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called Flux Divergence Angle (FDA), which can quantify the relative contributions of surface heat fluxes and MLD anomalies
to SST variability. Using this metric, we find that MLD anomalies tend to amplify SST anomalies in the extra-tropics, especially
in the eastern ocean basins, during spring and summer. This amplification is explained by a positive feedback loop between SST
and MLD via upper ocean stratification. In contrast, MLD anomalies tend to suppress SST anomalies in the eastern tropical
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Key Points:

e Relative contributions of mixed layer depth (MLD) anomaly to SST variability are
investigated using the Flux Divergence Angle (FDA) metric.

e MLD anomalies tend to amplify SST anomalies in the extra-tropics, especially in eastern
ocean basin, during the spring and summer seasons.

e The contribution of MLD anomalies in the extra-tropics during summer is more
pronounced on seasonal timescales than on sub-monthly ones.
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Abstract

Sea surface temperatures (SSTs) vary not only due to heat exchange across the air-sea interface
but also due to changes in effective heat capacity as primarily determined by mixed layer depth
(MLD). Here, we investigate seasonal and regional characteristics of the contribution of MLD
anomalies to SST variability using observational datasets. We propose a metric called Flux
Divergence Angle (FDA), which can quantify the relative contributions of surface heat fluxes
and MLD anomalies to SST variability. Using this metric, we find that MLD anomalies tend to
amplify SST anomalies in the extra-tropics, especially in the eastern ocean basins, during spring
and summer. This amplification is explained by a positive feedback loop between SST and MLD
via upper ocean stratification. In contrast, MLD anomalies tend to suppress SST anomalies in the
eastern tropical Pacific. The MLD contribution in the summer hemispheres is more pronounced
on seasonal timescales than on sub-monthly timescales.

Plain Language Summary

Sea surface temperatures (SST) is one of the important indicators as well as drivers of climate
variability over the globe. SST varies not only due to changes in surface heat fluxes but also due
to changes in effective heat capacity as mainly determined by mixed layer depth (MLD)
anomalies. In this study, we propose a new metric called “Flux Divergence Angle (FDA)”,
which can quantify the relative contributions of MLD and surface heat flux anomalies to the
SST variability. Using this metric, we find that the MLD anomaly tends to amplify the local SST
variability in the extra-tropics (especially in the eastern ocean basins) and during spring and
summer. On the other hand, MLD anomalies tend to suppress the SST variability in the eastern
tropical Pacific. Changes in effective heat capacity in the summer hemispheres are more
important for slower SST variability (e.g., for several months) than that for faster one (e.g., for
several days).

1 Introduction

Sea surface temperature (SST) is one of the key metrics as well as drivers of climate
variability over the globe. Surface heat flux (SHF) is known as the most fundamental factor
causing local SST variations in most of the extra-tropics (Hasselmann 1976; Frankignoul and
Hasselmann 1977). Mixed layer depth (MLD) is in turn another key factor determining the
effective heat capacity of the ocean surface layer, which also affects local SST variations (e.g.,
Alexander et al., 2000; Alexander & Penland, 1996; Amaya et al., 2021; Morioka et al., 2011;
Qiu & Kelly, 1993; Takahashi et al., 2021; Yamamoto et al., 2020; Yokoi et al., 2012). More
specifically, positive SST anomalies can be caused without SHF anomaly, if there is shallow
MLD anomaly with climatological heating (and vice versa). Therefore, not only the flux of heat
across the air-sea interface is important, but also how this heat is re-distributed within the mixed
layer.

Based on a mixed layer temperature budget from in-situ observations, previous studies
have shown that shallow MLD anomalies can cause positive SST anomalies especially in spring
and summer when MLD is shallow and climatological surface heating exists (Alexander et al.,
2000; Alexander & Penland, 1996; Cronin et al., 2013; Elsberry & Garwood, 1978; Lanzante &
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Harnack, 1983). A part of the role of MLD anomalies has been revealed, however, a global
picture of the relative importance of MLD anomalies in SST variability is missing. In the
present, we can assess details of the role of MLD using various global datasets of vertical
oceanic properties, such as Argo float observations. For example, Tozuka et al. (2018) proposed
a metric for the relative importance of SHF and MLD anomalies to frontogenesis and frontolysis
respectively based on Argo float data, finding that seasonal variations of the horizontal gradient
of MLD strongly contribute to the strength of the SST front. In the present study, we revisit the
relative importance of MLD and SHF anomalies to SST variability and explore their seasonal
and regional characteristics over the global oceans.

