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Abstract

The lack of precursory signals at some volcanic eruptions could be due to the analysis performed which failed to capture subtle

changes. We have developed a new technique, “Subtle Precursor Measurement of Change in Frequency (SuPreMeChiF)”, which

calculates the cumulative distribution difference (Kolmogorov-Smirnov test) between monitoring features in given reference

and sample windows, to detect and quantify subtle changes in continuous data that may be overlooked by usual analysis.

It is tested on seismic and infrasound recordings to analyse changes associated with the COVID-19 period, a known global

perturbation. The results show high coherence with mobility, reveal details of changes that were not indicated in conventional

spectral analysis, and demonstrate the potential to retrieve the source physical processes. This quantitative approach provides

insight for future application in automated detections during real-time volcano monitoring.
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Key Points: 9 

• A new method is introduced that combines statistics and continuous spectral analysis to 10 

quantitatively detect subtle changes in a system. 11 

• Results on Singapore seismic and infrasound during COVID-19 period agrees with 12 

mobility change timeline and reveals spectral details of the changes. 13 

• The method has potential for real-time volcano monitoring in which subtle spectral 14 

content change could imply precursory activities.  15 
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Abstract 16 

The lack of precursory signals at some volcanic eruptions could be due to the analysis performed 17 

which failed to capture subtle changes. We have developed a new technique, “Subtle Precursor 18 

Measurement of Change in Frequency (SuPreMeChiF)”, which calculates the cumulative 19 

distribution difference (Kolmogorov-Smirnov test) between monitoring features in given 20 

reference and sample windows, to detect and quantify subtle changes in continuous data that may 21 

be overlooked by usual analysis. It is tested on seismic and infrasound recordings to analyse 22 

changes associated with the COVID-19 period, a known global perturbation. The results show 23 

high coherence with mobility, reveal details of changes that were not indicated in conventional 24 

spectral analysis, and demonstrate the potential to retrieve the source physical processes. This 25 

quantitative approach provides insight for future application in automated detections during real-26 

time volcano monitoring.  27 

 28 

Plain Language Summary 29 

We introduce a new technique, “Subtle Precursor Measurement of Change in Frequency 30 

(SuPreMeChiF)”, that detects subtle changes in a natural system by combining statistics and 31 

monitoring data analysis. Our method compares feature distributions in given reference and 32 

sample timeframe, during which subtle changes that may be overlooked by usual analysis can 33 

now be detected and quantified. We demonstrate our method using seismic and infrasound 34 

recordings in Singapore to analyse changes associated with the COVID-19 period, a known 35 

global perturbation. Results show high coherence with mobility trend, with clear detections of 36 

key events including the start of lockdown. The results also reveal details that were not indicated 37 

in conventional analysis, such as the frequency range where changes occurred. This demonstrates 38 

the potential to retrieve source mechanism information since frequency ranges can be indicative 39 

of physical processes. In this case study, changes in mobility were reflected in changes in 40 

background noise level recorded by local instrument – a situation analogous to volcano 41 

monitoring scenario, where disturbance in the volcanic system is reflected in changes in 42 

geophysical properties recorded by a monitoring network. Our next step includes applying 43 

SuPreMeChiF on known volcanic activities and considering future applications in automated 44 

detections during real-time monitoring.  45 
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1 Introduction 46 

Volcanic eruptions can severely impact nearby communities (Janda et al., 1996) and have 47 

a composite, long-range impact on distant populations (Gudmundsson et al., 2012; Hansen et al., 48 

1992). To mitigate the impact from volcanic eruptions, it is crucial to continuously monitor 49 

volcanic systems and identify/interpret abnormal behaviours which lead to disruptive volcanic 50 

activity. Continuous monitoring is achieved by installing permanent instruments on volcanoes 51 

that record changes in ground vibration, deformation, degassing and others (Sparks, 2003).   52 

Some volcanic eruptions display clear precursor signals, while others have had few or no 53 

recognised indicators of an imminent eruption (Barberi et al., 1992; Maeda et al., 2015b; 54 

