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Abstract

We introduce the Ensemble Earthquake Early Warning System (E3WS), a set of Machine Learning algorithms designed to

detect, locate and estimate the magnitude of an earthquake using 3 seconds of P waves recorded by a single station. The

system is made of 6 Ensemble Machine Learning algorithms trained on attributes computed from ground acceleration time

series in the temporal, spectral and cepstral domains. The training set comprises datasets from Peru, Chile, Japan, and the

STEAD global dataset. E3WS consists of three sequential stages: detection, P-phase picking and source characterization. The

latter involves magnitude, epicentral distance, depth and back-azimuth estimation. E3WS achieves an overall success rate in

the discrimination between earthquakes and noise of 99.9%, with no false positive (noise mis-classified as earthquakes) and

very few false negatives (earthquakes mis-classified as noise). All false negatives correspond to M [?] 4.3 earthquakes, which

are unlikely to cause any damage. For P-phase picking, the Mean Absolute Error is 0.14 s, small enough for earthquake early

warning purposes. For source characterization, the E3WS estimates are virtually unbiased, have better accuracy for magnitude

estimation than existing single-station algorithms, and slightly better accuracy for earthquake location. By updating estimates

every second, the approach gives time-dependent magnitude estimates that follow the earthquake source time function. E3WS

gives faster estimates than present alert systems relying on multiple stations, providing additional valuable seconds for potential

protective actions.
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Abstract6

We introduce the Ensemble Earthquake Early Warning System (E3WS), a set of7

Machine Learning algorithms designed to detect, locate and estimate the magnitude of8

an earthquake using 3 seconds of P waves recorded by a single station. The system is9

made of 6 Ensemble Machine Learning algorithms trained on attributes computed from10

ground acceleration time series in the temporal, spectral and cepstral domains. The train-11

ing set comprises datasets from Peru, Chile, Japan, and the STEAD global dataset. E3WS12

consists of three sequential stages: detection, P-phase picking and source characteriza-13

tion. The latter involves magnitude, epicentral distance, depth and back-azimuth esti-14

mation. E3WS achieves an overall success rate in the discrimination between earthquakes15

and noise of 99.9%, with no false positive (noise mis-classified as earthquakes) and very16

few false negatives (earthquakes mis-classified as noise). All false negatives correspond17

to M ≤ 4.3 earthquakes, which are unlikely to cause any damage. For P-phase picking,18

the Mean Absolute Error is 0.14 s, small enough for earthquake early warning purposes.19

For source characterization, the E3WS estimates are virtually unbiased, have better ac-20

curacy for magnitude estimation than existing single-station algorithms, and slightly bet-21

ter accuracy for earthquake location. By updating estimates every second, the approach22

gives time-dependent magnitude estimates that follow the earthquake source time func-23

tion. E3WS gives faster estimates than present alert systems relying on multiple stations,24

providing additional valuable seconds for potential protective actions.25

1 Introduction26

Today millions of people live at risk from earthquakes. Real-time seismic monitor-27

ing near seismic sources opens the possibility of rapidly estimating earthquake param-28

eters that control the potential impact of shaking, notably magnitude and hypocenter29

location. Taking advantage of such estimates and speed-of-light communications, Earth-30

quake Early Warning Systems (EEWS) can generate an alarm before seismic shaking reaches31

the population, with the goal to mitigate human and material losses.32

An ideal EEWS accurately estimates ground shaking and time of impact in a re-33

gion soon after an earthquake is detected, then notifies the population or infrastructure34

at risk with sufficiently long warning time to take protective measures. In a common ap-35

proach, the magnitude and location of the earthquake are rapidly estimated, then used36

as input in a Ground Motion Prediction Equation to forecast ground shaking intensity37

measures such as Peak Ground Acceleration, whose values are used as a criterion to alert38

the population. However, there is a trade-off between achieving the earliest alert time39

and improving the accuracy of the estimates (Meier, 2017): waiting for additional data40

containing more information about the earthquake improves the magnitude and loca-41

tion estimates, but delays the issuance of alerts. Most EEWS are based on multi-station42

data, to improve accuracy by taking advantage of more information, at the expense of43

additional delays. Here we focus on single-station EEWS as it has the potential to be44

faster since it does not require waiting for seismic wave arrivals at multiple stations.45

The practice of EEWS dates back to 1988 with the deployment of the Urgent Earth-46

quake Detection and Alarm System (UrEDAS) in Japan, the first operational system based47

on the analysis of a few seconds of P waves recorded by a single station to estimate earth-48

quake source parameters (Nakamura, 1988; Nakamura et al., 2011). Since then, a num-49

ber of EEW algorithms have been developed using records from broadband seismome-50

ters, strong-motion accelerometers and Global Navigation Satellite System (GNSS) sta-51

tions (R. M. Allen & Melgar, 2019).52

The τc-Pd Onsite algorithm (Böse et al., 2009), one of the three algorithms that53

contributed to the development of ShakeAlert, the EEWS of the US West coast (Böse54

et al., 2014), uses the period parameter τc and the peak initial-displacement amplitude55
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Pd (Yih-Min et al., 2007) extracted from the first 3 seconds of the P-wave recorded by56

a single sensor. The algorithm estimates the P phase arrival based on a combination of57

the classic STA/LTA (R. V. Allen, 1978) with a P/S wave discriminator which uses the58

ratio of horizontal to vertical ground motions. It estimates the magnitude and the Mod-59

ified Mercalli Intensity but not the earthquake location, thus it is intended for on-site60

warning instead of regional warning.61

Most single-sensor-based algorithms only contain some components of an EEWS62

(detection, picking, magnitude or location), but not the whole package. The only excep-63

tion is UrEDAS, originally developed in Japan. However, it does not present the same64

performance when estimating the back-azimuth for earthquakes outside Japan. In par-65

ticular, when applied in California, UrEDAS estimates showed larger error and yielded66

several cases of magnitude overestimation for earthquakes with magnitudes between 3.067

and 5.0 (Nakamura & Saita, 2007).68

Recently, Artificial Intelligence (AI) has been used in a number of applications in69

seismology that are relevant for EEW. In particular, studies not designed for EEW pur-70

poses used AI for specific targets, such as detection, picking and source characterization71

components. The Earthquake Transformer algorithm (EQTransformer) (Mousavi et al.,72

2020) uses 1 minute long seismograms to feed an architecture based on Convolutional73

Neural Network (CNN) and Recurrent Neural Network (RNN) to detect earthquakes,74

and estimate P and S phase arrivals. The model achieves an earthquake detection pre-75

cision (true positives divided by total positives) of 1.0, and estimates the P and S phase76

arrivals with a mean of 0 seconds and standard deviation (STD) of 0.03 seconds for the77

P phase, and mean of 0.0 seconds and STD of 0.11 seconds for the S phase. Mousavi and78

Beroza (2020) estimate magnitudes with CNN and RNN trained with 30 seconds long79

seismograms (M<5.7). They obtain a mean error close to 0 magnitude units and stan-80

dard deviation ∼0.2. Mousavi and Beroza (2019) estimate earthquake location based on81

Bayesian Deep Learning. The network is fed by 1 minute long seismograms in the case82

of training distances. For back-azimuth, the angle is represented as points of the unit83

circle (cosine, sine) and is trained using seismograms of 1.5 s long. The network achieves84

a mean localization error of 7.27 km with STD of 12.16 km. While these AI models are85

not designed for EEW (they use signal windows that are too long), they represent a use-86

ful reference to evaluate the performance of AI-based EEW approaches.87

Here, we present E3WS, the first EEWS in which all components (detection, pick-88

ing and source parameter estimation) are based on AI. It uses only 3 seconds of signal89

recorded by a single three-component sensor. E3WS is a system focused on early warn-90

ing for populations living near seismic sources. Extra seconds of alert time can give the91

user enough time to “drop, cover and hold on” or to perform mitigation actions like stop-92

ping traffic, stopping elevators or evacuating the ground floor of buildings (Cremen et93

al., 2022). Compared to current single-station-based EEWS, E3WS estimates earthquake94

magnitudes with significantly better accuracy and locations with slightly better accu-95

racy. Its magnitude residuals are small enough to not generate false warnings, for both96

overestimates and underestimates. It requires no additional software to estimate P-phase97

arrival, and estimates source characterization without applying signal-to-noise ratio con-98

straints or acceleration thresholds. E3WS can be applied anywhere and is designed us-99

ing Machine Learning, allowing (in contrast to Deep Learning approaches) some under-100

standing of what controls the estimations. Thanks to its simplicity, E3WS can be installed101

in small 32-bits single board computers, such as a Raspberry Pi, as well as in more com-102

plex 64-bits processors.103

2 Database104

We build a database of seismic waveforms combining data from the Instituto Geof́ısico105

del Perú (IGP) recorded between 2017 and 2019, the STEAD global database (Mousavi106
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et al., 2019), the Seismic Network of Chile (Barrientos & Team, 2018), and the Japanese107

seismic networks K-Net and KiK-net (Aoi et al., 2004). We select events with magni-108

tude greater than 3.0, depth shallower than 100 km and recordings at epicentral distance109

shorter than 200 km. We consider 3-component accelerograms oriented to the east, north110

and vertical directions, respectively. In total, we compile a database of 73,000 earthquake111

seismograms. Data statistics are shown in Fig. 1.112

As the data come from different sources and have different sampling frequencies,113

sensors and digitizer types, we preprocess them to standardize our database. Preprocess-114

ing steps consist of removal of the mean to avoid low-frequency artifacts, removal of a115

least-squares-fitted linear trend, multiplication by a cosine taper at each end over 2.5%116

of the total window duration (see Section 3 for the analysis window time setting), and117

resampling using the Fourier method at 100 Hz. We convert the preprocessed data from118

broadband seismometers and accelerometers to acceleration in m/s2. We ignore sensors119

for which we did not find the instrument response.120

The preprocessing also includes semi-automatic detection of the P-phase for the121

Chilean and Japanese datasets. Since the Chilean, KiK-net and K-NET datasets do not122

include P-phase picks, we used an STA/LTA algorithm (R. M. Allen, 2007) and theo-123

retical travel times to estimate the P-phase and S-phase arrival times. Sometimes we find124

in the raw data of a given earthquake more than one earthquake. In these cases, the STA/LTA125

algorithm triggered in most of the earthquakes. To avoid selecting an earthquake that126

does not belong to the dataset catalog, we select the earthquake in which the difference127

in the estimated time between the STA/LTA algorithm and theoretical travel times is128

not greater than three seconds. Then, we chose the STA/LTA trigger time as the P-phase129

time.130

For the Peru, Chile and STEAD datasets, we manually identified and removed sig-131

nals that were saturated for M>5.0. We found no further saturated waveforms when in-132

specting events down to M4.5. We believe that for magnitudes smaller than 4.5, there133

are no more saturated waveforms. The Japanese data are recorded by strong-motion ac-134

celerometers, which do not saturate.135

3 Proposed EEWS136

E3WS consists of 6 ML algorithms : a detector, a P-phase picker and 4 regression137

models estimating the magnitude, epicentral distance, back-azimuth and depth of the138

source. The detector model monitors the seismic activity. When it detects an earthquake,139

the P-phase picker is triggered. Then, using a minimum of 3 seconds of P-wave signal,140

the 4 regression models run in parallel and estimate the magnitude and location of the141

event. Estimations are updated at regular times thereafter, as the signal window length-142

ens. For each signal window, these 6 models take as input a feature vector formed by143

concatenating 140 attributes extracted from the waveforms, their spectrum and their cep-144

strum.145

We test several approaches to design the models, including Extreme Gradient Boost-146

ing (XGB), Support Vector Machine (SVM), Random Forest (RF) and Neural Networks147

(Multilayer Perceptron: MLP). We find that the approach yielding the best results is XGB148

(Chen & Guestrin, 2016), a Supervised Machine Learning model that has become pop-149

ular for its leading performance in Kaggle competitions (Nielsen, 2016) and that has been150

recently applied to seismology (Shokouhi et al., 2021).151

We train the models using 80% of the database and we test on the remaining 20152

% (more details in Section 4.1), based on the first 3 seconds of the P-wave. In the test-153

ing stage, detection results show that XGB has an overall accuracy (correct classifica-154

tions divided by total test samples) of 99.95%, slightly better than the other models (Ta-155

ble 1). For P-phase picking, XGB and RF achieve the best performances, with similar156
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Figure 1. Magnitude, epicentral distance, depth and back-azimuth distributions of the earth-

quake waveform database compiled for this work.

responses. However, XGB is far superior in terms of computational cost of real-time pro-157

cessing: the average time complexity per estimate is 0.01 s for XGB compared to 0.49158

s for RF, on an Intel(R) Xeon(R) Silver 4114 processor. Even on a Single Board Com-159

puter like a Raspberry Pi 4, XGB takes 0.01 s on average. Furthermore, due to the large160

storage required by the RF model (1.6 GB) compared to XGB (7.6 MB), it was not pos-161

sible to load the RF model on the Raspberry Pi 4. For source characterization, XGB gives162

a smaller Mean Absolute Error (MAE) than the other models. Although XGB only sup-163

ports single-label training, it performs better than inherently multi-output regression mod-164

els such as RF.165

Moreover, XGB can be accelerated by multi-threading, which we exploit here: we166

train our models on 80 CPU cores in parallel. XGB is based on the Ensemble Learning167

approach: it uses multiple sub-models (decision trees) to improve the final estimation.168

It applies the ensemble technique Boosting, which consists of sequentially decreasing the169

residuals along each tree, and a Gradient descent algorithm to minimize the loss func-170

tion. Fig. S1 shows the general XGB scheme. For all models, we use the following hy-171

perparameters for XGB training: depth = 4, number of trees = 6000, subset = 80% and172

learning rate = 0.1.173

3.1 Detection174

Since STEAD is a global dataset that also includes global noise samples, we ex-175

tract 55,000 noise windows and add them to our database. We use waveforms filtered176

from 1 to 7 Hz and a fixed time window of 10 seconds including a minimum of 3 seconds177

of P-wave. We discard waveforms that do not contain 7 seconds of data before the P-178
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Table 1. Accuracy and errors using XGB, RF, SVM and MLP models for detection, P-phase

picking and source characterization.

