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Key Points:9

• Bubble plumes generated during ocean surface wave breaking are observed with10

echosounders on drifting buoys.11

• Bubble plume depths are well correlated with whitecap coverage, wind speed, and12

spectral wave steepness.13

• Bubble plumes persist for many wave periods and exceed the persistence of visible14

surface foam.15
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Abstract16

We examine the dependence of the penetration depth and fractional surface area (e.g., white-17

cap coverage) of bubble plumes generated by breaking surface waves on various wind and18

wave parameters over a wide range of sea state conditions in the North Pacific Ocean, includ-19

ing storms with sustained winds up to 22 m s−1 and significant wave heights up to 10 m. Our20

observations include arrays of freely drifting SWIFT buoys together with shipboard systems,21

which enabled concurrent high-resolution measurements of wind, waves, bubble plumes,22

and turbulence. We estimate bubble plume penetration depth from echograms extending to23

depths of more than 30 m in a surface-following reference frame collected by downward-24

looking echosounders integrated onboard the buoys. Our observations indicate that mean25

and maximum bubble plume penetration depths exceed 10 m and 30 m beneath the surface26

during high winds, respectively, with plume residence times of many wave periods. They27

also establish strong correlations between bubble plume depths and wind speeds, spectral28

wave steepness, and whitecap coverage. Interestingly, we observe a robust linear correlation29

between plume depths, when scaled by the total significant wave height, and the inverse of30

wave age. However, scaled plume depths exhibit non-monotonic variations with increasing31

wind speeds. Additionally, we explore the dependencies of the combined observations on32

various non-dimensional predictors used for whitecap coverage estimation. This study pro-33

vides the first field evidence of a direct relation between bubble plume penetration depth and34

whitecap coverage, suggesting that the volume of bubble plumes could be estimated by re-35

mote sensing.36

Plain Language Summary37

Quantifying the statistics of bubble plumes generated during ocean surface wave break-38

ing is essential to understanding the exchange between the ocean and the atmosphere. Bubble39

plumes also cause important variations in underwater acoustics and optics. Recent studies40

also suggest that the statistics of bubble plumes are skillful predictors for total energy loss41

during wave breaking, which is an essential quantity for accurate wave forecasting. In this42

study, we examine how these bubble plume statistics change with different wind and wave43

conditions, including during storms. We used echosounders on drifting buoys to detect the44

bubbles and estimate how deep they go in the ocean. We also used shipboard camera systems45

to measure the surface area of the bubble plumes. We successfully develop multiple empir-46

ical relationships that allow us to predict how bubble plume depth and surface area change47

as a function of simple wind and wave statistics. These statistics are readily available from48

existing forecast models or typical ocean buoys. Our findings reveal that bubble plume depth49

is correlated with its visible surface area. This intriguing correlation suggests that we might50

estimate the volume of bubble plumes simply by observing the ocean surface from above.51

1 Introduction52

Air-entraining breaking surface waves play a significant role in air-sea exchanges of53

mass, heat, energy, and momentum [Melville, 1996; Sullivan and McWilliams, 2010; Deike,54

2022], and are also crucial in various technical applications, such as the design of marine55

structures and underwater communications. Breaking waves inject a relatively large volume56

of air into the water column as bubbles which then form intermittent bubble clouds at a wide57

range of spatial scales, hereafter referred to as bubble plumes. The entrained bubbles change58

the optical properties of the water column [Terrill et al., 2001; Al-Lashi et al., 2016] and gen-59

erate acoustic noise [Felizardo and Melville, 1995; Manasseh et al., 2006], especially during60

the active breaking period.61

Quantifying the statistics of these bubble plumes (e.g., void fractions, size distribu-62

tions, penetration depth, surface area, and volume of bubble plumes averaged over many63

waves) is essential to obtain robust parameterizations of fluxes at the ocean-atmosphere inter-64

face and variations in underwater acoustics and optics. Recent studies, including the present65
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observations, also show that the statistics of bubble plume that represent the overall size of66

bubble plumes are strongly correlated with total wave breaking dissipation [Schwendeman67

and Thomson, 2015a; Callaghan et al., 2016; Callaghan, 2018; Derakhti et al., 2020a]. This68

suggests that such bubble plume statistics are skillful predictors for the corresponding energy69

and momentum exchange between the ocean and atmosphere, especially in high sea states.70

