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Abstract

Sea surface temperatures (SSTs) vary not only due to heat exchange across the air-sea interface but also due to changes

in effective heat capacity as primarily determined by mixed layer depth (MLD). Here, we investigate seasonal and regional

characteristics of the contribution of MLD anomalies to SST variability using observational datasets. We propose a metric

called Flux Divergence Angle (FDA), which can quantify the relative contributions of surface heat fluxes and MLD anomalies

to SST variability. Using this metric, we find that MLD anomalies tend to amplify SST anomalies in the extra-tropics, especially

in the eastern ocean basins, during spring and summer. This amplification is explained by a positive feedback loop between SST

and MLD via upper ocean stratification. In contrast, MLD anomalies tend to suppress SST anomalies in the eastern tropical

Pacific. The MLD contribution in the summer hemispheres is more pronounced on seasonal timescales than on sub-monthly

timescales.
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Key Points: 16 

● Relative contributions of mixed layer depth (MLD) anomaly to SST variability are 17 
investigated using the Flux Divergence Angle (FDA) metric. 18 

● MLD anomalies tend to amplify SST anomalies in the extra-tropics, especially in eastern 19 
ocean basin, during the spring and summer seasons. 20 

● The contribution of MLD anomalies in the extra-tropics during summer is more 21 
pronounced on seasonal timescales than on sub-monthly ones. 22 

  23 
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Abstract 24 

Sea surface temperatures (SSTs) vary not only due to heat exchange across the air-sea interface 25 
but also due to changes in effective heat capacity as primarily determined by mixed layer depth 26 
(MLD). Here, we investigate seasonal and regional characteristics of the contribution of MLD 27 
anomalies to SST variability using observational datasets. We propose a metric called Flux 28 
Divergence Angle (FDA), which can quantify the relative contributions of surface heat fluxes 29 
and MLD anomalies to SST variability. Using this metric, we find that MLD anomalies tend to 30 
amplify SST anomalies in the extra-tropics, especially in the eastern ocean basins, during spring 31 
and summer. This amplification is explained by a positive feedback loop between SST and MLD 32 
via upper ocean stratification. In contrast, MLD anomalies tend to suppress SST anomalies in the 33 
eastern tropical Pacific. The MLD contribution in the summer hemispheres is more pronounced 34 
on seasonal timescales than on sub-monthly timescales. 35 

 36 

Plain Language Summary 37 

Sea surface temperatures (SST) is one of the important indicators as well as drivers of climate 38 
variability over the globe. SST varies not only due to changes in surface heat fluxes but also due 39 
to changes in effective heat capacity as mainly determined by mixed layer depth (MLD) 40 
anomalies. In this study, we propose a new metric called “Flux Divergence Angle (FDA)”, 41 
which can quantify the relative contributions of  MLD and surface heat flux anomalies to the 42 
SST variability. Using this metric, we find that the MLD anomaly tends to amplify the local SST 43 
variability in the extra-tropics (especially in the eastern ocean basins) and during spring and 44 
summer. On the other hand, MLD anomalies tend to suppress the SST variability in the eastern 45 
tropical Pacific. Changes in effective heat capacity in the summer hemispheres are more 46 
important for slower SST variability (e.g., for several months) than that for faster one (e.g., for 47 
several days). 48 

 49 

1 Introduction 50 

Sea surface temperature (SST) is one of the key metrics as well as drivers of climate 51 
variability over the globe. Surface heat flux (SHF) is known as the most fundamental factor 52 
causing local SST variations in most of the extra-tropics (Hasselmann 1976; Frankignoul and 53 
Hasselmann 1977). Mixed layer depth (MLD) is in turn another key factor determining the 54 
effective heat capacity of the ocean surface layer, which also affects local SST variations (e.g., 55 
Alexander et al., 2000; Alexander & Penland, 1996; Amaya et al., 2021; Morioka et al., 2011; 56 
Qiu & Kelly, 1993; Takahashi et al., 2021; Yamamoto et al., 2020; Yokoi et al., 2012). More 57 
specifically, positive SST anomalies can be caused without SHF anomaly, if there is shallow 58 
MLD anomaly with climatological heating (and vice versa). Therefore, not only the flux of heat 59 
across the air-sea interface is important, but also how this heat is re-distributed within the mixed 60 
layer.    61 