Performance XGB RF SVM MLP

DET% 99.95 99.94 99.92 99.90

PICKMAE (s) 0.14 0.14 0.18 0.16

MAGMAE 0.34 0.38 0.47 0.39

DISMAE (km) 27 29 33 30

DEPMAE (km) 15.7 28.9 18.0 17.7

BAZMAE (◦) 45.1 47.0 52.3 51.1

wave arrival. In our tests we obtained better accuracy using a 10-seconds-long window179

compared to shorter windows. For instance, we find false detections due to impulsive noise180

using shorter windows; 10 seconds-long windows limit false detections by lowering the181

weight of impulsive noise in the attributes.182

We train the XGB model as a classifier between noise, P-waves and S-waves. We183

label a window as class 0 if it contains only noise, and class 1 or 2 if the window con-184

tains 0.5, 1.0, ..., 4.0 seconds of P or S-wave, respectively. Although our focus is on the185

analysis of the P-wave signal, we add an S-phase class in the training so that our sys-186

tem does not trigger with S waves.187

We estimate the likelihood that a window contains a P wave, sliding the 10-second188

window by steps of 0.5 seconds. To avoid triggers caused by impulsive noise, we consider189

the average over several sliding windows: if the average of the likelihood of containing190

a P phase of three consecutive windows is less than a threshold of 0.21, we classify it as191

noise; otherwise, we classify it as an earthquake. The choice of the threshold value is de-192

scribed in Section 4.1.1.193

3.2 P-phase picking194

Because the Japanese and Chilean datasets do not provide P-phase arrival times195

(tp), we restrict the training set for phase-picking to the Peruvian and STEAD datasets.196

We use a fixed time window of 4 seconds filtered between 1 and 7 Hz.197

We train the XGB model as a classifier between noise, 0.5 s of P-wave and 0.5 s198

of S-wave. This classifier works as a scan, where we label class 1 when the 4 s-long win-199

dow contains 0.5 s of P-wave signal, class 2 when it contains 0.5 s of S-wave, and class200

0 otherwise. We include the S-phase to minimize the error in P-phase picking when the201

4 s-long window contains both the P and S phases.202

We feed the model with attributes extracted from a 4 s-long window sliding with203

a step of 0.01 s covering the interval tp− 5.5 s to tp+2.5 s (Fig. 2). The estimated P204

arrival time is the ending time of the first 4 s-long window classified as Class 1 minus205

0.5 s. We proceed similarly for the S-phase.206

We use the time window [tp−3.5s, tp+0.5s] as label 1 because of the natural un-207

certainty in the catalog arrival times. We trust that the uncertainties in the P-phase ar-208

rival times of the catalogs are less than 0.5 s. With attributes extracted every 0.01 s, the209
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Figure 2. Labeling for the P-phase picking model. We extract attributes from a 4-seconds-

long window, starting from tp − 5.5 s as the blue box, for our entire database. We repeat the

attribute extraction every 0.01 s until the blue box reaches tp + 2.5 s.

input dataset for the P-phase picking model is made of approximately 36 million 140-210

dimensional samples.211

3.3 Source characterization212

For source characterization (esimation of earthquake magnitude, epicentral distance,213

back-azimuth and hypocentral depth), we use time windows that contain 7 seconds of214

noise and 3 seconds of P-wave signal extracted from our earthquake database. We ap-215

ply a band-pass filter from 1 to 45 Hz. Because P-phase accuracy is crucial when esti-216

mating back-azimuth using only one station, we select only datasets that have a P-phase217

catalog. To train the back-azimuth estimation model, we only use STEAD and Peruvian218

samples and select only the stations that are properly oriented to the east (azimuth 90°)219

and north (azimuth 0°).220

We train each model independently. These models are based on the Stacking al-221

gorithm (Cui et al., 2021), which uses a set of models per layer. The outputs of the mod-222

els in the first layer, called base-models, feed a model in the second layer, called meta-223

model (Fig. 3). The main idea of using Stacking is to reduce the error by increasing the224

heterogeneity of the data by using multiple subsets of the original database, and com-225

bining them with the meta-model to generate the estimates.226

The base-models are obtained by an XGB regressor, with the same hyper-parameters227

as used for detection and P-phase picking. The meta-model is obtained by the Least Ab-228

solute Shrinkage and Selection Operator (LASSO).229

For each model, we perform K-fold validation, splitting the dataset into K=10 groups230

and training each XGB base-model with nine out of the ten groups. Then, the remain-231

ing Out-of-Fold group of validation is estimated by the trained XGB model. Finally, we232

combine all the estimates for each Out-of-Fold group (OOFpred) to train the LASSO meta-233

model (Kukreja et al., 2006).234

For the back-azimuth model, we divide the training into 2 targets. Because the an-235

gle is represented in non-Euclidean space, we train two separate models to estimate its236

cosine and sine, respectively.237

3.4 Feature vector238

For all of the algorithms, we compute the same set of 140 attributes, in the time,239

spectral and cepstral domains. For the time domain, we extract attributes from the pre-240

processed signal s and from its envelope, defined as the absolute value of its analytic sig-241

–7–



manuscript submitted to JGR: Solid Earth

Figure 3. Source characterization model based on Stacking algorithm and K-Fold with K=10.

For each K, nine groups train the XGB base-model. Estimates from the remaining group, using

the corresponding trained XGB model, feed the LASSO meta-model.

nal |s+iH{s}| where H is the Hilbert transform. For the spectral domain, we consider242

the Power Spectral Density (PSD) of the signal estimated by Welch’s method using an243

overlap of 75%, a Fourier Transform length of 512 samples and a Hanning taper func-244

tion. For the cepstral domain, we use the first 13 Mel-frequency cepstral coefficients (MFCC)245

(Davis & Mermelstein, 1980).246

In total, we extract 45 attributes for each channel: 17 in the time domain, 15 in247

the spectral domain, and 13 in the cepstral domain. We add 5 attributes from the com-248

bination of the 3-component signal: the maximum eigenvalue, the eigenvector associated249

with the maximum eigenvalue, and the ratio of the maximum eigenvalue to the sum of250

the remaining eigenvalues. We then concatenate all the features in a single vector, gen-251

erating a 140-dimensional feature vector. We provide the complete list of attributes in252

the Supporting Information. Most of them were previously used in (volcano) seismol-253

ogy by Malfante et al. (2018) and Lara et al. (2020).254

4 Results255

Here, we evaluate the performance of E3WS. First, we analyze the models that com-256

pose E3WS using hold-out validation, with 3 seconds of P-wave signal. Next, we eval-257

uate the behavior of the system when using longer signal time windows. Then, we ap-258

ply E3WS to track the magnitude of a set of earthquakes with M>6.0 in simulated real-259

time conditions and compare the performance with existing EEWS methods. Finally,260

we show an application of E3WS in a real-time scenario in Peru.261

4.1 Hold-out validation using 3 seconds of P-wave signal262

We assess the behavior of the E3WS target models through Hold-out validation.263

We assign 80% of the seismic events and their associated observations to the training stage,264

and the remaining 20% to the testing stage. To avoid data leakage, we use Hold-out val-265

idation on seismic events and then we associate their observations, which prevents hav-266

ing events with observations in both the training stage and the testing stage.267
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4.1.1 Detection268

The detector model achieves its best performance for a P-phase likelihood thresh-269

old of 0.21 (Fig. S2), reaching an overall success rate of 99.9% in the discrimination be-270

tween noise and earthquakes (Table 2). For a total of 11,264 noise observations, 100%271

of noise samples are correctly classified. From 8,788 earthquake observations, 10 are mis-272

classifications, leading to a success rate of 99.9% for earthquake classification. All of these273

misclassifications belong to earthquakes with M < 4.3 (Fig. S3) and low signal-to-noise274

ratios (Fig. S4). Most of them have an epicentral distance greater than 100 km.275

Table 2. Confusion matrix for the detection algorithm.

Overall (%): True class

99.9 Noise Earthquake

Estimated

class

Noise 11264 10

Earthquake 0 8778

Accuracy (%): 100.0 99.9

4.1.2 P-phase picking276

We evaluate the picker model on more than 10,000 seismograms of the test dataset277

compared to the “true” (manually picked) P-wave arrival times (Fig. S5). The model278

achieves a P-phase arrival time error with mean of 0.03 s, STD of 0.14 s and MAE of279

0.10 s.280

4.1.3 Source characterization281

The performance of the source characterization is remarkable (Figs. 5, S6, Table282

3), given that our algorithm only uses 3 seconds of records on a single station.283

Table 3. Performance of the source characterization algorithm with its mean error, STD error,

MAE and coefficient of determination (R2).

Performance Mean STD MAE R2

MAG 0.0 0.45 0.34 0.87

DIS (km) -0.3 34.3 27.1 0.50

DEP (km) -1.4 20.8 15.7 0.32

BAZ (◦) -3.4 43.7 45.2 0.84

The magnitude estimates are very stable for earthquakes with magnitudes between284

3.2 and 6.5, with magnitude average residuals (|Mpred−Mtrue|) of ∼0.2 for M<5.7 (Fig.285

4a), and residuals between 0 and 0.4 for 5.7<M<6.5. We even observe magnitude resid-286

uals ∼0 for M6.2. This gives us confidence in estimating magnitudes for minor (M3.0-287

M3.9) to strong (M6.0-M6.9) earthquakes. For instance, for all M>6.0 earthquakes the288
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average estimates are M¿6.0, so there would not be missed events in a EEW system that289

uses a threshold M>6.0 as a primary alert criterion. The small errors over the entire range290

of magnitudes are reflected in a high R2 of 0.87 (1.0 in the ideal case). For the small-291

est earthquakes of our database (M∼3), the magnitude estimates show a slight overes-292

timation of 0.3 and STD of 0.2 (Fig. S7a), but that is not a problem for EEWS because293

such small earthquakes do not warrant alerts. For M>6.5 the estimated magnitudes sat-294

urate and underestimate the real values. This magnitude saturation is expected: the half295

duration of M>6.5 earthquakes is typically longer than the 3 seconds window duration.296

We observe an average residuals at epicentral distances for distances very close to297

the seismic source (0-20 km) of ∼28 km (Fig. 4b). As the seismic gets farther away up298

to a distance of ∼120 km, the residuals decrease linearly even down to almost 0 error.299

From here, the errors grow linearly up to our training distance limit (200 km). If we keep300

our error tolerance at 28 km (errors at very close distances), we can estimate up to an301

epicentral distance of 165 km. Longer distances to this implies greater errors. This be-302

havior shows that the information contained within 3 s of P phase is not sufficient to re-303

solve accurately such large epicentral distances.304

From our database, the earthquakes that represent significant hazard (M>6.0) have305

hypocentral depths of 28 km on average and STD of 20 km. Within the range of the av-306

erage ± STD (8-48 km depth), most events have average residuals smaller than 10 km307