The statistics representing the overall size of bubble plumes for a given sea state may71

be defined, in a wave-averaged sense, as the long-time (several minutes) average of the sur-72

face area and the penetration depth of individual bubble clouds. The former may be directly73

approximated from whitecap coverage𝑊 , representing the average visible surface area of74

bubble plumes and surface foam patches per unit sea surface area. 𝑊 is a reasonably eas-75

ily measurable quantity using optical video systems. Estimation of bubble plume depth is,76

however, challenging and rare, especially during active wave breaking period. This study77

provides concurrent observations of𝑊 and bubble plume penetration depth in various sea78

states.79

Many previous studies have examined the dependence of𝑊 on wind speeds and sea80

states [Monahan and Muircheartaigh, 1980; Callaghan et al., 2008; Kleiss and Melville,81

2010; Schwendeman and Thomson, 2015a; Brumer et al., 2017; Malila et al., 2022]. Despite82

large scatter in the data, particularly for wind speeds less than 10 m s−1, these recent field83

studies have established fairly consistent empirical formulations that allow for the estimation84

of𝑊 based on specific wind and/or sea state parameters.85

Fewer previous studies have reported mean values of the penetration depth of bubble86

plumes, 𝐷𝑏𝑝 , across a range of wind speeds using upward-looking sonars moored to the87

seabed or a platform [Thorpe, 1982, 1986; Dahl and Jessup, 1995; Vagle et al., 2010; Wang88

et al., 2016; Strand et al., 2020; Czerski et al., 2022a,b]. These observations show that 𝐷𝑏𝑝89

tends to increase with higher wind speeds, ranging from [1 − 5] m at low winds to [7 − 25]90

m during storms. However, our understanding of the dependence of the statistics of 𝐷𝑏𝑝 on91

wind and sea state parameters remains limited.92

In general, the evolution of bubble plumes can be characterized into two distinct stages.93

The first stage involves the rapid injection of bubbles with relatively high void fractions,94

typically lasting only several seconds, within actively breaking waves. This rapid injec-95

tion process is closely associated with breaking events. The subsequent stage involves the96

slower transport of smaller bubbles, typically with diameters below 100 `𝑚, exhibiting much97

lower void fractions within the surface mixed layer. This transport process occurs over longer98

timescales and, as discussed in detail below, contributes significantly to the observed depth99

distribution of bubbles when using sonars.100

The main objective of this study is to understand and quantify the statistics character-101

izing the size of bubble plumes, averaged over many waves (on the order of minutes), gener-102

ated by breaking surface waves in the open ocean. Our observations include arrays of freely103

drifting, surface-following SWIFT buoys combined with shipboard wind and optical video104

systems. This setup enabled us to make concurrent high-resolution measurements of wind,105

waves, whitecap coverage, bubble plumes, and turbulence across a wide range of sea state106

conditions in the North Pacific Ocean, including storms with sustained winds up to 22 m s−1
107

and significant wave heights up to 10 m. We estimate bubble plume penetration depth from108

echograms, collected by downward-looking echosounders integrated onboard the buoys, that109

extend to depths of over 30 m in a surface-following reference frame.110

We focus on examining the dependence of the statistics of the penetration depth of111

bubble plumes 𝐷𝑏𝑝 on various wind and wave parameters and the relation between 𝐷𝑏𝑝112

statistics and𝑊 . Further, we comment on the role of wind history on𝑊 values. In a planned113

companion paper, we also investigate dynamic relationships between these bubble plume114

statistics and total wave breaking dissipation using our synchronized observations of bubble115

plumes and dissipation rates.116
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The rest of this paper is organized as follows: §2 describes the observed environmental117

conditions and our analysis for estimating bubble plume penetration depths. §3 describes the118

dependency of the bubble plume statistics on various wind and sea state parameters. Discus-119

sion and a summary of the main findings are provided in §4 and §5, respectively.120

2 Methods121

2.1 Data122

The present dataset includes observations of wind, waves, air and sea temperature,123

near-surface turbulence, time-depth images of acoustic backscatter (referred to as echograms),124

above- and subsurface optical imagery obtained by freely drifting surface-following SWIFT125

buoys [Thomson, 2012; Thomson et al., 2019], along with concurrent shipboard measure-126

ments of wind, temperature, and whitecap coverage. These data were collected during an 18-127

day research cruise in the North Pacific Ocean (Figure 1a) in December 2019. The primary128

objective of the cruise was to conduct concurrent observations of breaking surface gravity129

waves and the associated bubble plume statistics. The secondary objective involved the re-130

placement of a long-term moored wave buoy at Ocean Station PAPA (50◦ N, 145◦ W), which131

reports as CDIP 166 and NDBC 46246. Hereafter, we refer to the present dataset and cruise132

with the abbreviation PAPA.133

The PAPA cruise, conducted aboard the R/V Sikuliaq, departed Dutch Harbor, AK,134