Smittarello et al., 2022). Un-forecasted volcanic eruptions are often referred to as “blue-sky” 55 

eruptions (Doherty, 2009; Jolly et al., 2010). However, for a volcano to erupt, there must be 56 

destabilisation of the system, either by energy input from the depth, in the form of gas 57 

(Germanovich & Lowell, 1995; Jolly et al., 2018), heat or magma (Aki & Koyanagi, 1981), or a 58 

destabilisation of the shallow part of the system from external forcing (Matthews et al., 2002; 59 

Neuberg, 2000; Seropian et al., 2021). The associated mechanism leading to the eruption is 60 

unlikely to happen without any physical or chemical perturbation. Therefore, regardless of 61 

timescale, any volcanic activity should be preceded by a certain level of precursory signal. The 62 

concept of “blue-sky” eruptions could be seen as a “cloudy-sky” situation, in which precursory 63 

signals did exist but were missed during real-time analysis of monitoring data either due to the 64 

method used, the type of monitoring instruments or their location. 65 

Most commonly used volcano monitoring techniques are based on seismic data. One 66 

widely-used example is Real-time Seismic Amplitude Measurement (RSAM), which measures 67 

average seismic amplitude in continuous waveform data, and triggers alerts when the amplitude 68 

exceeds a set threshold (Endo & Murray, 1991). However, subtle changes in volcanic systems 69 

may be frequency dependent and/or may not be reflected in noticeable seismic amplitude 70 

differences. In addition, the effectiveness of the critical threshold is limited by the signal to noise 71 

ratio (SNR) of the data. Another popular tool for volcano monitoring uses seismic noise to detect 72 

changes in seismic velocity (Brenguier et al., 2008; Lecocq et al., 2014). However, the detection 73 

capability may similarly be restricted in noisy environments. Stacking is usually involved over 74 

long-time scales to increase the SNR, which may result in missing short-term events. 75 



manuscript submitted to Geophysical Research Letters 

 

More “hidden” features of continuous monitoring data, such as its frequency content, 76 

may be better indicators of subtle changes in the system. Changes in the spectral content of 77 

continuous seismic data is analysed in the Self-Organising Maps (SOM) algorithm, which uses 78 

machine learning to cluster data based on similar frequency content (Klose, 2006). SOM has 79 

proved effective in detecting tremor before eruptions at Mt. Etna (Langer et al., 2009) and 80 

Ruapehu volcano (Carniel et al., 2013). However, the limited number of pre-defined clusters 81 

restricts the method's sensitivity and therefore it may not be as effective in detecting subtle 82 

changes. Furthermore, SOM processes the whole time-series at once and does not take into 83 

account cyclic patterns (e.g., diurnal changes) which could complicate the identification of 84 

precursory signals. 85 

In this paper, we develop a new technique to quantify subtle changes in a system that 86 

may be overlooked by conventional analysis. Our method, “Subtle Precursory Measurement of 87 

Change in Frequency (SuPreMeChiF)”, is a universal and quantitative analysis that combines a 88 

statistical Kolmogorov-Smirnov (K-S) test with monitoring data analysis, to detect subtle signs 89 

of perturbations in continuous monitoring data.  90 

Kolmogorov-Smirnov (K-S) tests have been successfully applied to monitor changes in 91 

continuous data across a wide range of fields. Recent studies in engineering have revealed its 92 

potential in condition monitoring of machinery. For example, early-stage machinery failure can 93 

be detected by comparing the probability distribution of sample vibration signals to that of 94 

template signatures of known conditions (Wang & Makis, 2009). Several studies have used K-S 95 

tests in fault diagnosis and performance degradation assessment for rolling bearings (Cong et al., 96 