(Fig. 4c). The residuals do not exceed 20 km down to depths less than 60 km. This means308

that if E3WS estimates an earthquake with M>6.0, it is very likely that the error in depth309

is not greater than 10 km, and almost certainly the error is less than 20 km.310

For back-azimuth, residuals exceed 35◦. However, the STD of the estimates decreases311

significantly as the magnitude increases, achieving an STD of 21◦ for M>6.0 earthquakes312

(Fig. S8). The estimates have uniform performance throughout their range (Fig. S7d).313

The high R2 of 0.84 shows that the model contains relevant information in the whole back-314

azimuth range.315

4.2 Performance of source characterization using longer signals316

Meier et al. (2017) showed that the source time functions (STF) of large and very317

large shallow subduction earthquakes have a similar evolution until the maximum mo-318

ment rate is reached, suggesting that the beginning of the rupture does not contain enough319

information to estimate the final magnitude of the event. However, we can estimate the320

instantaneous magnitude using the first 3 seconds of the P wave, i.e. the magnitude reached321

by the earthquake 3 seconds after its onset. This estimate can form the basis to gener-322

ate a first warning and can be updated when longer records become available.323

To evaluate how much information the ML algorithms can leverage with more time,324

we retrain our algorithms using longer seismic signals. We increment the P-phase win-325

dow duration by steps of 1 s from 3 s to 46 s. Fig. 6 shows the evolution of two perfor-326

mance metrics, MAE and R2, as a function of the considered signal duration.327

We observe a significant improvement in the estimations of magnitude and epicen-328

tral distance, with R2 scores increasing up to 0.94 and 0.93, respectively, and MAE drop-329

ping to about 0.25 and 9 km, respectively, at 46 s of signal (Fig. 7). After that time, most330

M≤7 earthquakes are indeed over, which allows the model to estimate the final magni-331

tude, and the S phase has arrived, which allows the model to infer the epicentral distance332

from the arrival time difference between P and S phases. A signal duration of 30 s seems333

sufficient to converge to the best performance (Fig. 6a-d).334

The depth estimates improve slightly over time (Fig. 6e,f). From 10 to approxi-335

mately 27 seconds, the estimates do not improve. After this time the model improves336

slightly.337
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Figure 4. Average residuals (|targetpred − targettrue|) for each target: Magnitude, epicentral

distance, depth and back-azimuth, using the first 3 seconds of P-wave.

For the back-azimuth estimation, the best model uses 5 seconds of P wave, because338

the relevant information (likely the polarization) is contained in the first few seconds of339

the signal. The two most important attributes for the cosine model are the eigenvectors340

in the north and vertical components associated with the maximum eigenvalue, and for341

the sine model the vertical and east components.342

4.3 Performance of E3WS on selected large earthquakes343

We test the performance of E3WS to estimate the magnitude over time for differ-344

ent large earthquakes (M>6) using strong-motion accelerometers located in Japan, Chile345

and Peru. We apply the Leave-one-out method: in each example, the selected event and346

all its observations are put in the test dataset and the remaining observations in the train-347

ing set. We convert the data from these earthquakes into Earthworm Tankplayer format348

to simulate real-time data processing, with a transmission of data packets every second,349

and we estimate the magnitude using a minimum of 3 s and a maximum of 60 s after350

the P-phase arrival. We compare E3WS estimations to those obtained by other EEW351

algorithms based on multiple stations, using broadband or strong-motion sensors such352

as ElarmS-3 (Chung et al., 2019), Finder2 (Böse et al., 2018), Japan Meteorological Agency353

(JMA) (Hoshiba & Ozaki, 2014) and PEGSNet (Licciardi et al., 2022), and GNSS sta-354

tions such as BEFORES (Minson et al., 2014) and G-larmS (Grapenthin et al., 2014b,355
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Figure 5. Estimated source parameters (magnitude, distance, depth, back-azimuth) using 3 s

of records as a function of cataloged values.

2014a). For a true real-time comparison, we use the G-larmS triggered by ElarmS (ElarmS356

→ G-larmS), as mentioned in Ruhl et al. (2019).357

Fig. 8a shows the results for the 2011 Mw 9.0 Tohoku, Japan earthquake. For ref-358

erence, we show also the STF (the “true” instantaneous magnitude) and the STF shifted359

by the P arrival time at station MYG011, to compare both timeliness and accuracy. The360

first E3WS estimate uses 3 s of records after the first arrival at the station closest to the361

epicenter (MYG011, 120 km from the epicenter) and is obtained approximately 17 s af-362

ter origin time (OT). ElarmS-3 uses at least 0.2 s of P-waves recorded by 3 stations (Ruhl363

et al., 2019). Owing to the high density of seismic stations in Japan and to the short-364

ness of its first data window, ElarmS-3 issues its first estimation almost at the same time365

as E3WS.366

E3WS outperforms in timeliness and accuracy the first estimates of the other EEWS367

based on broadband or strong-motion sensors. At the time of the first E3WS estimate,368

the true instantaneous magnitude (shifted by P-wave arrival time) is M6.9, while E3WS369

estimates M5.2, ElarmS M4.9, JMA M4.3 (4 s later) and Finder2 M4.0 (7 s later). BE-370
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Figure 6. MAE and R2 results using 3 s to 46 s of P wave.

FORES makes its first estimate (M6.4) at 20 seconds after origin time (OT) when the371

true instantaneous magnitude is M7.3, outperforming the estimation of M5.7 by E3WS.372

However, one second later, E3WS outperforms the GNSS station-based systems in ac-373

curacy, giving M6.9 compared to M6.5 by BEFORES and M6.8 by G-larmS, when the374

true magnitude is M7.4. E3WS magnitude estimates increase until 31 s after OT (17 s375

of P-wave) with estimates that are very close to the true instantaneous magnitude, then376

remains similar to the JMA estimate up to 62 s after OT. At the end of our analysis win-377

dow, at 74 s after OT, E3WS and BEFORES achieve similar performance, 0.2 points of378

magnitude below PEGSnet. We take only Mw ≥ 8.3 estimates for PEGSnet, because379

estimates are not reliable below this magnitude (Licciardi et al., 2022).380

We also generate instantaneous magnitude estimates using all the strong-motion381

recordings available within a distance of 200 km from the epicenter. We show these es-382

timates as a function of time relative to the P-wave arrival time (Ptime) of each station,383

to compare them to the event’s STF (Fig. 8b) given by the SCARDEC catalog (Vallée384

& Douet, 2016). We observe that all the magnitude estimates as a function of time fol-385

low the magnitude evolution given by the STF, but with significant underestimation. These386

underestimations are most likely due to the scarcity of Mw ≥ 8.3 earthquakes in the387

training dataset, which the system tries to compensate by extrapolating from the mag-388

nitudes closest to 9.0 found in our database.389

Extrapolation is not required for the Illapel (2015, Mw 8.3), Tokachi (2003, Mw390

8.3), Iquique (2014, Mw 8.1), Iquique aftershock (2014, Mw 7.7), Fukushima (2016, Mw391
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Figure 7. Same as Fig. 5 using 46 s of signal after P-wave arrival.

6.6) and Pisco (2007, Mw 8.0) earthquakes, for which the Mw 9.0 Tohoku earthquake392

observations are part of the training data. For these cases (Fig. 9), E3WS estimations393

track the magnitude evolution in agreement with the STF, with no systematic under-394

estimation, some even overestimate the STF.395

4.4 E3WS in a real-time scenario396

We install and test E3WS during one continuous month, with a transmission of data397

packets every second, at the San Lorenzo (SLN1) station, located in an island offshore398

Lima, Peru. This station is located at about 130 km from the trench, close to potential399

seismic sources. The performance of the detector model improves by retraining it with400

10 days of noise recorded by the station (overlapping windows sliding by 1 s). This is401

reflected in the decrease of the estimated likelihood that noise traces contain a P phase.402

The likelihood decreases from a mean of 0.15 with STD of 0.14, to a mean of 0.00017403

with an STD of 0.0078, demonstrating the importance of including station-specific noise404

in the model.405
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Figure 8. Real-time magnitude estimates for the 2011 Mw 9.0 Tohoku-Oki earthquake. (a)

Magnitude evolution estimated by several EEW algorithms (see legend) as a function of time

relative to the earthquake origin time. We also show the magnitude from the seismologically

determined Source Time Function (STF) and after shifting it by the P-wave arrival time at the

closest station to the source used by E3WS (name and epicentral distance shown in the top-left

corner). (b) Magnitude evolution estimated by E3WS at several stations, as a function of time

relative to the P-wave arrival times at each station. We indicate the number of available stations

at a maximum of 200 km from the source in the top-left corner.

We get 0 false detections and detect 14 earthquakes (Table 4), with mean and STD406

magnitude errors between the estimated magnitude (Mest) and the ground-truth (Mtrue407

taken from the IGP catalog) of -0.2 and 0.2, respectively. We compute the detection time408

as the time at which the system triggers with respect to the P arrival time. E3WS de-409

tects earthquakes in less than 1.5 s, on average in 1.0 s. We define the warning time as410

the difference between the time in which the system computes the source characteriza-411

tion parameters, and the S-arrival time. The system generates an average warning time412

of 13.5 s with an STD of 4.3 s.413

E3WS does not trigger for 15 earthquakes (Table S1). The maximum magnitude414

of these missed events is 3.8, with a strong trade-off between magnitude and distance415

(Table S1). These magnitudes are below those that generate significant shaking in coastal416

Peru; they would not warrant an alert. E3WS triggers for 3 regional earthquakes out-417

side the geographical target area (distances > 200 km). The magnitudes of these earth-418

quakes are 4.8, 4.5 and 4.2, with epicentral distances of 321 km, 396 km and 357 km, re-419

spectively. As the signals contain low energy level at station SLN1, the magnitude es-420

timates are ∼M3.5. We have no false positives corresponding to teleseismic earthquakes421

(distances > 1000 km), which contain high energy at very low frequencies. This is one422

of the reasons why we filter between 1 and 7 Hz in our detector.423
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Table 4. E3WS earthquake detections using 3 s of P wave in a continuous month (January

2022) at station SLN1.

Mtrue Mest Detection (s) Warning time (s)

5.6 5.4 0.7 13.4

4.3 4.2 1.4 11.1

4.0 3.9 1.1 7.9

4.0 3.6 1.1 17.3

3.9 3.5 0.5 23.6

3.7 3.5 0.9 11.5

3.6 3.3 1.3 9.3

3.6 3.4 1.1 18.5

3.5 3.5 1.0 12.7

3.5 3.4 0.8 11.3

3.5 3.5 0.7 11.8

3.5 3.3 1.6 18.6

3.1 3.2 1.4 13.8

3.1 3.2 0.9 8.5

5 Discussion424

5.1 Importance of different waveform attributes in E3WS425

We estimate the importance of attributes based on their gain. The gain is the rel-426

ative contribution of the attribute in each tree in XGB, i.e. it is a measure of the im-427

provement in the estimates when using a particular attribute. A high gain of an attribute428

implies that the use of this feature improves the estimates. Our magnitude model is based429

on the Stacking algorithm, with 10 base-models. For each attribute, we generate the gain430

for each of the 10-base models trained for 3 s of P-wave signal and calculate the aver-431

age of the gains and their STD. We order the results of all attributes from highest to low-432

est value. We repeat the process for longer time windows.433

The attributes that contribute the most to magnitude estimation, both using short434

and long portions of P wave, are the MFCC (Fig. 10). It is striking that cepstral attributes435

are more relevant than temporal or spectral attributes, such as peak signal energy, fre-436

quency centroid and dominant frequency (features 4, 23 and 24 in Section S2), that share437

similarities with features that are widely used for magnitude estimation in other EEWS,438

such as Pd or τc. We hypothesize that the MFCC, by measuring energies on the Mel scale439

