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Abstract

This manuscript discusses the challenges in detecting and attributing recently observed trends in the Atlantic hurricanes and

the epistemic uncertainty we face in assessing future hurricane risk. Data used here include synthetic storms downscaled

from five CMIP5 models by the Columbia HAZard model (CHAZ), and directly simulated storms from high-resolution climate

models. We examine three aspects of recent hurricane activity: the upward trend and multi-decadal oscillation of the annual

frequency, the increase in storm wind intensity, and the downward trend in the forward speed. Some datasets suggest that

these trends and oscillation are forced while others suggest that they can be explained by natural variability. Future projections

under warming climate scenarios also show a wide range of possibilities, especially for the annual frequencies, which increase

or decrease depending on the choice of moisture variable used in the CHAZ model and on the choice of climate model. The

uncertainties in the annual frequency lead to epistemic uncertainties in the future hurricane risk assessment. Here, we investigate

the reduction of epistemic uncertainties on annual frequency through a statistical practice – likelihood analysis. We find that

historical observations are more consistent with the simulations with increasing frequency but we are not able to rule out other

possibilities. We argue that the most rational way to treat epistemic uncertainty is to consider all outcomes contained in the

results. In the context of hurricane risk assessment, since the results contain possible outcomes in which hurricane risk is

increasing, this view implies that the risk is increasing.

1



manuscript submitted to Earth’s Future

Climate change signal in Atlantic tropical cyclones1

today and near future2

Chia-Ying Lee1, Adam H. Sobel1,2, Michael K. Tippett2, Suzana J. Camargo1,3
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Abstract17

This manuscript discusses the challenges in detecting and attributing recently observed18

trends in the Atlantic hurricanes and the epistemic uncertainty we face in assessing fu-19

ture hurricane risk. Data used here include synthetic storms downscaled from five CMIP520

models by the Columbia HAZard model (CHAZ), and directly simulated storms from21

high-resolution climate models. We examine three aspects of recent hurricane activity:22

the upward trend and multi-decadal oscillation of the annual frequency, the increase in23

storm wind intensity, and the downward trend in the forward speed. Some datasets sug-24

gest that these trends and oscillation are forced while others suggest that they can be25

explained by natural variability. Future projections under warming climate scenarios also26

show a wide range of possibilities, especially for the annual frequencies, which increase27

or decrease depending on the choice of moisture variable used in the CHAZ model and28

on the choice of climate model. The uncertainties in the annual frequency lead to epis-29

temic uncertainties in the future hurricane risk assessment. Here, we investigate the re-30

duction of epistemic uncertainties on annual frequency through a statistical practice –31

likelihood analysis. We find that historical observations are more consistent with the sim-32

ulations with increasing frequency but we are not able to rule out other possibilities. We33

argue that the most rational way to treat epistemic uncertainty is to consider all out-34

comes contained in the results. In the context of hurricane risk assessment, since the re-35

sults contain possible outcomes in which hurricane risk is increasing, this view implies36

that the risk is increasing.37

Plain Language Summary38

We use a set of computer model simulations to study recent trends in Atlantic hur-39

ricanes. We looked at three aspects of these storms: the number of hurricanes each year,40

which has fluctuated up and down over time (but generally increased over the last sev-41

eral decades); the strength of their winds, which has been increasing; and the speed at42

which they move, which has been decreasing. These trends could be caused either by human-43

induced global warming or by natural variability; determining which cause is more im-44

portant to overall hurricane risk requires us to understand how the number of hurricanes45

per year responds to warming. In our simulations, this number can either increase or de-46

crease with warming, depending on which of two nearly identical versions of our model47

we use to simulate the storms. This uncertainty prevents us from reaching definitive con-48

clusions about either present or future hurricane risk. Nonetheless, our analysis suggests49

that the risk of Atlantic hurricanes is more likely increasing than decreasing, and we ar-50

gue that from a broader point of view, this is effectively equivalent to saying the risk is51

increasing.52

1 Introduction53

Rational measures to mitigate any risk must start from an assessment of that risk.54

Historical records can provide guidance, but in the case of atmospheric hazards such as55

hurricanes, we know that historical records are only a starting point for assessing cur-56

rent and future risk. This is both because the historical record is too short to fully sam-57

ple the possibilities even in a stationary climate, and because the climate is changing (Schreck58

et al., 2014; Emanuel, 2021; D. Chan et al., 2022). Climate change makes the present59

different from the past, and requires us to consider whether the historical record alone,60

or catastrophe models that are built upon it, using purely statistical methods and as-61

suming a stationary climate, are adequate, or need to be modified or supplemented to62

account for climate change.63

Accounting for climate change is likely to require a greater use of physics than is64

historically typical in catastrophe models (Toumi & Restell, 2014; Emanuel, 2008). While65

one might instead try to assess the risk by using standard statistical methods but train-66
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ing only on the most recent observations (as opposed to the entire record), in the hope67

that those most recent observations represent the present and near-future climate ad-68

equately, this is likely to be challenging. Since hurricanes are rare, the number in the record69

over a period recent enough for this purpose is too small for risk assessment – especially70

when we also consider that low-frequency natural variability is present (i.e., Klotzbach71

& Gray, 2008; J. C. Chan, 2008; Wang et al., 2015), so that averaging times must be longer72

than might otherwise be necessary. To make the best possible assessment of present hur-73

ricane risk, then, we need to use our knowledge of the physics that connects hurricanes74

and climate (Emanuel, 2008).75

The focus of this study is Atlantic tropical cyclones (TCs) risk in the present and76

near future. Future projections are useful for understanding how TCs may respond to77

climate changes of various sorts.Studies of historical observations, on the other hand, of-78

ten look for trends; but on their own, such studies do not establish the causes of the trends,79

nor whether they will persist. Establishing whether a trend is present (detection) is gen-80

erally viewed as a prerequisite to determining its cause (attribution) (Lloyd & Oreskes,81

2018). Detection can, in principle, be done with observations alone; attribution requires82

a model of some sort, in order to construct a counterfactual where the cause of interest83

is not present (Hegerl & Zwiers, 2011; Knutson, 2017). If a historical trend (or an os-84

cillatory signal) could be both detected and attributed to a specific cause, such as hu-85

man influence, or alternatively some specific natural processes, this would be of great86

scientific value, and would also allow us some insight into what to expect in the near fu-87

ture.88

To develop such insight for Atlantic TCs, we will use recent observations and model89

simulations from historical (present), near future (up to 2040 or 2050), and pre-industrial90

control period. Simulations from pre-industrial control period contain no anthropogenic91

forcing signal and thus are used as a counterfactual. We use two types of model data.92

The first represents synthetic storms generated from a statistical-dynamical model, the93

Columbia (tropical cyclone) HAZard model (CHAZ), a model that encodes physical re-94

lationships between tropical cyclones and their ambient large-scale environment (Lee et95

al., 2018). The second represents the directly simulated hurricanes from high-resolution96

global models, in which the above-mentioned relationships are simulated organically (Yoshida97

et al., 2017; Wehner et al., 2014; Roberts et al., 2020).98

There are three objectives of this work. The first is to examine whether recently99

reported trends can be attributed to anthropogenic forcing. As summarized in Knutson100

et al. (2020a, 2020b), these trends are the recent variability of Atlantic annual TC fre-101

quency (Emanuel, 2007), an upward trend in the intensification rate (Bhatia et al., 2019)102

and lifetime maximum intensity (Kossin et al., 2013), and a slowing-down in the storm103

motion (Kossin, 2018). In particular, the cause of the recent increasing trend (since 1970)104

in Atlantic TC activity has been a subject of debate. On the one hand, reduced aerosols105

over the Atlantic since 1980s has been argued to be a dominant cause of the increasing106

TC activity in late 20th century (Mann & Emanuel, 2006; Sobel, Camargo, & Previdi,107

2019; Rousseau-Rizzi & Emanuel, 2020). On the other hand, several measures of Atlantic108

TC activity, including the major hurricane (TCs with LMI ≥ 93 kt) frequency (Goldenberg109

et al., 2001), are highly correlated to the the Atlantic Multi-decadal Oscillation (AMO)110

or Atlantic multidecadal variability (AMV), a low-frequency mode of variability iden-111

tified by the average sea surface temperature anomalies in the North Atlantic basin, typ-112

ically over 0-80oN (Ting et al., 2011). The recent AMO cycle, including both the upward113

trend from 1970 to 2005 and the downward trend from 2006 to 2018 have been associ-114

ated by some authors with natural variability (e.g., Yan et al., 2017, and others). How-115

ever, studies using CMIP5 historical runs simulated an ensemble-mean AMO that is sig-116

nificantly correlated with the observed AMO, suggesting that the recent historical vari-117

ability could be a consequence of radiative forcing (Clement et al., 2015; Bellomo et al.,118

2018). The future projections of TC frequency are subject to a similar degree of debate.119
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Many studies have suggested that the future should see a decline in the numbers of the120

Atlantic TCs with warming (e.g., Knutson et al., 2010, and others), with a few excep-121

tions (Emanuel, 2013; Bhatia et al., 2018; Vecchi et al., 2019).122

The second objective is to compare historical simulations with observations to un-123

derstand which modeling dataset is more consistent with the observations (Brunner et124

al., 2020). Such analysis can provide guidance whether to favor one model over another,125

which is especially useful for reducing uncertainty when the projections cover a wide range126

even with an opposite sign, such as the projections of the divergent scenarios in the global127

tropical cyclone genesis (i.e. Sobel et al., 2021). Lastly, we will assess hurricane risk over128

a set of selected line gates in the present and future climates. Strictly speaking, risk in-129

cludes severity of the hazard, exposure, and vulnerability of the properties of interest.130

Only the hazard component is examined here.131

2 Data, Experimental design and Method132

2.1 Tropical cyclone datasets133

2.1.1 Observations134

For reference, we use best-track data from National Hurricane Center obtained via135

International Best Track Archive for Climate Stewardship v04r00 IBTrACS (Knapp et136

al., 2010). We use 6-hourly storm positions (in longitude and latitude) and maximum137

wind speeds (kt) from 1951 to 2020. Storm forward speed is derived from the position138

data. We use only storms whose lifetime maximum intensity (LMI) reaches tropical storm139

(TS) strength, 34 kt. Hurricanes are referred to storms with LMI of at least 64 kt.140

2.1.2 Synthetic events from the CHAZ model141

The first set of model TCs used here consists of synthetic storm tracks from the142

Columbia (tropical cyclone) Hazard (CHAZ) model (Lee et al., 2018). CHAZ is a statistical-143

dynamical downscaling model that generates synthetic storms whose properties depend144

on environmental conditions. The environmental conditions can come from an observation-145

based reanalysis or a global climate model. There is no feedback of downscaled TC ac-146

tivity to the global models. Three components in CHAZ describe storm formation and147

subsequent evolution until shortly after landfall (or dissipation): the cyclone genesis in-148

dex (TCGI; Tippett et al., 2011), the beta-advection track model (Emanuel, 2008), and149

an auto-regressive intensity model (Lee et al., 2015, 2016). Details about CHAZ are re-150

ported in Lee et al. (2018). The environmental variables required by the model are Po-151

tential Intensity (Bister & Emanuel, 1997), deep-layer (850 to 250 hPa) vertical wind shear,152

and one or more moisture variables: column integral relative humidity (CRH) and/or153

column integral saturation deficit (SD), the absolute vorticity at 850 hPa, and the steer-154

ing flow. The choice of moisture variables will prove particularly important in what fol-155

lows. Both variables are calculated following Bretherton et al. (2004). The simulated trop-156

ical cyclone activity in CHAZ, at global and basin scales, in both current and projected157

future climates have been discussed in detail in Lee et al. (2018) and Lee et al. (2020),158

respectively. The CHAZ model has been used for case studies in Texas (Hassanzadeh159

et al., 2020), New York (Lee et al., 2022), Mumbai, India (Sobel, Lee, et al., 2019) and160

the Philippines (Baldwin et al. 2022). Meiler et al. (2022) found that losses estimated161

from CHAZ are comparable to those estimated using comparable academic tropical cy-162

clone hazard models from Emanuel (2013) and Bloemendaal et al. (2020).163

In this study, we use CHAZ to downscale five CMIP5 models (Taylor et al., 2012)164

over the Atlantic basin. They are the National Center for Atmospheric Research (NCAR)165

Community Climate System Model 4 (CCSM4) (Gent et al., 2011), the Geophysical Fluid166

Dynamics Laboratory Climate Model version 3 (GFDL-CM3) (Donner et al., 2011), the167

–4–



manuscript submitted to Earth’s Future

United Kingdom Meteorological Office Hadley Center Global Environment Model ver-168

sion 2 Earth System (HadGEM2-ES) (Jones et al., 2011), the Max Planck Institute Earth169

System Model Medium Resolution (MPI-ESM-MR) (Zanchettin et al., 2012), and the170

