiance is within the PAR waveband, 400-700 nm (Meek147

et al., 1984). However, MOD17 has historically used 45% of net short-wave radiation for148

calculating PAR, which might be an underestimate, as SWGNT accounts for surface albedo.149

Based on GMAO data over 2000-2017, the incoming daily short-wave irradiance (GMAO150

“SWGDN”) is always greater than or equal to SWGNT. Previous MOD17 calibration151

(Zhao et al., 2005, 2006) has likely compensated for this underestimation of PAR.152

Here, we re-calibrate MOD17 using GMAO SWGDN instead of SWGNT. In ad-153

dition, whereas C61 and prior versions have fixed fine-root and livewood Q10 values at154

2, we make these free parameters during model calibration, based on prior evidence that155

suggest this fixed value may be suboptimal (see “Model-Data Fusion”). Prior to calibra-156

tion, we conducted a global sensitivity analysis of MOD17’s free parameters, based on157

the Sobol’ variance-based decomposition method (Sobol’, 2001). This was performed in158

Python using SALib (Herman & Usher, 2017; Iwanaga et al., 2022), and obtains the pro-159

portion of the total variance in GPP or NPP that is contributed directly by a given pa-160

rameter or by an interaction between that parameter and any combination of other pa-161

rameters.162
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2.2 Model Calibration Data163

For GPP model calibration, we used a globally representative network of 352 eddy164

covariance (EC) flux towers from the FLUXNET/La Thuile synthesis collection (Baldocchi,165

2008). Based on a recent analysis of EC tower footprints (Chu et al., 2021), we chose a166

conservative tower footprint of 1.5 km, or a 3-by-3 grid of 500-m pixels centered on the167

tower. This area is used to integrate fPAR and LAI observations at 500-m scale and smooth168

the resulting GPP predictions through spatial averaging. Tower daily gap-filled GPP data169

were smoothed using a 2-day moving window filter with zero phase offset and observa-170

tions were discarded when PAR was below 0.1 MJ m−2 per day. fPAR and LAI data were171

filtered to remove spurious spikes; low-quality fPAR and LAI data, based on the qual-172

ity check (QC) band, were filled in from an fPAR or LAI climatology. Then, 8-day fPAR173

and LAI were interpolated to daily time steps using forward and backward filling. In ad-174

dition to MODIS MOD15A2H fPAR and LAI, daily surface meteorological data were com-175

piled for tower sites for the years 2000 through 2017 from the Modern-Era Retrospec-176

tive Re-analysis (MERRA-2, Gelaro et al., 2017).177

MOD17 is calibrated separately for each PFT. Each FLUXNET site is assigned a178

dominant PFT, the class that makes up the majority of 500-m pixels within the 1.5-km179

tower footprint. Tower sites used for model calibration were screened to ensure PFT con-180

sistency between the local tower footprints and overlying MOD17 windows. Calibration181

for a given PFT uses just those FLUXNET sites where that PFT is dominant (Table 2).182

Because no FLUXNET site is located within a majority-DNF canopy, we assigned to this183

PFT two majority-ENF sites that have DNF pixels within a 3-km radius. CSH is also184

poorly represented among FLUXNET sites, dominant at only 2 sites. We assigned 3 other185

sites that have CSH pixels within the 1.5-km footprint, but which are dominant elsewhere.186

Table 2: The plant functional type (PFT) classification used in MOD17, which is based
on the MODIS MCD12Q1 Type 2 classification. The number of FLUXNET sites with
each PFT as the dominant ground cover (i.e., majority of 500-m pixels within a 1.5-km
footprint) is also included.

Plant Functional Type (PFT) Abbreviation Number of FLUXNET sites
Evergreen needleleaf forest ENF 30
Evergreen broadleaf forest EBF 22
Deciduous needleleaf forest DNF 2
Deciduous broadleaf forest DBF 32
Mixed forest MF 33
Closed shrublands CSH 5
Open shrublands OSH 15
Woody savannas WSV 47
Savannas SAV 35
Grasslands GRS 77
Croplands CRO 54

Annual NPP parameters have never before been directly calibrated against obser-187

vations, with model misfit quantified by the difference between predictions and field es-188

timates of NPP. Here, we use a multi-decadal inventory of global NPP estimates collected189

by the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).190

This “Multi-Biome” collection and other field datasets (Table 3) describe above-ground,191

below-ground, and/or total NPP at over 1,600 field sites, providing a basis for global cal-192

ibration of terrestrial carbon models. There are some challenges, however.193

Few of the datasets in this collection provide details on the land-use or manage-194

ment history and fewer still provide specific years or year ranges for the NPP estimates;195
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Figure 1: Boxplots of mean annual NPP, by Plant Functional Type (PFT), for the Cal-
Val (“Inventory”) data and the MsTMIP ensemble mean, based on a majority resampling
of land-cover data to MsTMIP’s half-degree grid. Numbers at top indicate the total num-
ber of site-years for the Inventory data. Whiskers show the minimum and maximum of
each dataset. Sites with reported mean annual NPP greater than 2,385 g C m−2 year−1
were discarded.

the estimates span a range of years from 1936 to 2006. Sites in the inventory were clas-196

sified into PFT groups based, first, on the reported biome or vegetation type; if no such197

information was provided, the site coordinates were used to map the PFT class from the198

MCD12Q1 Type 2 global mosaic for year 2015. A small number of sites were excluded199

because they did report intensive management histories (fertilizer, irrigation, mowing,200

or burning). NPP estimates from Gower et al. (2012) and Olson et al. (2013) were grouped201

by site (unique name or coordinates) and averaged. Because CSH describes such a small202

proportion of the global land domain (Madani et al., 2017), additional, randomly cho-203

sen CSH sites from the NPP validation datasets were added to the calibration dataset.204

In addition, data compiled by Campioli et al. (2015) and Luo et al. (2021) were added205

to the ORNL calibration dataset, after removing sites that were duplicated from the ORNL206

data, resulting in a total of 1,646 annual NPP measurements for calibration and valida-207

tion (“Cal-Val”).208

As we cannot exclude the possibility that some sites are intensively managed to209

boost productivity (e.g., by fertilization or irrigation), we removed NPP samples that210

fell outside the PFT-group range of global mean (1980-2000) annual NPP, which was211

derived from a fusion of annual FLUXCOM NEE (Jung et al., 2020) and heterotrophic212

respiration (RH) data from X. Tang et al. (2020). After also accounting for sites that213

fall outside of the MODIS global land domain (i.e., have no fPAR or LAI data), this re-214

sulted in a final total of 951 valid NPP measurements. The NPP Cal-Val data show ex-215

pected differences by PFT and the median NPP agrees well with previously reported biome-216

level averages (e.g., Kicklighter et al., 1999; Zaks et al., 2007), and also with the Multi-217

Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP, Huntzinger218

et al., 2013) “BG1” simulation (time-varying climate, land-cover, CO2, and nitrogen de-219

position) ensemble mean (Figure 1). Reported values in DNF canopy (209-410 g C m−2220
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year−1) are low but consistent with reports from field measurements in forest stands (Kushida221

et al., 2007; Ji et al., 2020).222

Corresponding NPP model meteorological drivers for 1980-2000 were obtained from223

the MERRA-2 re-analysis (Gelaro et al., 2017), which is derived from the GEOS-5 land224

model. As most sites do not specify the exact year of the NPP measurement, we used225

daily data from a randomly chosen year between 1980-2000 for each site, for the corre-226

sponding calendar day of a 365-day year, so as to capture the real, within-site, intra-annual227

variability in environmental drivers (as opposed to reducing the variance by using a cli-228

matology). As MOD17 does not have any state tracked between time steps, and as mod-229

eled NPP is calculated over the synthetic, 365-day year at each site, there are no issues230

with using different days for consecutive years. Because there are no MODIS data prior231

to 2000, MODIS fPAR and LAI climatologies were calculated for the 2000-2005 period232

for use in calibrating annual NPP.233

2.3 Model-Data Fusion234

The parameters in the MOD17 BPLUT, itemized in Table 1, were previously de-235

rived from literature review and some empirical studies. Today, there are numerous, di-236

rect ecological observations that can be used to inform model development and calibra-237

tion, including extensive EC flux tower data and measured plant traits. We consulted238

the global TRY database (Kattge et al., 2020) for plant traits relevant to MOD17 pa-239

rameters and developed prior parameter distributions for use in a Bayesian model-data240

fusion. Specifically, using Markov Chain Monte Carlo (MCMC), the observed distribu-241

tions of plant traits were used as priors for estimating the likelihood of MOD17 param-242

eters given the difference between modeled and observed GPP or NPP. Details of how243

plant traits informed priors are available in the Supplement.244

Likelihood-ratio tests indicated that the SLA prior for each PFT was significantly245

different from the pooled distribution (i.e., based on values from all PFTs). We decided246

to fix SLA at its prior mean (from the TRY database), given the thousands of species247

observations for this parameter, because SLA was revealed to be the most sensitive model248

parameter and we believe the TRY data to be more reliable for fixing this parameter than249

the relatively small number of field NPP estimates.250

Model calibration was performed using MCMC with the Differential Evolution Metropo-251

lis sampler described by Ter Braak and Vrugt (2008) and Vrugt et al. (2009), as imple-252

mented in the PyMC framework (Salvatier et al., 2016). Between 100,000 and 200,000253

samples were drawn from the posterior for each of three chains, based on a root-mean254

squared error (RMSE) pseudo-likelihood function. Chains were qualitatively assessed for255

convergence and required burn-in; thinning to remove autocorrelation was one in every256