Based on a mixed layer temperature budget from in-situ observations, previous studies 62 
have shown that shallow MLD anomalies can cause positive SST anomalies especially in spring 63 
and summer when MLD is shallow and climatological surface heating exists (Alexander et al., 64 
2000; Alexander & Penland, 1996; Cronin et al., 2013; Elsberry & Garwood, 1978; Lanzante & 65 
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Harnack, 1983). A part of the role of MLD anomalies has been revealed, however, a global 66 
picture of the relative importance of MLD anomalies in SST variability is missing. In the 67 
present, we can assess details of the role of MLD using various global datasets of vertical 68 
oceanic properties, such as Argo float observations. For example, Tozuka et al. (2018) proposed 69 
a metric for the relative importance of SHF and MLD anomalies to frontogenesis and frontolysis 70 
respectively based on Argo float data, finding that seasonal variations of the horizontal gradient 71 
of MLD strongly contribute to the strength of the SST front. In the present study, we revisit the 72 
relative importance of MLD and SHF anomalies to SST variability and explore their seasonal 73 
and regional characteristics over the global oceans.  74 

The key scientific questions are “How large is the contribution of MLD anomalies to SST 75 
variability compared to the contribution of SHF anomalies?” and “When/Where are they most 76 
important?”. To answer these questions, we 1) propose a metric for quantifying the relative 77 
contributions of SHF and MLD anomalies to the month-to-month variations of local SST 78 
anomalies and 2) reveal their seasonal (e.g., summer vs. winter) and regional characteristics (e.g., 79 
tropics vs. extra-tropics). Furthermore, potential timescale dependences of their contributions are 80 
explored using high-temporal oceanic reanalysis datasets.  81 

The remainder of the paper is organized as follows. In section 2, we describe the datasets 82 
used in this study, and propose a metric to quantify the relative contributions of SHF and MLD 83 
anomalies to local SST variability. In section 3, we present the results on seasonality, regionality, 84 
and timescale dependence of the relative contribution of MLD anomaly. In section 4, we 85 
summarize our results and discuss the role of MLD anomalies in major climate modes.  86 

 87 
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2 Datasets and Methods 88 

2.1 Datasets 89 

In this study, we utilize three variables; SST, SHF, and MLD. Each variable is obtained 90 
from observational data sources; CERES-EBAF (Loeb et al., 2018) for radiative fluxes, OAFlux 91 
(Yu et al., 2008) for turbulent heat fluxes, OISST (Reynolds et al., 2002) for SST, and IPRC-92 
Argo products (http://apdrc.soest.hawaii.edu/projects/argo/) for MLD. MLD is defined as the 93 
depth at which density increases from 10-m to the value equivalent to a temperature decrease of 94 
0.2 ˚C. All variables are monthly-averaged, for 15 years from January 2005 to December 2019. 95 
The horizontal resolution of all variables is 1 degree in both zonal and meridional directions. In 96 
the latter part of the section 3, we examine the timescale dependence of the relative contributions 97 
of MLD and SHF using 5-day mean variables from the SODA 3.4.2 ocean reanalysis dataset 98 
(Carton et al., 2018), which is forced by the ERA-Interim dataset (Dee et al., 2011). While the 99 
seasonality and regionality of the relative contributions in the SODA dataset are slightly different 100 
from those in the observational datasets (cf. Figs. 2 vs. S2 and Figs. 3 vs. S3), our main 101 
conclusions are not sensitive to these different data sources.  102 

 103 

2.2 Metric to determine the relative contributions of SHF and MLD anomalies to local SST 104 
variability 105 

Here, we propose a metric to quantify the relative contributions of SHF and MLD 106 
anomalies to local SST variability. We start to develop the metric from the simplified mixed 107 
layer temperature budget equation (Qiu & Kelly, 1993) considering only surface forcing: 108 𝜕𝑇𝜕𝑡 = 𝑄𝜌𝑐௣𝐻 + 𝜀௢ ,       (1) 

where 𝜌 is the density of sea water, 𝑐௣ the specific heat capacity at constant pressure, 𝐻 is MLD, 109 
and 𝜀௢  is the sum of contributions from all other oceanic processes (i.e., three-dimensional 110 
advection, entrainment, and diffusion) and the residual derived from unresolved processes and 111 
observational error. 𝑇 is vertical mean temperature within the mixed layer. In this study, we 112 
assume that 𝑇 is equivalent to SST. 𝑄 is the surface heat flux into the mixed layer (i.e., SHF) and 113 
calculated as the difference between net surface heat flux (𝑄଴) and penetrative SW radiation at 114 
the bottom of mixed layer (𝑞௣௘௡); 𝑄 = 𝑄଴ − 𝑞௣௘௡. The 𝑞௣௘௡ is calculated following Paulson & 115 
Simpson (1977). Hereafter, we focus on month-to-month SST variations and define anomalies of 116 
all variables as the deviations from the climatology at each grid point. Considering the heat 117 
budget equation for T anomalies, we can decompose the anomalies of the first term on the right-118 
hand-side (rhs) of equation (1) into contributions from SHF and MLD anomalies (Morioka et al., 119 
2010; Yokoi et al., 2012). We can rewrite the heat budget equation:  120 𝜕𝑇ᇱ𝜕𝑡 ~ 𝑄ᇱ𝜌𝑐௣𝐻ഥ − 𝑄ത𝐻ᇱ𝜌𝑐௣𝐻ഥଶ + 𝜀௢ᇱ,       (2) 