The key scientific questions are “How large is the contribution of MLD anomalies to SST
variability compared to the contribution of SHF anomalies?” and “When/Where are they most
important?”. To answer these questions, we 1) propose a metric for quantifying the relative
contributions of SHF and MLD anomalies to the month-to-month variations of local SST
anomalies and 2) reveal their seasonal (e.g., summer vs. winter) and regional characteristics (e.g.,
tropics vs. extra-tropics). Furthermore, potential timescale dependences of their contributions are
explored using high-temporal oceanic reanalysis datasets.

The remainder of the paper is organized as follows. In section 2, we describe the datasets
used in this study, and propose a metric to quantify the relative contributions of SHF and MLD
anomalies to local SST variability. In section 3, we present the results on seasonality, regionality,
and timescale dependence of the relative contribution of MLD anomaly. In section 4, we
summarize our results and discuss the role of MLD anomalies in major climate modes.
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2 Datasets and Methods

2.1 Datasets

In this study, we utilize three variables; SST, SHF, and MLD. Each variable is obtained
from observational data sources; CERES-EBAF (Loeb et al., 2018) for radiative fluxes, OAFlux
(Yu et al., 2008) for turbulent heat fluxes, OISST (Reynolds et al., 2002) for SST, and IPRC-
Argo products (http://apdrc.soest.hawaii.edu/projects/argo/) for MLD. MLD is defined as the
depth at which density increases from 10-m to the value equivalent to a temperature decrease of
0.2 °C. All variables are monthly-averaged, for 15 years from January 2005 to December 2019.
The horizontal resolution of all variables is 1 degree in both zonal and meridional directions. In
the latter part of the section 3, we examine the timescale dependence of the relative contributions
of MLD and SHF using 5-day mean variables from the SODA 3.4.2 ocean reanalysis dataset
(Carton et al., 2018), which is forced by the ERA-Interim dataset (Dee et al., 2011). While the
seasonality and regionality of the relative contributions in the SODA dataset are slightly different
from those in the observational datasets (cf. Figs. 2 vs. S2 and Figs. 3 vs. S3), our main
conclusions are not sensitive to these different data sources.

2.2 Metric to determine the relative contributions of SHF and MLD anomalies to local SST
variability

Here, we propose a metric to quantify the relative contributions of SHF and MLD
anomalies to local SST variability. We start to develop the metric from the simplified mixed
layer temperature budget equation (Qiu & Kelly, 1993) considering only surface forcing:

aT
- = ¢ + &,
ot pc,H

(1)

where p is the density of sea water, ¢, the specific heat capacity at constant pressure, H is MLD,
and &, is the sum of contributions from all other oceanic processes (i.e., three-dimensional
advection, entrainment, and diffusion) and the residual derived from unresolved processes and
observational error. T is vertical mean temperature within the mixed layer. In this study, we
assume that T is equivalent to SST. Q is the surface heat flux into the mixed layer (i.e., SHF) and
calculated as the difference between net surface heat flux (Qy) and penetrative SW radiation at
the bottom of mixed layer (qpen); @ = Qo — Gpen- The gpen 1s calculated following Paulson &
Simpson (1977). Hereafter, we focus on month-to-month SST variations and define anomalies of
all variables as the deviations from the climatology at each grid point. Considering the heat
budget equation for 7" anomalies, we can decompose the anomalies of the first term on the right-
hand-side (rhs) of equation (1) into contributions from SHF and MLD anomalies (Morioka et al.,
2010; Yokoi et al., 2012). We can rewrite the heat budget equation:

aT/ ! _H/
LWL
ot pc,H pcyH?