20 (for GPP) or 200 (for NPP) samples. The optimal posterior point estimate, used in257

the updated BPLUT, was chosen as the mean a posteriori estimate.258

2.4 Inter-calibration for the VIIRS Sensor259

Within the 2000-2017 period for which FLUXNET data are available, the SNPP260

VIIRS mission provides data for 5 years (2012-2017). Because the VIIRS record is much261

shorter than the MODIS record, and also because of differences in fPAR and LAI be-262

tween the corresponding VNP15A2H and MOD15A2H products, we opted to calibrate263

MOD17 for VIIRS differently. Instead of using data fusion for calibration against ob-264

served NPP (as with the updated MODIS MOD17 product), we derived bias-correction265

coefficients based on systematic differences in fPAR and LAI between the two sensors266

and apply these to the updated MOD17 BPLUT. The ratio between mean MOD15A2H267

fPAR and mean VNP15A2H fPAR is used as a multiplier to adjust the εmax parame-268

ter in the resulting VNP17 BPLUT while the ratio between mean MOD15A2H LAI and269
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mean VNP15A2H LAI is used as a multiplier to adjust the SLA parameter. Besides εmax270

and SLA, the updated MOD17 and new VNP17 BPLUT would be the same.271

In deriving both coefficients, because GPP is only accumulated for part of the year272

(but RM continues year-round), we calculated mean fPAR and LAI only during the grow-273

ing season, defined as days when the daily temperature constraint on GPP (defined by274

Tmin,←) is above zero. The input fPAR and LAI data to this process are the 5-km gap-275

filled datasets used for global simulation (see “Global Boundary Conditions” section).276

The fPAR-based εmax coefficients range from 0.965 (ENF) to 1.01 (OSH) and the LAI-277

based SLA coefficients range from 1.007 (WSV) to 1.076 (EBF), confirming the consis-278

tency in fPAR, LAI values between MOD15A2H and VNP15A2H (Xu et al., 2018; Yan279

et al., 2021).280

2.5 Global Boundary Conditions281

To verify that global carbon use efficiency (CUE), or NPP:GPP ratios, are reason-282

able, we conducted global simulations of GPP and NPP using the re-calibrated BPLUT.283

To overcome resource limitations, global simulations were conducted at 5-km scale from284

2000-2021 (for MODIS) or 2012-2021 (for VIIRS). This approach is similar to previous285

MOD17 global simulations conducted at 1-degree resolution (Zhao et al., 2005). The global286

5-km dominant PFT is defined as the majority land-cover type within a 5-km window287

over the MODIS MCD12Q1 (500-m) grid. We then created gap-filled 5-km fPAR and288

LAI time series using the approach of Zhao et al. (2005); the gap filling addresses data289

gaps from either cloud contamination or missing data during non-retrieval periods due290

to lower solar altitude at high latitudes during winter. Based on these 5-km, multi-year291

runs, the average annual GPP, NPP, and CUE were calculated within each PFT group.292

2.6 Model Validation293

Some GPP data were withheld during model calibration. For most PFTs, between294

20 and 25 site-years of (daily) EC flux tower data, for up to 5 different tower sites, were295

reserved for validation. Because there are few sites where the majority of land-cover pix-296

els are MF, GRS, DNF, or CSH, only 15 site-years are used for MF and GRS canopies297

and only 4 site-years are used for DNF and CSH. Each site-year reserved had valid data298

on at least 97% of data-days, ensuring that nearly complete years were used. Any miss-299

ing days (3% or less) were interpolated by forward-backward filling to ensure an annual300

total based on 365 days.301

For NPP model validation, because of the dearth of reliable NPP measurements,302

we used a 3-fold cross-validation to simultaneously estimate best-fit parameters and goodness-303

of-fit. In combination with MCMC, this means that a random subset of the NPP mea-304

surements was reserved in each fold and that nine chains (three folds times three chains305

in each fold) were obtained. Chains within a fold were pooled and the posterior mean306

parameters were used to calculate the goodness-of-fit, including bias, root mean-squared307

error (RMSE), and Pearson’s correlation. These metrics were then averaged across folds308

to obtain the final goodness-of-fit values.309

Three official MOD17 products were validated: MOD17A2H daily GPP, MOD17A3H310

annual GPP, and MOD17A3H annual NPP. Validation metrics include RMSE, normal-311

ized RMSE (nRMSE), unbiased RMSE, and Pearson’s correlation coefficient; these were312

computed for products based on the MOD17 C61 BPLUT, updated MOD17 BPLUT and313

new VNP17 BPLUT. For MOD17A2H, daily tower GPP fluxes were aggregated (summed)314

to 8-day intervals matching the MOD17A2H 8-day GPP. For MOD17A3H annual GPP,315

because there are so few towers with valid data for at least 97% of days per year, we did316

not use the reserved validation sites only; instead, all tower sites with valid data were317
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used. This may overestimate the accuracy of the updated annual GPP product, since318

the annual GPP validation dataset includes several data points used in calibration.319

We also validated MOD17 and VNP17 interannual NPP predictions against one320

top-down and three bottom-up estimates of global, annual NPP. First, the 2020 Global321

Carbon Budget (Friedlingstein et al., 2020) provides mean monthly NEE (2000-2016)322

based on atmospheric inversion on a 1-degree global, equirectangular grid. We calculated323

total annual NEE from these data and then resampled them onto a 0.5-degree grid to324

combine with global, up-scaled estimates of RH from X. Tang et al. (2020); NPP is then325

calculated as RH−NEE (“GCB2020”). Second, we estimated total annual NPP (2000-326

2017) from the TRENDYv7 ensemble mean monthly GPP and RA fields (Le Quéré et327

al., 2018; Sitch et al., 2015), on a 1-degree grid. Third, the ensemble mean NPP (2000-328

2010) from MsTMIP (BG1 simulation), on a 0.5-degree grid, was used as another bottom-329

up estimate (Huntzinger et al., 2013). Fourth, the up-scaled flux-tower estimates from330

FLUXCOM, driven by remote sensing and surface meteorological data (“RS+METEO”),331

were also compared, based on driver data from ERA5 (Jung et al., 2020). These inde-332

pendent estimates were compared to MOD17 and VNP17 annual NPP and their corre-333

spondence quantified by RMSE and Pearson’s correlation coefficient.334

To compute global annual fluxes from the independent GCB2020, TRENDYv7, MsT-335

MIP, and FLUXCOM datasets, given their coarse spatial resolution and lack of equal-336

area projection, we projected the annual data onto a 9-km Equal-Area Scalable Earth337

Grid (EASE-Grid 2.0) using nearest-neighbor resampling. Then, after masking the data338

to a similarly resampled MCD12Q1 land area map, totaled the flux densities after scal-339

ing each pixel by its land area. This may result in slightly different estimates than re-340

ported in the literature for these products, but was ultimately necessary as those pub-341

lications do not always report annual flux estimates.342

2.7 Uncertainty Analysis343

To quantify uncertainty in MOD17 GPP estimates, we applied error propagation344

by computing the Jacobian, J , of the GPP model with respect to fPAR and εmax, sep-345

arately, for each PFT. The variance in GPP due to model inputs or parameters θ is given:346

σ2
GPP(θ) = JθCJT

θ (3)347

where C is the error covariance matrix. To quantify the separate contributions of348

fPAR and εmax, this equation reduces to a scalar product, where C is the error in fPAR349

or εmax. We focused on fPAR and εmax because the error in these parameters is known.350

fPAR error is given as 10 fPAR units (Myneni, 2018) and the standard error in the εmax351

posterior is assumed to be representative. To facilitate uncertainty quantification, we also352

assume that errors in fPAR and εmax are uncorrelated. We used Gaussian error prop-353

agation to estimate the uncertainty in annual GPP due to the compensating errors in354

daily GPP estimates. Overall uncertainty was calculated by pooling data for all PFTs,355

using only the GPP validation data, which effectively stratifies the data so approximately356

equal site-days are included from each PFT.357

To quantify uncertainty in MOD17 annual NPP estimates, we use a Monte Carlo358

approach because is it is much more difficult to compute partial derivatives of the NPP359

model. We repeatedly sampled from the posterior NPP parameters, with replacement,360

calculating the RMSE in mean annual NPP based on the Cal-Val dataset. The coeffi-361

cient of variation in RMSE is then reported, separately, for each PFT.362

3 Results363

The Sobol’ sensitivity analysis indicates that more than 80% of the variance in the364