Model for Interdisciplinary Research Climate Version 5 (MIROC5) (Watanabe et al., 2010)171

from the University of Tokyo Center for Climate System Research, National Institute172

for Environmental Studies, Japan, Japan Agency for Marine-Earth Science.173

CHAZ’s projections of annual TC frequency, both in the Atlantic and globally, are174

sensitive to whether CRH and SD are used in TCGI. Using TCGI with CRH leads to175

a projected increase in global (and Atlantic) TC frequency, while SD leads to a projected176

decrease (Lee et al., 2020). CRH and SD both measure the degree of the saturation of177

the atmosphere with SD being the difference between the column integrated water va-178

por and the same quantity at saturation, and CRH being their ratio. As saturated wa-179

ter vapor increases with temperature in a warming climate, CRH remains close to con-180

stant and SD decreases (Camargo et al., 2014). In the current climate, however, the be-181

havior of these two variables are qualitatively similar, and the two TCGI formulations182

yield similar results for the historical period, meaning that the historical evidence is in-183

adequate to determine which of the two is more correct. Arguably, SD better reflects the184

increase in the thermodynamic inhibition of TC formation in a warming climate (Emanuel,185

1989, 2022), but the gaps in our understanding of the relationship between climate and186

tropical cyclone frequency are so substantial that we do not view this argument as dis-187

positive (Sobel et al., 2021). The diverging annual frequency projections from CHAZ thus,188

in our view, reflects the broader state of the science, in that we have low confidence re-189

garding whether one should expect more or fewer hurricanes as climate warms(i.e. Ca-190

margo et al., 2020; Vecchi et al., 2019; Sugi et al., 2020). One reason for the low con-191

fidence in TC frequency projection is the lack of theoretical understanding of tropical192

cyclone genesis, and we refer the readers to a review article by Sobel et al. (2021) for a193

detailed discussion.194

Since total TC hazard and risk depend inextricably on TC frequency and we lack195

a strong basis for choosing between SD and CRH, the sensitivity to the humidity vari-196

able in our results causes a deep uncertainty in the projected risk. This uncertainty will197

remain in the present study, in that we performed separate sets of simulations with ei-198

ther CRH or SD as the humidity variable in the genesis module, referred to as CHAZCRH199

and CHAZSD.200

2.1.3 Directly simulated hurricanes from General Circulation Models201

In addition to the CHAZ downscaling simulations described above, we use storms202

tracked in a set of relatively high-resolution, i.e., tropical cyclone-permitting, global cli-203

mate models. The first one is the 60-km MRI-AGCM3.2H large-ensemble simulation from204

Mizuta et al. (2017) (MRI-LENS). Tropical cyclones in that model was discussed in Yoshida205

et al. (2017). The second one is the 25-km High-Resolution Community Atmospheric Model206

version 5 simulations, CAM5 (Wehner et al., 2014, 2015). Next, we use storms tracked207

in the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016)208

High Resolution Model Intercomparison Project (HighResMIP) (Haarsma et al., 2016).209

Following Roberts et al. (2020) and Roberts et al. (2020), we use storms from CMCC-210

CM2 (Cherchi et al., 2019), CNRM-CM6 (Voldoire et al., 2019), EC-Earth3P-HR (Haarsma211

et al., 2020), HadGEM3-GC3.1 (Roberts et al., 2019), and MPI-ESM1.2 (Gutjahr et al.,212

2019). There are two HighResMIP configurations, one is forced with prescribed SST while213

the other is fully coupled. We only use the simulations from the fully coupled configu-214

ration which allows natural variability to occur freely during the historical period. To215

understand the sensitivity of model performance to the TC trackers, HighResMIP storms216

are tracked by TRACK (Hodges et al., 2017) and TempestExtremes (Ullrich & Zarzy-217

cki, 2017; Zarzycki & Ullrich, 2017; Ullrich et al., 2021), and both event sets are used218
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here. For convenience, we label modeled TCs from HighResMIP tracked with Tempes-219

tExtremes as Hi-TempExt and those tracked with TRACK as Hi-TRACK.220

2.2 Experimental design221

Except in MRI-LENS and CAM5, we use model TCs from the historical, near-term222

future, and pre-industrial control (piC, no anthropogenic forcing) scenario simulations.223

Note that the time range covered in each period varies by model. For the historical pe-224

riod, they are 1951-2005 for CHAZCRH and CHAZSD, 1950-2010 for MRI-LENS, 1996-225

2016 for CAM5, and 1951-2014 for the two HighResMIP datasets. In the future period,226

CHAZCRH and CHAZSD contain storms from 2006-2040 under Representative Concen-227

tration Pathway 8.5 (rcp8.5) while HighResMIP storms are from 2015-2050 under Shared228

Socioeconomic Pathways5-85 (ssp585). Both are high-emission scenarios with an addi-229

tional radiative forcing of 8.5 W m−2 by the year 2100 (Riahi et al., 2017) in ssp585 which230

considers a fossil-fueled development. Warming climate simulations for MRI-LENS and231

CAM5 are under a 4oC (Yoshida et al., 2017) and 1.5oC warming (Wehner et al., 2018)232

scenarios and thus are not used here. In piC, the labeling of year is arbitrarily in all datasets233

as all years are equivalent. The MIR-LENS and CAM5 piC simulations are exceptions.234

In MRI-LENS and CAM5, the observed SST information is given in both historical and235

piC simulations as a lower boundary, but the long-term trend is removed in the piC sim-236

ulations. In other words, MIR-LENS and CAM5 piC simulations still contain observed237

variation. The piC simulations in MRI-LENS, called “no-warming” in Mizuta et al. (2017)238

and those in CAM5, following “Nat-Hist” in Stone et al. (2019), are designed with an239

underlying assumption that that only the linear trend is anthropogenic forced, not the240

variability, which, as we will discussed in the next Section, is debatable.241

In each period, the CHAZ model was used to generate 20 track ensemble members242

per CMIP5 model and each track has 40 intensity ensembles (100 CMIP5 track ensem-243

ble members and 4000 considering intensity ensemble), as is possible because the CHAZ244

intensity module has a stochastic component. Hi-TRACK has 7 members (5 global cli-245

mate models and two of them have 2 ensemble members) and Hi-TempExt has 6 (4 global246

climate models and two of them have 2 ensemble members). MRI-LENS has 100 ensem-247

ble members while CAM5 has 5. The data properties are listed in Table 1.248

2.3 Frequency adjustment249

There are biases in model TCs, because of biases in the models that generate them,
including the CHAZ model itself as well as the CMIP5 models from which CHAZ ob-
tains its environmental conditions, and the high-resolution global climate models used
here. In particular, all models have biases in TC frequency (Table 1), and directly-simulated
hurricanes from high-resolution global climate models have low-intensity biases, in gen-
eral, as the grid spacings of these models are too coarse to capture the full range of ob-
served hurricane strengths (e.g., Yoshida et al., 2017; Moon et al., 2022, and others). Here
we address only the frequency biases. Specifically, we derive an adjustment by compar-
ing the basin-wide annual TC frequency of models’ historical simulations to that of the
observations from the same period. The same adjustment will then be applied to both
historical and future simulations. Similarly, we compare the annual frequency of the piC
simulations to the observations to adjust piC’s annual frequency. In Lee et al. (2018) and
Lee et al. (2020), the basin-wide frequency adjustment is a multiplicative factor to en-
sure that the mean annual frequency over a basin in CHAZ is consistent to that in ob-
servations. However, some high-resolution global climate models used here, such MRI-
LENS, generate zero TCs in some years. A multiplicative factor would result in larger
variability but still have zeros in these years, which is unrealistic. Thus, here the basin-
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wide frequency is adjusted as:

fadj = σobs ×
fori − µmodel|ref

σmodel|ref
+ µobs, (1)

where f indicates annual frequency (each year) with the subscript indicating after (adj)250

or before (ori) frequency adjustment. µ and σ are the mean and standard deviation of251

the frequency and the subscript indicates whether it is from simulations (model) or ob-252

servations (obs). As we want to retain the climate change signal, reference µ and σ (µmodel|ref253

and σmodel|ref ) for adjusting frequencies in both historical and future simulations in each254

dataset are from its respective historical simulation. Observations are calculated from255

their respective historical periods. To adjust the annual frequencies of the piC simula-256

tions, µmodel|ref and σmodel|ref are from piC. Biases in annual TC frequency of the piC257

simulations are different to those in the historical simulations. As we will discuss later,258

a basin-wide frequency adjustment may not correct regional biases, because model bi-259

ases can have spatial dependence. When desired (in Section 5), we apply a multiplica-260

tive factor to ensure the annual frequency at storm with intensity greater than 40 kt in261

these data sets are consistent to observations, which is the same as the bias-correction262

approach used in (Lee et al., 2022).263

An underlying assumption of our approach to bias correction, in common with many264

climate change studies, is that the bias of any given model remains the same in projected265

future climate periods as it is in the present, so that the influence of the projected cli-266

mate change can still be captured when comparing simulations between rcp and hist pe-267

riods. This assumption is analogous to that used to remove climatological biases in sur-268

face temperature and other quantities from the climate models themselves in global warm-269

ing projections, for example those by the Intergovernmental Panel on Climate Change270

(Solomon et al., 2007). While this assumption of constant biases can be questioned, it271

is a simple assumption, and there is no empirical basis on which to base any more com-272

plex assumption one. Still, we will discuss the impacts of frequency adjustments on our273

findings.274

2.4 Trend analysis275

To calculate trends of TC activity, we fit second-order Legendre polynomials:

ŷ = a0 + a1x+
a2
2

(3x2 − 1), x ∈ [−1, 1] (2)

to the time series of the variables of interest from observations and model simulations.276

In Equation (2), x is years scaled to interval of [-1, 1], ŷ represents the fitted variables,277

the coefficient a1 shows linear trends and a2 shows quadratic trends. Considering quadratic278

trends allows the possibility that the observed multi-decadal variability is in fact forced279

(Clement et al., 2015; Bellomo et al., 2018). Here, we ask whether or not the observed280

trends lie within the ensemble spread from simulations. For example, if the observed trend281

is outside of the range of piC simulations but is within those from historical simulations,282

then the observed change (e.g., upward trend or increasing curvature) is unlikely to have283

occurred without anthropogenic forcing. When comparing the trends between observa-284

tions and simulations, a1 and a2 are scaled back so that they have unites of the variable’s285

unit per year (yr−1) and per year square (yr−2), respectively.286

3 Trend and multi-decadal variability287

3.1 Atlantic TC frequency288

We first examine the Atlantic TC frequency trends in the historical (present) cli-289

mate and from historical to the warming future (i.e., using simulations from both his-290

torical and future periods). Figure 1a and b show the ensemble means of the time se-291

ries of Atlantic hurricane frequency, i.e., the averaged total number of storms in the basin292
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each year whose maximum sustained winds exceed 34 kt from each dataset. The small293

wiggles may be sampling variability. Figures 1c and d show the ensemble spread. By con-294

struction, the time-mean annual frequency for each dataset over its respective histori-295

cal period will be identical to observations after the frequency adjustment (Eq. (1)). The296

original annual frequency of each dataset is shown in Table 1. Before 2000, the differ-297

ent simulations are, by eye at least, indistinguishable in their overall envelopes, with none298

showing any particular trend, and the observations (black thick line) lying well within299

their spread (shown in Figure 1c). After 2000, the CHAZSD (orange thick line) and CHAZCRH300

(blue thick line) results begin to diverge, with CHAZSD showing a decreasing TC fre-301

quency and CHAZCRH showing an increasing TC frequency. It is possible that this is302

related to the fact that the rcp8.5 scenario starts after 2005. The two HiResMIP datasets303

show no considerable trend in the historical period but a sharp dip after 2030. The ssp585304

scenario in HiResMIP starts after 2015, though. Hi-TRACK’s annual TC frequency climbs305

up by 2040. Roberts et al. (2020) reported that both Hi-TRACK and Hi-TempExt project306

a reduction of ensemble mean annual frequency (less than 10%) from 1950-1980 to 2020-307

2050, but the spread covers zero, indicating low confidence to the mean trend.308

Figures 1b and 1d show analogous results for piC simulations. Note that the years309

in the x-axis are not real; these labels are placed so we can compare the simulated trends310

to the observed trend and those in Figures 1a and 1c. Two exceptions are MRI-LENS311

and CAM5 simulations; both are uncoupled atmospheric models and forced with observed312

SST with anthropogenic trend removed (See Section 2 for details). In the Figure 1b, CHAZCRH313

and CHAZSD results do not diverge. There is no dip in the Hi-TRACK or Hi-TempExt.314

Clearly, the separation between CHAZCRH and CHAZSD and the dip in the two High-315

ResMIP datasets in Figure 1a represent forced responses.316

Next we conduct the trend analyses of the annual TC frequency in Figure 1 using317

second-order Legendre polynomials fits (Eq. (2)). As an example, Fig. 2a shows the anal-318

ysis using the CHAZCRH simulations and the observations. The observed fit (dashed black319

line) has an upward trend of 0.085 storm year-2 and a positive curvature of 0.005 storm year-2320

