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Abstract

Large-scale socioeconomic studies of the impacts of floods are difficult and costly for countries such as Canada and the United

States due to the large number of rivers and size of watersheds. Such studies are however very important to analyze spatial

patterns and temporal trends to inform large-scale flood risk management decisions and policies. In this paper, we present

different flood occurrence and impact models based upon statistical and machine learning methods over 31,000 watersheds

spread across Canada and the US. The models can be quickly calibrated and thereby easily run predictions over thousands

of scenarios in a matter of minutes. As applications of the models, we present the geographical distribution of the modelled

average annual number of people displaced due to flooding in Canada and the US, as well as various scenario analyses. We find

for example that an increase of 10% in average precipitation yields an increase of population displaced of 18% in Canada and

14% in the U.S. The model can therefore be used by a broad range of end-users ranging from climate scientists to economists

who seek to translate climate and socioeconomic scenarios into flood probabilities and impacts measured in terms of population

displaced.
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Abstract. Large-scale socioeconomic studies of the impacts of floods are difficult and costly for countries such as Canada

and the United States due to the large number of rivers and size of watersheds. Such studies are however very important to

analyze spatial patterns and temporal trends to inform large-scale flood risk management decisions and policies. In this paper,

we present different flood occurrence and impact models based upon statistical and machine learning methods over 31,000

watersheds spread across Canada and the US. The models can be quickly calibrated and thereby easily run predictions over5

thousands of scenarios in a matter of minutes. As applications of the models, we present the geographical distribution of

the modelled average annual number of people displaced due to flooding in Canada and the US, as well as various scenario

analyses. We find for example that an increase of 10% in average precipitation yields an increase of population displaced of 18%

in Canada and 14% in the U.S. The model can therefore be used by a broad range of end-users ranging from climate scientists

to economists who seek to translate climate and socioeconomic scenarios into flood probabilities and impacts measured in10

terms of population displaced.

1 Introduction

Extreme weather events such as floods consistently rank in the top three risks identified by thousands of global leaders surveyed

by the World Economic Forum (Granados Franco et al., 2022). With losses increasing in large parts of the world due to rapid

urbanization, aging infrastructure and climate change (see e.g., UNDRR (2022); Mazzoleni et al. (2021); Andreadis et al.15

(2022); Rentschler et al. (2022) for a global perspective, and Golnaraghi et al. (2020); Iglesias et al. (2021) for a Canadian

and American perspective), there is mounting pressure on governments and the insurance industry to reduce the protection

gap and the vulnerability of populations. Meeting these goals however rely on the ability of national and local governments as

well as the financial services industry to map flood risk or acquire similar information at very large scales. Flood modelling

over a country such as the United States or Canada is very challenging given the number of rivers and the size of watersheds.20

There is therefore a very high computational and financial cost to large-scale flood modelling leaving many stakeholders

with outdated information who assume afterwards the high cost of their poor flood risk management decisions. Significant

endeavors by the First Street Foundation in the United States (First Street Foundation, 2020) and the Task Force on Flood
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Insurance and Relocation in Canada (Government of Canada, 2022) have provided an up-to-date view of how both countries

are still vulnerable to flooding.25

Fluvial or riverine flood modelling is typically broken down into top-down and bottom-up approaches. Bottom-up flood mod-

els rely on rainfall-runoff and/or hydrological models forced from statistical distributions of discharge to feed high-resolution

hydraulic models (de Bruijn et al., 2014; Sampson et al., 2015; Falter et al., 2016). When used in combination with vul-

nerability and exposure information (e.g., damage curves, location and characteristics of properties at risk), bottom-up flood

models are very useful for local governments with applications ranging from land use and emergency planning to assessing30

the economic viability of protection works such as dikes. But the amount of high-resolution information required and the high

computational costs of numerical hydraulic models make bottom-up approaches difficult and costly for large-scale socioeco-

nomic studies (Ward et al., 2015). On the other hand, top-down flood models rely on low-resolution hydrodynamic models

forced from weather or climate models to simulate runoff or other flood-related variables of interest (Yamazaki et al., 2011;

Winsemius et al., 2013). We also find applications of top-down models for future projections in Jongman et al. (2014); Dottori35

et al. (2018); Ward et al. (2020). Still computationally intensive, such approach is more commonly used for large-scale appli-

cations but often lack the precision and focus on the impact of flooding that bottom-up models provide that is often necessary

for socioeconomic applications.

The ability to quickly run multiple what-if scenarios, integrate outputs from large ensemble weather and climate models

or stochastic precipitation simulators to analyze spatial patterns and temporal trends at large-scale is very important to end-40

users such as portfolio managers, economists, financial analysts and actuaries to inform risk management decisions and policy.

However, for both top-down and bottom-up approaches, the number of scenarios available is very limited while lacking the

flexibility needed by various end-users. It is also important to emphasize that many large-scale socioeconomic studies rarely

need output at the resolution provided by both top-down or bottom-up approaches and there is still a large amount of uncertainty

to flood modelling (Bates, 2023), especially for rare events (beyond a return period of 50-100 years).45

In this paper, we introduce statistical and machine learning models for annual (fluvial) flood occurrence and socioeconomic

impact (when there is a flood), measured by population displaced, for more than 31,000 basins over all Canada and the con-

tinental United States. Behavior of the models is driven by a set of atmospheric, climatological, and socioeconomic variables

as well as basin characteristics and land use. Fitting of the models and predictions from the latter are both quick (within min-

utes) and easily replicable on a modern desktop computer. We say the model targets socioeconomic studies because it directly50

focuses on population displaced, which is a proxy for impacts of flooding and a key driver of economic losses.

We also introduce spatial dependence in the models by assuming that downstream flood occurrence and impact may be

dependent upon flood dynamics immediately upstream. Such dependence aims to mimic spatial clusters of flooding due to the

overflow of water within a river and its tributaries. This is an important feature for typical insurance and reinsurance portfolio

management applications that focus on the tails of the aggregate loss distribution, and therefore, on the sum of occurrence and55

people displaced over multiple basins. The importance of spatial dependence for large-scale flood risk assessments has been

discussed by Metin et al. (2020) and modelled by Lamb et al. (2010); Wyncoll and Gouldby (2015); Quinn et al. (2019) using

copulas to correlate discharge over gauged stations (within bottom-up models). Our spatial dependence modelling approach
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differs widely from the latter contributions by making this dependence explicit on a set of common covariates, therefore greatly

simplifying the estimation of correlations.60

Our model builds on and extends Carozza and Boudreault (2021) by providing a much higher resolution view of flood risk:

31,000 basins over Canada and US versus 700. This is a necessary step for many end-users to better capture local climate

dynamics and a challenging step as well for the model to remain computationally manageable for calibration, prediction and

simulation purposes. Moving to higher resolution also requires to handle the flow of water upstream and downstream and as

such, we introduce first order spatial autoregression in the statistical and machine learning models.65

The paper is structured as follows. Section 2 presents the various datasets used to model flood occurrence and impact in terms

of population displaced. Section 3 defines what is flood occurrence, presents the statistical and machine learning methods in

addition to the covariates used to fit various occurrence models. Their performance is then assessed with test and validation sets

and we analyze the key determinants of flood occurrence. Section 4 is structured similarly to Section 3 but for flood impact. It

defines flood impact in terms of population displaced, summarizes the statistical and machine learning methods, covariates and70

various models, looks into the performance of the models and the key determinants of flood impact. By combining predictions

of flood occurrence and impact from the previous sections, we then illustrate in Section 5 various applications of the model.