where overbars (𝑋ത) and primes (𝑋ᇱ) denote the seasonal climatology and anomalies, respectively. 121 
The first term on the rhs represents the contribution of the SHF anomaly (𝑄ᇱ ) acting on a 122 
constant MLD (𝐻ഥ) and the second term represents the contribution of the MLD anomaly (𝐻ᇱ) 123 
under climatological heating/cooling (𝑄ത). We ignore second and higher order terms of the Taylor 124 
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Expansion in equation (2) (e.g., the non-linear contribution of both anomalies) because they are 125 
typically much smaller than the sum of the first two terms (~1/10), except in the Antarctic 126 
Circumpolar Current (ACC) region and the Labrador sea where the subduction zone of the 127 
Atlantic Meridional Overturning Circulation is located. The first two terms can explain more 128 
than 90 % of the total variances of the surface forcing term in most of the region (Fig. S1).  129 

Next, we formulate a temperature variance budget equation (Boucharel et al., 2015; Guan 130 
et al., 2019; Santoso et al., 2010) by multiplying the SST anomaly (𝑇ᇱ) on both sides of equation 131 
(2):  132 𝑇ᇱ 𝜕𝑇ᇱ𝜕𝑡 = 𝑇ᇱ ቆ 𝑄ᇱ𝜌𝑐௣𝐻ഥ − 𝑄ത𝐻ᇱ𝜌𝑐௣𝐻ഥଶ + 𝜀௢ᇱቇ ,       (3) 

𝑇ᇱ 𝜕𝑇ᇱ𝜕𝑡 = 1𝜌𝑐௣𝐻ഥ ቆ𝑄ᇱ𝑇ᇱ − 𝐻ᇱ 𝑄ത𝐻ഥ 𝑇ᇱቇ + 𝜀௢ᇱ𝑇ᇱ.     (4) 

The left-hand-side of the equations are equivalent to half of the time tendency of T’ squared, 133 
hence we can diagnose the dominant processes that result in an increase or decrease of the T’ 134 
variance. The reason why we employ the heat variance budget equation (Eq. 4) instead of the 135 
heat budget equation (Eq. 2) is that the role of surface forcing processes in the SST evolution can 136 
be captured by the variance budget equation.   137 

As noted in section 1, Tozuka et al. (2018) proposed a metric for quantifying the relative 138 
contribution of horizontal gradients of SHF and MLD to the seasonal variation of frontogenesis. 139 
The method is analogous to the so-called “Turner angle” (Ruddick, 1983; You, 2002) which can 140 
be used to diagnose relative contributions of vertical gradients of temperature and salinity to 141 
double-diffusive convection. Here, following the basic concepts of these two studies, we define a 142 
new metric called Flux Divergence Angle (FDA; Θ), which quantifies the relative contributions 143 
of  SHF and MLD anomalies to local SST variability:  144 Θ = tanିଵ൫𝑄ொ − 𝑄ு,  𝑄ொ + 𝑄ு൯ ,       (5) 

where 145 𝑄ொ = 𝑄ᇱ𝑇′, 𝑄ு = −𝐻ᇱ 𝑄ത𝐻ഥ 𝑇′ . 
The two indices of QQ and QH are a part of the equation (4), have the same unit of K*W/m2, and 146 
represent the product of anomalies of SST and SHF (or the product of anomalies of SST and 147 
equivalent heat flux anomalies due to a MLD anomaly with climatological heating/cooling) . 148 
Positive and negative values of these indices represent that the heat flux anomalies amplify and 149 
dampen the local SST anomalies, respectively. Figures 1a to 1c are snapshots of SST, SHF, and 150 
MLD anomalies on June 2015. In addition, a snapshot of FDA on June 2015 is shown in Fig. 1d, 151 
calculated via equation (5) at each grid point. Figure 1f shows a two-dimensional histogram of 152 
all pairs of QQ and QH, showing that there is no apparent linear relationship between them. 153 