(shown as the black line in Figs. 2b and 2c). The existence of a linear trend means that321

there is an overall increasing trend in storm activity since 1951 while the quadratic terms322

captures the multi-decadal variability, with high activity in the 1950s-1960s, low in the323

1970s-80s, and high after that, which recent research suggests may be a forced signal rather324

than natural variability (Clement et al., 2015; Bellomo et al., 2018). In Fig. 2a, the poly-325

nomial fits of CHAZCRH simulations from historical only (light blue dashed line) and from326

historical to future (dark blue dashed line) both show an small upward curve while the327

polynomial fit derived from the piC simulations (gray dashed line) is quite flat.328

The ranges of the fit parameters from all ensemble members in each dataset are329

also shown in Figures 2b-c. The observed linear trend are above most of the piC sim-330

ulations except those from CAM5. However, CAM5 has only 10-years of simulations, which331

is too short to be compared with 70-years of observations. The observed quadratic term332

lies within the 25-75 percentile ensemble ranges of piC simulations from CHAZCRH, CHAZSD,333

and MRI-LENS. It is outside of the ensemble ranges from two HighResMIP datasets which334

have quadratic terms close to zero. The observed linear trend is at top 25 percentile (75-335

100 percentile) of the hist simulations of CHAZCRH, CHAZSD, and is marginally included336

in the simulations of MRI-LENS; the observed quadratic term is within the 25-75 per-337

centile range the CHAZCRH and MRI-LENS, and is at top 25 percentile in CHAZSD. Only338

the fit linear trend derived from historical + future simulations of the CHAZCRH include339

the observed value. For the quadratic trend, the fit parameter derived from CHAZCRH340

and CHAZSD include the observed values but they are at top and bottom 25 percentile341

range, respectively. (We do not use any warming simulations from CAM5 and MRI-LENS.)342

Generally speaking, the polynomial fit analysis suggests that, first, CHAZCRH, CHAZSD343

and MRI-LENS are better in capturing the observed trend and multi-decadal variabil-344

ity as their historical spread covers the observed values. However, CAM5 has only 10 years345
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of data with 5 ensemble members and while Hi-TRACK and Hi-TempExt have only, re-346

spectively, 7 and 6 ensemble members. These three datasets may be under-sampled. Sec-347

ond, the observed linear trend is outside the spread of CHAZCRH, CHAZSD and MRI-348

LENS’ piC simulations but within the spread of these models’ hist simulations, indicat-349

ing that anthropogenic forcing is necessary to capture the upward trend in the past decades.350

On the other hand, we can not rule out the possibility of the recent upward curvature351

trend is within the range of natural variability. Although the MRI-LENS’ piC simula-352

tions is forced with the observed SST (with long-term trend removed) which results in353

the upward curvature term right on top of observed values in Figure 2c. Simulations from354

CHAZCRH suggest that that anthropogenic forcing helps to capture the upward curva-355

ture trend. Third, when considering the future period as well, the mean of CHAZCRH356

shows an upward trend, the mean of CHAZSD shows a downward trend, while the mean357

of the two HighResMIP simulations are close to zero. However, we have low confidence358

in the projections as they include zero. Thus, we can not say for sure that the positive359

linear and quadratic terms will continue into the future.360

It should be noted that without the basin-wide frequency adjustment (not shown),361

the observed linear and quadratic terms lie outside of the spread of MRI-LENS, Hi-TempExt362

and Hi-TRACK in all three periods. They are within the spread of CHAZCRH and CHAZSD363

simulations in piC and historical periods. With additional data from 2006 to 2040, only364

CHAZCRH shows such an upward trend will continue into the future.365

3.2 Intensity and storm motion366

Figure 2d shows the fit parameters of Atlantic TC lifetime maximum intensity (LMI).367

Specifically, we look at the variability of the 95th percentile of LMI (LMI95), for which368

an upward trend has been found in observations (Kossin et al., 2013). Here we focus on369

the linear term only. There is an upward trend in the observations, meaning that the ex-370

treme tail of observed intensity has increased with time, consistent with previous stud-371

ies (e.g., Knutson et al., 2020a, and others). The positive linear trend is captured by the372

ensemble spreads of two CHAZ datasets and those of MRI-LENS and CAM5 at both piC373

and historical periods. It is outside of the ensemble spread of all simulations from from374

Hi-TRACK and Hi-TempExt. Thus, at least from CHAZCRH, CHAZSD, MRI-LENS, and375

CAM5, we can not rule out that the recent upward trend in the LMI95 is due to nat-376

ural variability. When looking into the future, only the means of CHAZCRH is positive377

and the means of CHAZSD, Hi-TempExt and Hi-TRACK are close to zero. Similar to378

the results from TC frequency, the ensemble spread in Figure 2d include zero in the whole379

historical + future periods, indicating, again, low-confidence in the projected changes.380

Figure 2e shows the analysis for translation speed. Consistent with (Kossin, 2018),381

the observations show a clear downward trend in the storm motion. This trend is within382

ensemble spread in all periods, including piC, for all models, except the simulations from383

Hi-TempExt. However, the mean and the 25-75 percentile ensemble spreads in these datasets384

move toward different directions from piC to hist to hist +future periods. The Hi-Track385

and MRL-LENS hist simulations show upward trends in the storm motion and this up-386

ward trends continues in to the future. The differences in mean and 25-75 percentile en-387

semble spreads from CHAZCRH and CHAZSD from these three period are small. The piC388

and hist simulations from CAM5 shows that anthropogenic forcing may lead to a strong389

downward trend in storm motion but again CAM5 simulations are shorter than do the390

data from the other models. It seems unjustified, based on this set of models, to attribute391

the observed slowing down to anthropogenic forcing. It also noteworthy that at a regional392

scale, CHAZ projected an upward trend in storm motion speed for TCs affecting Texas393

(Hassanzadeh et al., 2020) and an a downward trend for storms impacting New York (Lee394

et al., 2022). Spatially inhomogeneous changes may dilute the basin-wide signal.395
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4 Likelihood comparison396

Figure 2 shows that the simulated trend in historical and historical + future vary397

from one dataset to another. This is especially true for the TC frequency projections be-398

tween CHAZCRH and CHAZSD, but a qualitatively similar result, including both increas-399

ing and decreasing trends, holds for the rest of our ensemble of opportunity. It is nat-400

ural to ask whether we can develop some criteria for determining which is correct. In cli-401

mate science, multi-model ensemble mean is a common approach to obtain the consen-402

sus from multiple global climate models. However, such approach is only adequate when403

the ensemble spread represents variations that can be considered random, as might be404

the case with typical aleatoric uncertainties. The divergent scenarios in the frequency405

projections are a consequence of the epistemic uncertainty due to the lack of a satisfac-406

tory scientific understanding of tropical cyclone frequency (Sobel et al., 2021; Emanuel,407

2022) and thus the multi-model mean may not be meaningful in this case. We can, how-408

ever, use likelihood analysis, in which the probabilities that the observations occurs in409

the model simulated distribution were computed. Thus, we can determine which sim-410

ulation the observation is more consistent with. This is similar to the Likelihood Skill411

Score used for evaluating weather and climate predictions (Barnston et al., 2010).412

Specifically, we first assume that annual hurricane frequency is drawn from a Pois-413

son distribution whose mean (λt) has a trend in time (λt = at+b). We then obtain a414

and b of each dataset by fitting the model annual TC frequency to a Poisson regression.415

We do so for all simulations with data throughout 2021 (up to 2005 for CAM5 and 2010416

for MRI-LENS). Note that with a and b, we can derive λt even for years beyond the data417

coverage period, i.e., we can estimate f2020 with a and b derived from CAM5 data. The418

yearly likelihoods (Lt) of the observed frequencies are assigned based on the Poisson dis-419

tribution with a given λt. For example, the likelihood CHAZCRH simulations will gen-420

erate 29 TCs as observed in 2005 is 0.08%, which is based on a Poisson distribution with421

λ2005 = 15.7. The same calculation is applied to piC simulations, and the derived like-422

lihood is denoted LpiC,t. For a given year, we then compare the log likelihood ratios Lt423

and LpiC,t (i.e., log(Lt/LpiC,t) = log(Lt) − log(LpiC,t)). If this ratio is larger than 0,424

the observations are more consistent with the simulations with anthropogenic forcing than425

with the piC simulations and vice versa.426

We start by comparing the likelihoods of simulations with anthropogenic forcing427

to those with piC simulations (i.e., log(Lt/LpiC,t) in Figure 3. The ratios of the likeli-428

hoods jointly up to 2020 (numbers on the upper-left in all panels) suggest that the ob-429

servations are more consistent with the simulations with anthropogenic forcing than those430

without in CHAZCRH, MRI-LENS, and Hi-TempExt. The annual likelihood ratios from431

these three datasets further show higher annual likelihood (Lt) for the observed annual432

frequency values during the period of high TC activity in 1950-1970 and after 2000 while433

higher LpiC,t is found during 1970-2000. This is because there are upward trends in the434

simulated annual frequency in these three datasets when compared to in piC (Figure 2a).435

As λt increases with time, the distributions from these three datasets shift right with time436

and thus give greater likelihood to the high observed annual frequency when compared437

to those derived from piC simulations in which λt is close to constant in time. In con-438

trast, CHAZSD has a downward trend and its, λt shifts left in time and leads to lower439

likelihood when observed values are high. Consequently, we see a higher LpiC,t during440

high TC activity periods and higher Lt during the inactive TC seasons in CHAZSD. The441

frequency slopes obtained from piC and hist in the Hi-TRACK data are similar and thus442

their log likelihood ratio is close to zero.443

When we consider the likelihood over the whole observational period, we calculate444

the average of the likelihood, i.e., the roots of
∏1950

2021 Lt from all five datasets. Between445

CHAZCRH and CHAZSD, observations are more consistent with CHAZCRH, which has446

an averaged likelihood of 5.24%, than to CHAZSD which has the averaged likelihood of447
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3.46%. Among the five datasets, CHAZCRH has highest likelihood, followed by Hi-TempExt448

(5.13%), MRI-LENS (5.1%), Hi-TRACK (5.04%), and CAM5 (3.6%).449

The basin-wide frequency adjustment (Eq. (1)) that we performed to correct model450

biases is expected to affect the results of the likelihood analysis, because the frequency451

adjustment both shifts the mean of the model’s TC annual frequency distributions and452

changes their shapes. The annual frequency distributions from historical and piC sim-453

ulations are more distinct in the datasets without frequency adjustment, which indeed454

leads to larger log likelihood ratios (not shown). Without the frequency adjustment, the455

observed TC annual frequencies are more consistent with the historical simulations in456

CHAZCRH, CHAZSD,and MRI-LENS than in their respective piC simulations due to the457

large bias in these piC simulations. Without basin-wide TC frequency adjustment, Hi-458

TRACK has the greatest averaged likelihood, followed by CAM5, CHAZCRH, Hi-TempExt,459

CHAZSD, and MRI-LENS. MRI-LENS has the lowest likelihood because of its low bias460

and zero storms in some years.461

5 Climate change and regional hurricane risk at three line gates462

Now we compute regional hurricane risk, from hazard perspective only, represented463

by return periods of storms of given wind intensities passing through pre-defined gates,464

derived using simulations from historical and future periods. We use simulations from465

CHAZCRH, CHAZSD, Hi-TRACK, and Hi-TempExt. The three line gates used here (black466

lines in Figures 4a–c) are the main development region (MDR) gate which can be thought467

of as delineating Atlantic TC hazard in a general sense – how many storms form, and468

at what intensity and move from the MDR toward the US and Caribbean Islands; the469

GoM gate which records TC activity for those that enter the Gulf of Mexico; and the470

NE gate which is parallel to a portion of the Northeastern US coast. As discussed ear-471

lier (Section 2.3), to obtain more realistic return period curves for regional hurricane risk472

assessment, we use a more localized frequency adjustment. As an example, Figures 4d–473

4f show historical simulations from CHAZCRH with basin-wide and regional frequency474

adjustments (Eq. (1)). While the basin-wide frequency adjustment (dashed lines) yields475

a TC frequency close to observations at the GoM gate, CHAZCRH still overestimates storm476

activity at the MDR gate and underestimates storm activity at the NE gate. The regional477

frequency adjustment shifts the simulated return period curves (solid line, local adjust-478

ment) by matching the return periods at 40 kt to the values derived from observations479

(see Section 2.3 for details). In terms of the shape of the return period curve, as well as480

the return periods at high intensities, CHAZCRH performs better at the MDR gate than481

at the GoM gate. It is difficult to directly compare the modeled curves to the observa-482

tions at the NE gate, due to the significant underestimation of overall TC frequency at483

the latter. However, even there, the shapes of the observed and modeled return period484

curves are similar.485

To show the changes in return periods between historical and future periods, Fig-486

ures 4g–i show the return period curves derived from the four datasets that have rcp8.5/ssp585487

warming scenarios available. We use model storms from all ensemble members. Low-intensity488

biases in the Hi-TRACK and Hi-TempExt lead to an underestimate of the TC risk. High-489