Namely, an analysis of the geographical patterns of the modelled average annual population displaced due to flooding across

Canada and the continental US (Section 5.1), as well as a few what-if scenarios (Section 5.2) to determine how population

displaced is impacted by perturbations on precipitation. We find for example that a 10% increase in average precipitation,75

which is consistent with a 2-degree warming scenario, yields a larger increase in population displaced of 18% in Canada and

14% in the U.S. Finally, Section 6 concludes the paper with a summary of the results and a longer discussion about potential

applications.

2 Data

Riverine (or fluvial) floods are complex phenomena that depend on an important number of variables to appropriately represent80

their behavior. To model flood occurrence and impact, we first gather a large set of atmospheric, hydrological, geological and

socioeconomic variables. This section describes the key datasets used throughout the paper and basic operations in preparation

for the statistical and machine learning methods.

2.1 Observed Floods

Our flood model is fitted to historical flood events that are significant from a socioeconomic point of view, meaning they85

typically trigger a state of emergency by a local authority or generate large (re)insurance claims. With that in mind, we choose

the Global Active Archive of Large Flood Events from the Dartmouth Flood Observatory, known as the DFO database from here

on (Brakenridge, 2022). This database contains significant floods from 1985 to the present. Observations in the DFO database

are derived from news, governmental, instrumental, and remote sensing sources. It has been used recently by numerous authors
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(Stein et al., 2020; Zhang et al., 2022; Schumann et al., 2022; Liu et al., 2022; Guido et al., 2023), notably for a wide range of90

applications such as flood classification and detection.

For each flood event in the DFO database, there exists a polygon that describes a raw flood extent such as a contour of areas

affected (not to be confused with precise inundation extents acquired from satellite imagery for example), as well as the count

of population displaced. We focus on events that took place in Canada and in the United States and the resulting dataset has 504

flood events (polygons, dates of the event and corresponding population displaced) in the 1985-2021 period. The blue shaded95

polygon of Figure 2 illustrates a typical observation in the DFO dataset.

2.2 Watershed Structure

The main geographical unit used throughout this paper is the watershed. That is, flood occurrence and impact, as well as

the covariates used to explain the latter are defined over watersheds. Hence, we choose the HydroBASINS database from

HydroSHEDS (Lehner and Grill, 2013; Lehner et al., 2008). The HydroBASINS database is based on the Pfafstetter coding100

system and offers twelve different resolutions: 1 being the largest basins (size of a continent) while 12 is the smallest possible

basin. For this research, we work with basins at Pfafstetter level 8 (PL8) that provide 31,410 watersheds to work with over

Canada and the continental United States. This level of resolution is small enough to capture regional behaviors while being

large enough so calculations are completed in a reasonable amount of time (matter of minutes up to an hour). Moreover,

for each watershed the HydroBASINS dataset includes information about the basin’s surface area and connection to the next105

downstream watershed. Figure 1 shows most of the 31,410 watersheds at Pfafstetter level 8 over Canada and the United States.

The figure is truncated above the 60th parallel but the model also resolves the Canadian territories and Alaska. Moreover, we

see the boundaries of PL8 watersheds in Figure 2 highlighted in red.

2.3 Basin Characteristics

HydroBASINS is tied to a much larger and popular database known as HydroATLAS (Linke et al., 2019). HydroATLAS offers110

more than 280 different variables already aggregated by watershed which can be used to e.g., better understand flood dynamics

at large scales (Lindersson et al., 2021; Bernhofen et al., 2022; Chevuturi et al., 2023). This dataset also allows us to extract

the same variables from upstream watersheds which is useful to create a spatial autoregressive structure in a model. After a

careful examination of HydroBASINS, we selected five variables (some of which include upstream metrics) for our occurrence

and impact models. These variables have been chosen based on their ability to explain water infiltration, surface runoff and115

the speed at which a watershed drains itself downstream. Note that variables in HydroATLAS are static, i.e. fixed at any given

time.

First, the degree of regulation (dor_pc_pva) gives us an understanding on how structures or defences (such as dams) have

an impact on the natural water flood rates (Lehner et al., 2011). It is a ratio between the volume of water contained by the

watershed with and without those structures. If the ratio is above 100, then the watershed can support higher water flow rates120

than what it would naturally do. Secondly, stream gradient (sgr_dk_sav) represents the ratio between the elevation range

and length of the river. This metric is constructed with the EarthEnv-DEM90 digital elevation model that has a resolution of
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Figure 1. Map of Pfafstetter level 8 watersheds over Canada and the United States. Credits: Map produced using Leaflet with Sta-

dia.StamenTonerLite layer.

3 arc seconds (Robinson et al., 2014). Finally, we select three variables (along with their upstream values) to better describe

soil composition (Hengl et al., 2014); that is, the percentage of sand (snd_pc_), silt (slt_pc_), and clay (cly_pc_) of the

topsoil layer (0-5cm).125

2.4 Atmospheric Variables and Climate Classification

Atmospheric variables such as temperature and precipitation are key elements of our proposed flood model, notably to introduce

time-varying dynamics and spatial dependence. We carefully choose datasets that have a sufficiently high resolution but also

have wide recognition in the climate science literature. For temperature, we choose the Daymet dataset (Thornton et al.,

2021, 2020, 1997). Daymet provides the daily minimum and maximum temperatures at 1km x 1km resolution from 1980 and130

onward across North America, including Canadian territories (Yukon, Northwest Territories and Nunavut). Data from 1985

to 2021 was extracted. Precipitation data comes from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) database

(Beck et al., 2019b). MSWEP provides precipitation at 3-hourly and daily frequencies from 1979 to the present at a resolution

of 0.1◦ per 0.1◦. Although it has a coarser resolution than Daymet, it has the highest accuracy in densely gauged and ungauged

regions versus other known precipitation datasets such as CHIRPS and PERSIANN-CDR (Beck et al., 2019a, 2017). One135

shortfall of MSWEP though is its limited coverage to 60◦N. To include Canadian territories in the proposed flood model, we
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work with Daymet’s precipitation above 60◦N. Precipitation is therefore aggregated per PL8 using MSWEP below 60◦N and

Daymet above 60◦N.