(a logarithmic frequency scale), manages to capture properties of both signal amplitude440

and frequency content that are analogous to the traditional attributes Pd and τc, which441

are computed from displacement and velocity waveforms. Their computation from ac-442

celeration data, as is our approach, requires time integration, which is prone to amplify443

noise. Thus, it might preferable to not include them in E3WS. Indeed, our tests show444

better efficiency when using acceleration waveforms. Moreover, E3WS requires unclipped445

data for strong earthquakes as provided by accelerometers.446

5.2 Comparative performance of E3WS and other EEWS447

We compare the performance of E3WS with that of ElarmS (Brown et al., 2011),448

which estimates earthquake magnitude within the first 4 seconds of the P-wave. To make449

a fair comparison, we select the same number of earthquake records associated with the450
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same magnitudes within 100 km, as used by R. M. Allen and Kanamori (2003). ElarmS451

has a MAE of 0.70 magnitude units, while E3WS outperforms it in timeliness and ac-452

curacy, with MAE of 0.09 using 3 s of P-wave and 0.08 using 4 s. We also compare ElarmS453

with E3WS on data from the Japanese network. Similarly to R. M. Allen (2007), we se-454

lect from our database Japanese earthquakes in the magnitude range from 3.8 to 7.4. ElarmS455

yields a MAE of ∼0.75, while E3WS outperforms it again in timeliness and accuracy,456

with MAE of 0.23 using 3 s of P-wave and 0.17 using 4 s.457

We also test the performance of E3WS compared to UrEDAS. Lockman and Allen458

(2005) report results applying UrEDAS using stations containing at least 5 earthquake459

records, with at least one of the records providing a magnitude estimate of at least M5.0,460

for earthquakes in southern California. For the best-performing quarter of the stations,461

with epicentral distances less than 150 km, and using the first 4 seconds of the earth-462

quake record, UrEDAS achieves a MAE for magnitude estimation of 0.3 magnitude units.463

For source location, UrEDAS achieves MAEs of 15 km for hypocentral distances and of464

20◦ for back-azimuth. We select from our database stations with the same conditions.465

For the best-performing quarter of the stations and using 3 seconds, E3WS achieved a466

MAE of magnitude of 0.22, significantly better than UrEDAS with 4 seconds. For lo-467

cation, E3WS yields results similar to UrEDAS, with MAE of 14 km for hypocentral dis-468

tance and 20◦ for back-azimuth. Using 4 seconds of recording, E3WS achieves MAEs for469

magnitude, hypocentral distance and back-azimuth of 0.20 magnitude units, 13.6 km and470

19.1◦, respectively.471

The back-azimuth error is currently the weakest link in E3WS. However, there are472

opportunities to improve the back-azimuth estimates by including new attributes. For473

instance, Eisermann et al. (2015) combined three methods to estimate back-azimuth and474

obtained an STD of 13◦.475
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Figure 9. Magnitude estimates for the following earthquakes: 2015 Mw 8.3 Illapel, 2003 Mw

8.3 Tokachi-Oki, 2014 Mw 8.1 Iquique, 2014 Mw 7.7 Iquique aftershock, 2011 Mw 6.6 Fukushima

aftershock, 2007 Mw 8.0 Pisco. Estimates are shown as a function of time relative to the earth-

quake’s OT for the closest station (left, name of station and epicentral distance indicated in the

top-left corner) and as a function of time relative to the P-wave arrival time at each station for

all seismic stations available (right, number of stations indicated in the top-left corner). On the

left, we compare E3WS results with those obtained by other EEWS. On the right, we show all

the estimates (gray), their mean (red), the moment function (the integral of the STF, light blue).
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Figure 10. First (lightest color) to fifth (darkest color) most important features for mag-

nitude estimation as a function of the P-wave window duration, from 3 to 46 s. For each time

window, feature importance is based on the corresponding stacking model (see subsection 3.3),

which consists of 10 XGB base models. Importance (%) shown is calculated as the gain mean

plus STD of each base model, multiplied by 100 and divided by the total sum. The horizontal

axis shows the gain, a measure of attribute importance when making estimates, defined as the

relative contribution of the attribute in each tree in XGB. The vertical axis represents the dura-

tion of P-wave signal used to train the model. Z, N and E represent attributes extracted from the

vertical, north and east channel, respectively.
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6 Conclusion476

We introduced E3WS, a set of Machine Learning algorithms using only 3 seconds477

of P-wave signal recorded by a single accelerometric station to detect, locate and esti-478

mate the magnitude of an earthquake. E3WS is made of 6 independent algorithms per-479

forming detection, P-phase picking and estimation of magnitude, epicentral distance, depth480

and back-azimuth. The proposed system generates faster estimates than existing EEWS.481

E3WS could provide valuable additional seconds for warning. Although the final mag-482

nitude of Mw ≥ 7 earthquakes cannot be estimated using only 3 s of signal, because their483

source duration is typically longer than 6 s, the system provides robust detection and484

preliminary estimations of the instantaneous magnitude and location of an ongoing event,485

which is valuable to send a first alert. E3WS provides better accuracy than other EEWS486

that can use one station and 3 seconds of seismic recording, such as ElarmS and UrE-487

DAS. Continuous updates of the magnitude and location estimations can be made to up-488

date the alert radius as the earthquake grows to larger magnitude. The proposed sys-489

tem is not only theoretical: it is already running in alpha test mode for the EEWS of490

Peru. It has been installed on low-cost Raspberry Pi 4 devices connected to strong-motion491

sensors along the Peruvian coast. E3WS is easy to install, flexible to change, can be ap-492

plied anywhere, and designed using free and open source software (Python3 with the Scikit-493

learn package) under the Linux operating system.494
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1. Introduction

This supporting information includes the attributes used in this work, 9 supplementary

figures and 1 supplementary table.

2. Attributes

We detail here the attributes computed to train the Machine Learning algorithms, with

their corresponding domain and signal.

2.1. Attributes from 3-component seismograms

1. Maximum eigenvalue λ1 of covariance matrix from the 3C seismogram.
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2. Eigenvalue factor: ratio of the maximum eigenvalue to the sum of the remaining

eigenvalues:

λfactor = λ1/(λ2 + λ3). (1)

3. The 3 components of the eigenvector ν1 associated with the maximum eigenvalue

λ1.

2.2. Attributes from each channel

N denotes the number of samples per channel within the time window. Fs denotes the

sampling rate, in Hz. The envelope of the signal s is defined as e = |s+ iH{s}|, where H

is the Hilbert transform.

2.2.1. Time-domain attributes

4. Maximum energy of the preprocessed signal:

Emax = max(s2). (2)

5. Time at which the maximum energy is reached:

tEmax = argmax(s2). (3)

6. Total energy:

Ene =
N∑

n=1

s2[n]. (4)

7. Energy centroid time:

CT =
1

Ene

N∑
n=1

n s2[n]. (5)

8. Bandwidth, characteristic duration, variance around the energy centroid:

BWt =

√√√√√√
N∑

n=1

(n− CT )2s2[n]

Ene

. (6)
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9. Skewness around bandwidth:

SkewnessBWt =

{√
SKpre, if SKpre ≥ 0

−
√

−SKpre, otherwise.

where

SKpre =

N∑
n=1

(n− CT )3s2[n]

Ene BW 3
t

. (7)

10. Kurtosis around bandwidth:

KurtosisBWt =

√√√√√√
N∑

n=1

(n− CT )4s2[n]

Ene BW 4
t

. (8)

11. Mean envelope:

< env >=
1

N

N∑
k=1

e[k]. (9)

12. Ratio of maximum amplitude envelope to its mean:

RMMt =
max(e)

< env >
. (10)

13. Standard deviation of the envelope:

STDenv =

√√√√√√
N∑
k=1

(e[k]− < env >)2

N
. (11)

14. Skewness of the envelope:

Skewnessenv =
1

N

N∑
k=1

(
e[k]− < env >

STDenv

)3

. (12)

15. Kurtosis of the envelope:

Kurtosisenv =
1

N

N∑
k=1

(
e[k]− < env >

STDenv

)4

. (13)
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16. Threshold-crossing rate of the envelope signal: how many times per second the

signal envelope crosses the threshold of 80% of its maximum amplitude:

TCRt =
count(r[n]r[n− 1] < 0)

N/Fs

, (14)

where:

r = e/max(e)− 0.8. (15)

17. Fraction of envelope samples that exceed a threshold of 80% of the envelope maxi-

mum:

fract(TCRenv) = count(e ≥ 0.8max(e))/N. (16)

18. Shannon entropy of the envelope, with Nbins = 200.

Shannonenv = −
Nbins∑
i=1

Probe[i] log2(Probe[i]), (17)

where:

Probe[i] = Histogram(e,Nbins). (18)

19. Renyi entropy of the envelope, with α = 2.

Renyienv =

log2

Nbins∑
i=1

Probαe [i]

1− α
, (19)

20. Zero crossing rate, how many times per second the signal s changes sign:

ZCRt =
count(s[n]s[n− 1] < 0)

N/Fs

(20)

2.2.2. Spectral-domain attributes

Attributes extracted from p = PSD(s), the Welch’s Power Spectral Density of the signal

s. Here N denotes the number of frequency samples in the spectrum up to the Nyquist

frequency Fs/2.
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21. Mean PSD:

< PSD >=
1

N

N∑
k=1

p[k]. (21)

22. Maximum spectral energy:

PSDmax = max(p). (22)

23. Frequency index of maximum spectral energy:

fPSDmax = argmax(p). (23)

24. Centroid frequency of the spectrum:

CF =

N∑
k=1

k p[k]

N∑
k=1

p[k]

. (24)

25. Frequency bandwidth, variance around the spectral centroid:

BWf =

√√√√√√√√√√
N∑
k=1

(k − CF )2 p[k]

N∑
k=1

p[k]

. (25)

26. Skewness of the spectrum:

SkewnessBWf
=

{√
SKpre, if SKpre ≥ 0

−
√

−SKpre, otherwise.

where

SKpre =

N∑
k=1

(k − CF )3 p[k]

BW 3
f

N∑
k=1

p[k]

, (26)
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27. Kurtosis of the spectrum:

KurtosisBWf
=

√√√√√√√√√√
N∑
k=1

(k − CF )4 p[k]

BW 4
f

N∑
k=1

p[k]

. (27)

28. Standard deviation of the PSD:

STDPSD =

√√√√√√
N∑
k=1

(p[k]− < PSD >)2

N
. (28)

29. Skewness of PSD:

SkewnessPSD =

Na∑
k=1

(
p[k]− < PSD >

STDPSD

)3

N
. (29)

30. Kurtosis of PSD:

KurtosisPSD =

N∑
k=1

(
p[k]− < PSD >

STDPSD

)4

N
. (30)

31. Shannon entropy, with Nbins = 50:

ShannonPSD = −
Nbins∑
i=1

Probp[i] log2(Probp[i]), (31)

where:

Probp[i] = Histogram(p[k], Nbins). (32)

32. Renyi entropy, with α = 2:

RenyiPSD =

log2

Nbins∑
i=1

Probαp [i]

1− α
. (33)

33. Ratio of maximum PSD amplitude to its mean.

RMMf =
max(p)

< PSD >
. (34)
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34. Threshold-crossing rate of the PSD, how many times the PSD crosses a threshold

of 40% of its maximum amplitude:

TCRf =
count(r[k]r[k − 1] < 0)

N/Fs

, (35)

where:

r = PSD/max(PSD)− 0.4 (36)

35. Relative number of samples that exceed a threshold of 40% of its maximum.

fract(TCRPSD) = count(p ≥ 0.4max(p))/N. (37)

2.2.3. Cepstral-domain attributes

36. The 13 first mel-frequency cepstrum coefficients (MFCC):

MFCC[m] = DCT{log[
∑

{|F{s}|2Λm}]}, (38)

where DCT is the Discrete Cosine Transform, F{.} is the Discrete Fourier Transform, and

Λ is a triangular filter bank function linearly spaced from 1 to 45 Hz in a Mel scale. In this

work, we use m = 26 filter banks, and are compute as in (Kopparapu & Laxminarayana,

2010).
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3. Figures

Figure S1. General architecture XGB.

Figure S2. Accuracy of noise and earthquake classification, using different thresholds.
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Figure S3. Magnitude, epicentral distance and depth of the misclassified signals shown in Fig.

S4.

Figure S4. Earthquake signals misclassified as noise, and their signal-to-noise ratios (SNR).
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Figure S5. histogram of errors between the true and predicted P-phase arrival times.
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Figure S6. Histogram of the errors in the source characterization predictions using 3 s of

P-wave.
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Figure S7. Mean (circle) and STD (bar) predictions per bin using 3 s of P-wave.
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Figure S8. STD of the back-azimuth estimates, using different lower thresholds of magnitude.
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Figure S9. Histogram of the errors in the predictions using 46 s of P-wave.
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Table S1. Real-time earthquake detection by E-EEWS using 3 s of P-wave in a continuous

month.