on 5 December 2019 and ended in Seattle, WA, on 23 December 2019. Arrays of SWIFT135

buoys were deployed from the ship early in the morning and usually recovered later the same136

day. Most shipboard and autonomous measurements were conducted during local daylight137

hours, while eastward transits continued overnight. Figure 1a shows the PAPA cruise track138

and the average locations of SWIFT buoys during each deployment along the transit. Fig-139

ures 1b, 1c, and 1d illustrate the wide range of sea state conditions in the PAPA dataset, in-140

cluding𝑈10𝑁 (0.8 − 22 m s−1), 𝐻𝑠 (2.2 − 10.0 m), 𝑇𝑚 = 𝑓 −1
𝑚 (6.6 − 11.6 s), 𝑇𝑝 (6.5 − 14.6 s),141

𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑒𝑎 (−4.4 to 1.2 ◦C), 𝑐𝑚/𝑈10𝑁 (0.6 − 17.5), 𝑑𝑈10𝑁/𝑑𝑡 (−10.2 to 6.9 m s−1/hr). These142

conditions encompassed a storm near Station PAPA with sustained wind speeds reaching up143

to 22 m s−1 and significant wave heights up to 10 m. We note that a significant portion of the144

data was collected in the presence of persistent rain, although rain rates were not measured.145

Raw SWIFT data were collected at sampling rates ranging from 0.5 to 5 Hz in bursts146

lasting 512 seconds, with intervals of 12 minutes. Processed SWIFT data, including wave147

spectra and bubble plume statistics, are produced for each burst for each buoy. Subsequently,148

concurrent bursts are averaged among the buoys, typically involving four of them. During the149

cruise, more than 2000 bursts of data were collected by arrays of two to six SWIFT buoys.150

A total of 599 processed data points are obtained at 12-minute intervals, spread across 14151

daylight deployments. The statistics obtained from the shipboard measurements, such as152

wind speeds and whitecap coverage, represent 10-minute average values at times that the153

processed SWIFT data points are produced.154

Two versions of SWIFT buoys were concurrently used here, the third generation buoys155

have uplooking Nortek Aquadopp Doppler sonars [Thomson, 2012], and the fourth gener-156

ation buoys have downlooking Nortek Signature1000 Doppler sonars which enable syn-157

chronous measurements of acoustic backscatter (i.e., echograms), broadband Doppler ve-158

locity profiles, and high-resolution (HR) turbulence profiles through the near-surface layer159

[Thomson et al., 2019]. This new SWIFT capability allows us to quantify the penetration160

depths of bubble plumes in a surface-following reference frame, with raw data capturing the161

time evolution within individual waves (i.e., phase-resolved).162

This section provides a detailed description of the methodologies we use to process163

echogram data and obtain bubble plume statistics. The instrumentation and methods that164

are used to obtain the remaining environmental variables and statistics, such as wind speeds,165

wave spectra, and whitecap coverage, are described in several previous observational studies166
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Figure 1: Overview of (𝑎) the cruise track (solid line) and average locations of the drifting SWIFT
buoys (circles) during each deployment along the transit, and (𝑏 − 𝑑) the observed range of envi-
ronmental conditions. Here𝑈10𝑁 , 𝐻𝑠 , 𝑓𝑚, 𝑇𝑎𝑖𝑟 , and 𝑇𝑠𝑒𝑎 represent 10-minute average neutral wind
speed at 10 m above the sea surface, significant wave height, spectrally-averaged wave frequency,
and air and water temperature, respectively. The color code in (𝑏) and (𝑑) shows the wave age and
the air-side friction velocity, respectively. In (𝑏), the horizontal line segments indicate the intervals
during which data were collected in the presence of persistent rain (rain rates were not measured).
Local water depths during most of the deployments were greater than 4000 m.
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[Thomson, 2012; Schwendeman and Thomson, 2015a; Thomson et al., 2016, 2018], and will167

be briefly summarized here for convenience.168

2.2 Wind Statistics169

We calculate the neutral 10-m wind speed𝑈10𝑁 (Figure 1b) following the method out-170

lined by Hsu [2003] from wind speed measurements at 10 Hz, which are corrected for ship171

motion and airflow distortion. These measurements were obtained by three shipboard sonic172

anemometers (Metek Omni-3) at approximately 16.5 m height above the sea surface. The173

mean𝑈10𝑁 values are obtained from 10-minute bursts of raw data. We note that the atmo-174

spheric stability (𝑇𝑎𝑖𝑟 −𝑇𝑠𝑒𝑎) effect is often neglected when estimating 10-m wind speed. Al-175

ternatively,𝑈10𝑁 is sometimes approximated using the mean wind profile power law, given176

by𝑈𝑃𝐿
10 = 𝑈𝑧 (10/𝑧)1/7. Figure 1b shows the observed range of shipboard measurements177

for𝑈𝑃𝐿
10 = 𝑈16.5 (10/16.5)1/7 (solid line) and the estimated𝑈10𝑁 values (circles). These178

estimates are provided for the times the processed SWIFT data are produced.179

During the PAPA cruise, the atmospheric stability was predominantly negative, with180

