# Variability of the Gravitational Constant G 

Vasile Turcu ${ }^{1}$<br>${ }^{1}$ Independent researcher

February 27, 2023


#### Abstract

A brief history of the gravitational constant $G$ is made and the current value is given. $G$ for the Earth is calculated at perihelion and aphelion, resulting in different values. $G$ is variable on a revolution in all cosmic bodies. Variable $G$ is calculated for the solar system. The physical consequences with variable $G$ are explained, which are valid for all cosmic bodies. Measurements of G are suggested to be made on Earth at perihelion and aphelion, on the International Space Station, and on the Moon.


# GRAVARABILITY OF THE 

Vasile Turcu<br>515800-Sebes, str. M. Eminescu 30, Alba, Romania, EU<br>vturcu1@yahoo.com


#### Abstract

A brief history of the gravitational constant G is made and the current value is given. G for the Earth is calculated at perihelion and aphelion, resulting in different values. $G$ is variable on a revolution in all cosmic bodies. Variable $G$ is calculated for the solar system. The physical consequences with variable $G$ are explained, which are valid for all cosmic bodies. Measurements of $G$ are suggested to be made on Earth at perihelion and aphelion, on the International Space Station, and on the Moon.


Keywords: Dynamic astronomy - variable G - solar system - ISS - Halley comet.

## 1 Introduction

Newton's law of universal attraction is

$$
\begin{equation*}
\boldsymbol{F}=-G \frac{M \cdot m}{r^{2}} \frac{\boldsymbol{r}}{r} N \text { with } \frac{\boldsymbol{r}}{r}=1 \text { in module or } F=G \frac{M \cdot m}{r^{2}} N \tag{1}
\end{equation*}
$$

where $M$ is the mass of the central body, $m$ is the mass of the satellite body, $\boldsymbol{F}$ is the force of attraction between $M$ and $m, r$ is the distance between $M$ and $m$, and $G$ is the constant of universal attraction equal to $6.67430(15) \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ (CODATA, 2019). The negative sign comes from the inverse orientations of the $\boldsymbol{F}$ and $\boldsymbol{r}$ vectors. The orbital motion of a cosmic body of mass $m$ is due to the dynamic balance between the gravitational force (1) (centripetal force) and the centrifugal inertia force.

$$
\begin{gather*}
-G \frac{M \cdot m}{r^{2}} \frac{\boldsymbol{r}}{r}=\frac{m \cdot \boldsymbol{v}^{2}}{r} \text { with } \frac{\boldsymbol{r}}{r}=1 \text { in module or } \\
G \frac{M \cdot m}{r^{2}}=\frac{m \cdot v^{2}}{r} \text { results } G=\frac{\boldsymbol{v}^{2} \cdot r}{M} \text { or } G=\frac{v^{2} \cdot r}{M} m^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \tag{2}
\end{gather*}
$$

with $\boldsymbol{v}=$ orbital linear velocity of the satellite body with mass $m$. The gravitational influence of $M$ on $m$ is $G$. The gravitational constant $G$ is defined by (2), where $M=$ constant. The value of $G$ depends on $\boldsymbol{v}=$ orbital velocity of the satellite body $m$ and $r=$ distance between $M$ and $m$. If the orbit of $m$ is circular then the product $\boldsymbol{v}^{2} r$ is constant and $G=$ constant. But all cosmic bodies don't have a circular orbit, they have an elliptical orbit, etc. So the value of $G$ is not as constant as Newtonian and Einsteinian mechanics postulate. The value of $G$ in (1) is variable according to (2). In (Popescu, 1982) if the law of gravitovortex forces is given by Newton's law (1), then $G$ automatically becomes variable. In the scalar-tensor theory of gravity by P.Jordan (1959), R.H.Dicke, and C.H.Brans (1961), if Newton's field equation (1) remains valid, $G$ becomes variable. On the other hand, if we consider $G$ as a fixed constant, then Newton's field equation (1) is no longer valid. If (1) remains valid then $G$ is variable according to (2) from place to place in orbit and from one orbit to another.

## 2 Background

The variability of the gravitational constant $G$ suggested by a series of empirical data was observed as early as A.Eddington (1906), but the one who explicitly formulated it and argued it as such was P.A.M.Dirac in 1937. The problem with variable $G$ was attacked head-on by several scientists in Europe and the United States, including H.Thiry, P.Kaluza, W.Klein, Veblen, B.P.Jordan, Ehlers, Kundt, Demming, R.H.Dicke, C.Brans and P.J.Peebles. Continuous raising of the precision of determining G, a continuous and increasingly rapid process, in the period of over 220 years since such experiments are made, as well as the correct understanding of the significance of the results thus obtained, an understanding that has become possible in the last decades is the key to solving this difficult problem first addressed by G.Cavendish in 1798. From (Popescu, 1982; Dbachmann, 2020) the following table results.

| Author | Year | Type of measuring scale | $G \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | Mean <br> quadratic error |
| :---: | :---: | :---: | :---: | :---: |
| G.Cavendish | 1798 | torsion | 6.75 | $\pm 0.025$ |
| F.Reich | 1838 | torsion | 6.64 | 0.03 |
| F.Heyl | 1843 |  | 6.63 | 0.035 |
| A.Cornu | 1873 | torsion | 6.64 | 0.0085 |
| F.Jolly | 1878 | vertical | 6.47 | 0.055 |
| J.Wilsing | 1889 | vertical | 6.594 | 0.075 |
| T.Boys | 1889-1894 | torsion | 6.6576 | 0.002 |
| K.Braun | 1887-1896 | torsion | 6.655 | 0.002 |
| G.Poynting | 1878-1896 | vertical | 6.6984 |  |
| R.Eötvös | 1896 | torsion | 6.657 | 0.001 |
| Köning | 1884-1897 |  | 6.685 | 0.011 |
| F.Richartz | 1898 | vertical | 6.683 | 0.011 |
| P.Heyl | 1930 | torsion | 6.678 | 0.003 |
| P.Heyl and P.Chrzanovschi | 1942 | torsion | 6.673 | 0.0015 |
| L.Facy | 1969 | torsion | 6.66598 |  |
| R.Rose and  <br> H.Parker  | 1969 | torsion | 6.674 | 0.002 |
| J.Renner | 1970 | torsion | 6.67 | 0.004 |
| L.Facy | 1971 | torsion | 6.673 | uncertainty |
| G.Pontikis | 1971 | torsion | 6.671 | $\begin{aligned} & \text { standard } \\ & \times 10^{-11} \end{aligned}$ |
| $\begin{aligned} & \text { Luther and } \\ & \text { Towler } \end{aligned}$ | 1982 | torsion | 6.6726 | 0.0005 |
| Karagioz and Izmailov | 1996 | torsion | 6.6729 | 0.0005 |
| $\begin{aligned} & \text { Bagley } \quad \text { and } \\ & \text { Luther } \end{aligned}$ | 1997 | torsion | 6.674 | 0.0007 |
| Gundlach and Mercowitz | 2000 | torsion | 6.674215 | 0.000092 |
| Quinn et al. | 2001 | torsion | 6.67559 | 0.00027 |
| Armstrong and Fitzgerald | 2003 | torsion | 6.67387 | 0.00027 |
| Tu et al. | 2010 | torsion | 6.67349 | 0.00018 |
| Quinn et al. | 2013 | torsion | 6.67545 | 0.00018 |
| Newman et al. | 2014 | torsion | 6.67433 | 0.00013 |
| Kleinevoss | 2002 | two pendulums | 6.67422 | 0.00098 |
| Schlamminger et al. | 2006 | beam balance | 6.674252 | 0.000122 |
| Parks and Faller | 2010 | two pendulums | 6.67234 | 0.00014 |
| Rosi et al. | 2014 | atomic interferometry | 6.67191 | 0.00099 |