Magnitude Distance (km) Depth (km)

3.1 175 13

3.5 179 56

3.3 195 85

3.2 145 78

3.2 173 54

3.3 89 50

3.3 98 86

3.2 163 17

3.7 162 19

3.3 159 84

3.8 155 10

3.0 47 35

3.4 189 88

3.5 138 47

3.5 97 49
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Abstract6

We introduce the Ensemble Earthquake Early Warning System (E3WS), a set of7

Machine Learning algorithms designed to detect, locate and estimate the magnitude of8

an earthquake using 3 seconds of P waves recorded by a single station. The system is9

made of 6 Ensemble Machine Learning algorithms trained on attributes computed from10

ground acceleration time series in the temporal, spectral and cepstral domains. The train-11

ing set comprises datasets from Peru, Chile, Japan, and the STEAD global dataset. E3WS12

consists of three sequential stages: detection, P-phase picking and source characteriza-13

tion. The latter involves magnitude, epicentral distance, depth and back-azimuth esti-14

mation. E3WS achieves an overall success rate in the discrimination between earthquakes15

and noise of 99.9%, with no false positive (noise mis-classified as earthquakes) and very16

few false negatives (earthquakes mis-classified as noise). All false negatives correspond17

to M ≤ 4.3 earthquakes, which are unlikely to cause any damage. For P-phase picking,18

the Mean Absolute Error is 0.14 s, small enough for earthquake early warning purposes.19

For source characterization, the E3WS estimates are virtually unbiased, have better ac-20

curacy for magnitude estimation than existing single-station algorithms, and slightly bet-21

ter accuracy for earthquake location. By updating estimates every second, the approach22

gives time-dependent magnitude estimates that follow the earthquake source time func-23

tion. E3WS gives faster estimates than present alert systems relying on multiple stations,24

providing additional valuable seconds for potential protective actions.25

1 Introduction26

Today millions of people live at risk from earthquakes. Real-time seismic monitor-27

ing near seismic sources opens the possibility of rapidly estimating earthquake param-28

eters that control the potential impact of shaking, notably magnitude and hypocenter29

location. Taking advantage of such estimates and speed-of-light communications, Earth-30

quake Early Warning Systems (EEWS) can generate an alarm before seismic shaking reaches31

the population, with the goal to mitigate human and material losses.32

An ideal EEWS accurately estimates ground shaking and time of impact in a re-33

gion soon after an earthquake is detected, then notifies the population or infrastructure34

at risk with sufficiently long warning time to take protective measures. In a common ap-35

proach, the magnitude and location of the earthquake are rapidly estimated, then used36

as input in a Ground Motion Prediction Equation to forecast ground shaking intensity37

measures such as Peak Ground Acceleration, whose values are used as a criterion to alert38

the population. However, there is a trade-off between achieving the earliest alert time39

and improving the accuracy of the estimates (Meier, 2017): waiting for additional data40

containing more information about the earthquake improves the magnitude and loca-41

tion estimates, but delays the issuance of alerts. Most EEWS are based on multi-station42

data, to improve accuracy by taking advantage of more information, at the expense of43

additional delays. Here we focus on single-station EEWS as it has the potential to be44

faster since it does not require waiting for seismic wave arrivals at multiple stations.45

The practice of EEWS dates back to 1988 with the deployment of the Urgent Earth-46

quake Detection and Alarm System (UrEDAS) in Japan, the first operational system based47

on the analysis of a few seconds of P waves recorded by a single station to estimate earth-48

quake source parameters (Nakamura, 1988; Nakamura et al., 2011). Since then, a num-49

ber of EEW algorithms have been developed using records from broadband seismome-50

ters, strong-motion accelerometers and Global Navigation Satellite System (GNSS) sta-51

tions (R. M. Allen & Melgar, 2019).52

The τc-Pd Onsite algorithm (Böse et al., 2009), one of the three algorithms that53

contributed to the development of ShakeAlert, the EEWS of the US West coast (Böse54

et al., 2014), uses the period parameter τc and the peak initial-displacement amplitude55
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Pd (Yih-Min et al., 2007) extracted from the first 3 seconds of the P-wave recorded by56

a single sensor. The algorithm estimates the P phase arrival based on a combination of57

the classic STA/LTA (R. V. Allen, 1978) with a P/S wave discriminator which uses the58

ratio of horizontal to vertical ground motions. It estimates the magnitude and the Mod-59

ified Mercalli Intensity but not the earthquake location, thus it is intended for on-site60

warning instead of regional warning.61

Most single-sensor-based algorithms only contain some components of an EEWS62

(detection, picking, magnitude or location), but not the whole package. The only excep-63

tion is UrEDAS, originally developed in Japan. However, it does not present the same64

performance when estimating the back-azimuth for earthquakes outside Japan. In par-65

ticular, when applied in California, UrEDAS estimates showed larger error and yielded66

several cases of magnitude overestimation for earthquakes with magnitudes between 3.067

and 5.0 (Nakamura & Saita, 2007).68

Recently, Artificial Intelligence (AI) has been used in a number of applications in69

seismology that are relevant for EEW. In particular, studies not designed for EEW pur-70

poses used AI for specific targets, such as detection, picking and source characterization71

components. The Earthquake Transformer algorithm (EQTransformer) (Mousavi et al.,72

2020) uses 1 minute long seismograms to feed an architecture based on Convolutional73

Neural Network (CNN) and Recurrent Neural Network (RNN) to detect earthquakes,74

and estimate P and S phase arrivals. The model achieves an earthquake detection pre-75

cision (true positives divided by total positives) of 1.0, and estimates the P and S phase76

arrivals with a mean of 0 seconds and standard deviation (STD) of 0.03 seconds for the77

P phase, and mean of 0.0 seconds and STD of 0.11 seconds for the S phase. Mousavi and78

Beroza (2020) estimate magnitudes with CNN and RNN trained with 30 seconds long79

seismograms (M<5.7). They obtain a mean error close to 0 magnitude units and stan-80

dard deviation ∼0.2. Mousavi and Beroza (2019) estimate earthquake location based on81

Bayesian Deep Learning. The network is fed by 1 minute long seismograms in the case82

of training distances. For back-azimuth, the angle is represented as points of the unit83

circle (cosine, sine) and is trained using seismograms of 1.5 s long. The network achieves84

a mean localization error of 7.27 km with STD of 12.16 km. While these AI models are85

not designed for EEW (they use signal windows that are too long), they represent a use-86

ful reference to evaluate the performance of AI-based EEW approaches.87

Here, we present E3WS, the first EEWS in which all components (detection, pick-88

ing and source parameter estimation) are based on AI. It uses only 3 seconds of signal89

recorded by a single three-component sensor. E3WS is a system focused on early warn-90

ing for populations living near seismic sources. Extra seconds of alert time can give the91

user enough time to “drop, cover and hold on” or to perform mitigation actions like stop-92

ping traffic, stopping elevators or evacuating the ground floor of buildings (Cremen et93

al., 2022). Compared to current single-station-based EEWS, E3WS estimates earthquake94

magnitudes with significantly better accuracy and locations with slightly better accu-95

racy. Its magnitude residuals are small enough to not generate false warnings, for both96

overestimates and underestimates. It requires no additional software to estimate P-phase97

arrival, and estimates source characterization without applying signal-to-noise ratio con-98

straints or acceleration thresholds. E3WS can be applied anywhere and is designed us-99

ing Machine Learning, allowing (in contrast to Deep Learning approaches) some under-100

standing of what controls the estimations. Thanks to its simplicity, E3WS can be installed101

in small 32-bits single board computers, such as a Raspberry Pi, as well as in more com-102

plex 64-bits processors.103

2 Database104

We build a database of seismic waveforms combining data from the Instituto Geof́ısico105

del Perú (IGP) recorded between 2017 and 2019, the STEAD global database (Mousavi106
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et al., 2019), the Seismic Network of Chile (Barrientos & Team, 2018), and the Japanese107

seismic networks K-Net and KiK-net (Aoi et al., 2004). We select events with magni-108

tude greater than 3.0, depth shallower than 100 km and recordings at epicentral distance109

shorter than 200 km. We consider 3-component accelerograms oriented to the east, north110

and vertical directions, respectively. In total, we compile a database of 73,000 earthquake111

seismograms. Data statistics are shown in Fig. 1.112

As the data come from different sources and have different sampling frequencies,113

sensors and digitizer types, we preprocess them to standardize our database. Preprocess-114

ing steps consist of removal of the mean to avoid low-frequency artifacts, removal of a115

least-squares-fitted linear trend, multiplication by a cosine taper at each end over 2.5%116

of the total window duration (see Section 3 for the analysis window time setting), and117

resampling using the Fourier method at 100 Hz. We convert the preprocessed data from118

broadband seismometers and accelerometers to acceleration in m/s2. We ignore sensors119

for which we did not find the instrument response.120

The preprocessing also includes semi-automatic detection of the P-phase for the121

Chilean and Japanese datasets. Since the Chilean, KiK-net and K-NET datasets do not122

include P-phase picks, we used an STA/LTA algorithm (R. M. Allen, 2007) and theo-123

retical travel times to estimate the P-phase and S-phase arrival times. Sometimes we find124

in the raw data of a given earthquake more than one earthquake. In these cases, the STA/LTA125

algorithm triggered in most of the earthquakes. To avoid selecting an earthquake that126

does not belong to the dataset catalog, we select the earthquake in which the difference127

in the estimated time between the STA/LTA algorithm and theoretical travel times is128

not greater than three seconds. Then, we chose the STA/LTA trigger time as the P-phase129

time.130

For the Peru, Chile and STEAD datasets, we manually identified and removed sig-131

nals that were saturated for M>5.0. We found no further saturated waveforms when in-132

specting events down to M4.5. We believe that for magnitudes smaller than 4.5, there133

are no more saturated waveforms. The Japanese data are recorded by strong-motion ac-134

celerometers, which do not saturate.135

3 Proposed EEWS136

E3WS consists of 6 ML algorithms : a detector, a P-phase picker and 4 regression137

models estimating the magnitude, epicentral distance, back-azimuth and depth of the138

source. The detector model monitors the seismic activity. When it detects an earthquake,139

the P-phase picker is triggered. Then, using a minimum of 3 seconds of P-wave signal,140

the 4 regression models run in parallel and estimate the magnitude and location of the141

event. Estimations are updated at regular times thereafter, as the signal window length-142

ens. For each signal window, these 6 models take as input a feature vector formed by143

concatenating 140 attributes extracted from the waveforms, their spectrum and their cep-144

strum.145

We test several approaches to design the models, including Extreme Gradient Boost-146

ing (XGB), Support Vector Machine (SVM), Random Forest (RF) and Neural Networks147

(Multilayer Perceptron: MLP). We find that the approach yielding the best results is XGB148

(Chen & Guestrin, 2016), a Supervised Machine Learning model that has become pop-149

ular for its leading performance in Kaggle competitions (Nielsen, 2016) and that has been150

recently applied to seismology (Shokouhi et al., 2021).151

We train the models using 80% of the database and we test on the remaining 20152

% (more details in Section 4.1), based on the first 3 seconds of the P-wave. In the test-153

ing stage, detection results show that XGB has an overall accuracy (correct classifica-154

tions divided by total test samples) of 99.95%, slightly better than the other models (Ta-155

ble 1). For P-phase picking, XGB and RF achieve the best performances, with similar156
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Figure 1. Magnitude, epicentral distance, depth and back-azimuth distributions of the earth-

quake waveform database compiled for this work.

responses. However, XGB is far superior in terms of computational cost of real-time pro-157

cessing: the average time complexity per estimate is 0.01 s for XGB compared to 0.49158

s for RF, on an Intel(R) Xeon(R) Silver 4114 processor. Even on a Single Board Com-159

puter like a Raspberry Pi 4, XGB takes 0.01 s on average. Furthermore, due to the large160

storage required by the RF model (1.6 GB) compared to XGB (7.6 MB), it was not pos-161

sible to load the RF model on the Raspberry Pi 4. For source characterization, XGB gives162

a smaller Mean Absolute Error (MAE) than the other models. Although XGB only sup-163

ports single-label training, it performs better than inherently multi-output regression mod-164

els such as RF.165

Moreover, XGB can be accelerated by multi-threading, which we exploit here: we166

train our models on 80 CPU cores in parallel. XGB is based on the Ensemble Learning167

approach: it uses multiple sub-models (decision trees) to improve the final estimation.168

It applies the ensemble technique Boosting, which consists of sequentially decreasing the169

residuals along each tree, and a Gradient descent algorithm to minimize the loss func-170

tion. Fig. S1 shows the general XGB scheme. For all models, we use the following hy-171

perparameters for XGB training: depth = 4, number of trees = 6000, subset = 80% and172

learning rate = 0.1.173

3.1 Detection174

Since STEAD is a global dataset that also includes global noise samples, we ex-175

tract 55,000 noise windows and add them to our database. We use waveforms filtered176

from 1 to 7 Hz and a fixed time window of 10 seconds including a minimum of 3 seconds177

of P-wave. We discard waveforms that do not contain 7 seconds of data before the P-178
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Table 1. Accuracy and errors using XGB, RF, SVM and MLP models for detection, P-phase

picking and source characterization.