For use in the statistical and machine learning methods, we build various metrics derived from temperature and precipitation.

The objective is to understand how minimum and maximum temperatures and cumulative precipitation over days, weeks and140

months may influence riverine flooding. The first step is to find the maximum daily precipitation for each PL8 watershed and

hydrological year (defined in Section 3.1). From that day, we compute the following three metrics: average daily precipitation,

average daily maximum temperature and average daily minimum temperature, all three computed over the last 7 days, the

previous 8-30 days, the previous 31-60 days and the previous 61-120 days. This is in line with Davenport et al. (2021) who

found that 5-day and monthly state-level precipitation correlate with losses in the US. We also add longer time horizons to145

account for snow accumulation and melt processes that are significant over Northeastern US and most Canadian provinces. In

summary, there are three atmospheric variables each measured over four non-overlapping time periods, for a total of twelve

metrics.

To better capture possible interactions between temperature and precipitation, we also use the Köppen-Geiger (KG) climate

classification map at a resolution of 30 arc seconds over the period 1980-2016 (Beck et al., 2018). The higher resolution is150

important because there are some PL8 watershed areas smaller than 1km2. The KG climate classification proposes 30 types of

climates based upon various metrics of temperature and precipitation and their interactions. For each PL8 watershed, we assign

the KG climate with the most significant coverage.

2.5 Land Use

Land use also significantly influences riverine floods (Rogger et al., 2017; UNDRR, 2022). Considering that land use is dy-155

namic, it is imperative to find a dataset with a temporal dimension. Thus, we choose the Copernicus Global Land Cover

database (Buchhorn et al., 2020), versions 2 and 3. It includes an annual raster of the land cover from 1993 to 2020 globally at

a resolution of 100m x 100m. Since we have flood occurrences prior to 1993, we fix land use in the period 1985-1992 to that

of 1993, and to that of 2020 for the year 2021. Overall, the database has 23 land use classes, which we reduce to eight generic

classes (in alphabetical order):160

– Bare_ext : Empty from vegetation, water or urbanization;

– Crop_ext : Agriculture, excluding forestry;

– Forest_ext : Large share of trees;

– Perm_snow_ext : Covered by snow most of the year or all year long;

– Plain_ext : Grass and shrub mainly;165

– Urban_ext : Urban perimeter (residential, commercial, industrial, etc.);

– Water_ext : Water course, lake, etc.;
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– Wetland_ext : Wetland.

Then for each PL8 watershed, we compute the percentage of a specific land use per year.

2.6 Socioeconomic Variables170

Given how floods are reported in the DFO database, we include socioeconomic variables such as population and wealth in the

proposed flood model. The temporal dimension of socioeconomic variables is also very important and we use data from the

Socioeconomic Data and Application Center (SEDAC).

We use the Global Gridded Geographically Based Economic Data (G-Econ). It provides the gross domestic product (GDP)

for the years 1990, 1995, 2000 and 2005 (Nordhaus and Chen, 2016; Nordhaus, 2006). The GDP is shown in US Dollars175

allowing for comparisons between countries by purchasing power parity. The resolution of each map is 100km x 100km. We

use exponential interpolation and extrapolation per grid cell for years prior to 1990 and in between each 5-year period. We

also use the Gridded Population of the World version 4 (GPWv4). It has a resolution of 30 arc seconds and has five maps

covering years between 2000 to 2020. Linear interpolation and extrapolation per grid cell is applied for years prior to 2000 and

in between each 5-year period. For both variables, interpolation and extrapolation follow Carozza and Boudreault (2021).180

For both population and wealth datasets, values are summed per PL8 watershed. We then use GDP per capita and population

density in the statistical and machine learning models.

3 Occurrence Model

In this section, we define flood occurrence, describe the statistical and machine learning methods with their covariates, analyze

the performance of the various occurrence models and summarize the key determinants of flood occurrence from our fitted185

models.

3.1 Definition

We say we have (fluvial) flood occurrence in a given PL8 watershed when a DFO flood polygon intersects its boundaries. In

practice, the intersection may be too small to be relevant, and hence, there is flood occurrence only when at least 5% of the

watershed’s area is covered by the DFO flood polygon. We also fitted occurrence models using a threshold of 10% instead190

and it had very limited impact on the results. Figure 2 shows how occurrence is computed in each basin intersected by the

corresponding DFO flood polygon.

We assume that there is at most one flood occurrence per hydrological year. We choose an hydrological year rather than a

calendar year to keep the seasonal precipitation cycle intact and avoid complications with respect to snow accumulation and

snow melt between November and May. We follow the definition of the US Geological Survey for a hydrological year (water195

year, USGS (2016)) in North America; that is, a year starting on October 1st of one year and ending on September 30th of the

following year.
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Figure 2. Spatial intersection of PL8 watersheds (red boundaries) with a DFO flood polygon (blue shaded area). This figure illustrates how

flood occurrence is assigned in the case of a flood that took place in 1985 over Illinois, US. Ones and zeroes indicate whether an intersection

was counted as a flood occurrence or not. Only a subset of the intersections are highlighted in the figure to illustrate the approach. Credits:

Map produced using Leaflet with Stadia.StamenTonerLite layer.

Applying this definition of flood occurrence over Canada and the United States, we get nearly 1.2 million observations, that

is 37 years of historical occurrences (ones and zeroes) for each of the 31,410 watersheds. The 504 events in the DFO thus

translate into 59,651 flood occurrences or about 5.1% of observations.200

3.2 Methodology

Modelling flood occurrence is akin to a classification problem. Consequently there are two families of models one can use

for such problems: statistical and machine learning methods. The statistical learning methods we use in this paper are the

Generalized Linear Models (GLM) and the Generalized Additive Models (GAM) whereas the machine learning methods we

use are tree-based techniques such as random forests (RF) and gradient boosting models (GBM). For more details about these205

methods, one should read Chapters 4, 7 and 8 in James et al. (2021).

Statistical Learning Methods

Generalized Linear Models (GLM) extend (multiple) linear regression models for responses that are not in IR. For example,

the Poisson regression is a GLM model for counts (values in {0,1,2,3, ...}), whereas a logistic regression is a GLM model for

binary responses (either 0 or 1). Flood occurrence being a binary response, the logistic regression is therefore defined as210

g (E[Y ]) = β0 +β1X1 +β2X2 + . . . (1)
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where g(x) = 1/(1+exp(−x)) is the logit function, Y is a random variable taking values in {0,1}, X1,X2, ... are the covariates

(or predictors) and βs are the coefficients of the model. Therefore the logistic regression is modelling a transformation g of the

probability of occurrence E[Y ] as a linear and additive function of the predictors.