Table 1

In August 2018, a group of Chinese researchers announced new torsion balance measurements, which obtained the values $6.674184(78) \cdot 10^{-11}$ and $6.674484(78) \cdot 10^{-11}$. It is noted that the first decimal place also differs. However, the measurements reached the sixth decimal place and the relative standard uncertainty reached $2.2 \cdot 10^{-5}$ in 2019 . The value of $G$ is obtained through these experiments, and theoretically with (2). The following table shows the CODATA values recommended for $G$ by the National Institute of Standards and Technology (NIST).

| Year | $G \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | Relative standard uncertainty $\cdot 10^{-6}$ |
| :---: | :---: | :---: |
| 1969 | $6.6732(31)$ | 460 |
| 1973 | $6.6720(49)$ | 730 |
| 1986 | $6.67449(81)$ | 120 |
| 1998 | $6.673(10)$ | 1500 |
| 2002 | $6.6742(10)$ | 150 |
| 2006 | $6.67428(67)$ | 100 |
| 2010 | $6.67384(80)$ | 120 |
| 2014 | $6.67408(31)$ | 46 |
| 2018 | $6.67430(15)$ | 22 |

Table 2
From (CODATA, 2019) the Newtonian gravitational constant $G$

| The numerical value | $6.67430 \cdot 10^{-11}$ | $\mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |
| :--- | :--- | :--- |
| Standard uncertainty | $0.00015 \cdot 10^{-11}$ | $\mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |
| Relative standard uncertainty | $2.2 \cdot 10^{-5}$ |  |
| Concise form | $6.67430(15) \cdot 10^{-11}$ | $\mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |

## 3 Earth

From (nssdc./earthfact,2020) the Earth has at perihelion
$v=3.029 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
$r=1.47092 \cdot 10^{11} \mathrm{~m}$
With the mass of the Sun $M=1.9885 \cdot 10^{30} \mathrm{~kg}$ (nssdc./sunfact,2018) and replacing in (2) we obtain
$G_{p}=6.78675 \cdot 10^{-11} \mathrm{~m}^{3}, \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
where $G_{p}=$ gravitational constant of the Earth at perihelion. From (nssdc./earthfact, 2020) at aphelion
$v=2.929 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
$r=1.52099 \cdot 10^{11} m$
Replacing in (2) we obtain
$G_{a}=6.562 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
where $G_{a}=$ gravitational constant of the Earth at aphelion. At the Earth, $G$ varies in the closed range
$G=[6.562-6.78675] 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
From Table 1 it is noted that all the values obtained from 1798 (Cavendish) to the present, fall within this range. The exception is the measurement of F.Jolly in 1878. Results fall within the annual average
$G=6.674375 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

With the average value $v=2.978 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$ and $r=1.495978707 \cdot 10^{11} \mathrm{~m}$ (AU), replacing in (2) we obtain $G=6.671895 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
as Rosi et al. 2014. So the value (CODATA, 2019) valid today is the annual average of the constant of the gravitational attraction G. G has the maximum value at perihelion (January 2-5) and the minimum value at aphelion (July 4-6). Consequently, the gravitational acceleration $g$ has the maximum value at perihelion and the minimum one at aphelion, for the same place on the Earth. This leads to the maximum weight at perihelion and the minimum one at aphelion, for a material body located at the same place on the Earth.

In Newton and Einstein's theory of gravity, the gravitational force depends on the value of $G$. At perihelion, we have the maximum gravitational force, which leads to the minimum volume of the Earth. At aphelion, we have the minimum gravitational force, which leads to the maximum volume of the Earth. This is an orbital motion with expansion-contraction of the planet Earth (Popescu, 1982). This expansion-contraction of the planet Earth results in the phenomenon of tectonic plates, earthquakes, volcanoes, and the configuration of the crust with all forms of relief, which leads to the formation of land and water-covered areas. This is the varying physical phenomenon $G$, the foundation of the planet Earth and every cosmic body. It is best to observe variable $G$ in comets, which have the minimum volume at perihelion $(G \max )$ and the maximum volume at aphelion $(G$ $\min )$. $G$ varies seasonally in all cosmic bodies, between the maximum value at perihelion and the minimum value at aphelion. The rate of $G$ growth and decrease on the Earth in a year is

$$
\frac{\Delta G}{\Delta t}=G_{p}-G_{a}=2.2475 \cdot 10^{-12} / \text { year }
$$

From (Mould, Uddin, 2014) a decrease rate of $G$ (Kaspi et al., 1994) was detected in binary pulsars.

$$
\frac{\Delta G}{\Delta t}=(4 \pm 5) \cdot 10^{-12} / y e a r
$$

With lunar laser beam (Muller, Biskupek, 2007)

$$
\frac{\Delta G}{\Delta t}=(2 \pm 7) \cdot 10^{-13} / \text { year }
$$

From (Mould, Uddin, 2014) Li et al., 2013, a decrease in $G$ has been detected with the Planck Space Telescope

$$
\frac{\Delta G}{\Delta t}=1.42 \cdot 10^{-12} / \text { year }
$$

WMAP

$$
\frac{\Delta G}{\Delta t}=2.48 \cdot 10^{-13} / \text { year }
$$

BAO

$$
\frac{\Delta G}{\Delta t}=2.27 \cdot 10^{-12} / \text { year }
$$

Other observations have been made on pulsars, big-bang nucleosynthesis, helioseismology, neutron mass of the star, etc., and the results are falling within these values. $\Delta G$ at the Earth roughly falls within these limits. The Brans-Dicke scalar-tensor theory (1961), initiated by Jordan (1959), provides for a decrease in $G$ of

$$
\frac{\Delta G}{\Delta t} \approx 10^{-10} / \text { year result } t \approx \frac{1}{10^{-10}} \approx 10^{10} \text { years }
$$

with $t=$ age of the universe. In (Mould, Uddin, 2014) $G$ decreases with the rate of

$$
\frac{\Delta G}{\Delta t}=(3-0.73) 10^{-10} / \text { year result } t=(3.3-13.7) 10^{9} \text { years }
$$