where overbars (X) and primes (X') denote the seasonal climatology and anomalies, respectively.
The first term on the rhs represents the contribution of the SHF anomaly (Q') acting on a
constant MLD (H) and the second term represents the contribution of the MLD anomaly (H')
under climatological heating/cooling (Q). We ignore second and higher order terms of the Taylor
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Expansion in equation (2) (e.g., the non-linear contribution of both anomalies) because they are
typically much smaller than the sum of the first two terms (~1/10), except in the Antarctic
Circumpolar Current (ACC) region and the Labrador sea where the subduction zone of the
Atlantic Meridional Overturning Circulation is located. The first two terms can explain more
than 90 % of the total variances of the surface forcing term in most of the region (Fig. S1).

Next, we formulate a temperature variance budget equation (Boucharel et al., 2015; Guan
et al., 2019; Santoso et al., 2010) by multiplying the SST anomaly (T") on both sides of equation

(2):

TI aT’ _— T/ QI QH, + 14 (3)
ot~ \pc,H pc,H? o )
T’ aT’ —_ 1 Q’T’ H’ Q T’ + ’T’ (4)
ot pc,H H o 1

The left-hand-side of the equations are equivalent to half of the time tendency of T’ squared,
hence we can diagnose the dominant processes that result in an increase or decrease of the T’
variance. The reason why we employ the heat variance budget equation (Eq. 4) instead of the
heat budget equation (Eq. 2) is that the role of surface forcing processes in the SST evolution can
be captured by the variance budget equation.

As noted in section 1, Tozuka et al. (2018) proposed a metric for quantifying the relative
contribution of horizontal gradients of SHF and MLD to the seasonal variation of frontogenesis.
The method is analogous to the so-called “Turner angle” (Ruddick, 1983; You, 2002) which can
be used to diagnose relative contributions of vertical gradients of temperature and salinity to
double-diffusive convection. Here, following the basic concepts of these two studies, we define a
new metric called Flux Divergence Angle (FDA; ©), which quantifies the relative contributions
of SHF and MLD anomalies to local SST variability:

©=tan"'(Qp— Qu, Qo +Qu), (5

where

— ' __Igl
Qe =0Q'T, Qy = HHT.

The two indices of Qq and Qg are a part of the equation (4), have the same unit of K*W/m?, and
represent the product of anomalies of SST and SHF (or the product of anomalies of SST and
equivalent heat flux anomalies due to a MLD anomaly with climatological heating/cooling) .
Positive and negative values of these indices represent that the heat flux anomalies amplify and
dampen the local SST anomalies, respectively. Figures 1a to 1c are snapshots of SST, SHF, and
MLD anomalies on June 2015. In addition, a snapshot of FDA on June 2015 is shown in Fig. 1d,
calculated via equation (5) at each grid point. Figure 1f shows a two-dimensional histogram of
all pairs of Qq and Qpu, showing that there is no apparent linear relationship between them.