GPP model is determined by the εmax parameter alone (Figure 2). The upper bounds365
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Figure 2: Sobol’ sensitivity metrics for the MOD17 GPP (a) and NPP (b) models. The
direct effect of the parameter on model estimates is indicated by S1; the total effect (in-
cluding higher-order interactions) is indicated by ST. Tmin,← and VPD← refer to the
lower (left-hand) bounds of minimum temperature and VPD; the left-hand bound is the
temperature (VPD) at which photosynthesis is completely limited (unlimited) by tem-
perature (VPD). Tmin,→ and VPD→ refer to the upper (right-hand) bounds of minimum
temperature and VPD; the right-hand bound is the temperature (VPD) at which photo-
synthesis is completely unlimited (limited) by temperature (VPD).

of the environmental constraints, Tmin,→ and VPD→, are more important than the lower366

bounds and have weak, second-order effects through εmax. The annual NPP model has367

a strong direct effect of SLA (42%) but also moderately strong total effects from the fine368

root-leaf ratio (froot_leaf_ratio) and base RM for fine roots. These sensitivities are369

partly reflected in the model-data fusion results. In the GPP calibration, the posterior370

distributions for the environmental scalars are fairly flat, resembling the uniform priors371

and indicating that the observed GPP data are consistent with a wide range of thresh-372

olds for Tmin and VPD. Similarly, the Q10_livewood mean a posteriori estimate was close373

to the prior mean for most PFTs.374
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3.1 Optimal Parameters for BPLUT375

The posterior distributions were compared to the C61 BPLUT and the wider lit-376

erature, assessing both consistency with the previous product and realism. As an addi-377

tional boundary condition, the mean global CUE values for each PFT were expected to378

be close to 0.46 (Collalti & Prentice, 2019) and much lower for EBF (Malhi, 2012). Dur-379

ing NPP calibration, to ensure realism in the BPLUT values and the simulated, global380

CUE values, we rejected some of the mean a posteriori (MAP) estimates after calibra-381

tion. When the MAP was rejected, it was replaced either by the prior mean for that PFT382

(Table S7) or by the MAP of a similar PFT. The updated MOD17 BPLUT and new VNP17383

BPLUT can be found in the Supplement (Tables S9, S10).384

Given the low sensitivity of the GPP model to the lower bounds of the environ-385

mental scalars (Figure 2), we opted to fix these at their C61 values; upper bounds re-386

mained free parameters during MOD17 calibration. The VPD→ posterior likelihood in-387

creased rapidly with VPD but, above ca. 3000 Pa the posterior flattens out. The Tmin,→388

posteriors are more complex, with most PFTs showing little sensitivity to this param-389

eter. Consequently, the optimal values for both VPD→ and Tmin,→ were chosen as the390

maximum a posteriori estimate, as the mean (or median), given a uniform prior, tends391

to fall near the middle of the prior bounds. The εmax posteriors were symmetric and the392

prior mean was within the interquartile range (IQR) for all PFTs. The results are con-393

sistent with Madani et al. (2017), but the optimal εmax appears to be significantly lower394

than its C61 value for shrublands and savannas, higher for croplands, and otherwise sim-395

ilar to C61 (Figure S9).396

Consistent with the literature, the livewood Q10 posterior is narrow and resembles397

the prior. The fine-root Q10 posterior varies widely among PFTs, which is partly a re-398

flection of the uncertainty in the literature. Deciduous canopies and Mixed Forest have399

the highest Q10_froot values. As Q10_froot is not likely to be less than 1.0 (Atkin et400

al., 2000), the posterior was rejected in favor of the prior in such cases. Posterior RM401

for leaves and fine roots were generally lower than the prior means from TRY but within402

the range of the C61 BPLUT. The NPP data indicate that the optimal leaf RM rate com-403

pares well with C61 for woody forest PFTs; however, posterior means for other PFTs were404

higher than the C61 value and close to the prior mean. The fine-root RM posteriors vary405

widely and few are close to their C61 values. The posterior livewood RM , however, com-406

pares well with the C61 BPLUT and the prior mean, except for EBF and shrublands,407

where it is significantly higher. The livewood_mr_base prior mean for EBF was used408

in place of the MAP.409

3.2 Validation against Tower Fluxes and Field Data410

The C61 annual GPP (MOD17A3H) estimates compare well with tower annual GPP411

among those sites with nearly complete years (Table 4). Under-estimation of GPP is ap-412

parent for ENF, but C61 also over-estimates GPP in medium-productivity EBF (Table413

S11). C61 GPP performs best in ENF, EBF, and GRS (nRMSE within 13-17%) but most414

severely under-estimates GPP in ENF and MF (nRMSE ≥ 49%). C61 8-day GPP (MOD17A2H),415

divided into daily units, indicates the algorithm performs best in shrublands, WSV, and416

GRS (nRSME ≤ 7%) and worst in CRO (nRMSE = 26%) because of under-estimation417

(mean bias = −1.2 g C m−2 day−1) (Table S13).418

GPP bias and RMSE were both reduced overall in the Updated product (Table 4),419

with the greatest improvements made at highly productive DBF and CRO sites (Table420

S13). Daily GPP improved for most PFTs, while annual GPP generally improved only421

for herbaceous and forested canopies. High negative bias in annual GPP was significantly422

reduced for ENF, GRS, and CRO (-196, -174 and -9 g C m−2 year−1 after recalibration,423

respectively). C61 MOD17 generally under-estimates GPP, particularly at high mag-424

nitudes (Heinsch et al., 2006; Y. Zhang et al., 2008), and slightly over-estimates annual425
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Figure 3: Comparison of mean annual GPP (left) and NPP (right) from the
overlapping 10-year period for MODIS MOD17 and VIIRS VNP17 (2012-2021),
based on global, 5-km simulations.

NPP, particularly in forested areas (Table S15). After re-calibration, GPP bias is reduced426

but is systematically similar to C61, while NPP bias is almost eliminated in individual427

PFTs, save for ENF, which has a strong, negative mean bias (Table S15). This also leads428

to an overall negative bias in the updated product (Table 4).429

Annual NPP skill is improved in the MOD17 update, compared to C61 (Table 4,430

Figures S10-S11). C61 Annual NPP (MOD17A3H) performs best in shrublands, savan-431

nas, and herbaceous canopies (nRMSE ≤ 17 percent) and this pattern is similar for the432

updated product, though DNF, DBF, and MF are also considerably improved (Table S15).433

The magnitude of annual NPP RMSE in C terms is small (∼ 0.7 g C m−2 day−1) but434

performance varies widely by PFT, with the greatest nRMSE values in forest canopies.435

In the update, spatial correlation in annual NPP is improved for all PFTs (≥ 0.5) ex-436

cept ENF. Annual NPP RMSE was also improved for all PFTs, except ENF.437

Plant CUE (NPP:GPP ratio) is an emergent property of ecosystems simulated by438

MOD17. When the new annual GPP and NPP products are combined, we find that the439

BPLUT updates lead to substantial changes in CUE from C61. In terms of agreement440

with the MsTMIP ensemble, the updates improve plant CUE for all PFTs except DNF,441

SAV, and GRS (Figure S12). When compared to the measured CUE values compiled by442

Collalti and Prentice (2019) for woody plants, the updates improve plant CUE for all443

PFTs except EBF (Figure S13), for which median CUE is 0.49 (0.40 in MsTMIP ensem-444

ble, 0.44 in C61, and 0.37 in the update).445

At global extent, the new VNP17 annual GPP and NPP products are very sim-446

ilar to the updated MOD17 products (Figure 3). The new VIIRS VNP17 BPLUT was447

used in the same validation scheme as for MOD17 GPP and NPP. However, because VI-448

IRS fPAR and LAI data are only available starting in 2012 and many FLUXNET sites449

do not report data after 2012, there are far fewer site-weeks or site-years to use for val-450

idating VNP17 daily GPP than for MOD17. In particular, majority-DNF sites are not451

represented in the 2012-2017 period and no majority-DBF sites have years with at least452

97% of valid data-days within this span. When using a common validation data mask,453

it is apparent that the VNP17 BPLUT produces daily GPP estimates quite similar to454

the updated MOD17 BPLUT (Table 4), except that VNP17 shows potential degrada-455
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tion in MF and improvement in OSH and a less-negative overall bias (Tables S13, S14).456

VNP17 annual NPP estimates, however, are generally less accurate than for MOD17,457

with particularly high RMSE in ENF, OSH, WSV, and SAV compared to the updated458

MOD17 (Tables S15, S16). Compared to the statistics in Table 4, when the longer val-459

idation record available to MODIS MOD17 is used instead, there is a more substantial460

improvement over C61 in daily GPP RMSE (2.69 g C m−2 day−1 for C61 versus 2.34461

for the Updated BPLUT) and correlation (0.77 for C61 versus 0.84 for the Updated BPLUT).462

Table 5: Root-mean squared difference (RMSD) in annual NPP (g C m−2 year−1)
at FLUXNET sites for each product, compared to independent NPP datasets.