In (Popescu, 1982) gravitovortex theory, (Mould, Uddin, 2014) supernova stars, the scalar-tensor theory by Brans-Dicke (1961) ,et al., $G$ decreases steadily and evenly over time from 1 at the time of birth of the universe (Big-Bang) to today's value. This is how the age of the universe is calculated about 13.7 billion years. But as we have theoretically demonstrated on Earth, $\Delta G$ is a seasonal variable between perihelion with $G$ maximum and aphelion with $G$ minimum. $G$ has no differences between years, $G$ has differences only during the year. $G$ decreases and grows with the same value at each revolution. So $G$ does not permanently decrease at a fixed rate from the Big Bang until today and consequently the age of the universe is not this.

But $G$ varies periodically and over time. In (Anderson et al., 2015) the period of variation of $G$ is $P_{1}=5.9$ years ( 5 years and 11 months), i.e. from 5.9 years to 5.9 years we have a minimum or maximum and $G$ varies in the range of
$G=(6.672-6.676) 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
In (Schlamminger et al., 2015) we have several periods of $G$ variation.
$P_{2}=6.17$ years (6 years and 2 months)
$P_{3}=0.769$ years ( 9.3 months)
$P_{4}=0.995$ years ( 12 months)
$P_{5} \approx(13-14)$ days of the smallest fluctuations in value
For the period $P_{1}$ and $P_{2}$ we have g minimum approximately in:
August 2022; August 2016; August 2010; July 2004; July 1998; July 1992.
$G$ maximum is approximately in:
January 2019; January 2013; March 2007; January 2001; January 1995.
The period $P_{1}$ and $P_{2}$ is between approximately $P \approx 5$ years and 11 months -6 years and 2 months. From (astrocal 2010-2020) to $G$ minimum we have opposition with Mars and Jupiter. We don't have the lower opposition with Venus. In 2010 the lower opposition with Venus was after the minimum and in 2022 it is well after the minimum. Before $G$ maximum we do not have opposition to Mars and Jupiter. We don't have the lower opposition with Venus in 2013 and 2019. When we have, it does not significantly influence the maximum value of $G$. So at the value of $G$ minimum the orbital parameter $v^{2} r$ of (2) is minimal and at the value of $G$ maximum the orbital parameter $v^{2} r$ of (2) is maximum. That is, the other nearby planets disrupt the orbital motion of the Earth, which is reflected in the value of the variable $G$. The period $P_{5}$ is explained by the period of revolution of the Moon in $P=27.3217$ days. But there must be a period of 1 year with a maximum at perihelion and a minimum at aphelion. Period $P_{4}$ corresponds, but the values are small. It is possible to correspond to $P_{3}$ or combined $P_{3}$ with $P_{4}$.

The $v$ and $r$ values of the cosmic satellite body are obtained by observations, $G$ is obtained by experiments, and the mass of the central body $M$ results from (2). $v, r$ and $G$ of $m$ are variable
from one time to another in the orbit of $m$ and from one orbit to another. $M$ is constant. From (nssdc./moonfact, 2020) the Moon has

$$
\begin{array}{ll}
v=1.0226 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1} & \text { average orbital velocity } \\
r=3.844 \cdot 10^{8} \mathrm{~m} & \text { average distance }
\end{array}
$$

With Earth mass $M=5.9724 \cdot 10^{24} \mathrm{~kg}$ (nssdc./earthfact,2020), replacing in (2) we obtain $G=6.73048 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the average gravitational constant of the Moon. At perigee
$v=1.082 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
$r=3.633 \cdot 10^{8} \mathrm{~m}$
With (2) we obtain
$G_{p}=7.12149 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the gravitational constant of the Moon at the perigee. At apogee
$v=9.7 \cdot 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$
$r=4.055 \cdot 10^{8} \mathrm{~m}$
With (2) we obtain
$G_{a}=6.3883 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the gravitational constant of the Moon at apogee. On the surface of the Moon $G$ varies in the closed range
$G=[6.3883-7.12149] 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
On the Moon average $G$ is higher than on the Earth. The explanation is that $v$ of the Moon is greater than a stable dynamic equilibrium resulting in the constant distance from the Earth. I suggest that measurements of $G$ be made on the Moon and with (2) we find out the exact mass of the Earth. This is how $G$ is calculated for all cosmic bodies. That is, $G$ in (1) is variable and this variability is defined by (2). $G$ is not constant as Newton and Einstein postulate.

From (Peat Chris, 2018) the International Space Station (ISS) launched on November 20, 1998, operable today, has the average orbital values:
$v=7.65 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
Perigee height is $4.18 \cdot 10^{5} \mathrm{~m}$. With the average radius of the Earth $r=6.371 \cdot 10^{6} \mathrm{~m}$ results in $r=6.789 \cdot 10^{6} \mathrm{~m}$
Replacing in (2) we obtain
$G=6.65242 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
The gravitational constant at the perigee, and therefore the mean on the ISS is lower than on the Earth. The explanation is that $v$ of the ISS is lower than a stable dynamic equilibrium resulting in the constant proximity to the Earth. I suggest that measurements of $G$ should be made on the ISS.

## 4 Solar System

The Sun
From (Shen et al., 2010; P.J.McMillan, 2017; Gillessen et al., 2016; Kaffe et al., 2014) the Sun in the Galaxy has approximately

```
\(v=2.2 \cdot 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\)
\(r=2.57 \cdot 10^{20} \mathrm{~m}\) or 27200 light years
Galactic bulb mass with bar (Courteau et al., 2014) is approximately
\(M=1.9 \cdot 10^{41} \mathrm{~kg}\)
```

Replacing in (2) we obtain
$G=6.55 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the approximate value of the gravitational constant of the Sun. Observations need to be improved.