Next, we illustrate the physical meaning of the FDA using a schematic in Figure le.
When the FDA has a positive value, i.e., when the sum of Qg and Qp is positive, the covariance
of total surface forcing and SST anomaly is positive, so that the surface forcing term in equation
(4) acts to amplify the local SST anomalies. This is referred to as “Growth” stage of the SST
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evolution by surface forcing. Analogous, when the FDA has a negative value, i.e., when the sum
of Qq and Qg is negative, the covariance of total surface forcing and SST anomaly is negative, so
that the surface forcing term in equation (4) acts to dampen the local SST anomalies (“Decay”
stage). Additionally, when the relative contribution of SHF is larger than that of MLD, FDA has
a specific value range of 0° < @ < 90° for the “Growth” stage and —180° < ® < —90° for
the “Decay” stage. In contrast, when the contribution of MLD is larger than that of SHF, FDA
has the range of 90° < 0 < 180° for the “Growth” and —90° < 0 < 0° for the “Decay” stage.
Depending on the relative importance, we add the header of “Qq” or “Qy” before the name of
“Growth” or “Decay” stage, e.g., “Qq Growth” when 0° < @ < 90°. Note that a term of
“dominant” in the following text indicates their relative importance of the SHF and MLD terms
but not necessarily their absolute importance relative to other terms in the full variance heat
budget. For example, upwelling and lateral advection have large impacts on SST variability in
the eastern tropical Pacific and in western boundary current regions, respectively. In such cases,
surface forcing processes are less important than oceanic processes. Hence, the term “dominant”
used in this manuscript refers to only the relative importance of the SHF anomaly or MLD
anomaly among the surface forcing processes.
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Snapshot : June 2015
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Figure 1 : Snapshots of horizontal maps of (a) SST anomaly, (b) SHF anomaly, (¢c) MLD anomaly, and (d)
FDA on June 2015. (e) Schematic diagram of the four sectors (“Qq Decay”/ “Qy Decay” / “Qq Growth” / “Qg
Growth”) diagnosed by the FDA metric. (f) Two-dimensional histogram of Q¢ and Qy using all pairs over the
global ocean and in all seasons. Units of Qg and Qy are K*W/m’. Bin size is 10 K*W/m’ for both Qg and Qp.
Only count numbers greater than 10 are displayed. Dashed contours where Qo+ Qy =-300, -200, -100, 0, 100,
200, 300 are also plotted. (g) Histogram of FDA normalized by total count numbers (Unit: %) using a bin size
of 5°. Numbers below each label indicate the occurrence frequency in each sector (Unit: %).

To further investigate the regional characteristics of the FDA histogram (Fig. 1g), we
calculate the occurrence frequencies of the four sectors (F;) at each grid point during specific
seasons as below,

i=1:-180°< 0 < —90°
N;(x,y) i=2: -90°< @< 0°

FiCx,y) = Napp i=3: 0°< ®< 90° (6)
i =4 90° < © < 180°

where N; is the count number of events with a specific value range of FDA. Nayr is the total
count number at each grid point, which is 45 for each season (i.e., each 3-month seasonal
average during 15 years). Horizontal maps of F; tell us the regionality of the dominant processes
for the local SST evolution at each grid point.
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3 Results
3.1 Global characteristics of FDA

First, we provide an overview of the general characteristics of the FDA using all pairs of
Qq and Qp over the global ocean and in all seasons. Figure 1g shows a histogram of FDAs
normalized by total count numbers. The number below each label in Figure lg indicates the
occurrence frequency of each sector. The histogram has two sharp peaks at around 45° and -135°.
The occurrence frequency of “Qq Growth” is 32.19 % and that of “Qq Decay” is 37.99 %. These
results demonstrate that SHF anomalies are the main factor determining anomalies of the total
surface forcing term. This is consistent with previous results on the relationship between SHF
and SST, i.e., SST anomalies can be caused by wind or radiative forcing and can be dampened
by heat release from the sea surface (Hasselmann, 1976). Although the SHF anomalies are the
main driver of the SST anomalies in most of the cases investigated here, in some cases MLD
anomalies contribute more to the SST anomalies than the SHF anomalies. For example, FDA
around Hawaii on June 2015 (Figure 1d) had positive values greater than 90° (i.e., light reddish
color shading), suggesting that the SST anomalies were primarily determined by the “Qg
Growth” process rather than “Qqg Growth” and “Qq Decay”. In the next subsection, we further
explore the regional and seasonal characteristics of the “Qp Growth” and “Qy Decay” processes.

3.2 Regional and seasonal characteristics of FDA

Figure 2 shows the FDA histograms for each ocean basin (Pacific, Atlantic, and Indian
Ocean), different regions (Northern Hemisphere [NH], Equatorial region [EQ], and Southern
Hemisphere [SH]), and different seasons (December-January-February [DJF], March-April-May
[MAM], June-July-August [JJA], and September-October-November [SON]). Maps of the
occurrence frequency of the four sectors in each season are also shown in Figure 3. Hereafter, we
will describe the details of the relative contributions of MLD anomalies (“Qp Growth” and “Qgy
Decay”) compared to the contribution of SHF anomalies (“Qq Growth” and “Qq Decay”). The
contribution of SHF anomalies is dominant all over the global ocean (Fig. 2a-h), especially in
most of the extra-tropical regions and in winter (Fig. 3a,c,e,g,i,k,m,0).