ResMIP models barely simulate storms with major hurricane wind strength (Roberts et490

al., 2020; Moon et al., 2022). The return period curves of CHAZCRH and CHAZSD hist491

simulations are close to each other. The differences between simulations from historical492

period and those from historical and future periods, i.e., the differences between the dashed493

and solid lines, are small for the two CHAZ datasets in Figures 4g–i. Likewise the his-494

torical and future period curves of GoM and NE gates for Hi-TRACK and Hi-TempExt495

nearly indistinguishable. At the MDR gate, both Hi-TRACK and Hi-TempExt suggest496

increases in the TC risk.497
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To make these differences more evident, we list the percentage changes in annual498

TC frequency exceeding each Saffir-Simpson category on both sides of each panel in Fig-499

ures 4g-i. As expected, there is an overall increase in the storm frequency at all thresh-500

olds from historical to future periods for CHAZCRH while there is an overall decrease for501

CHAZSD, consistent with the results in Figures 1 and 2a. The percentage changes are502

larger at higher intensity thresholds in the CHAZCRH but they are of similar or smaller503

magnitude throughout the Saffir-Simpson categories in the CHAZSD. This is probably504

due to the increase in storm intensity as climate warms in CHAZCRH and CHAZSD.505

The changes in the frequency of exceedance at the three gates from Hi-TRACK and506

Hi-TempExt are not the same sign. Hi-TRACK shows a 67% decrease of Category 1+507

(≤ 64 kt) at the MDR gate but a 65 % increase at GoM gate. At the NE gate, Hi-TRACK508

shows an 14 and 38% increase in the frequency of Category 1+ and 2+ storms, respec-509

tively. Hi-TempExt shows a 68% decrease and 16% increase of Category 1+ storms at510

the MDR and GoM gates, respectively. At the NE gate, it shows a 9% decrease and 92%511

increase in the frequency of Category 1+ and 2+ storms. Storms from these two High-512

ResMIP runs are undersampled and have low intensity biases (See Figure 7 in Roberts513

et al. (2019)). The directly simulated storms are not suitable for risk assessment and these514

numbers should be used with caution.515

6 Discussion516

The results of this study lead us to a view of Atlantic hurricane risk which requires517

us to confront epistemic uncertainty. We have multiple sets of simulations which give dif-518

ferent views of the risk, in particular more so as we look further into the future. TC fre-519

quency increases in CHAZCRH simulations and decreases in CHAZSD, a difference that520

hangs on a subtle modeling choice (saturation deficit vs. relative humidity as a predic-521

tor of genesis). Changes in the high-resolution global climate model simulations are smaller,522

but again their direction depends on which global climate models are considered.523

The differences among these simulations are manifest not just in the future, but524

also to some degree in the present, and the observations do not allow us to determine525

with complete certainty which is correct. At present, no rigorous justification can be given526

regarding which choice to make. Thus, all these outcomes — increasing, decreasing, and527

no change in TC frequency in response to radiatively forced warming — have to be treated528

as possible. One may favor a dataset over the others following the results of a statisti-529

cal analysis, such as the likelihood analysis used here. Our calculations indicate that the530

observations are somewhat more consistent with CHAZCRH, followed by Hi-TempExt,531

MRI-LENS, Hi-TRACK. However, the likelihood values among these four datasets are532

close to each other, so it would not be justified to draw a definitive conclusion from this533

analysis as to which model is most correct.534

The epistemic uncertainty in CHAZ’s projections on annual TC frequency comes535

from our design of the CHAZ model, but the conclusion is that our results are consis-536

tent with the level of broader understanding of TC frequency at present, including that537

derived from the latest high-resolution models shown here as well as other downscaling538

systems (Sobel et al., 2021). Other aspects of TC characteristics that could change with539

anthropogenic climate change have been also evaluated here, namely the forward mo-540

tion and LMI95, are less dramatically uncertain, although our analyses show that one541

cannot rule out the role of natural variability. Still, the uncertainty regarding TC fre-542

quency introduces a large uncertainty into any assessment of overall TC risk, since any543

change of TC properties is only relevant to the extent that TCs actually occur.544

The divergence between increasing and decreasing TC frequency scenarios becomes545

most pronounced in the latter part of the 21st century, but has some impact on the present546

and near future as well (Lee et al., 2020, 2022). In the situation when the change of fre-547
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quency is subtle, changes in other TC properties may lead to differences in regional TC548

risk assessment.549

How one views the situation must ultimately be based on one’s attitude towards550

risk and the consequences of being wrong in either direction. A priori, though, we ar-551

gue that the most rational way to treat epistemic uncertainty is to consider all outcomes552

contained in the results to be possible. In the present context, since the results contain553

possible outcomes in which TC risk — as estimated from a single model or subset of the554

entire multi-model ensemble — is increasing, that in itself means we should regard TC555

risk as increasing, at the highest level of understanding in which all available informa-556

tion is considered, even though there are other possible outcomes in which it is decreas-557

ing.558
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Brüggemann, N., . . . Stössel, A. (2019). Max Planck Institute Earth System642

Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project643

(HighResMIP). Geosci. Model Dev., 12 (7), 3241–3281.644

Haarsma, R. J., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo,645

M., . . . Wyser, K. (2020). HighResMIP versions of EC-Earth: EC-Earth3P646

and EC-Earth3P-HR – description, model computational performance and647

basic validation. Geosci. Model Dev., 13 (8), 3507–3527.648

Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q.,649

. . . von Storch, J.-S. (2016). High resolution model intercomparison project650

–15–



manuscript submitted to Earth’s Future

(highresmip v1.0) for cmip6. Geosci. Model Dev., 9 , 4185–4208.651

Hassanzadeh, P., Lee, C.-Y., Nabizadeh, E., Camargo, S. J., Ma, D., & Yeung, L. Y.652

(2020). Effects of climate change on the movement of future landfalling Texas653

tropical cyclones. Nat. Commun., 11 , 3319.654

Hegerl, G., & Zwiers, F. (2011). Use of models in detection and attribution of cli-655

mate change. WIREs Climate Change, 2 (4), 570–591.656

Hodges, K., Cobb, A., & Vidale, P. L. (2017). How well are tropical cyclones repre-657

sented in reanalysis datasets? J. Climate, 30 (14), 5243–5264.658

Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight,659

J., . . . Zerroukat, M. (2011). The HadGEM2-ES implementation of CMIP5660

centennial simulations. Geosci. Model Dev., 4 , 543–570.661

Klotzbach, P. J., & Gray, W. M. (2008). Multidecadal variability in North Atlantic662

tropical cyclone activity. J. Climate, 21 (15), 3929 - 3935.663

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J.664

(2010). The international best track archive for climate stewardship (IB-665

TrACS). Bull. Amer. Meteor. Soc., 91 , 363–376.666

Knutson, T. R. (2017). Climate science special report: A sustained assessment ac-667

tivity of the U.S. global change research program. In D. Wuebbles, D. Fahey,668

K. Hibbard, D. Dokken, B. Stewart, & T. Maycock (Eds.), (p. 652-663). U.S.669

Global Change Research Program.670

Knutson, T. R., Camargo, S., Chan, J., Emanuel, K., Ho, C.-H., Kossin, J., . . . Wu,671

L. (2020a). Tropical cyclones and climate change assessment: Part I. detection672

and attribution. Bull. Amer. Meteor. Soc., 100 , 1987–2007.673

Knutson, T. R., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J.,674

. . . Wu, L. (2020b). Tropical cyclones and climate change assessment: Part675

II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc.,676

101 (3), E303 - E322.677

Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K. A., Holland, G., Landsea, C.,678

. . . Sugi, M. (2010). Tropical cyclones and climate change. Natural Geosci., 3 ,679

157-163.680

Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. Na-681

ture, 558 , 104–107.682

Kossin, J. P., Olander, T. L., & Knapp, K. R. (2013, August). Trend analysis with a683

new global record of tropical cyclone intensity. J. Climate, 26 , 9960–9976.684

Lee, C.-Y., Camargo, S. J., Sobel, A. H., & Tippett, M. K. (2020). Statistical-685

dynamical downscaling projections of tropical cyclone activity in a warming686

climate: Two diverging genesis scenarios. J. Climate, 33 , 4815-4834.687

Lee, C.-Y., Sobel, A. H., Camargo, S. J., Tippett, M. K., & Yang, Q. (2022). New688

York State hurricane hazard: History and future projections. J Appl Meteorol689

Climatol..690

Lee, C.-Y., Tippett, M. K., Camargo, S. J., & Sobel, A. H. (2015). Probabilistic691

multiple linear regression modeling for tropical cyclone intensity. Mon. Wea.692

Rev., 143 , 933-954.693

Lee, C.-Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2016). Autoregressive694

modeling for tropical cyclone intensity climatology. J. Climate, 29 , 7815-7830.695

Lee, C.-Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2018). An environ-696

mentally forced tropical cyclone hazard model. J. Adv. Model. Earth Syst., 10 ,697

223-241.698

Lloyd, E. A., & Oreskes, N. (2018, 2022/05/20). Climate change attribution: When699

is it appropriate to accept new methods? Earth’s Future, 6 (3), 311–325.700

Mann, M. E., & Emanuel, K. A. (2006, 2022/05/20). Atlantic hurricane trends701

linked to climate change. Eos, Transactions American Geophysical Union,702

87 (24), 233–241.703

Meiler, S., Vogt, T., Bloemendaal, N., Ciullo, A., Lee, C.-Y., Camargo, S. J., . . .704

Bresch, D. N. (2022). Intercomparison of regional loss estimates from global705

–16–



manuscript submitted to Earth’s Future

synthetic tropical cyclone models. Nature Communications, 13 (1), 6156.706

Mizuta, R., Murata, A., Ishii, M., Shiogama, H., Hibino, K., Mori, N., . . . Kimoto,707

M. (2017). Over 5,000 years of ensemble future climate simulations by 60-km708

global and 20-km regional atmospheric models. Bull. Amer. Meteor. Soc.,709

98 (7), 1383–1398.710

Moon, Y., Kim, D., Wing, A. A., Camargo, S. J., Zhao, M., Leung, L. R., . . . Moon,711

J. (2022). An evaluation of tropical cyclone rainfall structures in the High-712

ResMIP simulations against satellite observations. J. Climate, 1–60.713

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S.,714

. . . Tavoni, M. (2017). The shared socioeconomic pathways and their energy,715

land use, and greenhouse gas emissions implications: An overview. Global716

Environmental Change, 42 , 153–168.717

Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T.,718

. . . Vidale, P. L. (2019). Description of the resolution hierarchy of the global719

coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments.720

Geosci. Model Dev., 12 (12), 4999–5028.721

Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere, B., . . .722

Ullrich, P. (2020). Impact of model resolution on tropical cyclone simulation723

using the HighResMIP-PRIMAVERA multimodel ensemble. J. Climate, 33 ,724

2557–2583.725

Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vannière, B., . . .726

Wu, L. (2020). Projected future changes in tropical cyclones using the CMIP6727

HighResMIP multimodel ensemble. Geophys. Res. Lett..728

Rousseau-Rizzi, R., & Emanuel, K. (2020). Estimating the causes of past Atlantic729

tropical cyclone multidecadal variability. In Agu fall meeting.730

Schreck, C. J., Knapp, K. K., & Kossin, J. P. (2014). The impact of best track dis-731

crepancies on global tropical cyclone climatologies using IBTrACS. Mon. Wea.732

Rev., 142 , 3881-3899.733

Sobel, A. H., Camargo, S. J., & Previdi, M. (2019). Aerosol versus greenhouse gas734

effects on tropical cyclone potential intensity and the hydrologic cycle. J. Cli-735

mate, 32 (17), 5511–5527.736

Sobel, A. H., Lee, C.-Y., Camargo, S. J., Mandli, K. T., Emanuel, K. A.,737

Mukhopadhyay, P., & Mahakur, M. (2019). Tropical cyclone hazard to Mum-738

bai in the recent historical climate. Mon. Wea. Rev., 147 (7), 2355–2366.739

Sobel, A. H., Wing, A. A., Camargo, S. J., Patricola, C. M., Vecchi, G. A., Lee, C.-740

Y., & Tippett, M. K. (2021). Tropical cyclone frequency. Earth’s Future, 9 ,741

e2021EF00227.742

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., . . . Miller,743

H. (2007). Contribution of Working Group I to the Fourth Assessment Report744

of the Intergovernmental Panel on Climate Change (Tech. Rep.). Cambridge,745

United Kingdom and New York, NY, USA.: Cambridge University Press.746

Stone, D., Christidis, N., Folland, C., Perkins-Kirkpatrick, S., Perlwitz, J., Sh-747

iogama, H., . . . Tadross, M. (2019). Experiment design of the international748

CLIVAR C20C+ detection and attribution project’. Weather and Climate749

Extremes, 24 , 100206.750

Sugi, M., Yamada, Y., Yoshida, K., Mizuta, R., Nakano, M., Kodama, C., & Satoh,751