Performance XGB RF SVM MLP

DET% 99.95 99.94 99.92 99.90

PICKMAE (s) 0.14 0.14 0.18 0.16

MAGMAE 0.34 0.38 0.47 0.39

DISMAE (km) 27 29 33 30

DEPMAE (km) 15.7 28.9 18.0 17.7

BAZMAE (◦) 45.1 47.0 52.3 51.1

wave arrival. In our tests we obtained better accuracy using a 10-seconds-long window179

compared to shorter windows. For instance, we find false detections due to impulsive noise180

using shorter windows; 10 seconds-long windows limit false detections by lowering the181

weight of impulsive noise in the attributes.182

We train the XGB model as a classifier between noise, P-waves and S-waves. We183

label a window as class 0 if it contains only noise, and class 1 or 2 if the window con-184

tains 0.5, 1.0, ..., 4.0 seconds of P or S-wave, respectively. Although our focus is on the185

analysis of the P-wave signal, we add an S-phase class in the training so that our sys-186

tem does not trigger with S waves.187

We estimate the likelihood that a window contains a P wave, sliding the 10-second188

window by steps of 0.5 seconds. To avoid triggers caused by impulsive noise, we consider189

the average over several sliding windows: if the average of the likelihood of containing190

a P phase of three consecutive windows is less than a threshold of 0.21, we classify it as191

noise; otherwise, we classify it as an earthquake. The choice of the threshold value is de-192

scribed in Section 4.1.1.193

3.2 P-phase picking194

Because the Japanese and Chilean datasets do not provide P-phase arrival times195

(tp), we restrict the training set for phase-picking to the Peruvian and STEAD datasets.196

We use a fixed time window of 4 seconds filtered between 1 and 7 Hz.197

We train the XGB model as a classifier between noise, 0.5 s of P-wave and 0.5 s198

of S-wave. This classifier works as a scan, where we label class 1 when the 4 s-long win-199

dow contains 0.5 s of P-wave signal, class 2 when it contains 0.5 s of S-wave, and class200

0 otherwise. We include the S-phase to minimize the error in P-phase picking when the201

4 s-long window contains both the P and S phases.202

We feed the model with attributes extracted from a 4 s-long window sliding with203

a step of 0.01 s covering the interval tp− 5.5 s to tp+2.5 s (Fig. 2). The estimated P204

arrival time is the ending time of the first 4 s-long window classified as Class 1 minus205

0.5 s. We proceed similarly for the S-phase.206

We use the time window [tp−3.5s, tp+0.5s] as label 1 because of the natural un-207

certainty in the catalog arrival times. We trust that the uncertainties in the P-phase ar-208

rival times of the catalogs are less than 0.5 s. With attributes extracted every 0.01 s, the209
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Figure 2. Labeling for the P-phase picking model. We extract attributes from a 4-seconds-

long window, starting from tp − 5.5 s as the blue box, for our entire database. We repeat the

attribute extraction every 0.01 s until the blue box reaches tp + 2.5 s.

input dataset for the P-phase picking model is made of approximately 36 million 140-210

dimensional samples.211

3.3 Source characterization212

For source characterization (esimation of earthquake magnitude, epicentral distance,213

back-azimuth and hypocentral depth), we use time windows that contain 7 seconds of214

noise and 3 seconds of P-wave signal extracted from our earthquake database. We ap-215

ply a band-pass filter from 1 to 45 Hz. Because P-phase accuracy is crucial when esti-216

mating back-azimuth using only one station, we select only datasets that have a P-phase217

catalog. To train the back-azimuth estimation model, we only use STEAD and Peruvian218

samples and select only the stations that are properly oriented to the east (azimuth 90°)219

and north (azimuth 0°).220

We train each model independently. These models are based on the Stacking al-221

gorithm (Cui et al., 2021), which uses a set of models per layer. The outputs of the mod-222

els in the first layer, called base-models, feed a model in the second layer, called meta-223

model (Fig. 3). The main idea of using Stacking is to reduce the error by increasing the224

heterogeneity of the data by using multiple subsets of the original database, and com-225

bining them with the meta-model to generate the estimates.226

The base-models are obtained by an XGB regressor, with the same hyper-parameters227

as used for detection and P-phase picking. The meta-model is obtained by the Least Ab-228

solute Shrinkage and Selection Operator (LASSO).229

For each model, we perform K-fold validation, splitting the dataset into K=10 groups230

and training each XGB base-model with nine out of the ten groups. Then, the remain-231

ing Out-of-Fold group of validation is estimated by the trained XGB model. Finally, we232

combine all the estimates for each Out-of-Fold group (OOFpred) to train the LASSO meta-233

model (Kukreja et al., 2006).234

For the back-azimuth model, we divide the training into 2 targets. Because the an-235

gle is represented in non-Euclidean space, we train two separate models to estimate its236

cosine and sine, respectively.237

3.4 Feature vector238

For all of the algorithms, we compute the same set of 140 attributes, in the time,239

spectral and cepstral domains. For the time domain, we extract attributes from the pre-240

processed signal s and from its envelope, defined as the absolute value of its analytic sig-241
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Figure 3. Source characterization model based on Stacking algorithm and K-Fold with K=10.

For each K, nine groups train the XGB base-model. Estimates from the remaining group, using

the corresponding trained XGB model, feed the LASSO meta-model.

nal |s+iH{s}| where H is the Hilbert transform. For the spectral domain, we consider242

the Power Spectral Density (PSD) of the signal estimated by Welch’s method using an243

overlap of 75%, a Fourier Transform length of 512 samples and a Hanning taper func-244

tion. For the cepstral domain, we use the first 13 Mel-frequency cepstral coefficients (MFCC)245

(Davis & Mermelstein, 1980).246

In total, we extract 45 attributes for each channel: 17 in the time domain, 15 in247

the spectral domain, and 13 in the cepstral domain. We add 5 attributes from the com-248

bination of the 3-component signal: the maximum eigenvalue, the eigenvector associated249

with the maximum eigenvalue, and the ratio of the maximum eigenvalue to the sum of250

the remaining eigenvalues. We then concatenate all the features in a single vector, gen-251

erating a 140-dimensional feature vector. We provide the complete list of attributes in252

the Supporting Information. Most of them were previously used in (volcano) seismol-253

ogy by Malfante et al. (2018) and Lara et al. (2020).254

4 Results255

Here, we evaluate the performance of E3WS. First, we analyze the models that com-256

pose E3WS using hold-out validation, with 3 seconds of P-wave signal. Next, we eval-257

uate the behavior of the system when using longer signal time windows. Then, we ap-258

ply E3WS to track the magnitude of a set of earthquakes with M>6.0 in simulated real-259

time conditions and compare the performance with existing EEWS methods. Finally,260

we show an application of E3WS in a real-time scenario in Peru.261

4.1 Hold-out validation using 3 seconds of P-wave signal262

We assess the behavior of the E3WS target models through Hold-out validation.263

We assign 80% of the seismic events and their associated observations to the training stage,264

and the remaining 20% to the testing stage. To avoid data leakage, we use Hold-out val-265

idation on seismic events and then we associate their observations, which prevents hav-266

ing events with observations in both the training stage and the testing stage.267

–8–



manuscript submitted to JGR: Solid Earth

4.1.1 Detection268

The detector model achieves its best performance for a P-phase likelihood thresh-269

old of 0.21 (Fig. S2), reaching an overall success rate of 99.9% in the discrimination be-270

tween noise and earthquakes (Table 2). For a total of 11,264 noise observations, 100%271

of noise samples are correctly classified. From 8,788 earthquake observations, 10 are mis-272

classifications, leading to a success rate of 99.9% for earthquake classification. All of these273

misclassifications belong to earthquakes with M < 4.3 (Fig. S3) and low signal-to-noise274

ratios (Fig. S4). Most of them have an epicentral distance greater than 100 km.275

Table 2. Confusion matrix for the detection algorithm.

Overall (%): True class

99.9 Noise Earthquake

Estimated

class

Noise 11264 10

Earthquake 0 8778

Accuracy (%): 100.0 99.9

4.1.2 P-phase picking276

We evaluate the picker model on more than 10,000 seismograms of the test dataset277

compared to the “true” (manually picked) P-wave arrival times (Fig. S5). The model278

achieves a P-phase arrival time error with mean of 0.03 s, STD of 0.14 s and MAE of279

0.10 s.280

4.1.3 Source characterization281

The performance of the source characterization is remarkable (Figs. 5, S6, Table282

3), given that our algorithm only uses 3 seconds of records on a single station.283

Table 3. Performance of the source characterization algorithm with its mean error, STD error,

MAE and coefficient of determination (R2).

Performance Mean STD MAE R2

MAG 0.0 0.45 0.34 0.87

DIS (km) -0.3 34.3 27.1 0.50

DEP (km) -1.4 20.8 15.7 0.32

BAZ (◦) -3.4 43.7 45.2 0.84

The magnitude estimates are very stable for earthquakes with magnitudes between284

3.2 and 6.5, with magnitude average residuals (|Mpred−Mtrue|) of ∼0.2 for M<5.7 (Fig.285

4a), and residuals between 0 and 0.4 for 5.7<M<6.5. We even observe magnitude resid-286

uals ∼0 for M6.2. This gives us confidence in estimating magnitudes for minor (M3.0-287

M3.9) to strong (M6.0-M6.9) earthquakes. For instance, for all M>6.0 earthquakes the288
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average estimates are M¿6.0, so there would not be missed events in a EEW system that289

uses a threshold M>6.0 as a primary alert criterion. The small errors over the entire range290

of magnitudes are reflected in a high R2 of 0.87 (1.0 in the ideal case). For the small-291

est earthquakes of our database (M∼3), the magnitude estimates show a slight overes-292

timation of 0.3 and STD of 0.2 (Fig. S7a), but that is not a problem for EEWS because293

such small earthquakes do not warrant alerts. For M>6.5 the estimated magnitudes sat-294

urate and underestimate the real values. This magnitude saturation is expected: the half295

duration of M>6.5 earthquakes is typically longer than the 3 seconds window duration.296

We observe an average residuals at epicentral distances for distances very close to297

the seismic source (0-20 km) of ∼28 km (Fig. 4b). As the seismic gets farther away up298

to a distance of ∼120 km, the residuals decrease linearly even down to almost 0 error.299

From here, the errors grow linearly up to our training distance limit (200 km). If we keep300

our error tolerance at 28 km (errors at very close distances), we can estimate up to an301

epicentral distance of 165 km. Longer distances to this implies greater errors. This be-302

havior shows that the information contained within 3 s of P phase is not sufficient to re-303

solve accurately such large epicentral distances.304

From our database, the earthquakes that represent significant hazard (M>6.0) have305

hypocentral depths of 28 km on average and STD of 20 km. Within the range of the av-306

erage ± STD (8-48 km depth), most events have average residuals smaller than 10 km307

(Fig. 4c). The residuals do not exceed 20 km down to depths less than 60 km. This means308

that if E3WS estimates an earthquake with M>6.0, it is very likely that the error in depth309

is not greater than 10 km, and almost certainly the error is less than 20 km.310

For back-azimuth, residuals exceed 35◦. However, the STD of the estimates decreases311

significantly as the magnitude increases, achieving an STD of 21◦ for M>6.0 earthquakes312

(Fig. S8). The estimates have uniform performance throughout their range (Fig. S7d).313

The high R2 of 0.84 shows that the model contains relevant information in the whole back-314

azimuth range.315

4.2 Performance of source characterization using longer signals316

Meier et al. (2017) showed that the source time functions (STF) of large and very317

large shallow subduction earthquakes have a similar evolution until the maximum mo-318

ment rate is reached, suggesting that the beginning of the rupture does not contain enough319

information to estimate the final magnitude of the event. However, we can estimate the320

instantaneous magnitude using the first 3 seconds of the P wave, i.e. the magnitude reached321

by the earthquake 3 seconds after its onset. This estimate can form the basis to gener-322

ate a first warning and can be updated when longer records become available.323

To evaluate how much information the ML algorithms can leverage with more time,324

we retrain our algorithms using longer seismic signals. We increment the P-phase win-325

dow duration by steps of 1 s from 3 s to 46 s. Fig. 6 shows the evolution of two perfor-326

mance metrics, MAE and R2, as a function of the considered signal duration.327

We observe a significant improvement in the estimations of magnitude and epicen-328

tral distance, with R2 scores increasing up to 0.94 and 0.93, respectively, and MAE drop-329

ping to about 0.25 and 9 km, respectively, at 46 s of signal (Fig. 7). After that time, most330

M≤7 earthquakes are indeed over, which allows the model to estimate the final magni-331

tude, and the S phase has arrived, which allows the model to infer the epicentral distance332

from the arrival time difference between P and S phases. A signal duration of 30 s seems333

sufficient to converge to the best performance (Fig. 6a-d).334

The depth estimates improve slightly over time (Fig. 6e,f). From 10 to approxi-335

mately 27 seconds, the estimates do not improve. After this time the model improves336

slightly.337
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Figure 4. Average residuals (|targetpred − targettrue|) for each target: Magnitude, epicentral

distance, depth and back-azimuth, using the first 3 seconds of P-wave.