Planets
Using orbital parameters from (nssdc./mercuryfact,2018; venusfact,2018; marsfact,2018; jupiterfact,2018; saturnfact,2019; uranusfact,2018; neptunefact,2018; plutofact,2019), the mass of the Sun in (sunfact, 2018), replacing in (2) the following table results.

| Name | Average <br> $\cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | $G$ at perihelion <br> $\cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | $G$ at aphelion <br> $\cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |
| :---: | :--- | :--- | :--- |
| Sun | 6.55 |  |  |
| Mercury | 6.532 | 8 | 5.3 |
| Venus | 6.6738 | 6.7199 | 6.63 |
| Earth | 6.671895 | 6.78675 | 6.562 |
| Mars | 6.64 | 7.29 | 6 |
| Jupiter | 6.678 | 7 | 6.35 |
| Saturn | 6.755 | 7 | 6.29 |
| Uranus | 6.679 | 6.96 | 6.36 |
| Neptune | 6.665 | 6.76 | 6.59 |
| Pluto | 6.4778 | 8.3 | 5.1 |

Table 3. $G$ in the Solar System
So orbital parameters need to be improved. With general relativity Mercury's perihelion advance is $\delta \theta=42$ ", $98 /$ century. In the calculations we used $G$ of the Earth. If we use the average $G$ value from Table 3, Mercury has the perihelion advance $\delta \theta=42$ ", $04 /$ century. So Mercury's perihelion advance is not a conclusive test for general relativity.

From (1P/Halley,2003) Halley's comet has orbital parameters

$$
\begin{array}{ll}
v=7.022 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1} & \text { average orbital velocity } \\
r=2.66 \cdot 10^{12} \mathrm{~m} \text { or } 17.8 A U & \text { large semi-axis }
\end{array}
$$

With (2) average $G$
$G=6.59 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
At perihelion

$$
\begin{array}{ll}
v=5.42 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1} & \\
r=8.766 \cdot 10^{10} \mathrm{~m} \text { or } 0.586 \mathrm{AU} & \text { results with (2) } \\
G_{p}=1.295 \cdot 10^{-10} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} & \\
\text { At aphelion } & \\
\quad v=9.095 \cdot 10^{2} \mathrm{~m} \mathrm{~s}^{-1} & \\
r=5.25 \cdot 10^{12} \mathrm{~m} \text { or } 35.1 A U & \text { results with (2) } \\
G_{a}=2.18 \cdot 10^{-12} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} &
\end{array}
$$

On February 9, 1986, Halley's comet was at perihelion. After the transition to perihelion, on March 14, 1986, the European spacecraft Giotto studied Halley's comet from a distance of 596 kilometers and obtained

$$
\begin{array}{ll}
m \approx 2.2 \cdot 10^{14} \mathrm{~kg} & \text { mass of the comet's head } \\
r \approx 5.5 \cdot 10^{3} \mathrm{~m} & \text { radius of the comet's head } \\
\rho \approx 3 \cdot 10^{2} \mathrm{~kg} \mathrm{~m} & \text { density at perihelion }
\end{array} \text { result in }
$$

With $G_{a}$ resulting in aphelion radius (we use $g$ ), or $\approx G_{p} / G_{a}$ $r \approx 3.4 \cdot 10^{5} \mathrm{~m}$
So Halley's comet head has at aphelion the diameter of about 61 times the diameter at perihelion. This is an orbital movement with expansion-contraction of the cosmic body, the cause being variable $G$.

## 5 Conclusions

The gravitational constant $G$ of each cosmic body in orbit is variable and this variability is given by (2). In orbit $G$ has the maximum value at perihelion and the minimum value at aphelion. The mean value of $G$ is constant over time for a cosmic system in dynamic equilibrium. $G$ is not fixed as Newton's and Einstein's theories of gravity state. $G$ does not decrease permanently over time as provided by the scalar-tensor theory of gravity, gravitovortex theory and others. $G$ increases and decreases by the same value from perihelion to aphelion and vice versa. $G$ is variable is due to the fact that all orbits of cosmic bodies are not circular, they are ellipses, etc. Only for a circular orbit do we have fixed $G$. To demonstrate the variable $G$ I suggest making measurements on the Earth at perihelion and aphelion, on the International Space Station and on the Moon.

## REFERENCES

J.D.Anderson, G.Schubert, V.Trimble and M.R.Feldman, Measurements of Newton's gravitational constant and the length of day, arXiv:1504.06604v2 [gr-qc] 22 May 2015.

Courteau Stéphane,et al., Galaxy masses,Reviews of Modern Physics, 86.47-14 january 2014.
Gillessen,S.; Plewa,P.; Eisenhauer,F.; Sari,R.; Waisberg,I.; Habibi,M.; Pfeihl,O.; George,E.; Dexter,J.; von Fallenberg,S.; Ott,T.; Genzel,R.(28 november 2016). „An Update on Monitoring Sttelar Orbits in the Galactic Center." The Astrophysical Journal.837(1).

Kafle,P.R.; Scharma,S.; Lewis,G.F.; Bland-Howthorn,F.(2014). „On the Shoulders of Giants: Properties of the Stellar Halo and the Milky Way Mass Distribution." The Astrophysical Journal.794(1):17.

Kaspi,V., Taylor,J., Ryba,M.1994, ApJ 428,713.
Li,Y.-C.,Wu,F.-Q,Chen,X.2013,Phys.Rev.D.88.084053.
Paul J.McMillan.(11 february 2017). „The mass distribution gravitational potential of the Milky Way." Monthly Notices of the Royal Astronomical Society.465(1):76-94.

Jeremy Mould, Syed A.Uddin, Constraining a possible variation of G with Type Ia supernovae, arXiv:1402.1534v2 [astro-ph.CO] 25 Feb. 2014.

Muller,J.,Biskupek,L.2007,Class.Quant.Grav.24,4533.
Peat,Chris(11 april 2018). „ISS Orbit." Heavens-above.com
Popescu N.Ioan, Gravitația, Editura Științifică și Enciclopedică, București, 1982.
S.Schlamminger,J.D.Gundlach,R.D.Newman,Recent measurements of the gravitational constant as a function of time,arXiv:1505.01774v2 [gr-qc] 21 May 2015.

Shen,J.;Rich,R.M.;Kormendy,J.;Howard,C.D.;De Propris,R.;Kunder,A.(2010).,,Our Milky Way As a Pure-Disk Challenge for Galaxy Formation." The Astrophysical Journal.720(1):L72-L76.

Astropixels.com/ephemeris/astrocal/astrocal 2010-2020 gmt.
Gravitational_constant_historical.png,Dbachmann,30 oct.2020.
physics.nist.gov/cuu/Constants/CODATA Internationally recommended 2018 values of the Fundamental Physical Constants,May 2019.

NASA,JPL,1P/Halley,23 aug. 2003.
nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html 23 february 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html, 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html 25 november 2020.
nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html 18 july 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html 15 october 2019.
nssdc.gsfc.nasa.gov/planetary/factsheet/uranusfact.html|,27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/plutofact.html 30 aug. 2019.
nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html, 13 january 2020.