The GAM (Hastie and Tibshirani, 1990) is an extension of the GLM relaxing the assumption of linearity between the215

response variable and the predictors while keeping additivity of each predictor’s contribution. GAM is defined as

g (E[Y ]) = α+ f1 (X1)+ f2 (X2)+ . . . (2)

where α is the intercept and f1(), f2(), ... are non-linear transformations of the covariates. Typical functions for f include

polynomials, logarithm, splines, etc. One can deduce that when f is βX , then the GAM is a GLM.

Machine Learning Methods220

Machine learning methods typically refer to tree-based methods as well as neural networks, among others. But since inter-

pretability of the models is very important to our analyses, we did not use neural networks. In this paper, we therefore consider

random forests (RF) and gradient boosting models (GBM) which are both based upon decision trees (see Section 8.1 in James

et al. (2021)).

RF models (Ho, 1998; Breiman, 2001) combine decision trees generated by randomly sampling observations and their225

features (covariates). Random forests are known to reduce overfitting and are considered a better alternative than plain decision

trees. Although the relationship between the response variable and the covariates is often difficult to assess, measures such as

variable importance and sensitivity analyses allow us to better interpret the predictions from the model.

Gradient Boosting Models (GBM) are also based on decision trees but use what are known as weak learners (very small

decision trees with 1 or 2 rules) to improve predictions (Friedman, 1999; Mason et al., 1999; Boehmke and Greenwell, 2019).230

Each weak learner tries to improve the prediction by a small amount defined by the learning rate λ. Decision trees are then

sequentially added to the model to decrease the error until it reaches an optimal level of fitting. Detailed implementation of

both methods is provided in Appendix A.

Methods are often compared on the basis of their flexibility and interpretability. Flexibility refers to the capability of a

model to fit complex non-linear relationships and interactions whereas interpretability refers to the ability of the modeller to235

understand and explain how a model behaves (see Section 2.1.3 in James et al. (2021)). Even if non-linearity and interactions

can be included in the GLM and GAM by defining any X as a function of two auxiliary covariates, it remains an arbitrary

choice made by the modeller. Tree-based methods can therefore form complex interactions on their own at the price of losing

some interpretability. Another advantage of GLM and GAM models is their ability to extrapolate beyond the values they have

been trained on. This is useful when a model is first fitted with covariates measured under the current climate and used to make240

predictions with projected covariates under future climates. In such a situation, tree-based methods will make predictions based

upon the closest match in the training data.
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Covariates and Models

With the datasets described in Section 2, we can build different sets of covariates for use along with the statistical and machine

learning methods. Covariates are either static (fixed in time) or dynamic (time-varying). What we refer to as the Baseline set245

of covariates is the following 43 covariates:

– Basin characteristics: 8 static covariates, including degree of regulation, stream gradient, clay, silt and sand fractions in

soil (see Section 2.3). The upstream value is also included for the latter three.

– Atmospheric variables: 24 dynamic covariates following the 12 temperature and precipitation metrics described in Sec-

tion 2.4, including their upstream values.250

– Climate classification (Section 2.4): 1 static covariate with 30 factors describing the most significant climate classes;

– Land use (Section 2.5): 8 static covariates providing the percentage of the watershed covered by each type of land use;

– Socioeconomic variables (Section 2.6): 2 dynamic covariates including GDP per capita and population density;

Moreover, the Baseline set of covariates includes a dummy (indicator) variable that informs if a flood occurred in at least one of

the neighboring upstream watersheds (following the definition of Section 3.1). Overall, the Baseline model includes numerous255

upstream variables to analyze the effect of spatial autoregression.

In addition to the Baseline model, we explore alternative formulations by including and excluding groupings of covariates.

As such, models have also been fitted without upstream variables (0US suffix), that is the Baseline minus: 3 upstream basin

characteristics, 12 atmospheric variables and the upstream flood dummy. The latter two sets of covariates were then used in

conjunction with the GLM, RF and GBM. Because the RF and GBM can find interactions between variables, we manually260

created 32 interactions between temperature and precipitation to be used uniquely for the GLM and GAM models (INTER

suffix) to allow comparison with the RF and GBM. The 32 interactions were obtained with couples (24) and triplets (8) of

climatic variables across the four time periods and whether upstream climate variables are included or not. Finally, our GAM

models were created by taking the log of precipitation, population density and GDP per capita.

There are overall 10 models, listed as:265

– GLM: 3 models, including Baseline (GLM), Baseline with interactions (GLM INTER) and Baseline without upstream

variables (GLM 0US);

– GAM: 3 models, including Baseline with logged precipitation and socioeconomic variables (GAM), Baseline with in-

teractions (GAM INTER), and the former without upstream variables (GAM 0US);

– RF: 2 models, including Baseline (RF) and Baseline without upstream variables (RF 0US),270

– GBM: 2 models, including Baseline (GBM) and Baseline without upstream variables (GBM 0US).
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3.3 Performance

Models were first fitted on a training set determined as a random sampling of 70% of the data between 1985 to 2019. Then

we assessed the performance of the models on a test set and on a validation set. The test set is made of the 30% remaining

data available between 1985 and 2019 whereas the validation set are occurrences and covariates observed over 2020 and 2021275

as a whole. None of the models are trained with data from 2020 and 2021, which makes this exercise a true out-of-sample

experiment.

Metrics

To assess the ability of the models to predict flood occurrence based on new data, we calculated two performance metrics, that

is, the area under the receiver operating characteristic (ROC) curve and the area under the precision-recall (PR) curve. Those280

two metrics are calculated globally (Canada and United States) and over PL2 watersheds to determine the regional performance

of the predictions. The global metrics are shown below whereas the regional metrics are provided as part of the Supplementary

Information (SI). The SI is an interactive HTML application generated by a R Markdown.

The ROC curve plots the true positive rate (also called sensitivity or recall) as a function of the false positive rate (one minus

specificity). The closer the ROC curve is to the top-left, the better the sensitivity and the specificity of the model, and hence,285

the better its predictive capability. The area under the ROC curve is an aggregate measure that considers all values of false

positive rates between 0 and 1. A true null classifier yields a straight diagonal line whose area below the ROC curve is 0.5.

Therefore, models with predictive capability will have areas above 0.5 whereas skilled models should yield an area above 0.7

(Buizza et al., 1999).

The PR curve is similar to the ROC curve, but is built on the precision and recall metrics instead. Precision is defined as the290

ratio of true positives over the sum of all predicted positive values. A high precision means that a model can correctly predict

positive values without creating too many false positives. Recall is defined as the ratio of true positives over the sum of true

positives and false negatives. A high recall means that a model predicts a small amount of false negatives. Therefore, a high

value of the area under the PR curve means that a model can predict flood occurrence without misclassifying a significant

number of non-occurrences.295

Results

Table 1 shows the performance of the 10 models using the area under the ROC and PR curves, under the test and validation

sets.