2011; Kar & Mohanty, 2004). This situation is analogous to our case, in which we look for any 97 

abnormality or precursory signals before a failure, or internal/external perturbations in the 98 

natural system. For a natural environment setting, Mulargia et al. (1987) has first implemented 99 

the K-S test on accumulative eruption count to identify change points that divide regimes during 100 

eruptive history on Etna. Since then, K-S tests have been used to analyse cumulative eruption 101 

volume (Burt et al., 1994) and forecast assessment (Bebbington, 2013). K-S analysis has not yet 102 

been adopted for real-time analysis on continuous monitoring data. 103 

We first introduce the SuPreMeChiF method and apply it to synthetic data. We then 104 

illustrate its capability at detecting subtle changes in continuous data by applying it to local 105 
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seismic and infrasound waveforms.  The coronavirus pandemic that struck in 2020 caused a 106 

global quiescence in high-frequency seismic noise due to lockdown measures (Lecocq et al., 107 

2020). Here we use the Singapore COVID-19 period as a test case for our SuPreMeChiF method, 108 

in which the timeline of changes due to anthropogenic activity is known and well-constrained. 109 

Our analysis includes infrasound monitoring data to further illustrate the method's potential, 110 

since changes in infrasound data were smaller and less distinct than in seismic data. Lastly, we 111 

discuss the results and potential for real-time volcano monitoring. 112 

2 SuPreMeChiF methodology 113 

2.1 Data Pre-processing 114 

The raw waveform is first transferred into the frequency domain using the 115 

continuous wavelet transform (CWT). The CWT has advantage over the Discrete Fourier 116 

Transform in providing better time-frequency resolution (Chakraborty & Okaya, 1995; 117 

Lapins et al., 2020). The resulting frequency information is presented in power spectral 118 

density (PSD) with the frequency range in a logarithmic scale. We use a Morlet wavelet 119 

of window length 1800 seconds, which balances the trade-off between time and 120 

frequency resolution, as well as computational cost. To minimise potential edge effects, 121 

we extract only the middle one-third (600s) of each CWT window, with the window 122 

moving along the full timeline with two-thirds overlap. The resulting PSD is then 123 

decimated from the original sampling rate (100 Hz) to one value per second (1 Hz) by 124 

calculating the average in a 1 second window. The resulting matrix comprises the power 125 

spectral density categorised in log-scale frequency bins at each second along the timeline. 126 

2.2 Kolmogorov-Smirnov Test 127 

The backbone of SuPreMeChiF is a two-sample Kolmogorov-Smirnov (K-S) test, 128 

which statistically evaluates the difference between cumulative distribution functions 129 

(CDFs) of two datasets, T(x) and R(x), to determine if they differ significantly 130 

(Kolmogorov, 1933; Massey Jr, 1951; Smirnov, 1939). The difference between the 131 

datasets is denoted as K-S statistic D and is mathematically represented by Equation [1]. 132 

𝐷𝐷𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝑇𝑇(𝑚𝑚𝑖𝑖) − 𝑅𝑅(𝑚𝑚𝑖𝑖)|                                               133 

    [1] 134 
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The two datasets we compare are the scalograms of assigned reference and 135 

sample windows. Depending on the window lengths, each window comprises a group of 136 

PSDs. We then use a two-sample K-S test to compare, bin by bin, the distribution of the 137 

PSDs in the reference window (RW) and in the sample window (SW). The resulting K-S 138 

statistic, D, measures the maximum difference between their cumulative distributions. 139 

Each bin (indexed with i) at each timestamp produces one D, resulting in a D-matrix that 140 

will be presented in pseudocolor plot later on. Equation [2] is used to associate D values 141 

from k number of bins and produces a single change index at each timestamp. It is also 142 

possible to look at specific frequency ranges by assigning the starting (i) and ending (k) 143 

index of the bins for calculating the change index. 144 

  𝐶𝐶ℎ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑚𝑚 = �∑ 𝐷𝐷𝑖𝑖2𝑘𝑘
𝑖𝑖=1                                             [2] 145 