M. (2020). Future changes in the global frequency of tropical cyclone seeds.752

SOLA, 16 , 70–74.753

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and754

the experiment design. Bull. Amer. Meteor. Soc., 93 , 485–498.755

Ting, M., Kushnir, Y., Seager, R., & Li, C. (2011, 2022/10/11). Robust features of756

Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett.,757

38 (17).758

Tippett, M., Camargo, S. J., & Sobel, A. H. (2011). A Possion regression index for759

tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Cli-760

–17–



manuscript submitted to Earth’s Future

mate, 21 , 2335-2357.761

Toumi, R., & Restell, L. (2014). Catastrophe modelling and climate change (Tech.762

Rep.). Lloyd’s.763

Ullrich, P. A., & Zarzycki, C. M. (2017). TempestExtremes: a framework for scale-764

insensitive pointwise feature tracking on unstructured grids. Geosci. Model765

Dev., 10 , 1069–1090.766

Ullrich, P. A., Zarzycki, C. M., McClenny, E. E., Pinheiro, M. C., Stansfield, A. M.,767

& Reed, K. A. (2021). TempestExtremes v2.1: a community framework for768

feature detection, tracking and analysis in large datasets. Geosci. Model Dev.,769

2021 , 1–37.770

Vecchi, G. A., Delworth, T. L., Murakami, H., Underwood, S. D., Wittenberg, A. T.,771

Zeng, F., . . . Yang, X. (2019). Tropical cyclone sensitivities to CO2 doubling:772

roles of atmospheric resolution, synoptic variability and background climate773

changes. Climate Dynamics, 53 (9), 5999–6033.774

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M.,775

. . . Waldman, R. (2019, 2022/05/19). Evaluation of CMIP6 DECK Experi-776

ments With CNRM-CM6-1. J. Adv. Model. Earth Syst., 11 (7), 2177–2213.777

Wang, X., Wang, C., Zhang, L., & Wang, X. (2015). Multidecadal Variability778

of Tropical Cyclone Rapid Intensification in the Western North Pacific. J.779

Climate, 28 (9), 3806–3820.780

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., . . .781

Kimoto, M. (2010). Improved climate simulation by MIROC5: Mean states,782

variability, and climate sensitivity. J. Climate, 23 , 6312–6335.783

Wehner, M. F., Prabhat, Reed, K. A., Stone, D., Collins, W. D., & Bacmeister,784

J. (2015). Resolution dependence of future tropical cyclone projections of785

CAM5.1 in the U.S. CLIVAR hurricane working group idealized configurations.786

J. Climate, 28 , 3905-3925.787

Wehner, M. F., Reed, K. A., Li, F., Prabhat, Bacmeister, J., Chen, C.-T., . . .788

Jablonowski, C. (2014). The effect of horizontal resolution on simulation789

quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth790

Syst., 6 , 980–997.791

Wehner, M. F., Reed, K. A., Loring, B., Stone, D., & Krishnan, H. (2018). Changes792

in tropical cyclones under stabilized 1.5 and 2.0 ◦C global warming scenarios as793

simulated by the Community Atmospheric Model under the HAPPI protocols.794

Earth System Dynamics, 9 (187–195).795

Yan, X., Zhang, R., & Knutson, T. R. (2017). The role of Atlantic overturning cir-796

culation in the recent decline of Atlantic major hurricane frequency. Nat. Com-797

mun., 8 (1), 1695.798

Yoshida, K., Sugi, M., Mizuta, R., Murakami, H., & Ishii, M. (2017). Future changes799

in tropical cyclone activity in high-resolution large-ensemble simulations. Geo-800

phys. Res. Lett., 44 (19), 9910–9917.801

Zanchettin, D., Timmreck, C., Graf, H.-F., Rubino, A., Lorenz, S., Lohmann, K., . . .802

Jungclaus, J. H. (2012). Bi–decadal variability excited in the coupled ocean–803

atmosphere system by strong tropical volcanic eruptions. Climate Dynamics,804

39 , 419–444.805

Zarzycki, C. M., & Ullrich, P. A. (2017). Assessing sensitivities in algorithmic de-806

tection of tropical cyclones in climate data. Geophys. Res. Lett., 44 (2), 1141–807

1149.808

–18–



manuscript submitted to Earth’s Future

Figure 1. Annual frequency of Atlantic TCs exceeding 34 kt intensity threshold from 1951–

2020 from best-track data (black), CMIP5 downscaling simulations using CHAZCRH (blue)

and CHAZSD (pink), 25-km high-resolution CAM5 simulations (purple), 60km Japanese large-

ensemble simulations (MRI-LENS, green), and HighResMIP simulations from (Roberts et al.,

2020) and (Roberts et al., 2020). Storms from HighResMIP are tracked with TRACK (red) and

TexmpExtreme (pink), respectively. In (a) and (c), simulations in their respective historical pe-

riod are conducted with historical climate forcing while those in future period are with the rcp8.5

(for CHAZ) and ssp585 (for HighResMIP) warming scenarios. In (b) and (d), the simulations are

under pre-industrial control climate (no anthropogenic forcing). (a) and (b) show the results from

ensemble mean while (c) and (d) show the results from all ensemble members.
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Figure 2. (a) Observed (black) and CHAZCRH simulated mean annual hurricane frequency.

The CHAZ simulations are from present (1951-2005) to future climate (2006-2040) periods

(blue), and from those using pre-industrial control climate forcing (gray). Dashed lines show

the polynomial fit. ‘hist’ shows the fit using synthetic storms from historical period only while

‘whole’ are from the historical and future periods. (b) Linear terms of the polynomial fit derived

using synthetic storms’ annual frequency from all datasets. Datasets are indicated by color while

the black line show the observed value. (c) Similar to (b) but for the quadratic terms. (d) and

(e) are similar to (b) but for linear terms from he polynomial fit of LMI95 and storm forward

motion speed. Units for (b), (c), (d) and (e) are, respectively, storm number year-1, storm num-

ber year-2, m s-1yr-1, and km hr-1 yr-1.
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Figure 3. Annual log-likelihood ratio in which λt is derived from historical (and future for the

CHAZ and HighResMIP runs) simulations and the annual likelihood that is estimated based on

piC simulations.
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Figure 4. (a–c) Observed storm tracks from 1951–2020 at three line gates of interest. (d–f)

Return period curves from 1951–2020 from best-track data (black lines), and CHAZCRH historical

simulations with basin-wide (dashed lines) and local (solid lines) basin corrections applied at the

three gates. Global climate model forcings are indicated by colors and blue lines show the derived

return period curves using all data. (g–i) Similar to (d–f) but for the four datasets. The solid

lines show the return period curves using all historical simulations while dashed lines use all fu-

ture simulations. Numbers at each Saffir-Simpson intensity threshold are the percentage changes

of the frequency of the storms exceeding the threshold. Datasets are indicated by colors. Black

curves show the empirical return curve using observations from 1951–2020.
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Key Points:10

• Changes in the Atlantic hurricane risk are uncertain due to epistemic uncertainty11

in the projected annual frequency under global warming12

• Likelihood analysis shows that observations are more consistent with simulations13

with upward frequency projections than those without14

• Based on our results, it is more likely that the risk of hurricanes is increasing than15

that it is decreasing, though not by a large margin16
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Abstract17

This manuscript discusses the challenges in detecting and attributing recently observed18

trends in the Atlantic hurricanes and the epistemic uncertainty we face in assessing fu-19

ture hurricane risk. Data used here include synthetic storms downscaled from five CMIP520

models by the Columbia HAZard model (CHAZ), and directly simulated storms from21

high-resolution climate models. We examine three aspects of recent hurricane activity:22

the upward trend and multi-decadal oscillation of the annual frequency, the increase in23

storm wind intensity, and the downward trend in the forward speed. Some datasets sug-24

gest that these trends and oscillation are forced while others suggest that they can be25

explained by natural variability. Future projections under warming climate scenarios also26

show a wide range of possibilities, especially for the annual frequencies, which increase27

or decrease depending on the choice of moisture variable used in the CHAZ model and28

on the choice of climate model. The uncertainties in the annual frequency lead to epis-29

temic uncertainties in the future hurricane risk assessment. Here, we investigate the re-30

duction of epistemic uncertainties on annual frequency through a statistical practice –31

likelihood analysis. We find that historical observations are more consistent with the sim-32

ulations with increasing frequency but we are not able to rule out other possibilities. We33

argue that the most rational way to treat epistemic uncertainty is to consider all out-34

comes contained in the results. In the context of hurricane risk assessment, since the re-35

sults contain possible outcomes in which hurricane risk is increasing, this view implies36

that the risk is increasing.37

Plain Language Summary38

We use a set of computer model simulations to study recent trends in Atlantic hur-39

ricanes. We looked at three aspects of these storms: the number of hurricanes each year,40

which has fluctuated up and down over time (but generally increased over the last sev-41

eral decades); the strength of their winds, which has been increasing; and the speed at42

which they move, which has been decreasing. These trends could be caused either by human-43

induced global warming or by natural variability; determining which cause is more im-44

portant to overall hurricane risk requires us to understand how the number of hurricanes45

per year responds to warming. In our simulations, this number can either increase or de-46

crease with warming, depending on which of two nearly identical versions of our model47

we use to simulate the storms. This uncertainty prevents us from reaching definitive con-48

clusions about either present or future hurricane risk. Nonetheless, our analysis suggests49

that the risk of Atlantic hurricanes is more likely increasing than decreasing, and we ar-50

gue that from a broader point of view, this is effectively equivalent to saying the risk is51

increasing.52

1 Introduction53

Rational measures to mitigate any risk must start from an assessment of that risk.54

Historical records can provide guidance, but in the case of atmospheric hazards such as55

hurricanes, we know that historical records are only a starting point for assessing cur-56

rent and future risk. This is both because the historical record is too short to fully sam-57

ple the possibilities even in a stationary climate, and because the climate is changing (Schreck58

et al., 2014; Emanuel, 2021; D. Chan et al., 2022). Climate change makes the present59

different from the past, and requires us to consider whether the historical record alone,60

or catastrophe models that are built upon it, using purely statistical methods and as-61

suming a stationary climate, are adequate, or need to be modified or supplemented to62

account for climate change.63

Accounting for climate change is likely to require a greater use of physics than is64

historically typical in catastrophe models (Toumi & Restell, 2014; Emanuel, 2008). While65

one might instead try to assess the risk by using standard statistical methods but train-66

–2–



manuscript submitted to Earth’s Future

ing only on the most recent observations (as opposed to the entire record), in the hope67

that those most recent observations represent the present and near-future climate ad-68

equately, this is likely to be challenging. Since hurricanes are rare, the number in the record69

over a period recent enough for this purpose is too small for risk assessment – especially70

when we also consider that low-frequency natural variability is present (i.e., Klotzbach71

& Gray, 2008; J. C. Chan, 2008; Wang et al., 2015), so that averaging times must be longer72

than might otherwise be necessary. To make the best possible assessment of present hur-73

ricane risk, then, we need to use our knowledge of the physics that connects hurricanes74

and climate (Emanuel, 2008).75

The focus of this study is Atlantic tropical cyclones (TCs) risk in the present and76

near future. Future projections are useful for understanding how TCs may respond to77

climate changes of various sorts.Studies of historical observations, on the other hand, of-78

ten look for trends; but on their own, such studies do not establish the causes of the trends,79

nor whether they will persist. Establishing whether a trend is present (detection) is gen-80

erally viewed as a prerequisite to determining its cause (attribution) (Lloyd & Oreskes,81

2018). Detection can, in principle, be done with observations alone; attribution requires82

a model of some sort, in order to construct a counterfactual where the cause of interest83

is not present (Hegerl & Zwiers, 2011; Knutson, 2017). If a historical trend (or an os-84

cillatory signal) could be both detected and attributed to a specific cause, such as hu-85

man influence, or alternatively some specific natural processes, this would be of great86

scientific value, and would also allow us some insight into what to expect in the near fu-87

ture.88

To develop such insight for Atlantic TCs, we will use recent observations and model89

simulations from historical (present), near future (up to 2040 or 2050), and pre-industrial90

control period. Simulations from pre-industrial control period contain no anthropogenic91

forcing signal and thus are used as a counterfactual. We use two types of model data.92

The first represents synthetic storms generated from a statistical-dynamical model, the93

Columbia (tropical cyclone) HAZard model (CHAZ), a model that encodes physical re-94

lationships between tropical cyclones and their ambient large-scale environment (Lee et95

al., 2018). The second represents the directly simulated hurricanes from high-resolution96

global models, in which the above-mentioned relationships are simulated organically (Yoshida97

et al., 2017; Wehner et al., 2014; Roberts et al., 2020).98

There are three objectives of this work. The first is to examine whether recently99

reported trends can be attributed to anthropogenic forcing. As summarized in Knutson100

et al. (2020a, 2020b), these trends are the recent variability of Atlantic annual TC fre-101

quency (Emanuel, 2007), an upward trend in the intensification rate (Bhatia et al., 2019)102

and lifetime maximum intensity (Kossin et al., 2013), and a slowing-down in the storm103

motion (Kossin, 2018). In particular, the cause of the recent increasing trend (since 1970)104

in Atlantic TC activity has been a subject of debate. On the one hand, reduced aerosols105

over the Atlantic since 1980s has been argued to be a dominant cause of the increasing106