We first observe that models that include upstream variables (covariates and flood indicator) show better predictive skill

than those that exclude these variables. This means that flood occurrence may exhibit spatial dependence in the form of spatial300

autoregression. Even if DFO polygons provide a raw extent of a flooding event by drawing an approximate contour over higher

resolution inundation extents, that result indicates that the polygon orientation therefore replicates the up and downstream flow

of water and the resulting spatial dependence in flood occurrences. If the DFO polygons were randomly shaped, inclusion of

11



Test Validation

Models ROC PR ROC PR

GLM 0.93494 0.70438 0.91441 0.59185

GLM INTER 0.93704 0.71066 0.91038 0.61194

GLM 0US 0.84867 0.35501 0.77166 0.19060

GAM 0.93736 0.71093 0.91454 0.61694

GAM INTER 0.93789 0.71175 0.91289 0.61625

GAM 0US 0.85244 0.36734 0.77331 0.20861

RF 0.96861 0.82717 0.89875 0.60338

RF 0US 0.95713 0.77644 0.75196 0.18475

GBM 0.94450 0.73724 0.91441 0.61791

GBM 0US 0.87634 0.44921 0.77179 0.20661
Table 1. Area under ROC and PR curves for each of the 10 models used. The test dataset consists of 30% of the observations from 1985 to

2019 (randomly sampled). The validation dataset consists of occurrences and covariates observed from 2020 and 2021. 0US: Models trained

without upstream variables. INTER: Models trained with interactions between atmospheric variables.

upstream variables would yield weaker predictions. However regardless of the inclusion of upstream variables, all 10 models

have predictive skill with an area under the ROC curve well above 0.85 in the test set and above 0.75 in the validation set,305

which is very good.

We also investigate the contribution to the predictive skill of the added interactions in the GLM and GAM models. We

observe only a marginal gain in the test set (for both metrics) with a mixed signal in the validation set, that is, we remark a

slight gain under the PR metric and small loss under the ROC metric. Given the added complexity tied to the extra 32 covariates

and on the basis of parsimony, we decide not to further analyze these models.310

For a fixed set of covariates, we compare the predictive skill of various classes of models; that is, we compare the GLM

and GAM. Under the test set, the area under the ROC curve is similar for all four classes of models with upstream variables

(0.93-0.97) but performance is better for the RF without upstream variables (0.96 vs 0.85-0.88). When we consider the area

under the PR curve, the RF also outperforms other models, with (0.83 vs 0.70-0.74) or without upstream variables (0.78 vs

0.36-0.45). However, under the validation set, the models have much similar performance. For example, the area under the ROC315

(PR) curve is in the range of 0.90-0.91 (0.59-0.62) for all four models including upstream covariates, or 0.75-0.77 (0.19-0.21)

without upstream variables.

The SI shows that the models perform very well across different regions of Canada and the United States but appear slightly

weaker (but still skillful) in the South-Western United States (dry, desertic climates) and on the East Coast as well.
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3.4 Key Determinants320

In this section we analyze the key determinants of flood occurrence from six occurrence models, that is the GAM, RF and GBM,

each with or without upstream variables. Those six models were deemed most relevant to further investigate on the basis of

their predictive skill. Models with interactions have been excluded for parsimony and due to their lack of significant additional

predictive ability, and the baseline GLM as well since it is encompassed in the GAM models. To explore the determinants, we

trained the models again, but using 100% of the data available from 1985 to 2021.325

Table 2 shows the top 10 most significant covariates for all six models according to the absolute t-value (GAM models),

variable importance (RF models) and variable influence (GBM models). The sign of the coefficient is also provided for GAM

models. The SI provides the full list of covariates, value of their coefficients and statistical significance (for both GAM models)

and the variable importance/influence for the four RF and GBM models.

Without surprise, precipitation typically appears in the top 2 or 3 variables, with the 7-day precipitation being the most330

important across models. This is in line with Davenport et al. (2021) who found a strong link between 5-day precipitation

and flood losses in the US. Under the GAM models that we can easily interpret, we observe that coefficients for precipitation

covariates are all positive, meaning that flood occurrence probabilities increase with precipitation. Temperature covariates also

appear significant but the sign of their coefficients is more difficult to interpret as we might capture seasonality and different

hydrological regimes.335

For all models with upstream variables, the most significant one is the upstream flood indicator which points to how flood

occurrence may be spatially correlated to upstream basins. It is also worth mentioning that in the GAM and GBM models,

upstream variables such as precipitation and temperature also appear in the top 10.

Socioeconomic variables also appear significant across all models. Population per capita (GPW) is within the top 10 for

5 out of 6 models and GDP per capita (GDPPC) for 4 out of 6 models. In the GAM models, both of these variables have340

a positive influence on flood occurrence. Although wealth and vulnerability should be inversely proportional, it appears that

population density and wealth better capture the overall impact of urbanization on flood occurrence than the urban extent land

use variable.

Finally, the GBM models differ from other models by putting a greater emphasis on soil type and the Koppen-Geiger climate

classification. Because these variables are static over time, it appears the GBM focused on leveraging the basin characteristics345

rather than capturing the dynamic aspect of atmospheric variables. The GBM models should therefore be less responsive to

their daily dynamics, but better at distinguishing flood occurrence from one basin to the other.

4 Impact Model

In this section, we calculate the impact of a flood, describe the statistical and machine learning methods with their covariates,

analyze the performance of the various impact models and summarize the key determinants of flood impact from our fitted350

models. The structure of this section is very much similar to that of Section 3.

