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Abstract

This study focuses on unraveling the microphysical origins of the nonlinear elastic effects, which are pervasive in the Earth’s

crust. Here, we examine the influence of grain shape on the elastic nonlinearity of granular assemblies. We find that the elastic

nonlinearity of angular sand particles is of the same order of magnitude as that previously measured in spherical glass beads.

However, while the elastic nonlinearity of glass beads increases by an order of magnitude with RH, that of sand particles is

rather RH independent. We attribute this difference to the angularity of sand particles: absorbed water on the spherical grains

weakens the junctions making them more nonlinear, while no such effect occurs in sand due to grain interlocking. Additionally,

for one of the nonlinear parameters that likely arises from shearing/partial slip of the grain junctions, we observe a sharp

amplitude threshold in sand which is not observed in glass beads.
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Key Points: 7 

• The elastic nonlinearity of angular, fine sand particles is rather independent of relativity 8 
humidity (RH) level.   9 

• This is in contrast with observations made in spherical glass beads, which show an 10 
increase in elastic nonlinearity with RH. 11 

• We attribute this RH independence in sand to grain interlocking that prevents adsorbed 12 
water from weakening the grain junctions.  13 

  14 
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Abstract  15 

This study focuses on unraveling the microphysical origins of the nonlinear elastic effects, which 16 
are pervasive in the Earth’s crust. Here, we examine the influence of grain shape on the elastic 17 
nonlinearity of granular assemblies. We find that the elastic nonlinearity of angular sand particles 18 
is of the same order of magnitude as that previously measured in spherical glass beads. However, 19 
while the elastic nonlinearity of glass beads increases by an order of magnitude with RH, that of 20 
sand particles is rather RH independent. We attribute this difference to the angularity of sand 21 
particles: absorbed water on the spherical grains weakens the junctions making them more 22 
nonlinear, while no such effect occurs in sand due to grain interlocking. Additionally, for one of 23 
the nonlinear parameters that likely arises from shearing/partial slip of the grain junctions, we 24 
observe a sharp amplitude threshold in sand which is not observed in glass beads.  25 

 26 

Plain Language Summary 27 

Our main goal is to understand the origin of nonlinear elastic effects in granular materials like 28 
rocks. These nonlinear effects are critical in part because they are responsible for the small 29 
changes in seismic wave speed, and therefore stiffness, of the Earth’s crust. Monitoring these 30 
changes is important as they might represent predictors of upcoming earthquakes, and they also 31 
play a role in the dynamic triggering of earthquakes. Here we study the effect of grain shape and 32 
relative humidity (RH) on the nonlinear elastic properties of granular media. To do this, we use 33 
granular media of well-controlled grain size and composition, namely angular fine sand particles. 34 
We find that their elastic nonlinearity is of the same order of magnitude as that previously 35 
measured in spherical glass beads, however, and unlike in glass beads, we observe little to no 36 
dependence with RH. We attribute this lack of changes with RH in sand to grain interlocking, 37 
and the fact that absorbed water on the grains is unable to weaken the grain junctions and the 38 
granular assembly.  39 

 40 
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1 Introduction 41 

Nonlinear elastic effects arise in solids due to the presence of imperfections at the 42 
micro/mesoscopic scale, such as cracks or dislocations (Ostrovsky & Johnson, 2001). 43 
Understanding the origins of these nonlinear elastic effects is critical to numerous fields, from 44 
geophysics (Abeele et al., 2002; Delorey et al., 2021; Feng et al., 2018, 2022; Guyer & Johnson, 45 
2009; Hillers et al., 2015; P. Johnson & Sutin, 2005; Manogharan et al., 2021; McCall & Guyer, 46 
1994; Shokouhi et al., 2020; Tadavani et al., 2020; TenCate et al., 1996, 1996, 2016) and civil 47 
engineering (Abeele & De Visscher, 2000; Astorga et al., 2018; Bittner & Popovics, 2022; G. 48 
Kim et al., 2017; Lacouture et al., 2003; Payan et al., 2014; Shokouhi et al., 2017) to the non-49 
destructive evaluation of materials (Breazeale & Ford, 1965; Buck et al., 1978; Jin et al., 2020; 50 
J.-Y. Kim et al., 2006; Matlack et al., 2015; Williams et al., 2022). Elastic nonlinearity is 51 
particularly large in poorly consolidated or unconsolidated materials, where it arises from weak 52 
junctions between grains (Brunet et al., 2008; Guyer & Johnson, 1999, 2009; Jia et al., 2011; P. 53 
A. Johnson & Jia, 2005; Langlois & Jia, 2014; Renaud et al., 2012; Rivière et al., 2015).  54 