NPP Dataset C61 MOD17 Update New VNP17
Global Carbon Budget (2000-2016) 341 272 276
TRENDYv7 Ensemble (2000-2017) 331 327 289
MsTMIP Ensemble (2000-2010) 341 313 n.a.

Compared to the independent NPP estimates at FLUXNET sites from bottom-up463

and top-down approaches, the updated MOD17 and VNP17 products also show substan-464

tial reductions in annual NPP RMSE over C61 (Table 5); again, VNP17 is very similar465

to MOD17 in this respect (Table S17). When broken out by PFT (Tables S18-S20), it’s466

clear the updated MOD17 has improved skill in annual NPP for some of the most pro-467

ductive PFTs: EBF (C61 mean RMSE= 717 g C m−2 year−1, updated MOD17 mean468

RMSE= 548 average across independent datasets), DBF (C61 mean RMSE= 247, up-469

dated MOD17 mean RMSE= 195), and CRO (C61 mean RMSE= 304, updated MOD17470

mean RMSE= 272). Most importantly, the overall GPP and NPP magnitudes are very471

similar between VNP17 and the updated MOD17 (Figure 3).472
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Figure 4: Comparison of mean annual NPP (2000-2010) across four products:
the updated MOD17 product, based on the 5-km global simulation and resam-
pled to 0.5-degrees; the TRENDYv7 ensemble mean, at 1-degree resolution; the
MsTMIP ensemble mean at 0.5-degrees; and the synthetic NPP estimate from the
2020 Global Carbon Budget and Tang et al. (2020). In the MOD17 image, land
areas not simulated in MOD17 (e.g., barren lands) are filled with zero annual
NPP.

3.3 Mean, Trend, and Interannual Variability473

The mean global GPP flux (2000-2018) in the updated MOD17 product is 127 ±2.8474

Pg C year−1, which compares well with that of the TRENDYv7 ensemble mean over the475

same period (126 ±2.4 Pg C year−1), and is an increase over the estimate from C61 (119476

±2.9 Pg C year−1). If we consider the period 2012-2018, mean global GPP flux from the477

new VNP17 is quite similar to the updated MOD17 estimate, 129.6 ±1.7 versus 129.7478

±1.7 Pg C year−1, and both are higher than the C61 estimate over the same period (121.6479

±1.6 Pg C year−1). Mean global NPP flux from the new products over 2012-2018 is 58.4-480

58.5 ±1.1 Pg C year−1, compared to 60.7 ±1.1 in C61 (Table S21).481

The updated MOD17 and new VNP17 annual NPP estimates exhibit strong spa-482

tial correlation (Figures 4, 5, and S14-S16) with bottom-up estimates from the TRENDYv7483

(MOD17 r = 0.85, VNP17 r = 0.86) and MsTMIP ensembles (MOD17 r = 0.79) and484

also compares well with the top-down, global synthesis of NPP based on the Global Car-485

bon Budget (MOD17 and VNP17 r = 0.71). Annual GPP estimates from both prod-486

ucts show even stronger spatial correlations with TRENDYv7 (MOD17 and VNP17 r =487

0.91). In terms of global, interannual NPP and RA variability, MOD17 compares very488

well to the TRENDYv7 and MsTMIP ensembles, with the vast majority of the global489

land domain exhibiting strong, positive correlations (Figure S17); VNP17 IAV is very490
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Figure 5: Comparison of interannual correlation in NPP between the updated
MOD17 product (based on the 5-km global simulation) and the MsTMIP ensem-
ble mean at 0.5-degrees or the TRENDYv7 ensemble mean at 1-degree resolution.
The MOD17 product was resampled to match either product.

similar to that of MOD17 (Figures S18-S21). Negative correlations are found mainly in491

humid, tropical regions where IAV is low and persistent cloud cover leads to more re-492

liance on fPAR climatology.493

We also compared MOD17 C61 and the updated MOD17 to the MsTMIP and TRENDYv7494

ensemble means in terms of interannual variation (IAV) in GPP and NPP (Figure 6).495

All products show a significant, upward trend, based on Theil-Sen median trend esti-496

mates. MOD17 C61 and the updated MOD17 display increasing GPP (NPP) trends of497

0.45 and 0.47 (0.27 and 0.25) Pg C year−2, respectively, over 2000-2018 compared with498

0.41 (0.21) Pg C year−2 for the TRENDYv7 ensemble means. Trends are lower in the499

period 2012-2021; for MOD17 C61, the updated MOD17, and the new VNP17 we find500

GPP (NPP) trends of 0.38, 0.44, and 0.35 (0.17, 0.13, 0.11) Pg C year−2. For the uni-501

fied period of 2000-2010 (VNP17 drops out), both MOD17 products show greater IAV502

in GPP and NPP than MsTMIP and TRENDYv7. The IAV is slightly lower in the up-503

dated MOD17 compared to C61, which may reflect the bias-variance trade-off, i.e., a ten-504

dency in model calibration toward a narrower range of parameter variability.505

3.4 Uncertainty Analysis506

The error propagation indicates that a substantial portion of the error in daily and507

annual GPP estimates comes from error in fPAR (Tables S22, S23); at least 1.0 g C m−2508

day−1 for all PFTs and greater than 1.5 g C m−2 day−1 for most. Uncertainty in εmax509

is a negligible part of the error in GPP estimates, accounting for less than 0.12 g C m−2510

day−1 in both MOD17 and VNP17, though with the greatest impact on EBF. The mag-511

nitude of the fPAR error contribution is generally proportional to the total error by PFT.512

The error budget for annual NPP estimates generally corresponds to the sensitiv-513

ity analysis: uncertainty in SLA is usually the largest source of error in NPP estimates,514

among free parameters (Tables S24, S25). However, some PFTs have large error contri-515

butions from other parameters. Uncertainty in Q10_froot is a major contributor to un-516

certainty in annual NPP for both ENF and EBF and the greatest contributor for CRO.517

Uncertainty in froot_mr_base is a major source of uncertainty in ENF and GRS, while518

uncertainty in leaf_mr_base is a major source for WSV. Uncertainty in SLA has sur-519

prisingly little impact on annual NPP estimates in shrublands; no model parameters an-520
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Figure 6: Interannual variation (IAV) in GPP, NPP (annual flux minus in-
terannual mean) for the MOD17 products, shown alongside that of the Multi-
Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and
TRENDYv7 ensemble means.
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alyzed here contributed major uncertainty to estimates for this PFT, which is found pre-521

dominantly at high latitudes.522

4 Discussion523

Prudent use of models requires that they are regularly evaluated, checking both524

the model predictions (validation) and assumptions (verification) against independent525

data. MOD17 is a good candidate for continued use in the VIIRS era, but requires val-526

idation and verification to contextualize its estimates of ecosystem productivity. Here,527

independent data on plant traits have been combined with GPP and NPP measurements528

from flux towers and field surveys to improve both the accuracy and the realism of MOD17.529

4.1 Inferring the Optimal Biome Properties530

Retrospectively, plant trait data from TRY and the literature allow for a qualita-531

tive validation of the MOD17 Collection 6.1 (C61) BPLUT. We found that maximum532

LUE (εmax) compared well to the global optimum LUE defined by Madani et al. (2017)533

for most PFTs, but C61 εmax is likely too high for shrubland and savanna, and too low534

for croplands (Gan et al., 2021). Some studies have suggested higher εmax in ENF (Coops535

et al., 2007) and in shrublands (J. Chen et al., 2014) while others find, as indicated here,536

it should be lower (Yuan et al., 2014; Madani et al., 2017). Previous generations of the537

MOD17 BPLUT used a comparatively small number of EC towers (and years of obser-538

vation) in calibration, which may have led to biased εmax estimates. Even among the ex-539

panded FLUXNET collection, there are only five CSH tower sites, three of which are within540

2 km of one another, and all in regions of high aridity. Overall, lower εmax in arid re-541

gions is expected (Garbulsky et al., 2010). This may explain the severe decrease in εmax542

for CSH, relative to the C61 BPLUT, which is greater than the corresponding decrease543

in the better-represented OSH canopy.544

While the TRY database indicates that RM for all tissues should be higher than545

that of the C61 BPLUT (Figure S9, Table S7), posterior estimates are generally some-546

where in the middle. Livewood RM in C61 is close to that indicated by TRY. SLA in547

the C61 BPLUT also compares well to prior observations from TRY for evergreen and548

herbaceous (GRS and CRO) canopies but is too low otherwise. SLA values from TRY549

may seem high compared to field measurements of SLA (e.g., leaf area per unit leaf dry550

mass) but are consistent with the range of SLA in C terms (leaf area per unit leaf C),551

as the TRY database includes many values above 100 m2 kg C−1 (Figure S8). Posterior552