The SW and RW are shifted together along the timeline at a given rate. Each 146 

move generates a change index that will be assigned to the end of the associated SW. As 147 

a result, for a given reference and sample window combination, we produce a time-series 148 

of change indexes with resolution depending on the shifting rate. We initially consider 149 

the full frequency range, and later focus on more specific ranges catering to events of 150 

interest. 151 

Changes or perturbations in a volcanic system may trigger changes in the 152 

frequency content of the waveform data and be caught in the SW. As a result, a larger 153 

mismatch between their CDFs and therefore a larger K-S statistic D or a peak in the time-154 

series of change indexes is expected. (See Supplement Fig.S1) 155 

2.3 Synthetic results 156 

We first test SuPreMeChiF on a synthetic waveform (Fig.1a and Fig.1b). The six-157 

day synthetic waveform has constant noise at 10Hz. Signals of 5Hz, 0.5Hz and 15Hz, 158 

with a length 3 days, are introduced at the start of day 2, day 3, and day 4 respectively. In 159 

this test case we use SW and RW of length 1 and 12 hours respectively. SW immediately 160 

follows RW, and both windows are shifted along the timeline at a rate of 0.5 hours. 161 
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The resulting change index time-series (Fig.1c) indicates a sudden increase when 162 

SW enters data with new frequency content. The statistics reach a maximum at the 163 

timestamp when SW is completely sampling the new frequency content, while RW is 164 

sampling the old frequency content. The change index declines gradually once the RW 165 

moves into the same new frequency zone and is at a minimum when both windows 166 

sample the same frequency content again. The pseudocolor plot of D-matrix has peaks at 167 

the time and frequency when the frequency change occurs (Fig.1d). We calculate the 168 

median, 16 and 84 percentiles (one standard deviation from the mean) of the constituent 169 

D values to verify data coherence. 170 

We also test the impact of RW and SW window lengths on the D statistic and 171 

change index time series. Shorter window lengths produce sharper peaks and therefore 172 

clearer detections of change (Fig.1e and 1f). Depending on the event type of interest, the 173 

window lengths, particularly the ratio between RW and SW can be optimised - this is 174 

further investigated in the later sections using real data. 175 

It is important to note that the change indexes should be referenced to the end of 176 

the sample window. This is intuitive because the statistics can only be generated based on 177 

past data; meaning a delay of sample-window length should be expected for each 178 

detection made. It is also observed that longer window sizes would optimise the detection 179 

quality because more data points are used, and the resulting curve is smoother. Therefore, 180 

when determining optimal window sizes for the analysis, we have to consider a trade-off 181 

between window length and the detection ability. In this paper, all results were aligned 182 

with the physical happening of events for a clearer visualisation (i.e., the sample window 183 

length is subtracted from the change index time). 184 
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 185 

Figure 1. SuPreMeChiF synthetic waveform results, illustrating the impact of RW and SW 186 
lengths on detecting spectral changes. (a) Synthetic waveform. (b) Scalogram. (c) Change index 187 
time-series and (d) D-matrix presented in pseudocolor plot using 1-hour SW, 12-hour RW. (e) 188 
Change index time-series and (f) D-matrix using 1-hour SW and 1-hour RW.  189 
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 190 

Figure 2. SuPreMeChiF results on seismic (left column) and infrasound (right column) recordings in Singapore during COVID-19 191 
lockdown. (a) Singapore’s mobility change from baseline from Google mobility report. Key events are marked by dash lines. (b) 192 
Scalogram, (c) change index time-series, (d) D-matrix presented in pseudocolor plot for seismic data from KAPK. (e) Scalogram, (f) 193 
change index time-series, (g) D-matrix pseudocolor plot for infrasound data from SG01. 194 
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3 Case study: COVID-19 lockdown in Singapore 195 