13



G
A

M
G

A
M

0U
S

R
F

IN
D

_F
L

O
O

D
_U

PS
T

R
E

A
M

+
Pr

ec
ip

_M
ea

n_
7

+
IN

D
_F

L
O

O
D

_U
PS

T
R

E
A

M

Pr
ec

ip
_M

ea
n_

7
+

Pr
ec

ip
_M

ea
n_

8_
30

+
Pr

ec
ip

_M
ea

n_
7

Pr
ec

ip
_M

ea
n_

8_
30

+
Pr

ec
ip

_M
ea

n_
61

_1
2

+
Pr

ec
ip

_M
ea

n_
61

_1
20

U
S_

Pr
ec

ip
_M

ea
n_

7
+

G
D

PP
C

+
Pr

ec
ip

_M
ea

n_
31

_6
0

G
D

PP
C

+
G

PW
+

cl
y_

pc
_u

av

G
PW

+
Te

m
p_

M
in

_M
ea

n_
61

_1
20

+
Pr

ec
ip

_M
ea

n_
8_

30

C
L

IM
A

T
E

_K
G

+/
-

Te
m

p_
M

ax
_M

ea
n_

31
_6

0
-

G
PW

Te
m

p_
M

ax
_M

ea
n_

31
_6

0
-

sn
d_

pc
_s

av
-

Te
m

p_
M

ax
_M

ea
n_

61
_1

20

U
S_

Te
m

p_
M

in
_M

ea
n_

61
_1

20
-

Pr
ec

ip
_M

ea
n_

31
_6

0
+

Te
m

p_
M

in
_M

ea
n_

61
_1

20

sg
r_

dk
_s

av
-

C
L

IM
A

T
E

_K
G

+/
-

Te
m

p_
M

ax
_M

ea
n_

31
_6

0

R
F

0U
S

G
B

M
G

B
M

0U
S

Pr
ec

ip
_M

ea
n_

7
IN

D
_F

L
O

O
D

_U
PS

T
R

E
A

M
C

L
IM

A
T

E
_K

G

Pr
ec

ip
_M

ea
n_

61
_1

20
C

L
IM

A
T

E
_K

G
Pr

ec
ip

_M
ea

n_
7

cl
y_

pc
_s

av
U

S_
Pr

ec
ip

_M
ea

n_
7

sn
d_

pc
_s

av

Pr
ec

ip
_M

ea
n_

31
_6

0
Pr

ec
ip

_M
ea

n_
7

G
D

PP
C

Pr
ec

ip
_M

ea
n_

8_
30

G
PW

cl
y_

pc
_s

av

Te
m

p_
M

ax
_M

ea
n_

61
_1

20
cl

y_
pc

_u
av

G
PW

Te
m

p_
M

in
_M

ea
n_

61
_1

20
U

S_
Pr

ec
ip

_M
ea

n_
61

_1
20

Pr
ec

ip
_M

ea
n_

61
_1

20

Te
m

p_
M

ax
_M

ea
n_

31
_6

0
sn

d_
pc

_u
av

Pr
ec

ip
_M

ea
n_

31
_6

0

Te
m

p_
M

in
_M

ea
n_

7
G

D
PP

C
Te

m
p_

M
ax

_M
ea

n_
31

_6
0

Te
m

p_
M

ax
_M

ea
n_

8_
30

w
at

er
_e

xt
Pr

ec
ip

_M
ea

n_
8_

30
Ta

bl
e

2.
To

p
10

m
os

t
si

gn
ifi

ca
nt

co
va

ri
at

es
fo

r
si

x
oc

cu
rr

en
ce

m
od

el
s.

C
L

IM
A

T
E

_K
G

is
a

fa
ct

or
ia

l
va

ri
ab

le
,

th
us

w
e

en
co

m
pa

ss
ea

ch
va

ri
ab

le
of

th
e

cl
im

at
e

to
ge

th
er

.

14



4.1 Definition

Flood impact is measured in terms of population displaced, which is a key driver of the socioeconomic impacts of a flood.

Whereas the DFO dataset directly provides the population displaced per event, we have to calculate how many people were

potentially affected per event and per PL8 watershed since this is our basic geographical unit.355

We first started by approximating the number of people at risk of flooding per PL8 watershed. This is done by coupling a

global map of the 100-year floodplain with a population dataset and aggregating the results per PL8 watershed. Flood maps

are rarely available for free for such a large area, and hence we used the Flood Hazard Map of the World 0-100 year return

period of the Joint Research Centre of the European Commission (Dottori et al., 2016). The resolution of the map is 1km per

1km which is helpful considering the small extent of some watersheds. We also used the Gridded Population of the World v4360

dataset as described in Section 2.6.

Then, for each flood event in the DFO dataset, we took the spatial intersection between the PL8 boundaries and the event

polygon, just like in the occurrence determination (Section 3.1), but with the goal of determining the number of people dis-

placed per event and PL8 watershed. We assigned population displaced across intersected basins proportionally to the number

of people at risk of flooding based upon the Flood Hazard Map of the World.365

Finally, for the statistical and machine learning methods, we normalize the population displaced by the overall population of

the watershed, and take the log (base e) of that ratio. The 504 events in the DFO therefore translate into 42,530 observations,

that is, basin-events with at least 1 person at risk of flooding. The distribution of the observed log-ratio is provided in Figure

3. The average log-ratio is -8.54 and the standard deviation is 2.43. One has to be careful in the interpretation of descriptive

statistics of log-ratios since the exponential of the average log-ratio is very different from the average of the ratio, the latter370

being the relevant statistic. Indeed, the average ratio of population displaced is 4.24% with a standard deviation of 46.4%. We

also have a few observations above 0 which should not occur in theory. This happens in very small basins where the population

displaced reported by the DFO is inconsistent with population data.

4.2 Methodology

Modelling flood impact is a typical regression problem where both statistical and machine learning approaches can be em-375

ployed. We use the multiple linear regression, with possibly non-linear transformations of the covariates. Therefore, we apply

the GLM and GAM for responses in IR with a link function g(x) = x in Equation 2. RF and GBM can also be used with

IR-responses, and therefore, we have 10 models as well, based upon the same families of models and the same set of covariates

as in Section 3.2.

4.3 Performance380

As in Section 3.3, models were first fitted on a training set (random 70% of data available in 1985-2019) and then predictions

were analysed on a test set (remaining 30% of the 1985-2019 data) and on a validation set (2020-2021, out-of-sample).
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Figure 3. Histogram of the log-ratio of population displaced for each recorded flood occurrence

Metrics

To assess the quality of the predictions, we computed two different metrics, that is the R2 (larger is better, lower than 1) and

the root mean square error (RMSE, lower is better). The R2 or coefficient of determination is interpreted as the proportion385

of variance that is explained by the model (see James et al. (2021) Eq. 3.17) whereas the mean square error is the average of

squared prediction errors (observed value minus its prediction). These two metrics are common with regression models. We

show the global metrics (over Canada and US) below whereas regional metrics over PL2 watersheds are shown in the SI.

Results

Table 3 shows the performance of the 10 models using the R2 and RMSE metrics, under both the test and validation sets.390
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Test Validation

Models R2 RMSE R2 RMSE

GLM 0.27564 2.24257 0.32712 3.11864

GLM INTER 0.29542 2.21173 0.27601 3.23493

GLM 0US 0.26595 2.25751 0.35315 3.05773

GAM 0.27421 2.24477 0.33769 3.09405

GAM INTER 0.30325 2.19940 0.27434 3.23864

GAM 0US 0.26483 2.25924 0.35853 3.04498

RF 0.51128 1.84203 0.38154 2.98988

RF 0US 0.49730 1.86819 0.40169 2.94077

GBM 0.50806 1.84808 0.39017 2.96894

GBM 0US 0.50601 1.85192 0.42145 2.89180

Table 3. R2 and root-mean-square error (RMSE) for each of the 10 models used. The test dataset consists of 30% of the observations from

1985 to 2019 (randomly sampled). The validation dataset consists of responses and covariates observed from 2020 and 2021. 0US: Models

trained without upstream variables. INTER: Models trained with interactions between atmospheric variables.