SLA values also compare very well to a review by Wright and Westoby (2001).553

The peculiarities of calibration results for CSH point to a larger issue with MOD17:554

too many poorly defined PFTs. Given that CSH is a tiny proportion (0.2%) of the global555

land surface (Madani et al., 2017), it is reasonable to ask whether this class should be556

combined with OSH in a global “Shrublands” class. This is especially salient in light of557

evidence that multiple PFTs may be over-differentiated (Yuan et al., 2014) and that en-558

vironmental filtering (Funk et al., 2017) may lead to more robust plant response than559

static and somewhat arbitrary functional types (Y. Liu et al., 2021). One practical con-560

sequence is that the prior mean for SLA in both OSH and CSH may be too high, as in-561

dicated by the low posterior RM rates in these PFTs.562

Our uncertainty analysis of the NPP sub-model largely follows the sensitivity anal-563

ysis but also emphasizes where parameters could be better constrained. SLA is the most564

important parameter for NPP estimation in MOD17 as, despite its relatively high cer-565

tainty (Figure S9, based on prior information from TRY), it has the greatest impact on566

NPP error. Leaf properties in croplands are particularly uncertain (Figure S22), likely567

due to the wide variety of global crop types. Future LUE models like MOD17 might ben-568
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efit from modeling SLA instead of using a fixed value, given the sensitivity of SLA to569

phenology and environmental conditions (Gong & Gao, 2019; Z. Liu et al., 2022).570

4.2 Performance of Global GPP and NPP Products571

Relative to C61, model-data fusion lead to improvements in 8-day and annual GPP572

and annual NPP flux estimates, based on reserved EC tower data, NPP cross-validation573

with field data, and independent bottom-up and top-down NPP estimates. Since 2012,574

the persistent negative GPP bias of MOD17 was reduced by at least 0.5 g C m−2 day−1575

and by over 50 g C m−2 year−1; over a longer record, bias was reduced by more than576

twice as much (Table 4). These improvements put the updated MOD17 and new VNP17577

8-day GPP product on par with other data-driven approaches combining satellite and578

flux-tower data (Joiner et al., 2018). Global annual GPP flux estimates in the new prod-579

ucts (mean 2012-2021 annual GPP flux of 130 ±1.5 Pg C year−1) are higher than the580

estimates of C61 (122 ±1.4 Pg C year−1) and other satellite-based estimates but are more581

in line with oxygen isotope studies (Welp et al., 2011), recent syntheses (J. M. Chen et582

al., 2012; Piao et al., 2013; Anav et al., 2015) (Figure 7), and bottom-up studies (Madani583

et al., 2018, 2020), particularly for years since 2012 (Y. Zhang, Xiao, et al., 2017). The584

new GPP estimates also agree better with TRENDYv7 (128.6 ±1.4 for 2012-2021).585

Annual NPP skill (nRMSE) was improved by almost 2 percentage points, a reduc-586

tion in RMSE of about 30 g C m−2 year−1. The updated and new products’ reduction587

in global annual NPP flux (58.4-58.6 ±0.9 Pg C year−1 for 2012-2021) is more consis-588

tent with estimates from the MsTMIP ensemble and combined results from the Global589

Carbon Budget (2020) and up-scaled soil respiration data (X. Tang et al., 2020); it’s also590

closer than C61 to the estimate from the meta-analysis by Ito (2011) (56.2 ±14.3 Pg C591

year−1). However, the mean annual NPP flux from the TRENDYv7 ensemble mean is592

higher and closer to the original estimate of MOD17 C61 (Table S21), as is the median593

of the spread in TRENDYv7 models (Figure 7). The inter-model spread of TRENDYv7594

and earlier syntheses (Cramer et al., 1999; Ito, 2011) suggests persistent high uncertainty595

in any model’s representation of terrestrial NPP. It also suggests at least the possibil-596

ity that the field estimates of NPP used here (Table 3) may not be too large, despite con-597

cerns about their reliability and representativeness (Clark et al., 2001; Zhao et al., 2006).598

The greatest strength of the MOD17 and VNP17 products is their long period of599

record, allowing an examination of interannual variability and trends. The strong increase600

in NPP observed over 2000-2010 (Figure 6) is inconsistent with the report of a reduc-601

tion in NPP by Zhao and Running (2010). This could be attributed to a difference in602

the climate drivers used in different versions of MOD17 and the sensitivity of GPP to603

prevailing weather conditions (Zhao et al., 2006). The 1-km estimates of MOD17 Col-604

lection 5.1, from 2000 to 2015, used by Zhao and Running (2010) were driven by NCEP605

reanalysis data (Kanamitsu et al., 2002) whereas the operational MOD17 (and future606

VNP17) products use GMAO data; these differences have led to different anomalies in607

GPP and NPP (Zhao et al., 2005). The uncertainty in LUE models like MOD17 due to608

climate drivers merits further exploration.609

However, even after recalibration, MOD17 and the new VNP17 GPP products still610

show large negative biases (Table 4). Previous studies have established that MOD17 gen-611

erally under-estimates GPP (Heinsch et al., 2006; Coops et al., 2007; Propastin et al.,612

2012; Sjöström et al., 2013; J. Chen et al., 2014; Huang et al., 2018), especially in grass-613

lands (Zhu et al., 2018) and in highly productive regions (Wang & Ogawa, 2017), and614

that this may be explained by a failure to account for diffuse PAR (Guan et al., 2022).615

Although it has been suggested that εmax should be increased (Wang & Ogawa, 2017;616

Huang et al., 2018), this model-data fusion is consistent with the previous global anal-617

ysis of Madani et al. (2017) indicating that εmax should be decreased for low-productivity618

shrublands and savannas and increased in DBF, MF, and croplands, relative to C61. This619
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Figure 7: Comparison of MOD17 and VNP17 annual GPP and NPP fluxes with
estimates from different models, as synthesized by Anav et al. (2015), for GPP,
or represented by the inter-model spread of NPP estimates from the TRENDYv7
ensemble.

may reflect subsequent improvements in the gap-filled MOD15A2HGF fPAR and LAI620

data. Notably, the updated MOD17 and new VNP17 BPLUT both substantially reduced621

the negative bias in croplands, which was found to be severe in Collection 6 (Huang et622

al., 2018).623

Annual NPP estimates were improved, over C61, to a greater degree than 8-day624

or annual GPP estimates (reduction in nRMSE of 0.4-1.0% for GPP but 1.2-1.9% for625

NPP), likely because there are more parameters to optimize in the NPP model. How-626

ever, in the updated MOD17 and new VNP17 products, there is a large negative bias627

in ENF, likely introduced when fine-root RM was increased to reduce the spuriously high628

CUE that emerged from global simulations. Leaf RM and SLA (based on prior infor-629

mation from hundreds of species in TRY) are already both low for this PFT and the cross-630

validation RMSE is very low (compared to other PFTs); consequently, there are few op-631

tions to mitigate this bias and avoid unrealistically high CUE values. The simultaneous632

improvement in annual NPP RMSE but decline in correlation likely reflects the sensi-633

tivity of NPP to local conditions that may not be adequately reflected by the 11 PFTs634

used in MOD17.635

Another source of NPP variability is the variation in plant traits (and BPLUT pa-636

rameters) themselves, over time and along environmental gradients, which is currently637

not reflected in the MOD17 model structure. SLA has been shown to vary with mois-638

ture and nutrient availability (Dwyer et al., 2014), and the spatial and temporal vari-639

ation in SLA, if accounted for, might reduce estimated NPP magnitudes (Verheijen et640

al., 2015). It has also been established that fine-root respiration is at least partly cou-641

pled with canopy photosynthetic uptake (Högberg et al., 2001; Drake et al., 2008; Lynch642

et al., 2013).643

How do the new products compare to previous generations? It is difficult to com-644

pare to previous performance assessments in carbon units (e.g., RMSE) because the quan-645

tity depends on the relative productivity of the EC tower sites included; more produc-646
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tive sites would generally lead to a higher RMSE. For example, the high RMSE of 8-day647

GPP in croplands (Table 13) exaggerates the overall RMSE estimated here (Table 4).648