TC activity in late 20th century (Mann & Emanuel, 2006; Sobel, Camargo, & Previdi,107

2019; Rousseau-Rizzi & Emanuel, 2020). On the other hand, several measures of Atlantic108

TC activity, including the major hurricane (TCs with LMI ≥ 93 kt) frequency (Goldenberg109

et al., 2001), are highly correlated to the the Atlantic Multi-decadal Oscillation (AMO)110

or Atlantic multidecadal variability (AMV), a low-frequency mode of variability iden-111

tified by the average sea surface temperature anomalies in the North Atlantic basin, typ-112

ically over 0-80oN (Ting et al., 2011). The recent AMO cycle, including both the upward113

trend from 1970 to 2005 and the downward trend from 2006 to 2018 have been associ-114

ated by some authors with natural variability (e.g., Yan et al., 2017, and others). How-115

ever, studies using CMIP5 historical runs simulated an ensemble-mean AMO that is sig-116

nificantly correlated with the observed AMO, suggesting that the recent historical vari-117

ability could be a consequence of radiative forcing (Clement et al., 2015; Bellomo et al.,118

2018). The future projections of TC frequency are subject to a similar degree of debate.119
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Many studies have suggested that the future should see a decline in the numbers of the120

Atlantic TCs with warming (e.g., Knutson et al., 2010, and others), with a few excep-121

tions (Emanuel, 2013; Bhatia et al., 2018; Vecchi et al., 2019).122

The second objective is to compare historical simulations with observations to un-123

derstand which modeling dataset is more consistent with the observations (Brunner et124

al., 2020). Such analysis can provide guidance whether to favor one model over another,125

which is especially useful for reducing uncertainty when the projections cover a wide range126

even with an opposite sign, such as the projections of the divergent scenarios in the global127

tropical cyclone genesis (i.e. Sobel et al., 2021). Lastly, we will assess hurricane risk over128

a set of selected line gates in the present and future climates. Strictly speaking, risk in-129

cludes severity of the hazard, exposure, and vulnerability of the properties of interest.130

Only the hazard component is examined here.131

2 Data, Experimental design and Method132

2.1 Tropical cyclone datasets133

2.1.1 Observations134

For reference, we use best-track data from National Hurricane Center obtained via135

International Best Track Archive for Climate Stewardship v04r00 IBTrACS (Knapp et136

al., 2010). We use 6-hourly storm positions (in longitude and latitude) and maximum137

wind speeds (kt) from 1951 to 2020. Storm forward speed is derived from the position138

data. We use only storms whose lifetime maximum intensity (LMI) reaches tropical storm139

(TS) strength, 34 kt. Hurricanes are referred to storms with LMI of at least 64 kt.140

2.1.2 Synthetic events from the CHAZ model141

The first set of model TCs used here consists of synthetic storm tracks from the142

Columbia (tropical cyclone) Hazard (CHAZ) model (Lee et al., 2018). CHAZ is a statistical-143

dynamical downscaling model that generates synthetic storms whose properties depend144

on environmental conditions. The environmental conditions can come from an observation-145

based reanalysis or a global climate model. There is no feedback of downscaled TC ac-146

tivity to the global models. Three components in CHAZ describe storm formation and147

subsequent evolution until shortly after landfall (or dissipation): the cyclone genesis in-148

dex (TCGI; Tippett et al., 2011), the beta-advection track model (Emanuel, 2008), and149

an auto-regressive intensity model (Lee et al., 2015, 2016). Details about CHAZ are re-150

ported in Lee et al. (2018). The environmental variables required by the model are Po-151

tential Intensity (Bister & Emanuel, 1997), deep-layer (850 to 250 hPa) vertical wind shear,152

and one or more moisture variables: column integral relative humidity (CRH) and/or153

column integral saturation deficit (SD), the absolute vorticity at 850 hPa, and the steer-154

ing flow. The choice of moisture variables will prove particularly important in what fol-155

lows. Both variables are calculated following Bretherton et al. (2004). The simulated trop-156

ical cyclone activity in CHAZ, at global and basin scales, in both current and projected157

future climates have been discussed in detail in Lee et al. (2018) and Lee et al. (2020),158

respectively. The CHAZ model has been used for case studies in Texas (Hassanzadeh159

et al., 2020), New York (Lee et al., 2022), Mumbai, India (Sobel, Lee, et al., 2019) and160

the Philippines (Baldwin et al. 2022). Meiler et al. (2022) found that losses estimated161

from CHAZ are comparable to those estimated using comparable academic tropical cy-162

clone hazard models from Emanuel (2013) and Bloemendaal et al. (2020).163

In this study, we use CHAZ to downscale five CMIP5 models (Taylor et al., 2012)164

over the Atlantic basin. They are the National Center for Atmospheric Research (NCAR)165

Community Climate System Model 4 (CCSM4) (Gent et al., 2011), the Geophysical Fluid166

Dynamics Laboratory Climate Model version 3 (GFDL-CM3) (Donner et al., 2011), the167
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United Kingdom Meteorological Office Hadley Center Global Environment Model ver-168

sion 2 Earth System (HadGEM2-ES) (Jones et al., 2011), the Max Planck Institute Earth169

System Model Medium Resolution (MPI-ESM-MR) (Zanchettin et al., 2012), and the170

Model for Interdisciplinary Research Climate Version 5 (MIROC5) (Watanabe et al., 2010)171

from the University of Tokyo Center for Climate System Research, National Institute172

for Environmental Studies, Japan, Japan Agency for Marine-Earth Science.173

CHAZ’s projections of annual TC frequency, both in the Atlantic and globally, are174

sensitive to whether CRH and SD are used in TCGI. Using TCGI with CRH leads to175

a projected increase in global (and Atlantic) TC frequency, while SD leads to a projected176

decrease (Lee et al., 2020). CRH and SD both measure the degree of the saturation of177

the atmosphere with SD being the difference between the column integrated water va-178

por and the same quantity at saturation, and CRH being their ratio. As saturated wa-179

ter vapor increases with temperature in a warming climate, CRH remains close to con-180

stant and SD decreases (Camargo et al., 2014). In the current climate, however, the be-181

havior of these two variables are qualitatively similar, and the two TCGI formulations182

yield similar results for the historical period, meaning that the historical evidence is in-183

adequate to determine which of the two is more correct. Arguably, SD better reflects the184

increase in the thermodynamic inhibition of TC formation in a warming climate (Emanuel,185

1989, 2022), but the gaps in our understanding of the relationship between climate and186

tropical cyclone frequency are so substantial that we do not view this argument as dis-187

positive (Sobel et al., 2021). The diverging annual frequency projections from CHAZ thus,188

in our view, reflects the broader state of the science, in that we have low confidence re-189

garding whether one should expect more or fewer hurricanes as climate warms(i.e. Ca-190

margo et al., 2020; Vecchi et al., 2019; Sugi et al., 2020). One reason for the low con-191

fidence in TC frequency projection is the lack of theoretical understanding of tropical192

cyclone genesis, and we refer the readers to a review article by Sobel et al. (2021) for a193

detailed discussion.194

Since total TC hazard and risk depend inextricably on TC frequency and we lack195

a strong basis for choosing between SD and CRH, the sensitivity to the humidity vari-196

able in our results causes a deep uncertainty in the projected risk. This uncertainty will197

remain in the present study, in that we performed separate sets of simulations with ei-198

ther CRH or SD as the humidity variable in the genesis module, referred to as CHAZCRH199

and CHAZSD.200

2.1.3 Directly simulated hurricanes from General Circulation Models201

In addition to the CHAZ downscaling simulations described above, we use storms202

tracked in a set of relatively high-resolution, i.e., tropical cyclone-permitting, global cli-203

mate models. The first one is the 60-km MRI-AGCM3.2H large-ensemble simulation from204

Mizuta et al. (2017) (MRI-LENS). Tropical cyclones in that model was discussed in Yoshida205

et al. (2017). The second one is the 25-km High-Resolution Community Atmospheric Model206

version 5 simulations, CAM5 (Wehner et al., 2014, 2015). Next, we use storms tracked207

in the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016)208

High Resolution Model Intercomparison Project (HighResMIP) (Haarsma et al., 2016).209

Following Roberts et al. (2020) and Roberts et al. (2020), we use storms from CMCC-210

CM2 (Cherchi et al., 2019), CNRM-CM6 (Voldoire et al., 2019), EC-Earth3P-HR (Haarsma211

et al., 2020), HadGEM3-GC3.1 (Roberts et al., 2019), and MPI-ESM1.2 (Gutjahr et al.,212

2019). There are two HighResMIP configurations, one is forced with prescribed SST while213

the other is fully coupled. We only use the simulations from the fully coupled configu-214

ration which allows natural variability to occur freely during the historical period. To215

understand the sensitivity of model performance to the TC trackers, HighResMIP storms216

are tracked by TRACK (Hodges et al., 2017) and TempestExtremes (Ullrich & Zarzy-217

cki, 2017; Zarzycki & Ullrich, 2017; Ullrich et al., 2021), and both event sets are used218
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here. For convenience, we label modeled TCs from HighResMIP tracked with Tempes-219

tExtremes as Hi-TempExt and those tracked with TRACK as Hi-TRACK.220

2.2 Experimental design221

Except in MRI-LENS and CAM5, we use model TCs from the historical, near-term222

future, and pre-industrial control (piC, no anthropogenic forcing) scenario simulations.223

Note that the time range covered in each period varies by model. For the historical pe-224

riod, they are 1951-2005 for CHAZCRH and CHAZSD, 1950-2010 for MRI-LENS, 1996-225

2016 for CAM5, and 1951-2014 for the two HighResMIP datasets. In the future period,226

CHAZCRH and CHAZSD contain storms from 2006-2040 under Representative Concen-227

tration Pathway 8.5 (rcp8.5) while HighResMIP storms are from 2015-2050 under Shared228

Socioeconomic Pathways5-85 (ssp585). Both are high-emission scenarios with an addi-229

tional radiative forcing of 8.5 W m−2 by the year 2100 (Riahi et al., 2017) in ssp585 which230

considers a fossil-fueled development. Warming climate simulations for MRI-LENS and231

CAM5 are under a 4oC (Yoshida et al., 2017) and 1.5oC warming (Wehner et al., 2018)232

scenarios and thus are not used here. In piC, the labeling of year is arbitrarily in all datasets233

as all years are equivalent. The MIR-LENS and CAM5 piC simulations are exceptions.234

In MRI-LENS and CAM5, the observed SST information is given in both historical and235

piC simulations as a lower boundary, but the long-term trend is removed in the piC sim-236

ulations. In other words, MIR-LENS and CAM5 piC simulations still contain observed237

variation. The piC simulations in MRI-LENS, called “no-warming” in Mizuta et al. (2017)238

and those in CAM5, following “Nat-Hist” in Stone et al. (2019), are designed with an239

underlying assumption that that only the linear trend is anthropogenic forced, not the240

variability, which, as we will discussed in the next Section, is debatable.241

In each period, the CHAZ model was used to generate 20 track ensemble members242

per CMIP5 model and each track has 40 intensity ensembles (100 CMIP5 track ensem-243

ble members and 4000 considering intensity ensemble), as is possible because the CHAZ244

intensity module has a stochastic component. Hi-TRACK has 7 members (5 global cli-245

mate models and two of them have 2 ensemble members) and Hi-TempExt has 6 (4 global246

climate models and two of them have 2 ensemble members). MRI-LENS has 100 ensem-247

ble members while CAM5 has 5. The data properties are listed in Table 1.248

2.3 Frequency adjustment249

There are biases in model TCs, because of biases in the models that generate them,
including the CHAZ model itself as well as the CMIP5 models from which CHAZ ob-
tains its environmental conditions, and the high-resolution global climate models used
here. In particular, all models have biases in TC frequency (Table 1), and directly-simulated
hurricanes from high-resolution global climate models have low-intensity biases, in gen-
eral, as the grid spacings of these models are too coarse to capture the full range of ob-
served hurricane strengths (e.g., Yoshida et al., 2017; Moon et al., 2022, and others). Here
we address only the frequency biases. Specifically, we derive an adjustment by compar-
ing the basin-wide annual TC frequency of models’ historical simulations to that of the
observations from the same period. The same adjustment will then be applied to both
historical and future simulations. Similarly, we compare the annual frequency of the piC
simulations to the observations to adjust piC’s annual frequency. In Lee et al. (2018) and
Lee et al. (2020), the basin-wide frequency adjustment is a multiplicative factor to en-
sure that the mean annual frequency over a basin in CHAZ is consistent to that in ob-
servations. However, some high-resolution global climate models used here, such MRI-
LENS, generate zero TCs in some years. A multiplicative factor would result in larger
variability but still have zeros in these years, which is unrealistic. Thus, here the basin-
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wide frequency is adjusted as:

fadj = σobs ×
fori − µmodel|ref

σmodel|ref
+ µobs, (1)

where f indicates annual frequency (each year) with the subscript indicating after (adj)250

or before (ori) frequency adjustment. µ and σ are the mean and standard deviation of251

the frequency and the subscript indicates whether it is from simulations (model) or ob-252

servations (obs). As we want to retain the climate change signal, reference µ and σ (µmodel|ref253

and σmodel|ref ) for adjusting frequencies in both historical and future simulations in each254

dataset are from its respective historical simulation. Observations are calculated from255

their respective historical periods. To adjust the annual frequencies of the piC simula-256

tions, µmodel|ref and σmodel|ref are from piC. Biases in annual TC frequency of the piC257

simulations are different to those in the historical simulations. As we will discuss later,258

a basin-wide frequency adjustment may not correct regional biases, because model bi-259

ases can have spatial dependence. When desired (in Section 5), we apply a multiplica-260

tive factor to ensure the annual frequency at storm with intensity greater than 40 kt in261

these data sets are consistent to observations, which is the same as the bias-correction262

approach used in (Lee et al., 2022).263

An underlying assumption of our approach to bias correction, in common with many264

climate change studies, is that the bias of any given model remains the same in projected265

future climate periods as it is in the present, so that the influence of the projected cli-266

mate change can still be captured when comparing simulations between rcp and hist pe-267

riods. This assumption is analogous to that used to remove climatological biases in sur-268

face temperature and other quantities from the climate models themselves in global warm-269

ing projections, for example those by the Intergovernmental Panel on Climate Change270