# GRAVARABILITY OF THE 

Vasile Turcu<br>515800-Sebes, str. M. Eminescu 30, Alba, Romania, EU<br>vturcu1@yahoo.com


#### Abstract

A brief history of the gravitational constant G is made and the current value is given. G for the Earth is calculated at perihelion and aphelion, resulting in different values. $G$ is variable on a revolution in all cosmic bodies. Variable $G$ is calculated for the solar system. The physical consequences with variable $G$ are explained, which are valid for all cosmic bodies. Measurements of $G$ are suggested to be made on Earth at perihelion and aphelion, on the International Space Station, and on the Moon.


Keywords: Dynamic astronomy - variable G - solar system - ISS - Halley comet.

## 1 Introduction

Newton's law of universal attraction is

$$
\begin{equation*}
\boldsymbol{F}=-G \frac{M \cdot m}{r^{2}} \frac{\boldsymbol{r}}{r} N \text { with } \frac{\boldsymbol{r}}{r}=1 \text { in module or } F=G \frac{M \cdot m}{r^{2}} N \tag{1}
\end{equation*}
$$

where $M$ is the mass of the central body, $m$ is the mass of the satellite body, $\boldsymbol{F}$ is the force of attraction between $M$ and $m, r$ is the distance between $M$ and $m$, and $G$ is the constant of universal attraction equal to $6.67430(15) \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ (CODATA, 2019). The negative sign comes from the inverse orientations of the $\boldsymbol{F}$ and $\boldsymbol{r}$ vectors. The orbital motion of a cosmic body of mass $m$ is due to the dynamic balance between the gravitational force (1) (centripetal force) and the centrifugal inertia force.

$$
\begin{gather*}
-G \frac{M \cdot m}{r^{2}} \frac{\boldsymbol{r}}{r}=\frac{m \cdot \boldsymbol{v}^{2}}{r} \text { with } \frac{\boldsymbol{r}}{r}=1 \text { in module or } \\
G \frac{M \cdot m}{r^{2}}=\frac{m \cdot v^{2}}{r} \text { results } G=\frac{\boldsymbol{v}^{2} \cdot r}{M} \text { or } G=\frac{v^{2} \cdot r}{M} m^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \tag{2}
\end{gather*}
$$

with $\boldsymbol{v}=$ orbital linear velocity of the satellite body with mass $m$. The gravitational influence of $M$ on $m$ is $G$. The gravitational constant $G$ is defined by (2), where $M=$ constant. The value of $G$ depends on $\boldsymbol{v}=$ orbital velocity of the satellite body $m$ and $r=$ distance between $M$ and $m$. If the orbit of $m$ is circular then the product $\boldsymbol{v}^{2} r$ is constant and $G=$ constant. But all cosmic bodies don't have a circular orbit, they have an elliptical orbit, etc. So the value of $G$ is not as constant as Newtonian and Einsteinian mechanics postulate. The value of $G$ in (1) is variable according to (2). In (Popescu, 1982) if the law of gravitovortex forces is given by Newton's law (1), then $G$ automatically becomes variable. In the scalar-tensor theory of gravity by P.Jordan (1959), R.H.Dicke, and C.H.Brans (1961), if Newton's field equation (1) remains valid, $G$ becomes variable. On the other hand, if we consider $G$ as a fixed constant, then Newton's field equation (1) is no longer valid. If (1) remains valid then $G$ is variable according to (2) from place to place in orbit and from one orbit to another.

## 2 Background

The variability of the gravitational constant $G$ suggested by a series of empirical data was observed as early as A.Eddington (1906), but the one who explicitly formulated it and argued it as such was P.A.M.Dirac in 1937. The problem with variable $G$ was attacked head-on by several scientists in Europe and the United States, including H.Thiry, P.Kaluza, W.Klein, Veblen, B.P.Jordan, Ehlers, Kundt, Demming, R.H.Dicke, C.Brans and P.J.Peebles. Continuous raising of the precision of determining G, a continuous and increasingly rapid process, in the period of over 220 years since such experiments are made, as well as the correct understanding of the significance of the results thus obtained, an understanding that has become possible in the last decades is the key to solving this difficult problem first addressed by G.Cavendish in 1798. From (Popescu, 1982; Dbachmann, 2020) the following table results.

| Author | Year | Type of measuring scale | $G \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | Mean <br> quadratic error |
| :---: | :---: | :---: | :---: | :---: |
| G.Cavendish | 1798 | torsion | 6.75 | $\pm 0.025$ |
| F.Reich | 1838 | torsion | 6.64 | 0.03 |
| F.Heyl | 1843 |  | 6.63 | 0.035 |
| A.Cornu | 1873 | torsion | 6.64 | 0.0085 |
| F.Jolly | 1878 | vertical | 6.47 | 0.055 |
| J.Wilsing | 1889 | vertical | 6.594 | 0.075 |
| T.Boys | 1889-1894 | torsion | 6.6576 | 0.002 |
| K.Braun | 1887-1896 | torsion | 6.655 | 0.002 |
| G.Poynting | 1878-1896 | vertical | 6.6984 |  |
| R.Eötvös | 1896 | torsion | 6.657 | 0.001 |
| Köning | 1884-1897 |  | 6.685 | 0.011 |
| F.Richartz | 1898 | vertical | 6.683 | 0.011 |
| P.Heyl | 1930 | torsion | 6.678 | 0.003 |
| P.Heyl and P.Chrzanovschi | 1942 | torsion | 6.673 | 0.0015 |
| L.Facy | 1969 | torsion | 6.66598 |  |
| R.Rose and  <br> H.Parker  | 1969 | torsion | 6.674 | 0.002 |
| J.Renner | 1970 | torsion | 6.67 | 0.004 |
| L.Facy | 1971 | torsion | 6.673 | uncertainty |
| G.Pontikis | 1971 | torsion | 6.671 | $\begin{aligned} & \text { standard } \\ & \times 10^{-11} \end{aligned}$ |
| $\begin{aligned} & \text { Luther and } \\ & \text { Towler } \end{aligned}$ | 1982 | torsion | 6.6726 | 0.0005 |
| Karagioz and Izmailov | 1996 | torsion | 6.6729 | 0.0005 |
| $\begin{aligned} & \text { Bagley } \quad \text { and } \\ & \text { Luther } \end{aligned}$ | 1997 | torsion | 6.674 | 0.0007 |
| Gundlach and Mercowitz | 2000 | torsion | 6.674215 | 0.000092 |
| Quinn et al. | 2001 | torsion | 6.67559 | 0.00027 |
| Armstrong and Fitzgerald | 2003 | torsion | 6.67387 | 0.00027 |
| Tu et al. | 2010 | torsion | 6.67349 | 0.00018 |
| Quinn et al. | 2013 | torsion | 6.67545 | 0.00018 |
| Newman et al. | 2014 | torsion | 6.67433 | 0.00013 |
| Kleinevoss | 2002 | two pendulums | 6.67422 | 0.00098 |
| Schlamminger et al. | 2006 | beam balance | 6.674252 | 0.000122 |
| Parks and Faller | 2010 | two pendulums | 6.67234 | 0.00014 |
| Rosi et al. | 2014 | atomic interferometry | 6.67191 | 0.00099 |