3.2.1 Qu Growth process

In the extra-tropics (Fig. 2a,b,f,g,h), the histograms show a clear seasonal difference
between summer and winter. In the winter hemisphere (i.e., JJA in the NH and DJF in the SH),
occurrence frequencies of “Qq Growth” and “Qq Decay” are larger than those of “Qn Growth”
and “Qg Decay”. While occurrence frequencies of “Qq Growth” and “Qq Decay” are also large
in summer, however, occurrence frequency of “Qn Growth” in spring and summer is clearly
larger than in winter. This suggests that the contribution of MLD anomalies is more pronounced
in the spring and summer seasons than in the winter season, which is consistent with previous
research (Alexander et al., 2000; Alexander & Penland, 1996; Cronin et al., 2013; Elsberry &
Garwood, 1978; Lanzante & Harnack, 1983). The “Qu Growth” sector reflects the negative
covariance between anomalies of SST and MLD under climatological heating. In this situation,
MLD decreases with enhanced upper ocean stratification due to the increase in SST and/or
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decrease in sea surface salinity (i.e., decrease in the surface water density). On the other hand,
SST easily increases under a shallow MLD anomaly and climatological surface heating in the
summer hemisphere. Thus, during summer, this positive feedback loop between MLD and SST
anomalies can amplify the local SST anomalies.

As noted in the previous paragraph, the “Qp Growth” sector is dominant in the summer
hemisphere, particularly in the eastern part of the ocean basins (Fig. 3d,h,1,p). The region with a
large contribution of MLD anomalies exhibits a horseshoe-like pattern, especially in the North
Pacific (Fig. 3h,I). One reason for the large contribution of MLD anomalies is large variability of
MLD anomalies in subtropical regions (Fig. S4a), particularly due to strong surface friction
velocity in the subtropical Pacific (Zhu & Zhang, 2018). Another reason is a large value of the
ratio of mean SHF to mean MLD in the North Pacific and Atlantic (> 50 °N in Fig. S4b), which
is mainly due to the shallow climatological mean MLD under the strong climatological heating at
the sea surface (Fig. S4c, d).

3.2.2 Qu Decay process

While the contribution of SHF anomalies is dominant in most of the tropics (Fig. 2c,d,e),
there is a small peak of occurrence frequency of “Qp Decay” in the EQ Pacific in SON and DJF
(Fig. 2¢). The “Qy Decay” sector reflects the positive covariance between anomalies of SST and
MLD. A positive covariance is associated with upwelling processes. When upwelling is
enhanced, SST decreases due to more intrusion of cold water from deeper levels. At the same
time, temperature around the bottom of the mixed layer decreases more than at the surface. Thus,
MLD shoals due to the enhanced stratification induced by anomalous upwelling. Analogous,
when upwelling is suppressed, SST increases due to less intrusion of cold water from deeper
levels. At the same time, temperature around the bottom of the mixed layer increases more than
at the surface. Thus, MLD becomes thicker due to less stratification induced by suppressed
upwelling.

Horizontal maps of the “Qg Decay” occurrence frequency (Fig. 3b,f,j,n) show that this
process is dominant in the eastern tropical Pacific. As explained in the previous paragraph, it is
consistent with the unique regionality of positive covariance between anomalies of SST and
MLD due to the oceanic upwelling zone (Carton et al., 2008; Cronin & Kessler, 2002; Huang et
al., 2012; Wang & McPhaden, 2000), resulting in negative anomalies of equivalent heat flux
with deeper MLD under climatological heating in the tropics that act to dampen SST anomalies.