For the back-azimuth estimation, the best model uses 5 seconds of P wave, because338

the relevant information (likely the polarization) is contained in the first few seconds of339

the signal. The two most important attributes for the cosine model are the eigenvectors340

in the north and vertical components associated with the maximum eigenvalue, and for341

the sine model the vertical and east components.342

4.3 Performance of E3WS on selected large earthquakes343

We test the performance of E3WS to estimate the magnitude over time for differ-344

ent large earthquakes (M>6) using strong-motion accelerometers located in Japan, Chile345

and Peru. We apply the Leave-one-out method: in each example, the selected event and346

all its observations are put in the test dataset and the remaining observations in the train-347

ing set. We convert the data from these earthquakes into Earthworm Tankplayer format348

to simulate real-time data processing, with a transmission of data packets every second,349

and we estimate the magnitude using a minimum of 3 s and a maximum of 60 s after350

the P-phase arrival. We compare E3WS estimations to those obtained by other EEW351

algorithms based on multiple stations, using broadband or strong-motion sensors such352

as ElarmS-3 (Chung et al., 2019), Finder2 (Böse et al., 2018), Japan Meteorological Agency353

(JMA) (Hoshiba & Ozaki, 2014) and PEGSNet (Licciardi et al., 2022), and GNSS sta-354

tions such as BEFORES (Minson et al., 2014) and G-larmS (Grapenthin et al., 2014b,355
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Figure 5. Estimated source parameters (magnitude, distance, depth, back-azimuth) using 3 s

of records as a function of cataloged values.

2014a). For a true real-time comparison, we use the G-larmS triggered by ElarmS (ElarmS356

→ G-larmS), as mentioned in Ruhl et al. (2019).357

Fig. 8a shows the results for the 2011 Mw 9.0 Tohoku, Japan earthquake. For ref-358

erence, we show also the STF (the “true” instantaneous magnitude) and the STF shifted359

by the P arrival time at station MYG011, to compare both timeliness and accuracy. The360

first E3WS estimate uses 3 s of records after the first arrival at the station closest to the361

epicenter (MYG011, 120 km from the epicenter) and is obtained approximately 17 s af-362

ter origin time (OT). ElarmS-3 uses at least 0.2 s of P-waves recorded by 3 stations (Ruhl363

et al., 2019). Owing to the high density of seismic stations in Japan and to the short-364

ness of its first data window, ElarmS-3 issues its first estimation almost at the same time365

as E3WS.366

E3WS outperforms in timeliness and accuracy the first estimates of the other EEWS367

based on broadband or strong-motion sensors. At the time of the first E3WS estimate,368

the true instantaneous magnitude (shifted by P-wave arrival time) is M6.9, while E3WS369

estimates M5.2, ElarmS M4.9, JMA M4.3 (4 s later) and Finder2 M4.0 (7 s later). BE-370
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Figure 6. MAE and R2 results using 3 s to 46 s of P wave.

FORES makes its first estimate (M6.4) at 20 seconds after origin time (OT) when the371

true instantaneous magnitude is M7.3, outperforming the estimation of M5.7 by E3WS.372

However, one second later, E3WS outperforms the GNSS station-based systems in ac-373

curacy, giving M6.9 compared to M6.5 by BEFORES and M6.8 by G-larmS, when the374

true magnitude is M7.4. E3WS magnitude estimates increase until 31 s after OT (17 s375

of P-wave) with estimates that are very close to the true instantaneous magnitude, then376

remains similar to the JMA estimate up to 62 s after OT. At the end of our analysis win-377

dow, at 74 s after OT, E3WS and BEFORES achieve similar performance, 0.2 points of378

magnitude below PEGSnet. We take only Mw ≥ 8.3 estimates for PEGSnet, because379

estimates are not reliable below this magnitude (Licciardi et al., 2022).380

We also generate instantaneous magnitude estimates using all the strong-motion381

recordings available within a distance of 200 km from the epicenter. We show these es-382

timates as a function of time relative to the P-wave arrival time (Ptime) of each station,383

to compare them to the event’s STF (Fig. 8b) given by the SCARDEC catalog (Vallée384

& Douet, 2016). We observe that all the magnitude estimates as a function of time fol-385

low the magnitude evolution given by the STF, but with significant underestimation. These386

underestimations are most likely due to the scarcity of Mw ≥ 8.3 earthquakes in the387

training dataset, which the system tries to compensate by extrapolating from the mag-388

nitudes closest to 9.0 found in our database.389

Extrapolation is not required for the Illapel (2015, Mw 8.3), Tokachi (2003, Mw390

8.3), Iquique (2014, Mw 8.1), Iquique aftershock (2014, Mw 7.7), Fukushima (2016, Mw391
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Figure 7. Same as Fig. 5 using 46 s of signal after P-wave arrival.

6.6) and Pisco (2007, Mw 8.0) earthquakes, for which the Mw 9.0 Tohoku earthquake392

observations are part of the training data. For these cases (Fig. 9), E3WS estimations393

track the magnitude evolution in agreement with the STF, with no systematic under-394

estimation, some even overestimate the STF.395

4.4 E3WS in a real-time scenario396

We install and test E3WS during one continuous month, with a transmission of data397

packets every second, at the San Lorenzo (SLN1) station, located in an island offshore398

Lima, Peru. This station is located at about 130 km from the trench, close to potential399

seismic sources. The performance of the detector model improves by retraining it with400

10 days of noise recorded by the station (overlapping windows sliding by 1 s). This is401

reflected in the decrease of the estimated likelihood that noise traces contain a P phase.402

The likelihood decreases from a mean of 0.15 with STD of 0.14, to a mean of 0.00017403

with an STD of 0.0078, demonstrating the importance of including station-specific noise404

in the model.405
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Figure 8. Real-time magnitude estimates for the 2011 Mw 9.0 Tohoku-Oki earthquake. (a)

Magnitude evolution estimated by several EEW algorithms (see legend) as a function of time

relative to the earthquake origin time. We also show the magnitude from the seismologically

determined Source Time Function (STF) and after shifting it by the P-wave arrival time at the

closest station to the source used by E3WS (name and epicentral distance shown in the top-left

corner). (b) Magnitude evolution estimated by E3WS at several stations, as a function of time

relative to the P-wave arrival times at each station. We indicate the number of available stations

at a maximum of 200 km from the source in the top-left corner.

We get 0 false detections and detect 14 earthquakes (Table 4), with mean and STD406

magnitude errors between the estimated magnitude (Mest) and the ground-truth (Mtrue407

taken from the IGP catalog) of -0.2 and 0.2, respectively. We compute the detection time408

as the time at which the system triggers with respect to the P arrival time. E3WS de-409

tects earthquakes in less than 1.5 s, on average in 1.0 s. We define the warning time as410

the difference between the time in which the system computes the source characteriza-411

tion parameters, and the S-arrival time. The system generates an average warning time412

of 13.5 s with an STD of 4.3 s.413

E3WS does not trigger for 15 earthquakes (Table S1). The maximum magnitude414

of these missed events is 3.8, with a strong trade-off between magnitude and distance415

(Table S1). These magnitudes are below those that generate significant shaking in coastal416

Peru; they would not warrant an alert. E3WS triggers for 3 regional earthquakes out-417

side the geographical target area (distances > 200 km). The magnitudes of these earth-418

quakes are 4.8, 4.5 and 4.2, with epicentral distances of 321 km, 396 km and 357 km, re-419

spectively. As the signals contain low energy level at station SLN1, the magnitude es-420

timates are ∼M3.5. We have no false positives corresponding to teleseismic earthquakes421

(distances > 1000 km), which contain high energy at very low frequencies. This is one422

of the reasons why we filter between 1 and 7 Hz in our detector.423
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Table 4. E3WS earthquake detections using 3 s of P wave in a continuous month (January

2022) at station SLN1.

Mtrue Mest Detection (s) Warning time (s)

5.6 5.4 0.7 13.4

4.3 4.2 1.4 11.1

4.0 3.9 1.1 7.9

4.0 3.6 1.1 17.3

3.9 3.5 0.5 23.6

3.7 3.5 0.9 11.5

3.6 3.3 1.3 9.3

3.6 3.4 1.1 18.5

3.5 3.5 1.0 12.7

3.5 3.4 0.8 11.3

3.5 3.5 0.7 11.8

3.5 3.3 1.6 18.6

3.1 3.2 1.4 13.8

3.1 3.2 0.9 8.5

5 Discussion424

5.1 Importance of different waveform attributes in E3WS425

We estimate the importance of attributes based on their gain. The gain is the rel-426

ative contribution of the attribute in each tree in XGB, i.e. it is a measure of the im-427

provement in the estimates when using a particular attribute. A high gain of an attribute428

implies that the use of this feature improves the estimates. Our magnitude model is based429

on the Stacking algorithm, with 10 base-models. For each attribute, we generate the gain430

for each of the 10-base models trained for 3 s of P-wave signal and calculate the aver-431

age of the gains and their STD. We order the results of all attributes from highest to low-432

est value. We repeat the process for longer time windows.433

The attributes that contribute the most to magnitude estimation, both using short434

and long portions of P wave, are the MFCC (Fig. 10). It is striking that cepstral attributes435

are more relevant than temporal or spectral attributes, such as peak signal energy, fre-436

quency centroid and dominant frequency (features 4, 23 and 24 in Section S2), that share437

similarities with features that are widely used for magnitude estimation in other EEWS,438

such as Pd or τc. We hypothesize that the MFCC, by measuring energies on the Mel scale439

(a logarithmic frequency scale), manages to capture properties of both signal amplitude440

and frequency content that are analogous to the traditional attributes Pd and τc, which441

are computed from displacement and velocity waveforms. Their computation from ac-442

celeration data, as is our approach, requires time integration, which is prone to amplify443

noise. Thus, it might preferable to not include them in E3WS. Indeed, our tests show444

better efficiency when using acceleration waveforms. Moreover, E3WS requires unclipped445

data for strong earthquakes as provided by accelerometers.446

5.2 Comparative performance of E3WS and other EEWS447

We compare the performance of E3WS with that of ElarmS (Brown et al., 2011),448

which estimates earthquake magnitude within the first 4 seconds of the P-wave. To make449

a fair comparison, we select the same number of earthquake records associated with the450
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same magnitudes within 100 km, as used by R. M. Allen and Kanamori (2003). ElarmS451

has a MAE of 0.70 magnitude units, while E3WS outperforms it in timeliness and ac-452

curacy, with MAE of 0.09 using 3 s of P-wave and 0.08 using 4 s. We also compare ElarmS453

with E3WS on data from the Japanese network. Similarly to R. M. Allen (2007), we se-454

lect from our database Japanese earthquakes in the magnitude range from 3.8 to 7.4. ElarmS455

yields a MAE of ∼0.75, while E3WS outperforms it again in timeliness and accuracy,456

with MAE of 0.23 using 3 s of P-wave and 0.17 using 4 s.457

We also test the performance of E3WS compared to UrEDAS. Lockman and Allen458

(2005) report results applying UrEDAS using stations containing at least 5 earthquake459

records, with at least one of the records providing a magnitude estimate of at least M5.0,460

for earthquakes in southern California. For the best-performing quarter of the stations,461

with epicentral distances less than 150 km, and using the first 4 seconds of the earth-462

quake record, UrEDAS achieves a MAE for magnitude estimation of 0.3 magnitude units.463