(Solomon et al., 2007). While this assumption of constant biases can be questioned, it271

is a simple assumption, and there is no empirical basis on which to base any more com-272

plex assumption one. Still, we will discuss the impacts of frequency adjustments on our273

findings.274

2.4 Trend analysis275

To calculate trends of TC activity, we fit second-order Legendre polynomials:

ŷ = a0 + a1x+
a2
2

(3x2 − 1), x ∈ [−1, 1] (2)

to the time series of the variables of interest from observations and model simulations.276

In Equation (2), x is years scaled to interval of [-1, 1], ŷ represents the fitted variables,277

the coefficient a1 shows linear trends and a2 shows quadratic trends. Considering quadratic278

trends allows the possibility that the observed multi-decadal variability is in fact forced279

(Clement et al., 2015; Bellomo et al., 2018). Here, we ask whether or not the observed280

trends lie within the ensemble spread from simulations. For example, if the observed trend281

is outside of the range of piC simulations but is within those from historical simulations,282

then the observed change (e.g., upward trend or increasing curvature) is unlikely to have283

occurred without anthropogenic forcing. When comparing the trends between observa-284

tions and simulations, a1 and a2 are scaled back so that they have unites of the variable’s285

unit per year (yr−1) and per year square (yr−2), respectively.286

3 Trend and multi-decadal variability287

3.1 Atlantic TC frequency288

We first examine the Atlantic TC frequency trends in the historical (present) cli-289

mate and from historical to the warming future (i.e., using simulations from both his-290

torical and future periods). Figure 1a and b show the ensemble means of the time se-291

ries of Atlantic hurricane frequency, i.e., the averaged total number of storms in the basin292
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each year whose maximum sustained winds exceed 34 kt from each dataset. The small293

wiggles may be sampling variability. Figures 1c and d show the ensemble spread. By con-294

struction, the time-mean annual frequency for each dataset over its respective histori-295

cal period will be identical to observations after the frequency adjustment (Eq. (1)). The296

original annual frequency of each dataset is shown in Table 1. Before 2000, the differ-297

ent simulations are, by eye at least, indistinguishable in their overall envelopes, with none298

showing any particular trend, and the observations (black thick line) lying well within299

their spread (shown in Figure 1c). After 2000, the CHAZSD (orange thick line) and CHAZCRH300

(blue thick line) results begin to diverge, with CHAZSD showing a decreasing TC fre-301

quency and CHAZCRH showing an increasing TC frequency. It is possible that this is302

related to the fact that the rcp8.5 scenario starts after 2005. The two HiResMIP datasets303

show no considerable trend in the historical period but a sharp dip after 2030. The ssp585304

scenario in HiResMIP starts after 2015, though. Hi-TRACK’s annual TC frequency climbs305

up by 2040. Roberts et al. (2020) reported that both Hi-TRACK and Hi-TempExt project306

a reduction of ensemble mean annual frequency (less than 10%) from 1950-1980 to 2020-307

2050, but the spread covers zero, indicating low confidence to the mean trend.308

Figures 1b and 1d show analogous results for piC simulations. Note that the years309

in the x-axis are not real; these labels are placed so we can compare the simulated trends310

to the observed trend and those in Figures 1a and 1c. Two exceptions are MRI-LENS311

and CAM5 simulations; both are uncoupled atmospheric models and forced with observed312

SST with anthropogenic trend removed (See Section 2 for details). In the Figure 1b, CHAZCRH313

and CHAZSD results do not diverge. There is no dip in the Hi-TRACK or Hi-TempExt.314

Clearly, the separation between CHAZCRH and CHAZSD and the dip in the two High-315

ResMIP datasets in Figure 1a represent forced responses.316

Next we conduct the trend analyses of the annual TC frequency in Figure 1 using317

second-order Legendre polynomials fits (Eq. (2)). As an example, Fig. 2a shows the anal-318

ysis using the CHAZCRH simulations and the observations. The observed fit (dashed black319

line) has an upward trend of 0.085 storm year-2 and a positive curvature of 0.005 storm year-2320

(shown as the black line in Figs. 2b and 2c). The existence of a linear trend means that321

there is an overall increasing trend in storm activity since 1951 while the quadratic terms322

captures the multi-decadal variability, with high activity in the 1950s-1960s, low in the323

1970s-80s, and high after that, which recent research suggests may be a forced signal rather324

than natural variability (Clement et al., 2015; Bellomo et al., 2018). In Fig. 2a, the poly-325

nomial fits of CHAZCRH simulations from historical only (light blue dashed line) and from326

historical to future (dark blue dashed line) both show an small upward curve while the327

polynomial fit derived from the piC simulations (gray dashed line) is quite flat.328

The ranges of the fit parameters from all ensemble members in each dataset are329

also shown in Figures 2b-c. The observed linear trend are above most of the piC sim-330

ulations except those from CAM5. However, CAM5 has only 10-years of simulations, which331

is too short to be compared with 70-years of observations. The observed quadratic term332

lies within the 25-75 percentile ensemble ranges of piC simulations from CHAZCRH, CHAZSD,333

and MRI-LENS. It is outside of the ensemble ranges from two HighResMIP datasets which334

have quadratic terms close to zero. The observed linear trend is at top 25 percentile (75-335

100 percentile) of the hist simulations of CHAZCRH, CHAZSD, and is marginally included336

in the simulations of MRI-LENS; the observed quadratic term is within the 25-75 per-337

centile range the CHAZCRH and MRI-LENS, and is at top 25 percentile in CHAZSD. Only338

the fit linear trend derived from historical + future simulations of the CHAZCRH include339

the observed value. For the quadratic trend, the fit parameter derived from CHAZCRH340

and CHAZSD include the observed values but they are at top and bottom 25 percentile341

range, respectively. (We do not use any warming simulations from CAM5 and MRI-LENS.)342

Generally speaking, the polynomial fit analysis suggests that, first, CHAZCRH, CHAZSD343

and MRI-LENS are better in capturing the observed trend and multi-decadal variabil-344

ity as their historical spread covers the observed values. However, CAM5 has only 10 years345
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of data with 5 ensemble members and while Hi-TRACK and Hi-TempExt have only, re-346

spectively, 7 and 6 ensemble members. These three datasets may be under-sampled. Sec-347

ond, the observed linear trend is outside the spread of CHAZCRH, CHAZSD and MRI-348

LENS’ piC simulations but within the spread of these models’ hist simulations, indicat-349

ing that anthropogenic forcing is necessary to capture the upward trend in the past decades.350

On the other hand, we can not rule out the possibility of the recent upward curvature351

trend is within the range of natural variability. Although the MRI-LENS’ piC simula-352

tions is forced with the observed SST (with long-term trend removed) which results in353

the upward curvature term right on top of observed values in Figure 2c. Simulations from354

CHAZCRH suggest that that anthropogenic forcing helps to capture the upward curva-355

ture trend. Third, when considering the future period as well, the mean of CHAZCRH356

shows an upward trend, the mean of CHAZSD shows a downward trend, while the mean357

of the two HighResMIP simulations are close to zero. However, we have low confidence358

in the projections as they include zero. Thus, we can not say for sure that the positive359

linear and quadratic terms will continue into the future.360

It should be noted that without the basin-wide frequency adjustment (not shown),361

the observed linear and quadratic terms lie outside of the spread of MRI-LENS, Hi-TempExt362

and Hi-TRACK in all three periods. They are within the spread of CHAZCRH and CHAZSD363

simulations in piC and historical periods. With additional data from 2006 to 2040, only364

CHAZCRH shows such an upward trend will continue into the future.365

3.2 Intensity and storm motion366

Figure 2d shows the fit parameters of Atlantic TC lifetime maximum intensity (LMI).367

Specifically, we look at the variability of the 95th percentile of LMI (LMI95), for which368

an upward trend has been found in observations (Kossin et al., 2013). Here we focus on369

the linear term only. There is an upward trend in the observations, meaning that the ex-370

treme tail of observed intensity has increased with time, consistent with previous stud-371

ies (e.g., Knutson et al., 2020a, and others). The positive linear trend is captured by the372

ensemble spreads of two CHAZ datasets and those of MRI-LENS and CAM5 at both piC373

and historical periods. It is outside of the ensemble spread of all simulations from from374

Hi-TRACK and Hi-TempExt. Thus, at least from CHAZCRH, CHAZSD, MRI-LENS, and375

CAM5, we can not rule out that the recent upward trend in the LMI95 is due to nat-376

ural variability. When looking into the future, only the means of CHAZCRH is positive377

and the means of CHAZSD, Hi-TempExt and Hi-TRACK are close to zero. Similar to378

the results from TC frequency, the ensemble spread in Figure 2d include zero in the whole379

historical + future periods, indicating, again, low-confidence in the projected changes.380

Figure 2e shows the analysis for translation speed. Consistent with (Kossin, 2018),381

the observations show a clear downward trend in the storm motion. This trend is within382

ensemble spread in all periods, including piC, for all models, except the simulations from383

Hi-TempExt. However, the mean and the 25-75 percentile ensemble spreads in these datasets384

move toward different directions from piC to hist to hist +future periods. The Hi-Track385

and MRL-LENS hist simulations show upward trends in the storm motion and this up-386

ward trends continues in to the future. The differences in mean and 25-75 percentile en-387

semble spreads from CHAZCRH and CHAZSD from these three period are small. The piC388

and hist simulations from CAM5 shows that anthropogenic forcing may lead to a strong389

downward trend in storm motion but again CAM5 simulations are shorter than do the390

data from the other models. It seems unjustified, based on this set of models, to attribute391

the observed slowing down to anthropogenic forcing. It also noteworthy that at a regional392

scale, CHAZ projected an upward trend in storm motion speed for TCs affecting Texas393

(Hassanzadeh et al., 2020) and an a downward trend for storms impacting New York (Lee394

et al., 2022). Spatially inhomogeneous changes may dilute the basin-wide signal.395
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4 Likelihood comparison396

Figure 2 shows that the simulated trend in historical and historical + future vary397

from one dataset to another. This is especially true for the TC frequency projections be-398

tween CHAZCRH and CHAZSD, but a qualitatively similar result, including both increas-399

ing and decreasing trends, holds for the rest of our ensemble of opportunity. It is nat-400

ural to ask whether we can develop some criteria for determining which is correct. In cli-401

mate science, multi-model ensemble mean is a common approach to obtain the consen-402

sus from multiple global climate models. However, such approach is only adequate when403

the ensemble spread represents variations that can be considered random, as might be404

the case with typical aleatoric uncertainties. The divergent scenarios in the frequency405

projections are a consequence of the epistemic uncertainty due to the lack of a satisfac-406

tory scientific understanding of tropical cyclone frequency (Sobel et al., 2021; Emanuel,407

2022) and thus the multi-model mean may not be meaningful in this case. We can, how-408

ever, use likelihood analysis, in which the probabilities that the observations occurs in409

the model simulated distribution were computed. Thus, we can determine which sim-410

ulation the observation is more consistent with. This is similar to the Likelihood Skill411

Score used for evaluating weather and climate predictions (Barnston et al., 2010).412

Specifically, we first assume that annual hurricane frequency is drawn from a Pois-413

son distribution whose mean (λt) has a trend in time (λt = at+b). We then obtain a414

and b of each dataset by fitting the model annual TC frequency to a Poisson regression.415