manuscript submitted to GRL

o (a) NH Pacific o (b) NH Atlantic
Qg Decay | Qy Decay | Qp Growth | Qi Growth '
75 75
5.0 5.0
25 25 -7
0.0 0.0
-180 -135 -90 -45 0 45 90 135 180 -180-135 -90 -45 O 45 90 135 180
o() (")
EQ Pacific EQ Atlantic EQ Indian Ocean
o (©) o (d) | . o (€)
DJF JIA
75 75 ) 75
5.0 5.0 | 5.0
25 ' 25 25
0.0 : w0 0.0
-180 -135 -90 -45 0 45 90 135 180 -180-135 -90 -45 0 45 90 135 180 -180-135 -90 -45 0 45 90 135 180
o() (") o()
o (f) SH Pacific o (9) SH Atlantic o (h) SH Indian Ocean
75 75 75
5.0 5.0 5.0
25 25
0.0 . 0.0
-180 -135 -90 -45 0 45 90 135 180 -180-135 -90 -45 0 45 90 135 180 -180-135 -90 -45 0 45 90 135 180
o) o) o)

265
266 Figure 2: Normalized histograms of FDA in 8 selected regions (a. NH Pacific [120°E-100°W, 10°N-60°N], b.

267 NH Atlantic [160°W-0°E, 10°N-60°N], c. EQ Pacific [120°E-70°W, 10°S-10°N], d. EQ Atlantic [70°W-20°E,
268 10°S-10°N], e. EQ Indian Ocean [30°E-120°E, 10°S-25°N], f. SH Pacific [130°E-70°W, 60°S-10°S], g. SH
269 Atlantic [70°W-20°E, 10°S-10°N], and h. SH Indian Ocean [20°E-130°E, 60°S-10°S]). Each color and line width
270 indicates the results for each season separately (DJF [thick, blue], MAM [thin, orange], JJA [thick orange],
271 SON [thin blue], All season [black filled]). Bin size of the histograms is 5°. Vertical lines in each panel
272 indicates the boundary between each sector. The map in upper right corner indicates the area of each selected
273 region.
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Figure 3: Horizontal maps of occurrence frequencies (Unit: %) in the four sectors for each season. From left
to right, the “Q, Decay”, “Qy Decay”, “Qqy Growth”, and “Qy Growth” sectors are displayed, respectively.
Each row shows the results in DJF (1 row), MAM (2™ row), JJA (3" row), and SON (4™ row).

3.3 Timescale dependence of the FDA histograms

Finally, we examine the timescale dependence of the relative contributions of SHF and
MLD anomalies using 5-day mean variables from the SODA 3.4.2 dataset. Focusing on the
summertime extra-tropics, when and where MLD anomalies largely contribute to the growth of
the SST anomaly (Figs. 2 and 3), we compute the FDA histograms using low-pass filtered
variables with different moving window sizes ranging from 15-days to 95-days (Fig. 4). The
results show a clear timescale dependence of the dominant sectors, particularly for “Qy Growth”
(i.e., 90° < O < 180°). The contribution of the MLD anomaly is very small when no low-pass
filtering is used (i.e., 5-day mean variable). However, the occurrence frequency of “Qy Growth”
becomes large when the window size is 25-days or 35-days in all selected regions and seasons.
For example, in the summertime North Pacific (Fig. 4a), the occurrence frequency of “Qy
Growth” increases from 18.7 % to 27.8% and the occurrence frequency of “Qqg Growth”
decreases from 31.3 % to 22.6 % when we change the window size from 5-days to 35-days.

This suggests that contribution of MLD anomalies is more pronounced on seasonal
timescales than on sub-monthly timescales. This could be explained by the difference in
dominant frequencies between MLD and SHF variability. Specifically, the spectra of SHF and
MLD anomalies correspond to “white noise” and “red noise”, respectively (Fig. S5). Therefore,
the contribution of MLD anomalies is more pronounced on longer timescales. Compared to the
extra-tropics in the summer hemisphere, there is no clear timescale dependence of the
contribution of MLD anomalies in the tropics (Fig. S6).
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Figure 4: Timescale dependence of the FDA histograms in the extra-tropics in the summer hemisphere (JJA
in NH and DJF in SH) using 5-day mean variables from SODA3.4.2. Colored lines show the histogram using
different moving averaged variables in the time dimension (legend in the upper right corner of the panel).
Colored text (light green and dark purple) at the top of each panel shows the relative frequencies in the four
sectors using 5-day and 35-day mean variables, respectively (Unit: %).