For source location, UrEDAS achieves MAEs of 15 km for hypocentral distances and of464

20◦ for back-azimuth. We select from our database stations with the same conditions.465

For the best-performing quarter of the stations and using 3 seconds, E3WS achieved a466

MAE of magnitude of 0.22, significantly better than UrEDAS with 4 seconds. For lo-467

cation, E3WS yields results similar to UrEDAS, with MAE of 14 km for hypocentral dis-468

tance and 20◦ for back-azimuth. Using 4 seconds of recording, E3WS achieves MAEs for469

magnitude, hypocentral distance and back-azimuth of 0.20 magnitude units, 13.6 km and470

19.1◦, respectively.471

The back-azimuth error is currently the weakest link in E3WS. However, there are472

opportunities to improve the back-azimuth estimates by including new attributes. For473

instance, Eisermann et al. (2015) combined three methods to estimate back-azimuth and474

obtained an STD of 13◦.475
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Figure 9. Magnitude estimates for the following earthquakes: 2015 Mw 8.3 Illapel, 2003 Mw

8.3 Tokachi-Oki, 2014 Mw 8.1 Iquique, 2014 Mw 7.7 Iquique aftershock, 2011 Mw 6.6 Fukushima

aftershock, 2007 Mw 8.0 Pisco. Estimates are shown as a function of time relative to the earth-

quake’s OT for the closest station (left, name of station and epicentral distance indicated in the

top-left corner) and as a function of time relative to the P-wave arrival time at each station for

all seismic stations available (right, number of stations indicated in the top-left corner). On the

left, we compare E3WS results with those obtained by other EEWS. On the right, we show all

the estimates (gray), their mean (red), the moment function (the integral of the STF, light blue).
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Figure 10. First (lightest color) to fifth (darkest color) most important features for mag-

nitude estimation as a function of the P-wave window duration, from 3 to 46 s. For each time

window, feature importance is based on the corresponding stacking model (see subsection 3.3),

which consists of 10 XGB base models. Importance (%) shown is calculated as the gain mean

plus STD of each base model, multiplied by 100 and divided by the total sum. The horizontal

axis shows the gain, a measure of attribute importance when making estimates, defined as the

relative contribution of the attribute in each tree in XGB. The vertical axis represents the dura-

tion of P-wave signal used to train the model. Z, N and E represent attributes extracted from the

vertical, north and east channel, respectively.
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6 Conclusion476

We introduced E3WS, a set of Machine Learning algorithms using only 3 seconds477

of P-wave signal recorded by a single accelerometric station to detect, locate and esti-478

mate the magnitude of an earthquake. E3WS is made of 6 independent algorithms per-479

forming detection, P-phase picking and estimation of magnitude, epicentral distance, depth480

and back-azimuth. The proposed system generates faster estimates than existing EEWS.481

E3WS could provide valuable additional seconds for warning. Although the final mag-482

nitude of Mw ≥ 7 earthquakes cannot be estimated using only 3 s of signal, because their483

source duration is typically longer than 6 s, the system provides robust detection and484

preliminary estimations of the instantaneous magnitude and location of an ongoing event,485

which is valuable to send a first alert. E3WS provides better accuracy than other EEWS486

that can use one station and 3 seconds of seismic recording, such as ElarmS and UrE-487

DAS. Continuous updates of the magnitude and location estimations can be made to up-488

date the alert radius as the earthquake grows to larger magnitude. The proposed sys-489

tem is not only theoretical: it is already running in alpha test mode for the EEWS of490

Peru. It has been installed on low-cost Raspberry Pi 4 devices connected to strong-motion491

sensors along the Peruvian coast. E3WS is easy to install, flexible to change, can be ap-492

plied anywhere, and designed using free and open source software (Python3 with the Scikit-493

learn package) under the Linux operating system.494
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Kukreja, S. L., Löfberg, J., & Brenner, M. J. (2006). A least absolute shrinkage and568

selection operator (lasso) for nonlinear system identification. IFAC proceedings569

volumes, 39 (1), 814–819.570

Lara, P. E. E., Fernandes, C. A. R., Inza, A., Mars, J. I., Métaxian, J.-P.,571
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1. Introduction

This supporting information includes the attributes used in this work, 9 supplementary

figures and 1 supplementary table.

2. Attributes

We detail here the attributes computed to train the Machine Learning algorithms, with

their corresponding domain and signal.

2.1. Attributes from 3-component seismograms

1. Maximum eigenvalue λ1 of covariance matrix from the 3C seismogram.



X - 2 :

2. Eigenvalue factor: ratio of the maximum eigenvalue to the sum of the remaining

eigenvalues:

λfactor = λ1/(λ2 + λ3). (1)

3. The 3 components of the eigenvector ν1 associated with the maximum eigenvalue

λ1.

2.2. Attributes from each channel

N denotes the number of samples per channel within the time window. Fs denotes the

sampling rate, in Hz. The envelope of the signal s is defined as e = |s+ iH{s}|, where H

is the Hilbert transform.

2.2.1. Time-domain attributes

4. Maximum energy of the preprocessed signal:

Emax = max(s2). (2)

5. Time at which the maximum energy is reached:

tEmax = argmax(s2). (3)

6. Total energy:

Ene =
N∑

n=1

s2[n]. (4)

7. Energy centroid time:

CT =
1

Ene

N∑
n=1

n s2[n]. (5)

8. Bandwidth, characteristic duration, variance around the energy centroid:

BWt =

√√√√√√
N∑

n=1

(n− CT )2s2[n]

Ene

. (6)
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9. Skewness around bandwidth:

SkewnessBWt =

{√
SKpre, if SKpre ≥ 0

−
√

−SKpre, otherwise.

where

SKpre =

N∑
n=1

(n− CT )3s2[n]

Ene BW 3
t

. (7)

10. Kurtosis around bandwidth:

KurtosisBWt =

√√√√√√
N∑

n=1

(n− CT )4s2[n]

Ene BW 4
t

. (8)

11. Mean envelope:

< env >=
1

N

N∑
k=1

e[k]. (9)

12. Ratio of maximum amplitude envelope to its mean:

RMMt =
max(e)

< env >
. (10)

13. Standard deviation of the envelope:

STDenv =

√√√√√√
N∑
k=1

(e[k]− < env >)2

N
. (11)

14. Skewness of the envelope:

Skewnessenv =
1

N

N∑
k=1

(
e[k]− < env >

STDenv

)3

. (12)

15. Kurtosis of the envelope:

Kurtosisenv =
1

N

N∑
k=1

(
e[k]− < env >

STDenv

)4

. (13)
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16. Threshold-crossing rate of the envelope signal: how many times per second the

signal envelope crosses the threshold of 80% of its maximum amplitude:

TCRt =
count(r[n]r[n− 1] < 0)

N/Fs

, (14)

where:

r = e/max(e)− 0.8. (15)

17. Fraction of envelope samples that exceed a threshold of 80% of the envelope maxi-

mum:

fract(TCRenv) = count(e ≥ 0.8max(e))/N. (16)

18. Shannon entropy of the envelope, with Nbins = 200.

Shannonenv = −
Nbins∑
i=1

Probe[i] log2(Probe[i]), (17)

where:

Probe[i] = Histogram(e,Nbins). (18)

19. Renyi entropy of the envelope, with α = 2.

Renyienv =

log2

Nbins∑
i=1

Probαe [i]

1− α
, (19)

20. Zero crossing rate, how many times per second the signal s changes sign:

ZCRt =
count(s[n]s[n− 1] < 0)

N/Fs

(20)

2.2.2. Spectral-domain attributes

Attributes extracted from p = PSD(s), the Welch’s Power Spectral Density of the signal

s. Here N denotes the number of frequency samples in the spectrum up to the Nyquist

frequency Fs/2.
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21. Mean PSD:

< PSD >=
1

N

N∑
k=1

p[k]. (21)

22. Maximum spectral energy:

PSDmax = max(p). (22)

23. Frequency index of maximum spectral energy:

fPSDmax = argmax(p). (23)

24. Centroid frequency of the spectrum:

CF =

N∑
k=1

k p[k]

N∑
k=1

p[k]

. (24)

25. Frequency bandwidth, variance around the spectral centroid:

BWf =

√√√√√√√√√√
N∑
k=1

(k − CF )2 p[k]

N∑
k=1

p[k]

. (25)

26. Skewness of the spectrum:

SkewnessBWf
=

{√
SKpre, if SKpre ≥ 0

−
√

−SKpre, otherwise.

where

SKpre =

N∑
k=1

(k − CF )3 p[k]

BW 3
f

N∑
k=1

p[k]

, (26)
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27. Kurtosis of the spectrum:

KurtosisBWf
=

√√√√√√√√√√
N∑
k=1

(k − CF )4 p[k]

BW 4
f

N∑
k=1

p[k]

. (27)

28. Standard deviation of the PSD:

STDPSD =

√√√√√√
N∑
k=1

(p[k]− < PSD >)2

N
. (28)

29. Skewness of PSD:

SkewnessPSD =

Na∑
k=1

(
p[k]− < PSD >

STDPSD

)3

N
. (29)

30. Kurtosis of PSD:

KurtosisPSD =

N∑
k=1

(
p[k]− < PSD >

STDPSD

)4

N
. (30)

31. Shannon entropy, with Nbins = 50:

ShannonPSD = −
Nbins∑
i=1

Probp[i] log2(Probp[i]), (31)

where:

Probp[i] = Histogram(p[k], Nbins). (32)

32. Renyi entropy, with α = 2:

RenyiPSD =

log2

Nbins∑
i=1

Probαp [i]

1− α
. (33)

33. Ratio of maximum PSD amplitude to its mean.

RMMf =
max(p)

< PSD >
. (34)
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34. Threshold-crossing rate of the PSD, how many times the PSD crosses a threshold

of 40% of its maximum amplitude:

TCRf =
count(r[k]r[k − 1] < 0)

N/Fs

, (35)

where:

r = PSD/max(PSD)− 0.4 (36)

35. Relative number of samples that exceed a threshold of 40% of its maximum.

fract(TCRPSD) = count(p ≥ 0.4max(p))/N. (37)

2.2.3. Cepstral-domain attributes

36. The 13 first mel-frequency cepstrum coefficients (MFCC):

MFCC[m] = DCT{log[
∑

{|F{s}|2Λm}]}, (38)

where DCT is the Discrete Cosine Transform, F{.} is the Discrete Fourier Transform, and

Λ is a triangular filter bank function linearly spaced from 1 to 45 Hz in a Mel scale. In this

work, we use m = 26 filter banks, and are compute as in (Kopparapu & Laxminarayana,

2010).
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3. Figures

Figure S1. General architecture XGB.

Figure S2. Accuracy of noise and earthquake classification, using different thresholds.
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Figure S3. Magnitude, epicentral distance and depth of the misclassified signals shown in Fig.

S4.

Figure S4. Earthquake signals misclassified as noise, and their signal-to-noise ratios (SNR).
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Figure S5. histogram of errors between the true and predicted P-phase arrival times.



: X - 11

Figure S6. Histogram of the errors in the source characterization predictions using 3 s of

P-wave.
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Figure S7. Mean (circle) and STD (bar) predictions per bin using 3 s of P-wave.
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Figure S8. STD of the back-azimuth estimates, using different lower thresholds of magnitude.
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Figure S9. Histogram of the errors in the predictions using 46 s of P-wave.
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Table S1. Real-time earthquake detection by E-EEWS using 3 s of P-wave in a continuous

month.

Magnitude Distance (km) Depth (km)

3.1 175 13

3.5 179 56

3.3 195 85

3.2 145 78

3.2 173 54

3.3 89 50

3.3 98 86

3.2 163 17

3.7 162 19

3.3 159 84

3.8 155 10

3.0 47 35

3.4 189 88

3.5 138 47

3.5 97 49
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