Table 1

In August 2018, a group of Chinese researchers announced new torsion balance measurements, which obtained the values $6.674184(78) \cdot 10^{-11}$ and $6.674484(78) \cdot 10^{-11}$. It is noted that the first decimal place also differs. However, the measurements reached the sixth decimal place and the relative standard uncertainty reached $2.2 \cdot 10^{-5}$ in 2019 . The value of $G$ is obtained through these experiments, and theoretically with (2). The following table shows the CODATA values recommended for $G$ by the National Institute of Standards and Technology (NIST).

| Year | $G \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | Relative standard uncertainty $\cdot 10^{-6}$ |
| :---: | :---: | :---: |
| 1969 | $6.6732(31)$ | 460 |
| 1973 | $6.6720(49)$ | 730 |
| 1986 | $6.67449(81)$ | 120 |
| 1998 | $6.673(10)$ | 1500 |
| 2002 | $6.6742(10)$ | 150 |
| 2006 | $6.67428(67)$ | 100 |
| 2010 | $6.67384(80)$ | 120 |
| 2014 | $6.67408(31)$ | 46 |
| 2018 | $6.67430(15)$ | 22 |

Table 2
From (CODATA, 2019) the Newtonian gravitational constant $G$

| The numerical value | $6.67430 \cdot 10^{-11}$ | $\mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |
| :--- | :--- | :--- |
| Standard uncertainty | $0.00015 \cdot 10^{-11}$ | $\mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |
| Relative standard uncertainty | $2.2 \cdot 10^{-5}$ |  |
| Concise form | $6.67430(15) \cdot 10^{-11}$ | $\mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |

## 3 Earth

From (nssdc./earthfact,2020) the Earth has at perihelion
$v=3.029 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
$r=1.47092 \cdot 10^{11} \mathrm{~m}$
With the mass of the Sun $M=1.9885 \cdot 10^{30} \mathrm{~kg}$ (nssdc./sunfact,2018) and replacing in (2) we obtain
$G_{p}=6.78675 \cdot 10^{-11} \mathrm{~m}^{3}, \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
where $G_{p}=$ gravitational constant of the Earth at perihelion. From (nssdc./earthfact, 2020) at aphelion
$v=2.929 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
$r=1.52099 \cdot 10^{11} m$
Replacing in (2) we obtain
$G_{a}=6.562 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
where $G_{a}=$ gravitational constant of the Earth at aphelion. At the Earth, $G$ varies in the closed range
$G=[6.562-6.78675] 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
From Table 1 it is noted that all the values obtained from 1798 (Cavendish) to the present, fall within this range. The exception is the measurement of F.Jolly in 1878. Results fall within the annual average
$G=6.674375 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

With the average value $v=2.978 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$ and $r=1.495978707 \cdot 10^{11} \mathrm{~m}$ (AU), replacing in (2) we obtain $G=6.671895 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
as Rosi et al. 2014. So the value (CODATA, 2019) valid today is the annual average of the constant of the gravitational attraction G. G has the maximum value at perihelion (January 2-5) and the minimum value at aphelion (July 4-6). Consequently, the gravitational acceleration $g$ has the maximum value at perihelion and the minimum one at aphelion, for the same place on the Earth. This leads to the maximum weight at perihelion and the minimum one at aphelion, for a material body located at the same place on the Earth.

In Newton and Einstein's theory of gravity, the gravitational force depends on the value of $G$. At perihelion, we have the maximum gravitational force, which leads to the minimum volume of the Earth. At aphelion, we have the minimum gravitational force, which leads to the maximum volume of the Earth. This is an orbital motion with expansion-contraction of the planet Earth (Popescu, 1982). This expansion-contraction of the planet Earth results in the phenomenon of tectonic plates, earthquakes, volcanoes, and the configuration of the crust with all forms of relief, which leads to the formation of land and water-covered areas. This is the varying physical phenomenon $G$, the foundation of the planet Earth and every cosmic body. It is best to observe variable $G$ in comets, which have the minimum volume at perihelion $(G \max )$ and the maximum volume at aphelion $(G$ $\min )$. $G$ varies seasonally in all cosmic bodies, between the maximum value at perihelion and the minimum value at aphelion. The rate of $G$ growth and decrease on the Earth in a year is

$$
\frac{\Delta G}{\Delta t}=G_{p}-G_{a}=2.2475 \cdot 10^{-12} / \text { year }
$$

From (Mould, Uddin, 2014) a decrease rate of $G$ (Kaspi et al., 1994) was detected in binary pulsars.

$$
\frac{\Delta G}{\Delta t}=(4 \pm 5) \cdot 10^{-12} / y e a r
$$

With lunar laser beam (Muller, Biskupek, 2007)

$$
\frac{\Delta G}{\Delta t}=(2 \pm 7) \cdot 10^{-13} / \text { year }
$$

From (Mould, Uddin, 2014) Li et al., 2013, a decrease in $G$ has been detected with the Planck Space Telescope

$$
\frac{\Delta G}{\Delta t}=1.42 \cdot 10^{-12} / \text { year }
$$

WMAP

$$
\frac{\Delta G}{\Delta t}=2.48 \cdot 10^{-13} / \text { year }
$$

BAO

$$
\frac{\Delta G}{\Delta t}=2.27 \cdot 10^{-12} / \text { year }
$$

Other observations have been made on pulsars, big-bang nucleosynthesis, helioseismology, neutron mass of the star, etc., and the results are falling within these values. $\Delta G$ at the Earth roughly falls within these limits. The Brans-Dicke scalar-tensor theory (1961), initiated by Jordan (1959), provides for a decrease in $G$ of

$$
\frac{\Delta G}{\Delta t} \approx 10^{-10} / \text { year result } t \approx \frac{1}{10^{-10}} \approx 10^{10} \text { years }
$$

with $t=$ age of the universe. In (Mould, Uddin, 2014) $G$ decreases with the rate of

$$
\frac{\Delta G}{\Delta t}=(3-0.73) 10^{-10} / \text { year result } t=(3.3-13.7) 10^{9} \text { years }
$$

In (Popescu, 1982) gravitovortex theory, (Mould, Uddin, 2014) supernova stars, the scalar-tensor theory by Brans-Dicke (1961) ,et al., $G$ decreases steadily and evenly over time from 1 at the time of birth of the universe (Big-Bang) to today's value. This is how the age of the universe is calculated about 13.7 billion years. But as we have theoretically demonstrated on Earth, $\Delta G$ is a seasonal variable between perihelion with $G$ maximum and aphelion with $G$ minimum. $G$ has no differences between years, $G$ has differences only during the year. $G$ decreases and grows with the same value at each revolution. So $G$ does not permanently decrease at a fixed rate from the Big Bang until today and consequently the age of the universe is not this.