As an alternative, normalized quantities have been used inconsistently, and while “rel-649

ative error” (Heinsch et al., 2006) is a common choice, it is also highly sensitive to very650

low EC tower flux magnitudes. We suggest that only normalized RMSE, relative to the651

reported range of tower observations, be compared to other assessments. These would652

suggest that C61 is an improvement over earlier versions and the updated MOD17 BPLUT653

a further improvement. R. Tang et al. (2015), for example, find Collection 6 annual GPP654

biases generally twice as large as estimated here for C61, and nRMSE values significantly655

higher as well, based on less than half as many EC tower sites. Sjöström et al. (2013)656

found an overall Collection 5.1 GPP RMSE, compared to flux towers in Africa, of 2.58657

g C m−1 d−1, higher than our estimate of 2.25 g C m−1 d−1 for C61. The performance658

is sensitive to the driver data used and is generally much better when tower-observed659

surface meteorology is used (Coops et al., 2007; J. Chen et al., 2014), though some have660

found otherwise (Wang & Ogawa, 2017).661

Error propagation indicates that error in MOD17 and VNP17 GPP estimates is662

primarily due to error in fPAR retrievals, as in multiple previous studies (Propastin et663

al., 2012; Fu et al., 2017; Wang & Ogawa, 2017). Given the low sensitivity of these mod-664

els to environmental scalars, this suggests that dynamic changes in MOD17 modeled GPP665

are largely a function of changes in canopy extent and vigor, conveyed by changes in fPAR.666

This feature of LUE models has been an advantage during the EOS era and allowed mod-667

els like MOD17 to capture trends in the land carbon sink (Figure 6) that are otherwise668

missed by purely data-driven approaches like FLUXCOM (Yang et al., 2022). And yet,669

given the modest improvement in the new MOD17 product compared to C61, it’s also670

apparent that the accuracy of these global LUE models is strongly tied to the quality671

of input datasets, in addition to uncertainty in model parameters and model structure.672

5 Conclusion673

We combined prior information on plant productivity and respiration traits with674

eddy covariance estimates of GPP and field estimates of NPP for the recalibration of MOD17,675

the first model to provide global, continuous, weekly estimates of ecosystem productiv-676

ity. This effort culminated in the final reprocessing of MODIS MOD17 and the devel-677

opment of new VNP17 GPP and NPP products based on VIIRS data. Relative to the678

current MODIS C61 MOD17 data, the updated MOD17 parameters substantially reduce679

the negative bias in 8-day GPP, by more than 1.2 g C m−2 day−1; the RMSE in annual680

GPP was reduced by 42 g C m−2 year−1 and RMSE in annual NPP was reduced by 36681

g C m−2 year−1 while maintaining or improving global correlations in the spatial pat-682

tern of GPP and NPP fluxes.683

The combined records of the updated MOD17 and new VNP17 products enable684

weekly-to-annual terrestrial productivity estimates to be continued through 2030 and685

beyond. The updated estimates of mean global GPP and NPP for 2012-2021, 130.1 ±1.6686

and 58.6 ±0.9 (respectively) agree very well with other bottom-up estimates. The long,687

extant record of MOD17 and VNP17 indicate that terrestrial productivity is increasing688

over recent decades (2000-2018), with GPP increasing annually by 0.47 Pg C year−2 and689

NPP by 0.25 Pg C year−2. These trends are supported by independent, bottom-up es-690

timates and all the models examined here do indicate that the rate of increase in GPP691

and NPP may be slowing down in recent years.692

Open Research Section693

The 5-km global simulation outputs (for both MOD17 and the new VNP17) and694

the driver data required to run, calibrate, and validate MOD17 at FLUXNET sites (with695

the exception of tower fluxes, which we are not licensed to reproduce) are available at696
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6 Supplement702

6.1 Prior Information703

First, plant species with valid, relevant trait data were manually classified into PFTs704

based on their genus, subject to a combination of expert knowledge, database searches705

(e.g., BudBurst.org, Kew’s Plants of the World Online, WorldFloraOnline.org), photographs,706

and descriptions. For example, genera where most species were described as “shrubby”707

or “dwarf trees” where classified as “Shrub,” to be utilized as prior information for both708

Open and Closed Shrublands (OSH and CSH). Similarly, a woody “Broadleaf” class, based709

on photographs and descriptions of the genus, was used to inform priors for both Ev-710

ergreen Broadleaf and Deciduous Broadleaf classes, unless the genus was predominantly711

described as evergreen or deciduous. Graminoids and sedges were both classified into Grass-712

lands (GRS). Genera that were too diverse (“cosmopolitan”) were not classified and in-713

stead used only as a prior for PFTs that were not already represented by species with714

valid trait data. This includes Savannas (SAV) and Woody Savannas, which both refer715

to a potentially broad set of plant types (Bridgewater et al., 2002) that may also be found716

in other, more specific PFTs. The Mixed Forest (MF) prior for a given trait included trait717

data from species for any forest type. Species grouped into Cropland (CRO) were based718

on those that feature in the United Nation’s Food and Agriculture Programme (FAO)719

2010 agricultural census (FAO, 2010). After classification into PFTs, traits were aggre-720

gated by species, taking the median value.721

A mapping of TRY database traits to MOD17 parameters is presented in Table 6.722

While some of the traits are directly represented in MOD17, others were used in com-723

bination to derive a given parameter. For example, the froot_mr_base, the RM rate of724

fine roots per unit C, could be the ratio of two traits: “fine root respiration per fine root725

dry mass” to “fine root carbon (C) content per fine root dry mass.” For leaf_mr_base,726

there is no measurement of RM available but there are measurements of dark respira-727

tion. These were used along with the median value of “leaf respiration in light per leaf728

respiration rate in the dark” (45% with only 16 species available) in order to derive the729

leaf respiration rate in light (per unit C).730

Table 6: List of traits from the TRY database and the MOD17 parameters they
inform.

Trait from TRY Database MOD17 Parameters Informed
Root respiration temperature dependence Q10_froot
Stem respiration temperature dependence Q10_stem
Fine root carbon (C) content per fine root dry mass froot_leaf_ratio,

froot_mr_base
Stem carbon (C) content per stem dry mass livewood_mr_base
Leaf carbon (C) content per fine root dry mass froot_leaf_ratio, leaf_mr_base
Leaf carbon (C) content per leaf area SLA
Fine root respiration per fine root dry mass froot_mr_base
Stem respiration rate per stem dry mass livewood_mr_base
Leaf respiration rate in the dark per leaf dry mass leaf_mr_base
Leaf respiration rate in light per [same] in the dark leaf_mr_base

For some traits, there were too few species available to generate priors specific to731

each PFT. In such cases, all plant species were used to derive a single prior for all PFTs.732

Maximum likelihood estimation (MLE) was used to fit either Normal or Log-Normal dis-733

tributions to traits, depending on whether the trait distribution was highly positively734

skewed, which was often. Table S7 lists the MOD17 free parameters and the priors that735

–25–



manuscript submitted to JGR: Biogeosciences

were used for model calibration. For εmax, lacking relevant trait data from TRY, the mean736

and standard deviation of the “optimum” LUE from a global analysis by Madani et al.737

(2017) is used, instead.738

By definition, livewood mass and respiration are zero in herbaceous plants (GRS739

and CRO), so these are set to a constant value of zero during calibration of those PFTs.740

Despite the effort to develop an informative prior for froot_leaf_ratio, there is lit-741

tle prior information on the partitioning of C allocation between fine roots and leaves742

for each PFT. TRY and the Fine-Root Ecology Database (FRED, Iversen et al., 2017)743

contain few species with this trait recorded and disagree about the relative magnitudes.744

For example, the mean fine root-leaf C ratio for ENF canopy is about 0.04 based on TRY745

but 1.33 according to FRED, perhaps due to obscured differences in units or sampling746

methodology. Using TRY, there are only 14 species in the TRY database for which all747

the necessary traits were recorded, and after removing the dry-mass normalization of fine-748

root and leaf C content, all ratios were very close to 1.0. There are also very few species749

in TRY with prior information on the livewood-leaf ratio. Given this uncertainty, and750

because we discovered that livewood_leaf_ratio is the least-sensitive parameter, we751

decided to fix both livewood_leaf_ratio and froot_leaf_ratio at their Collection752

6.1 (C61) values, which were informed from a review by M. A. White et al. (2000).753

Prior Q10 values for stem respiration in TRY are quite narrow, with a mean of 1.84,754

which also agrees very well with prior studies (Ryan et al., 1995; Damesin et al., 2002;755

Bolstad et al., 2004), and is slightly higher for ENF canopy. In TRY, the fine-root tem-756

perature dependence (Table S6) was recorded for only one species, so we referred to the757

literature instead. We adopted the cross-ecosystem Q10 value of 1.6 reported by Burton758

et al. (2008), which is consistent with the range reported by Atkin et al. (2000), though759

lower than measurements by Desrochers et al. (2002). With a Normal(1.6, 1.6) prior, the760