The COVID-19 pandemic in 2020 saw the introduction of widespread restrictions on 196 

human activity. This unprecedented reduction in human activities caused a large drop in 197 

anthropogenic seismic and acoustic noise. Mean seismic power reductions of up to 50% were 198 

observed in some locations (Kuponiyi & Kao, 2021; Lecocq et al., 2020; Roy et al., 2021). The 199 

average amplitude of acoustic noise also reduced, with some locations recording a halving of 200 

acoustic noise (Bird et al., 2021; Spivak et al., 2021). 201 

In Singapore, a nationwide partial lockdown called a Circuit Breaker (CB), was 202 

implemented in early 2020. Mobility data shows that movement related to work, transportation 203 

and recreation decreased drastically, while residential mobility increased, in response to the 204 

lockdown measures (Fig.2a). Given the expected changes in seismic and infrasound noise in 205 

urban Singapore during the lockdown, this period provides a unique test for our SuPreMeChiF 206 

method. 207 

3.1 COVID-19 timeline in Singapore 208 

The first confirmed COVID-19 case appeared in Singapore on 23rd Jan 2020, with the 209 

number of cases quickly increasing. On 26th March, entertainment venues were closed, 210 

and social gatherings were restricted. Full lockdown measures were enforced on 7th 211 

April, closing workplaces, schools and dining-in at eateries. Measures were later 212 

tightened on 21st April. On 1st June, Singapore exited CB with small-scale visits 213 

allowed, although workplaces and schools remained closed. Measures were further 214 

relaxed on 19th June. 215 

3.2 Singapore data 216 

We use locally collected seismic and infrasound monitoring data for a continuous 217 

112-day period in 2020. Seismic data are from the KAPK wideband station located in the 218 

south-eastern part of Singapore, near to the coast. KAPK hosts a Kinemetrics WR-1 219 

wide-band seismometer that has flat response between 0.05-20Hz and samples at 100Hz. 220 

Infrasound data are from the SG01 infrasound station located in MacRitchie Reservoir, 221 

central Singapore. It has a Seismowave MB2005 microbarometer which has flat response 222 
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between 0.01-27Hz and samples at 80Hz. Stations KAPK and SG01 are approximately 223 

10 kilometres apart (Fig.4a). 224 

Fig 2b and 2e shows scalograms for stations KAPK and SG01 during the CB 225 

period. There is a visually distinguishable change in spectral properties of the seismic 226 

data related to Singapore’s lockdown measures, particularly the enforcement of the CB 227 

period on 7th April. However, changes in the infrasound scalogram are not as clear, 228 

which may indicate that the background is too noisy and/or the change is too small to be 229 

seen in the acoustic data. This setting provides us with an opportunity to test the 230 

detectability of SuPreMeChiF on subtle changes that cannot be identified on a simple 231 

scalogram or spectrogram. 232 

3.3 Choice of parameters 233 

Seismic and infrasound data in Singapore has a large overprint from diurnal 234 

changes in human activity. To minimise the anthropogenic diurnal impact on the result, 235 

we test a range of window sizes from 1 to 20 days, with an interval of 24 hours. Results 236 

from selected sets of reference and sample windows are presented in Fig.3, including our 237 

chosen window size of 144 hours (6 days). The temporal shift is 1 hour, which balances 238 

computational cost and detection promptness. 239 
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  240 

Figure 3. Results for a range of reference and sample window lengths. Upper panel in each cell 241 
is the D-matrix plots showing the spectral range where changes took place in. Lower panels are 242 
the change index time-series obtained from each D-matrix, excluding D values from microseism 243 
range (0.09-1Hz). 244 
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4 Identification and interpretation of changes 245 

In Figure 2, we compare the SuPreMeChiF results with the mobility change time-series 246 

of Singapore during CB, and find: 247 

• Changes in the human activities were reflected in a certain frequency range - above 248 

1~2Hz in seismic and above 5Hz in infrasound. Natural signals such as microseism and 249 

microbarom were also picked up.  250 

• Both the seismic and infrasound change index time-series agree with the CB timeline. 251 

Changes observed in the seismic result agree with its scalogram (Fig.2b). Clear detections 252 

were also made in the infrasound data which were not clear in its scalogram (Fig.2e). 253 