But $G$ varies periodically and over time. In (Anderson et al., 2015) the period of variation of $G$ is $P_{1}=5.9$ years ( 5 years and 11 months), i.e. from 5.9 years to 5.9 years we have a minimum or maximum and $G$ varies in the range of
$G=(6.672-6.676) 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
In (Schlamminger et al., 2015) we have several periods of $G$ variation.
$P_{2}=6.17$ years (6 years and 2 months)
$P_{3}=0.769$ years ( 9.3 months)
$P_{4}=0.995$ years ( 12 months)
$P_{5} \approx(13-14)$ days of the smallest fluctuations in value
For the period $P_{1}$ and $P_{2}$ we have g minimum approximately in:
August 2022; August 2016; August 2010; July 2004; July 1998; July 1992.
$G$ maximum is approximately in:
January 2019; January 2013; March 2007; January 2001; January 1995.
The period $P_{1}$ and $P_{2}$ is between approximately $P \approx 5$ years and 11 months -6 years and 2 months. From (astrocal 2010-2020) to $G$ minimum we have opposition with Mars and Jupiter. We don't have the lower opposition with Venus. In 2010 the lower opposition with Venus was after the minimum and in 2022 it is well after the minimum. Before $G$ maximum we do not have opposition to Mars and Jupiter. We don't have the lower opposition with Venus in 2013 and 2019. When we have, it does not significantly influence the maximum value of $G$. So at the value of $G$ minimum the orbital parameter $v^{2} r$ of (2) is minimal and at the value of $G$ maximum the orbital parameter $v^{2} r$ of (2) is maximum. That is, the other nearby planets disrupt the orbital motion of the Earth, which is reflected in the value of the variable $G$. The period $P_{5}$ is explained by the period of revolution of the Moon in $P=27.3217$ days. But there must be a period of 1 year with a maximum at perihelion and a minimum at aphelion. Period $P_{4}$ corresponds, but the values are small. It is possible to correspond to $P_{3}$ or combined $P_{3}$ with $P_{4}$.

The $v$ and $r$ values of the cosmic satellite body are obtained by observations, $G$ is obtained by experiments, and the mass of the central body $M$ results from (2). $v, r$ and $G$ of $m$ are variable
from one time to another in the orbit of $m$ and from one orbit to another. $M$ is constant. From (nssdc./moonfact, 2020) the Moon has

$$
\begin{array}{ll}
v=1.0226 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1} & \text { average orbital velocity } \\
r=3.844 \cdot 10^{8} \mathrm{~m} & \text { average distance }
\end{array}
$$

With Earth mass $M=5.9724 \cdot 10^{24} \mathrm{~kg}$ (nssdc./earthfact,2020), replacing in (2) we obtain $G=6.73048 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the average gravitational constant of the Moon. At perigee
$v=1.082 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
$r=3.633 \cdot 10^{8} \mathrm{~m}$
With (2) we obtain
$G_{p}=7.12149 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the gravitational constant of the Moon at the perigee. At apogee
$v=9.7 \cdot 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$
$r=4.055 \cdot 10^{8} \mathrm{~m}$
With (2) we obtain
$G_{a}=6.3883 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the gravitational constant of the Moon at apogee. On the surface of the Moon $G$ varies in the closed range
$G=[6.3883-7.12149] 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
On the Moon average $G$ is higher than on the Earth. The explanation is that $v$ of the Moon is greater than a stable dynamic equilibrium resulting in the constant distance from the Earth. I suggest that measurements of $G$ be made on the Moon and with (2) we find out the exact mass of the Earth. This is how $G$ is calculated for all cosmic bodies. That is, $G$ in (1) is variable and this variability is defined by (2). $G$ is not constant as Newton and Einstein postulate.

From (Peat Chris, 2018) the International Space Station (ISS) launched on November 20, 1998, operable today, has the average orbital values:
$v=7.65 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
Perigee height is $4.18 \cdot 10^{5} \mathrm{~m}$. With the average radius of the Earth $r=6.371 \cdot 10^{6} \mathrm{~m}$ results in $r=6.789 \cdot 10^{6} \mathrm{~m}$
Replacing in (2) we obtain
$G=6.65242 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
The gravitational constant at the perigee, and therefore the mean on the ISS is lower than on the Earth. The explanation is that $v$ of the ISS is lower than a stable dynamic equilibrium resulting in the constant proximity to the Earth. I suggest that measurements of $G$ should be made on the ISS.

## 4 Solar System

The Sun
From (Shen et al., 2010; P.J.McMillan, 2017; Gillessen et al., 2016; Kaffe et al., 2014) the Sun in the Galaxy has approximately

```
\(v=2.2 \cdot 10^{5} \mathrm{~m} \mathrm{~s}^{-1}\)
\(r=2.57 \cdot 10^{20} \mathrm{~m}\) or 27200 light years
Galactic bulb mass with bar (Courteau et al., 2014) is approximately
\(M=1.9 \cdot 10^{41} \mathrm{~kg}\)
```

Replacing in (2) we obtain
$G=6.55 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
the approximate value of the gravitational constant of the Sun. Observations need to be improved.