First of all, we observe in Table 3 that interactions and upstream variables do not make much of a difference in predicting

the impact of flooding. The GLMs and GAMs yield the largest RMSE and smallest R2, although R-squareds in the range of

30% are decent given the complexity and the randomness of the problem at hand.

In the test set, the RF and GBM yield very similar coefficients of determination and RMSE whereas the GAM and GLM

provide a weaker performance. In the validation set however, the performance of the models is much more similar, with a slight395

advantage to RF and GBM models (R2 in 0.38-0.42) compared to GLM and GAM models (R2 in 0.28-0.36). Models without

upstream variables generally better perform in the validation set when compared to their equivalent with upstream variables.

Although the performance of machine learning methods is slightly better in the validation set, we prefer the GAM without

upstream variables for its interpretability and its very close performance to RF or GBM.

The SI confirms the impact models perform well over five of six regions. In the Prairies however, the R2 measured over400

the test set is about half of the one obtained over the other five regions. Comparing the quality of impact predictions over the

validation set is however difficult as some regions had too few floods and impacts to validate the models over 2020 and 2021.

4.4 Key Determinants

We now analyze the key determinants of flood impact with six models, that is the GAM, RF and GBM, with or without upstream

variables. Interactions were again excluded from such analysis, but we kept models with upstream variables for comparison.405

We trained the models again but using 100% of the data available from 1985 to 2021.

We see in Table 4 that the basin area (SUB_AREA) is always in the top three of the most significant covariates, whereas the

urban extent appears for five out of six models. For both predictors, the sign is negative which might sound counter intuitive at
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first. However, we are modelling the log-ratio of population displaced, meaning that for a fixed flood severity and population

at risk, there would be less population displaced for larger basin areas.410

On the other hand, we see that the coefficients for GDP per capita and urban extent are also both negative (in the GAM 0US),

which might reflect a decreased vulnerability over time. As such, we believe that socioeconomic variables proxied urbanization

in the occurrence model whereas basin area, wealth and urban extent might have captured vulnerability in the impact model.

This would lead for example to an increase of flood occurrence with greater urbanization, but a lower relative number of people

displaced per flood, all else being equal. The DFO dataset also shows that population displaced per event has decreased over415

the last 40 years.

We also observe that covariates selected in the RF and GBM models tend to focus more on land use variables than on

atmospheric variables. We therefore expect GAM models to be more responsive to changes in temperature and especially

precipitation patterns than the former approaches. We remark that both precipitation variables are positive in the GAM 0US

model, which therefore captures flood severity. All else being equal, more rain means more people are displaced. This analysis420

also confirms the usefulness and ease of interpretation of the GAM 0US model, therefore further supporting its use overall.

As with the occurrence model, the SI provides the full list of covariates, value of their coefficients and statistical significance

(for both GAM models) and the variable importance/influence for the four RF and GBM models.

5 Applications

The flood model has static and dynamic inputs and therefore requires values for e.g., atmospheric variables to recover flood425

probabilities and the impact distributions. In this section we illustrate two potential applications. We first compute the modelled

average annual population displaced in Canada and the US over 1980 to 2021 in each PL8 basin. We then analyze what-if

scenarios where we shock precipitation to determine their overall impact on flood risk. Section 6 further discusses potential

applications of the model within and outside the scope of this paper.

5.1 Population displaced due to flooding430

We aim to compute the average annual number of people displaced by flooding in each PL8 watershed in the continental United

States and Canada. Using observed covariates from 1985 to 2021 and the GAM model without upstream variables for both

occurrence and impact components (see Sections 3 and 4), we have computed the predicted flood probabilities and population

displaced for each hydrological year and PL8 basin. We then took historical averages to yield a single view of the average

population displaced per PL8 basin.435

Figure 4 shows the average annual number of people displaced for each PL8 watershed over the conterminous United States

and Canada below 55◦N. Although the model runs over Alaska and the Canadian territories, those areas are not shown for

conciseness. It is important to emphasize what is shown is the unconditional annual average, meaning that it includes the

likelihood of flooding in the computations. In other words, it accounts for the fact there might be a 90% probability of zero

people displaced due to flooding in a given basin. A higher value therefore means there is either significant flood hazard and/or440
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Figure 4. Average number of people displaced for each PL8 watershed over the conterminous United States and Canada between 1985

and 2021 using the GAM without upstream variables for both occurrence and impact models. Credits: Map produced using Leaflet with

Stadia.StamenTonerLite layer.

a large number of exposed people. With approximately 20,000 basins displayed over the map, the model shows there are 0-120

people displaced every year on average per PL8 basin over 1985-2021.

Over the entire United States, the model annual average yields approximately 350,000 people displaced due to fluvial flood-

ing over the Lower 48 in the period 1985-2021. There is in general greater flood risk in the Eastern US, especially around

heavily urbanized areas (examples include New York, Philadelphia, Baltimore, Charlotte, Atlanta, New Orleans, Miami, Hous-445

ton, St. Louis, Memphis, Nashville, etc.). The West Coast is also prone to flooding, especially in the states of OR (Portland),

WA (Seattle) and CA. Overall, the spatial distribution of flood risk shown in Figure 4 is similar with the results obtained by the

First Street Foundation with Fathom (First Street Foundation (2020), page 10) who show the number of properties at substantial

risk of flooding by county as of 2020.

In Canada, the modelled average annual number of people displaced over 1985-2021 is about 16,000. The map shows areas450

of greater flood risk along the St. Lawrence River (the Detroit/Windsor-Quebec City corridor), especially in Greater Toronto

and Greater Montreal. Western Canada, especially Vancouver, Victoria, Calgary and Edmonton are also at significant risk of

fluvial flooding as shown by Figure 4.

5.2 What-if scenarios

Another potential application of the model lies into the study of what-if scenarios, that is the analysis of the impact of a455

shock on any variable of the model (e.g., socioeconomic or atmospheric) to determine the overall effect on flood probabilities
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and/or population displaced. Examples include stress-testing insurance portfolios and the study of the economic impact of extra

precipitation (due to climate change).

Table 5 shows the result of three scenarios on the flood occurrence probability, the impact of a flood (conditional distribution),

and the overall annual average number of people displaced due to flooding (unconditional distribution). The areas of interest460

are Canada, United States and the sum of both countries. The shocks are +10%, +25% and +50% on the climatology of each

precipitation covariate and uniformly applied over the areas of interest for illustration purposes.