80th percentile is approximately 3.0, which is consistent with the upper limit for the Q10761

of fine root respiration reported by Bahn et al. (2006); it is also wide enough to reflect762

our uncertainty. Both the livewood (stem) and fine root respiration Q10 priors have means763

close to the C61 value, which is 2.0 for all PFTs.764

The base RM rates leaf_mr_base, froot_mr_base, and livewood_mr_base in C61765

agree well with observations from the TRY database. However, TRY observations in-766

dicate that these rates should be higher for all PFTs. The middle 80% of the observed767

leaf RM distribution is bounded by [0.005, 0.032] (kg C [kg C]−1 day−1), compared to768

the full range of [0.005, 0.010] in C61. For fine-root RM , only 23 species are available769

in TRY, but the middle 80% of [0.006, 0.060] (kg C [kg C]−1 day−1) does include the770

two rates used in C61: 0.00819 for CRO and GRS and 0.00519 for all others. Similarly,771

though livewood RM is represented by only 20 species in TRY, the middle 80% of [0.001,772

0.042] (kg C [kg C]−1 day−1) does include C61’s range of [0.0010, 0.0044]; the mean live-773

wood RM from TRY, 0.005 kg C [kg C]−1 day−1, is quite close. These estimates are in774

the middle of a wide range of reported stem respiration rates for forests (Ryan et al., 1995;775

Lavigne et al., 1996; Stockfors & Linder, 1998; Damesin et al., 2002; Zha et al., 2004;776

Bolstad et al., 2004).777

SLA in MOD17 is defined as LAI per unit mass of leaf C, which is different from778

TRY and most field studies, where the numerator would be individual leaf area (m2) and779

the denominator would be leaf dry mass. There are multiple TRY traits that could be780

used to derive SLA, which differ in whether the petiole, rhachis, or midrib are excluded781

from plant measurements (or whether this is known). When we compare all other “SLA”782

fields in dry-mass terms (inverse of leaf mass per area, or LMA) or in carbon terms (“Leaf783

carbon (C) content per leaf area” in TRY, which is the inverse of SLA as defined in MOD17),784

we find that carbon terms generally agree better with the C61 BPLUT (Table S8), which785

is based in part on a review by R. White and Engelen (2000). The relative magnitudes786

of SLA in carbon terms are also consistent with the leaf economics spectrum (Reich et787

al., 1998; Wright et al., 2004; Poorter et al., 2009); specifically, canopies with short-lived788
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leaves (DBF, CRO) tend to have higher SLA (lower LMA), and woody canopies tend789

to have lower SLA (higher LMA) than herbaceous canopies (Díaz et al., 2016). SLA for790

DNF likely should be higher, at least twice that of ENF (Gower & Richards, 1990; Kloep-791

pel et al., 1998), and indeed some samples from TRY support a higher SLA (Figure S8),792

yet most are from R. White and Engelen (2000), which found a mean SLA of 22 m−2793

[kg C]−1.794

6.2 Supplemental Figures & Tables795

Table 8: Specific leaf area (SLA) can be defined in carbon terms (“Leaf carbon
(C) content per leaf area” in TRY) or dry-mass terms (inverse of leaf mass per
area, or LMA). Here, Collection 6.1 BPLUT values are compared to the median
SLA in carbon terms (m−2 [kg C]−1) and the median SLA across all dry-mass
SLA fields (m−2 kg−1), grouped by PFT, from the TRY database. Also shown is
the overall median in each group as well as the mean value found in the literature
review by White et al. (2000).

PFT Collection 6.1 Carbon terms Dry mass terms White et al.
ENF 15.0 12.1 9.3 8.2
EBF 26.9 24.0 12.3 n.a.
DNF 16.9 23.5 10.7 22.0
DBF 24.7 34.5 16.6 32.0
MF 22.6 33.8 19.1 n.a.
CSH 9.4 24.8 13.3 n.a.
OSH 12.0 24.8 13.3 12.0
WSV 28.8 36.9 14.8 n.a.
SAV 28.9 34.9 15.7 n.a.
GRS 38.0 37.4 14.9 49.0
CRO 38.0 43.6 18.4 n.a.
Overall 24.7 29.5 14.8 n.a.

Table 11: Annual GPP (MOD17A3H) validation metrics, for Collection 6.1
(“C6.1”) and the updated BPLUT (“Update”), for years in 2000-2017 with ≥ 97%
of valid data-days. FLUXNET sites used in calibration are combined with those
reserved for validation due to the dearth of data-years available. Bias and RMSE
are in units of g C m−2 year−1. No FLUXNET sites with majority-DNF canopy
have years with at least 97% of valid data-days within this span. The statistics
are not shown for DBF (2 site-years) because only one site is represented; they
are likely not reliable.

PFT
Site-
Years

Bias
(C6.1)

Bias
(Update)

RMSE
(C6.1)

RMSE
(Update)

nRMSE
(C6.1)

nRMSE
(Update)

ENF 52 -307 -196 531 543 15.7% 16.1%
DNF 0 n.a. n.a. n.a. n.a. n.a. n.a.
EBF 44 67 12 491 477 13.1% 12.8%
DBF 2 n.a. n.a. n.a. n.a. n.a. n.a.
MF 31 -700 -640 763 694 48.5% 44.1%
CSH 7 77 46 103 108 32.3% 33.9%
OSH 6 -264 -336 718 751 33.0% 34.6%
WSV 29 -47 -155 376 416 28.7% 31.8%
SAV 44 -323 -341 532 506 30.4% 28.9%
GRS 56 -347 -174 589 452 17.2% 13.2%
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PFT
Site-
Years

Bias
(C6.1)

Bias
(Update)

RMSE
(C6.1)

RMSE
(Update)

nRMSE
(C6.1)

nRMSE
(Update)

CRO 20 -317 -9 433 324 37.0% 27.7%

Table 12: Annual GPP validation metrics at FLUXNET sites for years in 2012-
2017 with ≥ 97% of valid data-days, based on the candidate VNP17 BPLUT.
Bias and RMSE are in units of g C m−2 year−1. As with MOD17, annual
GPP validation includes both calibration and validation FLUXNET sites. No
FLUXNET sites with majority-DNF or majority-DBF canopy have years with at
least 97% of valid data-days within this span.

PFT Site-Years Bias RMSE nRMSE
ENF 6 -597 839 27.8%
DNF 0 n.a. n.a. n.a.
EBF 11 20 625 29.0%
DBF 0 n.a. n.a. n.a.
MF 6 -677 707 99.8%
CSH 7 42 93 29.2%
OSH 4 -1 30 9.0%
WSV 9 -98 491 40.8%
SAV 10 -282 602 39.7%
GRS 21 -181 454 17.9%
CRO 9 -27 327 29.9%

Table 14: 8-day GPP validation metrics based on the candidate VNP17 BPLUT,
as compared to FLUXNET sites (2012-2017). Mean Bias, RMSE, and ubRMSE
are in units of g C m−2 day−1, while the parentheses under RMSE indicate the
normalized RMSE. The normalized RMSE (%) is based on the overall observed
range of daily GPP or annual NPP; for daily GPP, the observed range is re-
stricted to years 2012-2017 to allow for meaningful comparisons between MODIS
and VIIRS. DNF is not represented because no FLUXNET sites in this canopy
report data during the period of available VIIRS fPAR and LAI retrievals, 2012-
2017.

PFT N Bias RMSE ubRMSE Corr
ENF 444 -1.6 2.8 (12%) 1.9 0.87
DNF 0 n.a. n.a. n.a. n.a.
EBF 520 0.6 2.8 (13%) 1.5 0.59
DBF 637 0.2 1.5 (7%) 1.4 0.94
MF 684 -1.0 2.1 (9%) 1.6 0.89
CSH 188 0.1 0.5 (2%) 0.4 0.52
OSH 337 0.4 0.8 (4%) 0.6 0.63
WSV 588 0.0 1.5 (7%) 1.1 0.81
SAV 643 -0.7 2.6 (12%) 2.2 0.75
GRS 878 0.0 1.3 (6%) 0.9 0.77
CRO 614 0.3 3.4 (15%) 3.3 0.61

–28–



manuscript submitted to JGR: Biogeosciences

Ta
bl
e
7:

Pr
io
r
di
st
rib

ut
io
ns

fo
r
fre

e
pa

ra
m
et
er
s
in

M
O
D
17
,e

xc
lu
di
ng

te
m
pe

ra
tu
re

an
d
V
PD

pa
ra
m
et
er
s
in

th
e
G
PP

m
od

el
.
ε m

a
x
,Q

10
_f

ro
ot

,a
nd

Q1
0_

li
ve

wo
od

fo
llo

w
a
tr
un

ca
te
d
(o
nl
y
po

sit
iv
e)

no
rm

al
di
st
rib

ut
io
n
w
ith

m
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
(in

pa
re
nt
he
se
s)

sh
ow

n.
A
ll
ot
he
r
pa

ra
m
et
er
s
fo
llo

w
a
lo
g-
no

rm
al

di
s-

tr
ib
ut
io
n
w
ith

(lo
g-
)m

ea
n
an

d
(lo

g-
)s
ta
nd

ar
d
de
vi
at
io
n
(in

pa
re
nt
he
se
s)

sh
ow

n.