Planets
Using orbital parameters from (nssdc./mercuryfact,2018; venusfact,2018; marsfact,2018; jupiterfact,2018; saturnfact,2019; uranusfact,2018; neptunefact,2018; plutofact,2019), the mass of the Sun in (sunfact, 2018), replacing in (2) the following table results.

| Name | Average <br> $\cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | $G$ at perihelion <br> $\cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ | $G$ at aphelion <br> $\cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ |
| :---: | :--- | :--- | :--- |
| Sun | 6.55 |  |  |
| Mercury | 6.532 | 8 | 5.3 |
| Venus | 6.6738 | 6.7199 | 6.63 |
| Earth | 6.671895 | 6.78675 | 6.562 |
| Mars | 6.64 | 7.29 | 6 |
| Jupiter | 6.678 | 7 | 6.35 |
| Saturn | 6.755 | 7 | 6.29 |
| Uranus | 6.679 | 6.96 | 6.36 |
| Neptune | 6.665 | 6.76 | 6.59 |
| Pluto | 6.4778 | 8.3 | 5.1 |

Table 3. $G$ in the Solar System
So orbital parameters need to be improved. With general relativity Mercury's perihelion advance is $\delta \theta=42$ ", $98 /$ century. In the calculations we used $G$ of the Earth. If we use the average $G$ value from Table 3, Mercury has the perihelion advance $\delta \theta=42$ ", $04 /$ century. So Mercury's perihelion advance is not a conclusive test for general relativity.

From (1P/Halley,2003) Halley's comet has orbital parameters

$$
\begin{array}{ll}
v=7.022 \cdot 10^{3} \mathrm{~m} \mathrm{~s}^{-1} & \text { average orbital velocity } \\
r=2.66 \cdot 10^{12} \mathrm{~m} \text { or } 17.8 A U & \text { large semi-axis }
\end{array}
$$

With (2) average $G$
$G=6.59 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
At perihelion

$$
\begin{array}{ll}
v=5.42 \cdot 10^{4} \mathrm{~m} \mathrm{~s}^{-1} & \\
r=8.766 \cdot 10^{10} \mathrm{~m} \text { or } 0.586 \mathrm{AU} & \text { results with (2) } \\
G_{p}=1.295 \cdot 10^{-10} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} & \\
\text { At aphelion } & \\
\quad v=9.095 \cdot 10^{2} \mathrm{~m} \mathrm{~s}^{-1} & \\
r=5.25 \cdot 10^{12} \mathrm{~m} \text { or } 35.1 A U & \text { results with (2) } \\
G_{a}=2.18 \cdot 10^{-12} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} &
\end{array}
$$

On February 9, 1986, Halley's comet was at perihelion. After the transition to perihelion, on March 14, 1986, the European spacecraft Giotto studied Halley's comet from a distance of 596 kilometers and obtained

$$
\begin{array}{ll}
m \approx 2.2 \cdot 10^{14} \mathrm{~kg} & \text { mass of the comet's head } \\
r \approx 5.5 \cdot 10^{3} \mathrm{~m} & \text { radius of the comet's head } \\
\rho \approx 3 \cdot 10^{2} \mathrm{~kg} \mathrm{~m} & \text { density at perihelion }
\end{array} \text { result in }
$$

With $G_{a}$ resulting in aphelion radius (we use $g$ ), or $\approx G_{p} / G_{a}$ $r \approx 3.4 \cdot 10^{5} \mathrm{~m}$
So Halley's comet head has at aphelion the diameter of about 61 times the diameter at perihelion. This is an orbital movement with expansion-contraction of the cosmic body, the cause being variable $G$.

## 5 Conclusions

The gravitational constant $G$ of each cosmic body in orbit is variable and this variability is given by (2). In orbit $G$ has the maximum value at perihelion and the minimum value at aphelion. The mean value of $G$ is constant over time for a cosmic system in dynamic equilibrium. $G$ is not fixed as Newton's and Einstein's theories of gravity state. $G$ does not decrease permanently over time as provided by the scalar-tensor theory of gravity, gravitovortex theory and others. $G$ increases and decreases by the same value from perihelion to aphelion and vice versa. $G$ is variable is due to the fact that all orbits of cosmic bodies are not circular, they are ellipses, etc. Only for a circular orbit do we have fixed $G$. To demonstrate the variable $G$ I suggest making measurements on the Earth at perihelion and aphelion, on the International Space Station and on the Moon.

## REFERENCES

J.D.Anderson, G.Schubert, V.Trimble and M.R.Feldman, Measurements of Newton's gravitational constant and the length of day, arXiv:1504.06604v2 [gr-qc] 22 May 2015.

Courteau Stéphane,et al., Galaxy masses,Reviews of Modern Physics, 86.47-14 january 2014.
Gillessen,S.; Plewa,P.; Eisenhauer,F.; Sari,R.; Waisberg,I.; Habibi,M.; Pfeihl,O.; George,E.; Dexter,J.; von Fallenberg,S.; Ott,T.; Genzel,R.(28 november 2016). „An Update on Monitoring Sttelar Orbits in the Galactic Center." The Astrophysical Journal.837(1).

Kafle,P.R.; Scharma,S.; Lewis,G.F.; Bland-Howthorn,F.(2014). „On the Shoulders of Giants: Properties of the Stellar Halo and the Milky Way Mass Distribution." The Astrophysical Journal.794(1):17.

Kaspi,V., Taylor,J., Ryba,M.1994, ApJ 428,713.
Li,Y.-C.,Wu,F.-Q,Chen,X.2013,Phys.Rev.D.88.084053.
Paul J.McMillan.(11 february 2017). „The mass distribution gravitational potential of the Milky Way." Monthly Notices of the Royal Astronomical Society.465(1):76-94.

Jeremy Mould, Syed A.Uddin, Constraining a possible variation of G with Type Ia supernovae, arXiv:1402.1534v2 [astro-ph.CO] 25 Feb. 2014.

Muller,J.,Biskupek,L.2007,Class.Quant.Grav.24,4533.
Peat,Chris(11 april 2018). „ISS Orbit." Heavens-above.com
Popescu N.Ioan, Gravitația, Editura Științifică și Enciclopedică, București, 1982.
S.Schlamminger,J.D.Gundlach,R.D.Newman,Recent measurements of the gravitational constant as a function of time,arXiv:1505.01774v2 [gr-qc] 21 May 2015.

Shen,J.;Rich,R.M.;Kormendy,J.;Howard,C.D.;De Propris,R.;Kunder,A.(2010).,,Our Milky Way As a Pure-Disk Challenge for Galaxy Formation." The Astrophysical Journal.720(1):L72-L76.

Astropixels.com/ephemeris/astrocal/astrocal 2010-2020 gmt.
Gravitational_constant_historical.png,Dbachmann,30 oct.2020.
physics.nist.gov/cuu/Constants/CODATA Internationally recommended 2018 values of the Fundamental Physical Constants,May 2019.

NASA,JPL,1P/Halley,23 aug. 2003.
nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html 23 february 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html, 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html 25 november 2020.
nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html 18 july 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html 15 october 2019.
nssdc.gsfc.nasa.gov/planetary/factsheet/uranusfact.html|,27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html 27 september 2018.
nssdc.gsfc.nasa.gov/planetary/factsheet/plutofact.html 30 aug. 2019.
nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html, 13 january 2020.