A shock of +10% (+50%) is consistent with the expected increase of the maximum 5-day precipitation (standardized pre-

cipitation index) from the CMIP6 33-model average over a 2-degree warming scenario in many locations over Canada and the

United States (IPCC WGI Interactive Atlas). We held all other dynamic variables fixed as of their respective years (tempera-465

ture, and socioeconomic variables). For this experiment, we used the GAM model for both the occurrence and impact, without

upstream variables.

Area Component/Shocks Baseline ×1.1 ×1.25 ×1.5

Occurrence probability 0.1186 0.1290 0.1439 0.1669

North America Population displaced 2 323 665 2 441 755 2 610 426 2 872 909

Combined 275 683 315 063 375 634 479 575

Occurrence probability 0.0336 0.0376 0.0437 0.0541

Canada Population displaced 483 971 509 417 545 744 602 192

Combined 16 269 19 182 23 889 32 559

Occurrence probability 0.1833 0.1986 0.2202 0.2531

USA Population displaced 1 880 063 1 974 858 2 110 274 2 321 088

Combined 344 739 392 270 464 738 587 444
Table 5. Effect on flood risk of various shocks on precipitation. The mean of occurrence and of population displaced has been calculated

over 1985 to 2021. The GAM model without upstream variables has been used for both flood occurrence and impact models.

The average annual modelled number of people displaced in Canada is 16,000 and 345,000 in the United States, averaged

over 1985-2021. This corresponds to our baseline value, and is consistent with the values provided in the previous subsection.

When we increase precipitation by 10%, the overall increase in the average annual number of people displaced increases by470

18% in Canada, and 14% in the United States. In the extreme scenario where precipitation increases by 50%, the increase in the

average annual number of people displaced is 100% in Canada and 70% in the US. It is therefore very interesting to observe

that the model yields non-linear increases in the overall population displaced for each shock on precipitation.

6 Discussion and Conclusion

We have introduced a fluvial flood model for socioeconomic purposes that covers the entirety of Canada and the (continental)475

United States. The model is based upon flood occurrence and impact in terms of population displaced over Pfafstetter Level

21



8 watersheds. The spatial resolution is sufficiently high (above 31,000 basins over Canada and United States) for large scale

socioeconomic studies while being fast to fit, adjust, predict and simulate from.

We used various statistical and machine learning methods to fit the occurrence and impact components. We found that flood

occurrence does exhibit spatial dependence upon upstream basins while this is not the case for flood impact. The interactions480

introduced in the GLM and GAM models have virtually no impact on the quality of the predictions. We found that precipitation

variables, especially 7-day precipitation, are the most significant covariates, in addition to land use and socioeconomic variables

to predict flood occurrence. We found that flood impact, conditional upon a flood being observed, is driven less by atmospheric

variables than socioeconomic variables, and basin and land use characteristics. While population density and GDP per capita

both appear to increase flood occurrence as possible proxies for urbanization, GDP contributes to decrease flood impact as a485

likely proxy for vulnerability.

In general, the GAM model is the preferred approach for both the occurrence (binary response) and impact (continuous

response) as the predictive capability is comparable to machine learning methods in the validation set (which is a purely

out-of-sample analysis) and is easily interpretable. But as the performance of the three main classes of models is very often

equivalent, one can also use model averaging taking the mean prediction from the three classes of models, which would in490

effect yield an ensemble model.

The flood model has static and dynamic inputs and therefore requires values for atmospheric variables to obtain flood

probabilities and the impact distribution. We distinguish two types of applications related to predictions and simulations.

Predictions relate to applications where a limited number of scenarios are used as inputs to the fitted occurrence and impact

models. It involves using, for example, ensemble means from long-range and seasonal weather forecasts as inputs to compute495

predicted flood probabilities and population displaced in each watershed of a given region or country. From a methodological

standpoint, such predictions require similar computations than in Section 5.1. What-if scenarios and sensitivity analyses are

also useful to understand the impact of a % increase in population displaced for scenarios where there is +10%, +25% or +50%

more precipitation. Such scenarios have been applied in Section 5.2. We found for example that an increase of 10% (50%) in

precipitation yields an increase of population displaced of 18% (100%) in Canada and 14% (70%) in the U.S.500

Because the model is fast to run with thousands of climate simulations such as outputs from a stochastic precipitation

simulator, it is therefore possible to translate those with the model to obtain the full distribution of flood occurrence probabilities

and impact. Upstream variables could therefore be included to obtain a full representation of local flood risk, as well as the

counts of basins that may flood in a given year over a larger region. Spatial dependence in flooding impedes the ability of an

insurer to diversify flood risk and needs to be taken into consideration for reserving and capital determination.505

Full integration of climate models (regional climate models or statistically downscaled general circulation models) is also

feasible, under the present or future climate, if one is interested in analyzing the impacts of climate change on population

displaced due to flooding. But large scale simulation of the socioeconomic impact of flooding under the present or future

climate is out of scope for this paper and is left for future research.
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Appendix A: Implementation of Machine Learning Methods510

This section details the implementation of machine learning methods, namely the RF and GBM, and how hyperparameters

have been determined.

RF are fitted using the package ranger in R (Wright et al., 2020). This package is coded in C++, which significantly

increases the speed at which we can fit models with millions of observations. Some hyperparameters are required before we

can fit a model: the number of trees inside the RF (100, 500, 1000), the number of splits per tree (10,20,40,80,0), and the515

number of variables that we sample for each tree (6, 8, 10, 12, 14). To note, a value of 0 in the number of splits means that each

tree is going to be fully developed.

To determine the best set of hyperparameters, we split the original training dataset such that 70% of the data is fitted with a

specific set of hyperparameters. Among hyperparameters tested, we pick the set that maximizes the AUC of the ROC curves

(for the occurrence model) and R2 (for the impact model) in the 30% remaining data.520

GBM are fitted using the well-known package gbm in R (Greenwell et al., 2019). Some hyperparameters are required before

we can fit a model: the number of decision trees (100, 500, 1000, 2000), the complexity of each tree (1, 2), and the learning

rate (0.001, 0.005, 0.01, 0.05, 0.1). The complexity of each tree is about the inclusion of interaction effects or not. If we do not

want interaction effects, we are limited to only one split. Otherwise, we permit each tree to split twice which allows, at most,

two variables to contribute to the tree. The same methodology as the random forests has been applied to determine which set525

of hyperparameters to choose.

Data availability. All datasets used in this study are openly available and can be downloaded directly from their source’s websites. For

convenience, the Supplementary Information is a R Markdown HTML file that includes direct links to the datasets, as well as the most

complete outputs and validations of the occurrence and impact models. It is available on Zenodo with DOI 10.5281/zenodo.10201818.
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