4.1 Changes reflected in a certain frequency range 254 

We first investigate the intensity and spectral range of changes, by formatting the 255 

individual K-S statistics D at each timestamp and frequency bin into a D-matrix, which is 256 

then presented in pseudocolor plots (Fig.2d and 2g). The seismic D-matrix shows that 257 

changes reflecting CB generally occur at frequencies greater than 1Hz (Fig.2d). On the 258 

other hand, changes in infrasound data are largest above 5Hz (Fig.2g). 259 

In both seismic and infrasound D-matrix plots, a band of higher variability is 260 

observed at frequencies below approximately 1Hz. Given that Singapore is a small island 261 

country bounded by two straits, this low frequency band likely represents the natural 262 

microseism and microbarom generated by ocean waves surrounding Singapore. We 263 

verify this by analysing two additional local seismic stations (location as shown in 264 

Fig.4a). All three seismic stations show comparable detection results that match with the 265 

CB timeline, in addition to having a band of persistent change in a similar low frequency 266 

range (See Supplement Fig.S2). Two frequency bands are evident: one between 0.2-267 

0.5Hz which is consistent with the frequency range of the secondary microseism 268 

(produced by wave-wave interactions), and the other at approximately 0.08-0.15Hz, 269 

which is consistent with the primary microseism due to the impact of waves on a sloping 270 

seafloor in coastal areas (Ardhuin et al., 2015; Hasselmann, 1963). 271 
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4.2 Agreement with the CB timeline 272 

We associate a group of K-S statistic Ds at each timestamp, to form change index 273 

time-series of certain frequency range. We exclude the microseism range (0.09-1Hz) for 274 

seismic and non-anthropogenic range (<5Hz) for infrasound. SuPreMeChiF results show 275 

that changes that were not clear in raw scalograms (Fig.2b and 2e) became 276 

distinguishable, indicated by a peak in each figure (Fig.2c and 2f). The exact time and 277 

extent of the increase in the statistics could be easily retrieved and compared across the 278 

timeline; therefore, the onset time and the amount of change can be quantified. 279 

By aligning with the mobility change and CB timeline (Fig.2a), the seismic 280 

change index peak begins ~six days before and ends ~six days after the centre of the 281 

peak, which occurs precisely at the onset date of CB (Fig. 2c). The 6-day timeframe can 282 

be explained by the length of sample and reference window used. The increase in change 283 

index started when the sample window entered the post-CB phase, reached the maximum 284 

when the sample window was fully post-CB and the reference window fully pre-CB, and 285 

ended when both windows reached the post-CB phase. Mobility data indicates there is a 286 

gradual return to pre-CB level over the following two months, and no substantial increase 287 

in the seismic change index is recorded. 288 

Infrasound results have a peak one day later than the seismic data, on 8th April 289 

2020. This is one day after the onset of CB, (Fig.2d) and corresponds to the start of 290 

school closures in Singapore. The slight time difference between infrasound and seismic 291 

changes suggests that the signals could respond differently to various types of activities.  292 

More variations are observed in the infrasound results, compared to seismic. 293 

Seismic monitoring in a city setting is highly subjective to proximal vibrational sources. 294 

On the other hand, infrasound with its long wavelength, attenuates less while travelling 295 

and covers a wider region. Therefore, it may have better detection performance for the 296 

general changes islandwide. For example, (Fig.2c), the first peak in the infrasound results 297 

on 12th March may be associated with the general mobility decrease after the first Prime 298 

Minister’s (PM) public address on COVID-19. According to the local news, there was a 299 

surge in grocery shopping across the country. The peak on 22nd April may indicate some 300 
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behavioural change in the community due to the tightened CB measures announced by 301 

the PM the day before. 302 

5 Application to volcano monitoring 303 

We have verified the performance of SuPreMeChiF to detect subtle changes in 304 

continuous data, using both synthetic, seismic and infrasound data in urban settings. The same 305 

approach could be applied to other environments such as volcanoes.  306 

The D-matrix plots (Fig.2d and 2g) provide information on the spectral ranges at which 307 

the changes occur. By combining volcano physics and D-matrix observations, we could visually 308 

capture the extent of any change and potentially identify the corresponding source. For instance, 309 