Next, we illustrate the physical meaning of the FDA using a schematic in Figure 1e. 154 
When the FDA has a positive value, i.e., when the sum of QQ and QH is positive, the covariance 155 
of total surface forcing and SST anomaly is positive, so that the surface forcing term in equation 156 
(4) acts to amplify the local SST anomalies. This is referred to as “Growth” stage of the SST 157 
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evolution by surface forcing. Analogous, when the FDA has a negative value, i.e., when the sum 158 
of QQ and QH is negative, the covariance of total surface forcing and SST anomaly is negative, so 159 
that the surface forcing term in equation (4) acts to dampen the local SST anomalies (“Decay” 160 
stage). Additionally, when the relative contribution of SHF is larger than that of MLD, FDA has 161 
a specific value range of 0° <  Θ < 90° for the “Growth” stage and −180° <  Θ < −90° for 162 
the “Decay” stage. In contrast, when the contribution of MLD is larger than that of SHF, FDA 163 
has the range of 90° <  Θ < 180° for the “Growth” and −90° <  Θ < 0° for the “Decay” stage. 164 
Depending on the relative importance, we add the header of “QQ” or “QH” before the name of 165 
“Growth” or “Decay” stage, e.g., “QQ Growth” when 0° <  Θ <  90° . Note that a term of 166 
“dominant” in the following text indicates their relative importance of the SHF and MLD terms 167 
but not necessarily their absolute importance relative to other terms in the full variance heat 168 
budget. For example, upwelling and lateral advection have large impacts on SST variability in 169 
the eastern tropical Pacific and in western boundary current regions, respectively. In such cases, 170 
surface forcing processes are less important than oceanic processes. Hence, the term “dominant” 171 
used in this manuscript refers to only the relative importance of the SHF anomaly or MLD 172 
anomaly among the surface forcing processes. 173 

  174 
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3 Results 192 

3.1 Global characteristics of FDA 193 

First, we provide an overview of the general characteristics of the FDA using all pairs of 194 
QQ and QH over the global ocean and in all seasons. Figure 1g shows a histogram of FDAs 195 
normalized by total count numbers. The number below each label in Figure 1g indicates the 196 
occurrence frequency of each sector. The histogram has two sharp peaks at around 45˚ and -135˚. 197 
The occurrence frequency of  “QQ Growth” is 32.19 % and that of “QQ Decay” is 37.99 %. These 198 
results demonstrate that SHF anomalies are the main factor determining anomalies of the total 199 
surface forcing term. This is consistent with previous results on the relationship between SHF 200 
and SST, i.e., SST anomalies can be caused by wind or radiative forcing and can be dampened 201 
by heat release from the sea surface (Hasselmann, 1976). Although the SHF anomalies are the 202 
main driver of the SST anomalies in most of the cases investigated here, in some cases MLD 203 
anomalies contribute more to the SST anomalies than the SHF anomalies. For example, FDA 204 
around Hawaii on June 2015 (Figure 1d) had positive values greater than 90˚ (i.e., light reddish 205 
color shading), suggesting that the SST anomalies were primarily determined by the “QH 206 
Growth” process rather than “QQ Growth” and “QQ Decay”. In the next subsection, we further 207 
explore the regional and seasonal characteristics of the “QH Growth” and “QH Decay” processes. 208 

 209 

3.2 Regional and seasonal characteristics of FDA 210 

Figure 2 shows the FDA histograms for each ocean basin (Pacific, Atlantic, and Indian 211 
Ocean), different regions (Northern Hemisphere [NH], Equatorial region [EQ], and Southern 212 
Hemisphere [SH]), and different seasons (December-January-February [DJF], March-April-May 213 
[MAM], June-July-August [JJA], and September-October-November [SON]). Maps of the 214 
occurrence frequency of the four sectors in each season are also shown in Figure 3. Hereafter, we 215 
will describe the details of the relative contributions of MLD anomalies (“QH Growth” and “QH 216 
Decay”) compared to the contribution of SHF anomalies (“QQ Growth” and “QQ Decay”). The 217 
contribution of SHF anomalies is dominant all over the global ocean (Fig. 2a-h), especially in 218 
most of the extra-tropical regions and in winter (Fig. 3a,c,e,g,i,k,m,o). 219 