Earlier studies have found that the nonlinear elastic response of rocks likely arises from two 55 
distinct mechanisms, one that might be related to the opening/closing of grain contacts, and the 56 
other one related to the shearing of grain junctions (Renaud et al., 2012; Rivière et al., 2015). To 57 
confirm this hypothesis and better understand the underlying physics, we seek to investigate the 58 
nonlinear elastic response of materials simpler than rocks, both in terms of composition and 59 
microstructural features. In our previous work (Gao et al., 2022), we studied the influence of 60 
relative humidity (RH) on the nonlinear elastic properties of glass bead samples, and found that 61 
all nonlinear parameters increase by roughly an order of magnitude when RH increases from 62 
~10 % to ~100 %. This implies that, if indeed both mechanisms exist, they are affected in a 63 
similar way in glass beads and cannot be disentangled using RH changes. In this study, we 64 
further attempt to distinguish both mechanisms, by investigating the role of grain shape on the 65 
nonlinear elastic properties of granular media. We use a pump-probe experimental approach 66 
called Dynamic Acousto-Elastic Testing (DAET) to extract the full nonlinear elastic response 67 
(Renaud et al., 2009, 2011) of granular assemblies made of fine angular sand particles; and 68 
unlike our previous study in glass beads, we also vary the RH level. We hypothesize that 69 
shearing of grain junctions in samples composed of angular grains is more hindered than in 70 
samples made of spherical grains.  71 

 72 

2 Materials and Methods 73 

We utilize granular assemblies made of angular, fine quartz sand (diameter 50-150µm, 99.8% 74 
SiO2 with minor amounts of Fe2O3, Al2O3, <0.1% each, U.S. Silica Company) using a setup 75 
identical to our previous study (Fig. 1a) (Gao et al., 2022). We place a 4.5 mm thick pack of 76 
particles on top of a steel forcing block of area 10*10 cm2. A layer of tape is used on the four 77 
sides of the block to prevent the particles from escaping. The sample is left overnight in a sealed 78 
bag with either desiccants or a 100% RH humid environment, for dry (~10% RH) and humid 79 
(100% RH) samples, respectively. We then quickly take the sample out of the sealed bag and 80 
place a second steel block of identical size on top of the granular layer. The four sides are then 81 
sealed using additional layers of tape. Next, we place two P-wave ultrasonic sensors (central 82 
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changes Δh measured with the displacement sensor and time-of-flight changes Δt estimated using 112 
cross-correlation to calculate the wave velocity c throughout the experiment (Gao et al., 2022). 113 
Next, we compute the relative wave velocity change 𝛥𝑐 𝑐 = (𝑐௢௦௖ − 𝑐଴) 𝑐଴⁄⁄  for each individual 114 
oscillation, where 𝑐଴ and 𝑐௢௦௖ are the pre-oscillation wave velocity and the wave velocity during 115 
the oscillation, respectively (Fig. S4). We can then generate the so-called nonlinear signatures by 116 
plotting relative velocity change 𝛥𝑐 𝑐⁄  as a function of dynamic stress (Fig. 1b).  117 

Next, to determine the type and amount of nonlinearity, the 𝛥𝑐 𝑐⁄  vs time signals are projected 118 
onto a basis of sine and cosine functions at frequencies 𝑛𝑓 (𝑛 = 0, 1, 2), where 𝑓  is the 119 
oscillation frequency (10 Hz). We then use these Fourier coefficients to calculate the magnitude 120 
of the harmonics 𝑅௡ . Using 𝑛  up to 2 for these sand samples is sufficient to capture the 121 
complexity of the nonlinear signatures, similar to what had been observed in glass beads (Gao et 122 
al., 2022). The parameter 𝑅଴  characterizes the average softening taking place during the 123 
oscillations (Fig. S4c), while the parameters 𝑅ଵ and 𝑅ଶ are related to the amount of slope and 124 
curvature in the nonlinear signatures, respectively (Fig.1b and Fig. S3). After extracting the 125 
harmonic amplitudes for each nonlinear signature, we look at their evolution with respect to the 126 
peak stress amplitude 𝜎 using a general power-law of the form:  127 𝑅௡ = 𝑎௡𝜎ఔ೙        (1) 128 
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where the power exponent 𝜈 represents the type of nonlinearity (and associated physical 129 
mechanism), while the coefficient 𝑎 represents how much of this mechanism or nonlinearity type 130 
is present. Finally, because we plot 𝑅௡ as a function of 𝜎 in a log-log fashion, the exponent 𝜈 will 131 
be assessed by evaluating the slope, while the parameter 𝑎 will be extracted using the y-intercept 132 log(𝑎௡), following: 133 log(𝑅௡) =  𝜈௡ log(𝜎) + log(𝑎௡).                                           (2) 134 