PF
T

ε m
a
x

lo
g(
SL

A
)

Q1
0_

li
ve

wo
od

Q1
0_

fr
oo

t
lo
g(

le
af

_m
r_

ba
se

)
lo
g(

fr
oo

t_
mr

_b
as

e)
lo
g(

li
ve

wo
od

_m
r_

ba
se

)
EN

F
EB

F
D
N
F

D
BF

M
F

C
SH

O
SH

W
SV

SA
V

G
R
S

C
RO

0.
98

(0
.3

2)
1.

40
(0

.2
0)

1.
23

(0
.2

0)
1.

68
(0

.3
5)

1.
43

(0
.3

7)
0.

80
(0

.3
8)

0.
74

(0
.2

1)
0.

93
(0

.3
7)

0.
93

(0
.3

8)
1.

19
(0

.4
5)

1.
94

(0
.5

5)

2.
75

(0
.7
8)

3.
21

(0
.4
5)

3.
21

(0
.2
7)

3.
61

(0
.6
3)

3.
56

(0
.5
8)

3.
21

(0
.3
1)

3.
21

(0
.3
1)

3.
60

(0
.7
0)

3.
58

(0
.5
3)

3.
60

(0
.5
4)

3.
72

(0
.6
0)

1.
89

(0
.2
7)

1.
84

(0
.2
2)

1.
89

(0
.2
7)

1.
84

(0
.2
2)

1.
84

(0
.2
2)

1.
84

(0
.2
2)

1.
84

(0
.2
2)

1.
84

(0
.2
2)

1.
84

(0
.2
2)

0.
00

(0
.0
0)

0.
00

(0
.0
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

1.
60

(1
.6
0)

-4
.6

5
(0

.6
7)

-4
.6

5
(0

.6
7)

-4
.3

5
(0

.5
5)

-4
.3

5
(0

.5
5)

-4
.5

6
(0

.6
1)

-4
.3

6
(0

.7
0)

-4
.3

6
(0

.7
0)

-4
.3

6
(0

.7
0)

-4
.3

6
(0

.7
0)

-4
.0

3
(0

.5
4)

-3
.7

8
(0

.8
6)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-4
.2

1
(0

.8
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

-5
.2

7
(1

.5
4)

0.
00

(0
.0

0)
0.

00
(0

.0
0)

–29–



manuscript submitted to JGR: Biogeosciences

Figure 8: Histograms of specific leaf area (SLA) from the TRY database, in car-
bon (C) terms (i.e., leaf area per unit C) for each PFT. A rug plot at the top of
each subplot shows the distribution of species-level observations.
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Figure 10: MOD17 predicted mean annual NPP, using the Collection 6.1
BPLUT, against observed mean annual NPP from the field. The dashed line
indicates the 1:1 line.
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Figure 11: MOD17 predicted mean annual NPP, using the updated BPLUT,
against observed mean annual NPP from the field. The dashed line indicates the
1:1 line.
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Figure 12: Plant carbon-use efficiency (CUE) values from the MsTMIP global,
gridded ensemble mean (2000-2010), shown as boxplots, along with the overall
mean CUE in the updated MOD17 product, shown as red diamonds. The new
VNP17 BPLUT results in overall, global mean CUE values that are nearly identi-
cal to those shown here for MOD17.

Table 16: Annual VNP17 NPP validation metrics at Cal-Val inventory sites,
based on k-folds cross-validation. RMSE is in units of g C m−2 year−1. Statistics
are not available for CSH because of too few sites.

PFT Count Bias RMSE nRMSE r

ENF 63 -148 201 24.7% 0.37
EBF 104 90 335 26.0% 0.52
DNF 5 91 330 24.6% 0.54
DBF 54 78 300 22.3% 0.54
MF 110 61 265 17.2% 0.57
CSH 1 n.a. n.a. n.a. n.a.
OSH 53 48 244 15.7% 0.67
WSV 141 -12 271 14.8% 0.54
SAV 83 -8 272 14.9% 0.53
GRS 247 -50 271 14.6% 0.51
CRO 89 -46 274 14.8% 0.49
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Figure 13: Plant carbon-use efficiency (CUE) values from the synthesis by Col-
lalti & Prentice (2019), which included data only for forests, shown as boxplots,
along with the overall mean CUE in the updated MOD17 product, shown as red
diamonds. The new VNP17 BPLUT results in overall, global mean CUE values
that are nearly identical to those shown here for MOD17.

Figure 14: Plots of mean annual autotrophic respiration (RA) for 2000-2010,
which is a period of record common to all datasets. The TRENDYv7 Ensemble
Mean is shown on a 1-degree equirectangular grid, all others are shown on a 0.5-
degree grid. The Updated MOD17 map is based on a bilinear resampling from
the original 5-km, MODIS Sinusoidal projection. The Global Carbon Budget-
Tange et al. (2020) synthesis, “GCB2020-Tang et al. (2020)” is computed by
subtracting that annual NPP product from the Updated MOD17 annual GPP
product.)
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Figure 15: Plots of temporal correlations in annual NPP between the updated
MOD17 product and two bottom-up modeling ensembles. The TRENDYv7 En-
semble Mean is shown on a 1-degree equirectangular grid, all others are shown on
a 0.5-degree grid.

Figure 16: Plots of temporal correlations in annual autotrophic respiration (RA)
between the updated MOD17 product and two bottom-up modeling ensembles.
The TRENDYv7 Ensemble Mean is shown on a 1-degree equirectangular grid, all
others are shown on a 0.5-degree grid.
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Figure 17: Interannual variability (standard deviation across the years 2000-
2010) in annual NPP. The TRENDYv7 Ensemble Mean is shown on a 1-degree
equirectangular grid, all others are shown on a 0.5-degree grid. The Updated
MOD17 map is based on a bilinear resampling from the original 5-km, MODIS
Sinusoidal projection.

Figure 18: Interannual variability (standard deviation across the years 2000-
2021) in annual GPP, based on the updated MOD17 BPLUT and resampling
onto a 0.5-degree grid.
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Figure 19: Interannual variability (standard deviation across the years 2012-
2021) in annual GPP, based on resampling onto a 0.5-degree grid.

Figure 20: Interannual variability (standard deviation across the years 2000-
2021) in annual NPP, based on the updated MOD17 BPLUT and resampling
onto a 0.5-degree grid.
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Figure 21: Interannual variability (standard deviation across the years 2012-
2021) in annual NPP, based on resampling onto a 0.5-degree grid.

Table 21: Annual GPP and NPP fluxes (Pg C year−1) for different products in
different time periods.

Period Product GPP NPP
2000-2010 Collection 6.1 117.4 ±2.2 58.2 ±1.7
2000-2010 FLUXCOM RS+METEO (ERA5) 115.7 ±0.4 n.a.
2000-2010 GCB2020-Tang et al. n.a. 49.8 ±0.4
2000-2010 MOD17 Update 125.4 ±2.0 56.1 ±1.5
2000-2010 MsTMIP Ensemble Mean 109.9 ±1.7 51.6 ±0.9
2000-2010 TRENDYv7 Ensemble Mean 124.9 ±1.6 60.5 ±1.0
2000-2018 Collection 6.1 119.2 ±2.9 59.3 ±1.9
2000-2018 FLUXCOM RS+METEO (ERA5) 115.5 ±0.4 n.a.
2000-2018 GCB2020-Tang et al. n.a. 49.6 ±0.6
2000-2018 MOD17 Update 127.2 ±2.8 57.1 ±1.8
2000-2018 MsTMIP Ensemble Mean 109.9 ±1.7 51.6 ±0.9
2000-2018 TRENDYv7 Ensemble Mean 126.3 ±2.4 61.2 ±1.3
2012-2018 Collection 6.1 121.6 ±1.6 60.7 ±1.1
2012-2018 FLUXCOM RS+METEO (ERA5) 115.2 ±0.2 n.a.
2012-2018 GCB2020-Tang et al. n.a. 49.6 ±0.8
2012-2018 MOD17 Update 129.7 ±1.7 58.5 ±1.1
2012-2018 New VNP17 129.6 ±1.7 58.4 ±1.1
2012-2018 TRENDYv7 Ensemble Mean 128.6 ±1.4 62.3 ±0.9
2012-2021 Collection 6.1 121.9 ±1.4 60.7 ±0.9
2012-2021 FLUXCOM RS+METEO (ERA5) 115.2 ±0.2 n.a.
2012-2021 GCB2020-Tang et al. n.a. 49.6 ±0.8
2012-2021 MOD17 Update 130.1 ±1.6 58.6 ±0.9
2012-2021 New VNP17 129.8 ±1.5 58.4 ±0.9
2012-2021 TRENDYv7 Ensemble Mean 128.6 ±1.4 62.3 ±0.9
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Figure 22: Uncertainty in TRY prior values, for select PFTs, as indicated by the
prior probability density function for specific leaf area (a) and the prior cumula-
tive density function for leaf RM (b).
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