 220 

3.2.1 QH Growth process 221 

In the extra-tropics (Fig. 2a,b,f,g,h), the histograms show a clear seasonal difference 222 
between summer and winter. In the winter hemisphere (i.e., JJA in the NH and DJF in the SH), 223 
occurrence frequencies of “QQ Growth” and “QQ Decay” are larger than those of “QH Growth” 224 
and “QH Decay”. While occurrence frequencies of “QQ Growth” and “QQ Decay” are also large 225 
in summer, however, occurrence frequency of “QH Growth” in spring and summer is clearly 226 
larger than in winter. This suggests that the contribution of MLD anomalies is more pronounced 227 
in the spring and summer seasons than in the winter season, which is consistent with previous 228 
research (Alexander et al., 2000; Alexander & Penland, 1996; Cronin et al., 2013; Elsberry & 229 
Garwood, 1978; Lanzante & Harnack, 1983). The “QH Growth” sector reflects the negative 230 
covariance between anomalies of SST and MLD under climatological heating. In this situation, 231 
MLD decreases with enhanced upper ocean stratification due to the increase in SST and/or 232 
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decrease in sea surface salinity (i.e., decrease in the surface water density). On the other hand, 233 
SST easily increases under a shallow MLD anomaly and climatological surface heating in the 234 
summer hemisphere. Thus, during summer, this positive feedback loop between MLD and SST 235 
anomalies can amplify the local SST anomalies. 236 

As noted in the previous paragraph, the “QH Growth” sector is dominant in the summer 237 
hemisphere, particularly in the eastern part of the ocean basins (Fig. 3d,h,l,p). The region with a 238 
large contribution of MLD anomalies exhibits a horseshoe-like pattern, especially in the North 239 
Pacific (Fig. 3h,l). One reason for the large contribution of MLD anomalies is large variability of 240 
MLD anomalies in subtropical regions (Fig. S4a), particularly due to strong surface friction 241 
velocity in the subtropical Pacific (Zhu & Zhang, 2018). Another reason is a large value of the 242 
ratio of mean SHF to mean MLD in the North Pacific and Atlantic (> 50 ˚N in Fig. S4b), which 243 
is mainly due to the shallow climatological mean MLD under the strong climatological heating at 244 
the sea surface (Fig. S4c, d). 245 

 246 

3.2.2 QH Decay process 247 

 While the contribution of SHF anomalies is dominant in most of the tropics (Fig. 2c,d,e), 248 
there is a small peak of occurrence frequency of “QH Decay” in the EQ Pacific in SON and DJF 249 
(Fig. 2c). The “QH Decay” sector reflects the positive covariance between anomalies of SST and 250 
MLD. A positive covariance is associated with upwelling processes. When upwelling is 251 
enhanced, SST decreases due to more intrusion of cold water from deeper levels. At the same 252 
time, temperature around the bottom of the mixed layer decreases more than at the surface. Thus, 253 
MLD shoals due to the enhanced stratification induced by anomalous upwelling. Analogous, 254 
when upwelling is suppressed, SST increases due to less intrusion of cold water from deeper 255 
levels. At the same time, temperature around the bottom of the mixed layer increases more than 256 
at the surface. Thus, MLD becomes thicker due to less stratification induced by suppressed 257 
upwelling.  258 

Horizontal maps of the “QH Decay” occurrence frequency (Fig. 3b,f,j,n) show that this 259 
process is dominant in the eastern tropical Pacific. As explained in the previous paragraph, it is 260 
consistent with the unique regionality of positive covariance between anomalies of SST and 261 
MLD due to the oceanic upwelling zone (Carton et al., 2008; Cronin & Kessler, 2002; Huang et 262 
al., 2012; Wang & McPhaden, 2000), resulting in negative anomalies of equivalent heat flux 263 
with deeper MLD under climatological heating in the tropics that act to dampen SST anomalies.  264 
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anomalies in modulating major modes of climate variability such as the PDO (Dawe & 329 
Thompson, 2007), Atlantic Meridional Mode (Kataoka et al., 2019), and the Atlantic 330 
Multidecadal Oscillation (Yamamoto et al., 2020). Kataoka et al. (2019) also revealed that 331 
variations in MLD have the potential to more than double  the wind-evaporation-SST feedback 332 
rate. Thus, the role of MLD anomalies in climate variability should be paid more attention to and 333 
its further investigation is needed. In addition, large uncertainties associated with summertime 334 
MLD in ocean and coupled general circulation models have been found (Ezer, 2000; Huang et al., 335 
2014) which is a potential source of SST biases (Zhu et al., 2020). Thus, improved understanding 336 
of different formation mechanisms of MLD anomalies is required, especially for physical 337 
processes associated with the atmospheric-forced MLD variability (Lee et al., 2015; Pookkandy 338 
et al., 2016; Ushijima & Yoshikawa, 2019; Yoshikawa, 2015). Finally, we note that our simple 339 
metric based on only three variables appears to be a useful diagnostic of the upper ocean 340 
representation in climate models. 341 

 342 
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