 135 

4 Results and Discussion 136 

Typical nonlinear signatures at four dynamic stress amplitudes are shown in Fig. 1b. Similar 137 
plots for all 14 sand samples are shown in Figs. S3. They all exhibit a similar positive correlation 138 
between wave velocity and dynamic stress, where, as expected, the wave velocity is larger when 139 
dynamic stress is positive (compression phase), and smaller when dynamic stress is negative 140 
(dilation phase). We also observe that the slope (𝑅ଵ component) of the signature dominate the 141 
shape of the signature compared to the offset (𝑅଴ component ) and curvature (𝑅ଶ component), 142 
which is typical when the pump and probe are aligned (vertical direction here, see Fig. 1a) 143 
(Renaud et al., 2013). Some rather large hysteresis can be observed for some of the samples, 144 
irrespective of RH level or grain shape. The reason behind the variability in hysteresis size is not 145 
clear and additional work would be required. Finally, we observe that for some samples, the 146 
slope appears larger during the dilation phase than during compression, suggesting that during 147 
the compression phase, the grain junctions are more tightly closed, producing smaller velocity 148 
changes. 149 

To obtain a quantitative assessment of the effect of grain shape and RH, we extract the harmonic 150 
content of all signatures. We calculate the Fourier series coefficients from the 𝛥𝑐 𝑐⁄  vs time 151 
signals at frequencies 𝑛𝑓  where 𝑓  is the pump frequency (10 Hz) and 𝑛 = 0, 1, 2 . These 152 
coefficients, called 𝑅௡  and representing the harmonic content, are shown in Fig. 2d-2f as a 153 
function of peak dynamic stress amplitude for all sand samples. Moreover, to help us examine 154 
the effect of grain shape, we plot previous data obtained in glass beads under the same 155 
experimental conditions for comparison (Fig. 2a-2c) (Gao et al., 2022). On these log-log plots, 156 
following Eq. 2, the slope tells us about the nonlinearity type (𝜈௡)  while the y-intercept 157 
(log(𝑎௡)) indicates the amount of nonlinearity for that particular type. We see that in glass beads, 158 
the 𝑅௡  values are larger in fully humid samples than in drier samples, while in sand, all the 159 
curves seem to overlap, that is, the nonlinearity level seems rather independent of RH. For both 160 
sample types, the 𝑅଴ and 𝑅ଵ  values fit roughly linearly (𝜈଴ ≈ 1, 𝜈ଵ ≈ 1) with dynamic stress 161 
amplitude. Such scalings for 𝑅଴ and 𝑅ଵ suggest that the y-intercepts on these plots correspond to 162 
the hysteretic and quadratic nonlinear parameters 𝛼 and 𝛽, respectively. As for the 𝑅ଶ values, 163 
they scale roughly quadratically (𝜈ଶ ≈ 2), which suggests that the y-intercept corresponds to the 164 
cubic nonlinear parameter 𝛿. Note that for sand, 𝑅ଶ is rather stress-independent at low stress and 165 
starts to increase quadratically only above ~0.1-0.2 MPa (as indicated by the small vertical arrow 166 
in Fig. 2f). Based on these scalings, we overlay parallel lines to indicate the value of each 167 
nonlinear parameter for a given y-intercept. The three nonlinear parameters 𝛼, 𝛽 and 𝛿 dictate 168 
the strain-dependence of the elastic modulus 𝑀 (or equivalently the wave velocity 𝑐) according 169 
to: 170 
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5 Conclusions 249 

In this study, we investigate the effect of grain shape and relative humidity on the nonlinear 250 
elastic properties of granular media by conducting experiments on angular quartz sand, and by 251 
comparing them with results previously obtained in spherical glass beads (Gao et al., 2022). We 252 
found that, compared to glass beads, the elastic nonlinearity of angular sand does not increase 253 
significantly with RH, but is rather independent of RH, which we attribute to grain interlocking 254 
that prevents adsorbed water from weakening the grain junctions. Furthermore, for one of the 255 
nonlinear parameters (𝛿/𝑅ଶ) which has been attributed to sliding/partial slip of grain junctions, 256 
we observe a sharp amplitude threshold in sand not observed in glass beads. This seems to 257 
confirm that this nonlinear parameter (𝛿/𝑅ଶ) is indeed related to sliding/partial slip of the grain 258 
junctions. Below the amplitude threshold, i.e., at low dynamic stress oscillations, the angular 259 
grains of sand are locked, and no sliding/partial slip can occur. This mechanism seems to get 260 
activated only at larger stress oscillations when the grain junctions unlock. 261 
 262 
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