4 Summary and Discussion

To reveal the seasonal and regional characteristics of the role of MLD anomalies in
modulating SST variability, we propose a metric called Flux Divergence Angle (FDA) that
quantifies the relative contributions of anomalies of SHF and MLD anomalies to the month-to-
month variations of SST anomalies. The FDA is based on a metric proposed by Tozuka et al.
(2018). Using the FDA, we investigate the seasonal and regional characteristics of their relative
contributions. The contribution of MLD anomalies has two distinct features. First, MLD
anomalies amplify local SST anomalies particular in the extra-tropics during spring and summer,
relative to the contribution of SHF anomalies. Second, MLD anomalies suppress SST anomalies
particularly in the eastern part of the tropical Pacific during DJF. As discussed in section 3, we
speculate that the opposite role of MLD anomalies is associated with opposite signed
covariances between SST and MLD anomalies due to different formation mechanisms of MLD
(i.e., shoaling MLD by enhanced surface heating in the summertime extra-tropics vs. deepening
MLD by enhanced upwelling in the eastern tropical Pacific). A timescale dependence of
contributions of MLD anomalies in the extra-tropics during summer is also examined, indicating
an enhanced contribution of MLD anomalies on seasonal timescales compared to sub-monthly
timescales due to a large variance of MLD anomalies on longer timescales (red spectrum).

Our results show that the spatial pattern with pronounced contributions of MLD
anomalies in the North Pacific during summer is horseshoe-like (Fig. 3). This implies that MLD
anomalies might play a critical role in driving major climate modes in the North Pacific, such as
the Pacific Decadal Oscillation (PDO). Recent papers pointed out the importance of MLD
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anomalies in modulating major modes of climate variability such as the PDO (Dawe &
Thompson, 2007), Atlantic Meridional Mode (Kataoka et al., 2019), and the Atlantic
Multidecadal Oscillation (Yamamoto et al., 2020). Kataoka et al. (2019) also revealed that
variations in MLD have the potential to more than double the wind-evaporation-SST feedback
rate. Thus, the role of MLD anomalies in climate variability should be paid more attention to and
its further investigation is needed. In addition, large uncertainties associated with summertime
MLD in ocean and coupled general circulation models have been found (Ezer, 2000; Huang et al.,
2014) which is a potential source of SST biases (Zhu et al., 2020). Thus, improved understanding
of different formation mechanisms of MLD anomalies is required, especially for physical
processes associated with the atmospheric-forced MLD variability (Lee et al., 2015; Pookkandy
et al., 2016; Ushijima & Yoshikawa, 2019; Yoshikawa, 2015). Finally, we note that our simple
metric based on only three variables appears to be a useful diagnostic of the upper ocean
representation in climate models.

Data Availability Statement

Most of the datasets used in this study can be downloaded from Asia-Pacific Data Research
Center; http://apdrc.soest.hawaii.edu/data/data.php, which is a part of the International Pacific
Research Center at the University of Hawai‘i at Manoa, funded in part by the National Oceanic
and Atmospheric Administration (NOAA). Original data sources are listed below; OISSTV2 is
from https://www.ncei.noaa.gov/products/optimum-interpolation-sst, SODA3.4.2 dataset is from
https://www2.atmos.umd.edu/~ocean/index_files/soda3.4.2 mn_download b.htm. CERES data
were obtained from the NASA Langley Research Center CERES ordering tool at
https://asdc.larc.nasa.gov/project/ CERES/CERES _EBAF Edition4.1. The global ocean heat flux
and evaporation data provided by the Woods Hole Oceanographic Institution OAFlux project
(https://oaflux.whoi.edu/data-access/) were funded by the NOAA Climate Observations and
Monitoring (COM) program.
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