SuPreMeChiF has potential for the detection of phreatic eruptions, which many studies have 310 

claimed to have no or few precursors (Barberi et al., 1992; JMA, 2014).  However post-eruption 311 

analysis has identified the emergence of very-long-period (VLP) events months to seconds prior 312 

to phreatic explosions (Jolly et al., 2017; Kaneshima et al., 1996; Kawakatsu et al., 2000; Maeda 313 

et al., 2015a; Ohminato, 2006). VLP events, with a period of 2-100s, signify a pressurised 314 

hydrothermal system. SuPreMeChiF has potential to identify VLP events in their characteristic 315 

spectral range, opening a possibility to forecast phreatic eruptions.  316 

VLP activity could share the same spectral range as ocean-generated microseisms (~<1 317 

Hz), however, SuPreMeChiF’s adaptable parameterisation allows separation of signals in the 318 

same frequency range by varying window lengths to the events of interest. For example, using 319 

long reference and sample windows, allows the detection of a long-term change in human 320 

mobility trend (Fig.2). On the other hand, a short sample window (30 minutes) and relatively-321 

long reference window (24 hours) acts like a short-term event detector and allows detection of 322 

remote tectonic events (Fig.4b and 4c). Similarly, the reference and sample window lengths can 323 

be tuned for VLP event detection, particularly by using shorter window lengths.  324 

Since infrasound has low attenuation, it travels long distances with minimal energy loss. 325 

Therefore, SuPreMeChiF applied to volcanogenic infrasound would be an effective way of 326 

detecting a remote volcanic eruption. The change index time-series make it easier to set an 327 

automated alert threshold and flag detection when the threshold is passed. 328 
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As a real-time detector for precursory activities in a volcanic system, timeliness is a key 329 

factor. The current real-time detection would have a lag period of a sample window length. 330 

Therefore, a careful choice of window length is important, and parameters should be optimised 331 

for different settings.  332 

A further limitation is that, similar to other techniques, the performance of SuPreMeChiF 333 

largely relies on the location of the monitoring instrument, i.e., proximity to the source.  334 

Detection coherence across multiple stations would boost confidence in the detection and acts as 335 

an additional indicator to flag an event. 336 
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 337 

Figure 4. (a) Singapore map indicating seismic and infrasound stations used. Inset shows 338 
location of Singapore and the M6.0 earthquake. (b) D-matrix and (c) change index for 0.05-339 
0.5Hz. 340 
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6 Conclusions 341 

We introduce a new technique — Subtle Precursory Meaningful Changes in Frequency 342 

(SuPreMeChiF), to statistically detect subtle changes in a system. The highlight of the method is 343 

the ability to quantify the amount of deviation in monitoring data, including subtle changes that 344 

may be overlooked using conventional analysis. SuPreMeChiF also shows the spectral range 345 

where changes took place and therefore has potential to indicate the source of change. Our case 346 

study on seismic and infrasound recordings during the COVID period in Singapore shows 347 

alignment between SuPreMeChiF results and the lockdown timeline, demonstrating the 348 

effectiveness in detecting background noise variations due to human mobility change. The 349 

method could be applied on natural systems, such as volcano monitoring data. This presents the 350 

opportunity to re-assess past un-forecasted eruptions, aiming to detect subtle precursory changes 351 

that may have been overlooked or missed by previous analysis, in a systematic and quantitative 352 

way. The method could also be used to assess whether the system has returned to pre-perturbed 353 

status by using a fixed reference window characteristic of the non-perturbed state and a moving 354 

sample window along the timeline. Further work could also include multiparametric monitoring 355 

data. With some adjustment on the detection parameters based on settings, the detections for 356 

precursory activities can be automated in near real-time.  357 
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