We do so for all simulations with data throughout 2021 (up to 2005 for CAM5 and 2010416

for MRI-LENS). Note that with a and b, we can derive λt even for years beyond the data417

coverage period, i.e., we can estimate f2020 with a and b derived from CAM5 data. The418

yearly likelihoods (Lt) of the observed frequencies are assigned based on the Poisson dis-419

tribution with a given λt. For example, the likelihood CHAZCRH simulations will gen-420

erate 29 TCs as observed in 2005 is 0.08%, which is based on a Poisson distribution with421

λ2005 = 15.7. The same calculation is applied to piC simulations, and the derived like-422

lihood is denoted LpiC,t. For a given year, we then compare the log likelihood ratios Lt423

and LpiC,t (i.e., log(Lt/LpiC,t) = log(Lt) − log(LpiC,t)). If this ratio is larger than 0,424

the observations are more consistent with the simulations with anthropogenic forcing than425

with the piC simulations and vice versa.426

We start by comparing the likelihoods of simulations with anthropogenic forcing427

to those with piC simulations (i.e., log(Lt/LpiC,t) in Figure 3. The ratios of the likeli-428

hoods jointly up to 2020 (numbers on the upper-left in all panels) suggest that the ob-429

servations are more consistent with the simulations with anthropogenic forcing than those430

without in CHAZCRH, MRI-LENS, and Hi-TempExt. The annual likelihood ratios from431

these three datasets further show higher annual likelihood (Lt) for the observed annual432

frequency values during the period of high TC activity in 1950-1970 and after 2000 while433

higher LpiC,t is found during 1970-2000. This is because there are upward trends in the434

simulated annual frequency in these three datasets when compared to in piC (Figure 2a).435

As λt increases with time, the distributions from these three datasets shift right with time436

and thus give greater likelihood to the high observed annual frequency when compared437

to those derived from piC simulations in which λt is close to constant in time. In con-438

trast, CHAZSD has a downward trend and its, λt shifts left in time and leads to lower439

likelihood when observed values are high. Consequently, we see a higher LpiC,t during440

high TC activity periods and higher Lt during the inactive TC seasons in CHAZSD. The441

frequency slopes obtained from piC and hist in the Hi-TRACK data are similar and thus442

their log likelihood ratio is close to zero.443

When we consider the likelihood over the whole observational period, we calculate444

the average of the likelihood, i.e., the roots of
∏1950

2021 Lt from all five datasets. Between445

CHAZCRH and CHAZSD, observations are more consistent with CHAZCRH, which has446

an averaged likelihood of 5.24%, than to CHAZSD which has the averaged likelihood of447
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3.46%. Among the five datasets, CHAZCRH has highest likelihood, followed by Hi-TempExt448

(5.13%), MRI-LENS (5.1%), Hi-TRACK (5.04%), and CAM5 (3.6%).449

The basin-wide frequency adjustment (Eq. (1)) that we performed to correct model450

biases is expected to affect the results of the likelihood analysis, because the frequency451

adjustment both shifts the mean of the model’s TC annual frequency distributions and452

changes their shapes. The annual frequency distributions from historical and piC sim-453

ulations are more distinct in the datasets without frequency adjustment, which indeed454

leads to larger log likelihood ratios (not shown). Without the frequency adjustment, the455

observed TC annual frequencies are more consistent with the historical simulations in456

CHAZCRH, CHAZSD,and MRI-LENS than in their respective piC simulations due to the457

large bias in these piC simulations. Without basin-wide TC frequency adjustment, Hi-458

TRACK has the greatest averaged likelihood, followed by CAM5, CHAZCRH, Hi-TempExt,459

CHAZSD, and MRI-LENS. MRI-LENS has the lowest likelihood because of its low bias460

and zero storms in some years.461

5 Climate change and regional hurricane risk at three line gates462

Now we compute regional hurricane risk, from hazard perspective only, represented463

by return periods of storms of given wind intensities passing through pre-defined gates,464

derived using simulations from historical and future periods. We use simulations from465

CHAZCRH, CHAZSD, Hi-TRACK, and Hi-TempExt. The three line gates used here (black466

lines in Figures 4a–c) are the main development region (MDR) gate which can be thought467

of as delineating Atlantic TC hazard in a general sense – how many storms form, and468

at what intensity and move from the MDR toward the US and Caribbean Islands; the469

GoM gate which records TC activity for those that enter the Gulf of Mexico; and the470

NE gate which is parallel to a portion of the Northeastern US coast. As discussed ear-471

lier (Section 2.3), to obtain more realistic return period curves for regional hurricane risk472

assessment, we use a more localized frequency adjustment. As an example, Figures 4d–473

4f show historical simulations from CHAZCRH with basin-wide and regional frequency474

adjustments (Eq. (1)). While the basin-wide frequency adjustment (dashed lines) yields475

a TC frequency close to observations at the GoM gate, CHAZCRH still overestimates storm476

activity at the MDR gate and underestimates storm activity at the NE gate. The regional477

frequency adjustment shifts the simulated return period curves (solid line, local adjust-478

ment) by matching the return periods at 40 kt to the values derived from observations479

(see Section 2.3 for details). In terms of the shape of the return period curve, as well as480

the return periods at high intensities, CHAZCRH performs better at the MDR gate than481

at the GoM gate. It is difficult to directly compare the modeled curves to the observa-482

tions at the NE gate, due to the significant underestimation of overall TC frequency at483

the latter. However, even there, the shapes of the observed and modeled return period484

curves are similar.485

To show the changes in return periods between historical and future periods, Fig-486

ures 4g–i show the return period curves derived from the four datasets that have rcp8.5/ssp585487

warming scenarios available. We use model storms from all ensemble members. Low-intensity488

biases in the Hi-TRACK and Hi-TempExt lead to an underestimate of the TC risk. High-489

ResMIP models barely simulate storms with major hurricane wind strength (Roberts et490

al., 2020; Moon et al., 2022). The return period curves of CHAZCRH and CHAZSD hist491

simulations are close to each other. The differences between simulations from historical492

period and those from historical and future periods, i.e., the differences between the dashed493

and solid lines, are small for the two CHAZ datasets in Figures 4g–i. Likewise the his-494

torical and future period curves of GoM and NE gates for Hi-TRACK and Hi-TempExt495

nearly indistinguishable. At the MDR gate, both Hi-TRACK and Hi-TempExt suggest496

increases in the TC risk.497
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To make these differences more evident, we list the percentage changes in annual498

TC frequency exceeding each Saffir-Simpson category on both sides of each panel in Fig-499

ures 4g-i. As expected, there is an overall increase in the storm frequency at all thresh-500

olds from historical to future periods for CHAZCRH while there is an overall decrease for501

CHAZSD, consistent with the results in Figures 1 and 2a. The percentage changes are502

larger at higher intensity thresholds in the CHAZCRH but they are of similar or smaller503

magnitude throughout the Saffir-Simpson categories in the CHAZSD. This is probably504

due to the increase in storm intensity as climate warms in CHAZCRH and CHAZSD.505

The changes in the frequency of exceedance at the three gates from Hi-TRACK and506

Hi-TempExt are not the same sign. Hi-TRACK shows a 67% decrease of Category 1+507

(≤ 64 kt) at the MDR gate but a 65 % increase at GoM gate. At the NE gate, Hi-TRACK508

shows an 14 and 38% increase in the frequency of Category 1+ and 2+ storms, respec-509

tively. Hi-TempExt shows a 68% decrease and 16% increase of Category 1+ storms at510

the MDR and GoM gates, respectively. At the NE gate, it shows a 9% decrease and 92%511

increase in the frequency of Category 1+ and 2+ storms. Storms from these two High-512

ResMIP runs are undersampled and have low intensity biases (See Figure 7 in Roberts513

et al. (2019)). The directly simulated storms are not suitable for risk assessment and these514

numbers should be used with caution.515

6 Discussion516

The results of this study lead us to a view of Atlantic hurricane risk which requires517

us to confront epistemic uncertainty. We have multiple sets of simulations which give dif-518

ferent views of the risk, in particular more so as we look further into the future. TC fre-519

quency increases in CHAZCRH simulations and decreases in CHAZSD, a difference that520

hangs on a subtle modeling choice (saturation deficit vs. relative humidity as a predic-521

tor of genesis). Changes in the high-resolution global climate model simulations are smaller,522

but again their direction depends on which global climate models are considered.523

The differences among these simulations are manifest not just in the future, but524

also to some degree in the present, and the observations do not allow us to determine525

with complete certainty which is correct. At present, no rigorous justification can be given526

regarding which choice to make. Thus, all these outcomes — increasing, decreasing, and527

no change in TC frequency in response to radiatively forced warming — have to be treated528

as possible. One may favor a dataset over the others following the results of a statisti-529

cal analysis, such as the likelihood analysis used here. Our calculations indicate that the530

observations are somewhat more consistent with CHAZCRH, followed by Hi-TempExt,531

MRI-LENS, Hi-TRACK. However, the likelihood values among these four datasets are532

close to each other, so it would not be justified to draw a definitive conclusion from this533

analysis as to which model is most correct.534

The epistemic uncertainty in CHAZ’s projections on annual TC frequency comes535

from our design of the CHAZ model, but the conclusion is that our results are consis-536

tent with the level of broader understanding of TC frequency at present, including that537

derived from the latest high-resolution models shown here as well as other downscaling538

systems (Sobel et al., 2021). Other aspects of TC characteristics that could change with539

anthropogenic climate change have been also evaluated here, namely the forward mo-540

tion and LMI95, are less dramatically uncertain, although our analyses show that one541

cannot rule out the role of natural variability. Still, the uncertainty regarding TC fre-542

quency introduces a large uncertainty into any assessment of overall TC risk, since any543

change of TC properties is only relevant to the extent that TCs actually occur.544

The divergence between increasing and decreasing TC frequency scenarios becomes545

most pronounced in the latter part of the 21st century, but has some impact on the present546

and near future as well (Lee et al., 2020, 2022). In the situation when the change of fre-547
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quency is subtle, changes in other TC properties may lead to differences in regional TC548

risk assessment.549

How one views the situation must ultimately be based on one’s attitude towards550

risk and the consequences of being wrong in either direction. A priori, though, we ar-551

gue that the most rational way to treat epistemic uncertainty is to consider all outcomes552

contained in the results to be possible. In the present context, since the results contain553

possible outcomes in which TC risk — as estimated from a single model or subset of the554

entire multi-model ensemble — is increasing, that in itself means we should regard TC555

risk as increasing, at the highest level of understanding in which all available informa-556

tion is considered, even though there are other possible outcomes in which it is decreas-557

ing.558
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Figure 1. Annual frequency of Atlantic TCs exceeding 34 kt intensity threshold from 1951–

2020 from best-track data (black), CMIP5 downscaling simulations using CHAZCRH (blue)

and CHAZSD (pink), 25-km high-resolution CAM5 simulations (purple), 60km Japanese large-

ensemble simulations (MRI-LENS, green), and HighResMIP simulations from (Roberts et al.,

2020) and (Roberts et al., 2020). Storms from HighResMIP are tracked with TRACK (red) and

TexmpExtreme (pink), respectively. In (a) and (c), simulations in their respective historical pe-

riod are conducted with historical climate forcing while those in future period are with the rcp8.5

(for CHAZ) and ssp585 (for HighResMIP) warming scenarios. In (b) and (d), the simulations are

under pre-industrial control climate (no anthropogenic forcing). (a) and (b) show the results from

ensemble mean while (c) and (d) show the results from all ensemble members.
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Figure 2. (a) Observed (black) and CHAZCRH simulated mean annual hurricane frequency.

The CHAZ simulations are from present (1951-2005) to future climate (2006-2040) periods

(blue), and from those using pre-industrial control climate forcing (gray). Dashed lines show

the polynomial fit. ‘hist’ shows the fit using synthetic storms from historical period only while

‘whole’ are from the historical and future periods. (b) Linear terms of the polynomial fit derived

using synthetic storms’ annual frequency from all datasets. Datasets are indicated by color while

the black line show the observed value. (c) Similar to (b) but for the quadratic terms. (d) and

(e) are similar to (b) but for linear terms from he polynomial fit of LMI95 and storm forward

motion speed. Units for (b), (c), (d) and (e) are, respectively, storm number year-1, storm num-

ber year-2, m s-1yr-1, and km hr-1 yr-1.
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Figure 3. Annual log-likelihood ratio in which λt is derived from historical (and future for the

CHAZ and HighResMIP runs) simulations and the annual likelihood that is estimated based on

piC simulations.
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Figure 4. (a–c) Observed storm tracks from 1951–2020 at three line gates of interest. (d–f)

Return period curves from 1951–2020 from best-track data (black lines), and CHAZCRH historical

simulations with basin-wide (dashed lines) and local (solid lines) basin corrections applied at the

three gates. Global climate model forcings are indicated by colors and blue lines show the derived

return period curves using all data. (g–i) Similar to (d–f) but for the four datasets. The solid

lines show the return period curves using all historical simulations while dashed lines use all fu-

ture simulations. Numbers at each Saffir-Simpson intensity threshold are the percentage changes

of the frequency of the storms exceeding the threshold. Datasets are indicated by colors. Black

curves show the empirical return curve using observations from 1951–2020.
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