𝑇𝑎𝑖𝑟 −𝑇𝑠𝑒𝑎 ranging between -4.4 ◦C and 1.2 ◦C, as shown in Figure 1d. These values indicate181

unstable atmospheric boundary layer conditions. Figure 2a illustrates that, in unstable atmo-182

spheric conditions,𝑈10𝑁 values are larger than𝑈𝑃𝐿
10 by a margin ranging from 2% to 30%.183

These differences tend to decrease with increasing wind speed or higher 𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑒𝑎 values.184

Furthermore, Figure 2a demonstrates that the discrepancies between𝑈10𝑁 and𝑈𝑃𝐿
10 values185

remain within 2% for stable atmospheric conditions (i.e., 𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑒𝑎 > 0).186

The friction velocity 𝑢∗ of the airflow can be readily estimated using a modified log-187

arithmic mean wind profile [Hsu, 2003], which accounts for atmospheric stability effects.188

Additionally, the air-side friction velocity is independently estimated using the inertial dis-189

sipation method, assuming neutral atmospheric stability, as described in Thomson et al.190

[2018]; Yelland et al. [1994]. However, robust estimates of 𝑢∗ are only achieved for a frac-191

tion of the time due to the strict requirements that the ship’s heading is within 60 degrees192

of the wind and that the turbulent wind spectra match an expected frequency to the power193

of −5/3 shape. Figure 2b presents the two estimates of 𝑢∗ against𝑈10𝑁 during the PAPA194

cruise, with mean 𝑢∗ values calculated over 10-minute bursts. For reference, the correspond-195

ing data from Schwendeman and Thomson [2015a], where 𝑢∗ values were estimated using the196

inertial dissipation method, are also compiled in Figure 2b. Note that, for all relevant anal-197

yses in this study, we use the 𝑢∗ values obtained from the modified logarithmic mean wind198

profile method [Hsu, 2003].199

2.3 Wave Statistics200

Wave spectral information, which includes the wave power spectral density 𝐸 ( 𝑓 ) (m2
201

s) and the frequency-dependent directional spread Δ\ ( 𝑓 ), is obtained from a combination of202

GPS and IMU measurements collected by the SWIFT buoys. These measurements cover the203

frequency range of 0.01 − 0.49 Hz with a resolution of 0.012 Hz, as described in Schwen-204

deman and Thomson [2015a]; Thomson et al. [2018]. As detailed below, several bulk and205

spectral wave parameters are then calculated using 𝐸 ( 𝑓 ) and Δ\ ( 𝑓 ).206

Figure 2c shows examples of the observed 𝐸 ( 𝑓 ), color-coded based on the correspond-207

ing𝑈10𝑁 values, for𝑈10𝑁 > 10 m s−1. The two vertical dotted lines in Figure 2c denote the208

equilibrium range, defined by Schwendeman and Thomson [2015a], which spans from
√

2 𝑓𝑚209

to
√

5 𝑓𝑚. In this frequency range, the spectra approximately decay as 𝑓 −4, consistent with210

the observations of Schwendeman and Thomson [2015a]. Here, 𝑓𝑚 represents the spectrally-211

weighted mean frequency, calculated as212

𝑓𝑚 =

∫
𝑓 𝐸 ( 𝑓 )𝑑𝑓∫
𝐸 ( 𝑓 )𝑑𝑓

. (1)
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Figure 2: Observed range of wind and wave statistics against𝑈10𝑁 [m / s] and equilibrium-range
mean square slope 𝑚𝑠𝑠/Δ 𝑓 [s] (Eq. 2). All variables are defined in §2.2 and §2.3.
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Figure 2d shows the observed range of two commonly used alternatives for a characteristic213

wave period 𝑇 , the peak wave period 𝑇𝑝 = 𝑓 −1
𝑝 and the mean wave period 𝑇𝑚 = 𝑓 −1

𝑚 (Eq. 1),214

as a function of𝑈10𝑁 . Figure 2d also shows the wind sea mean wave period 𝑇𝑤𝑠
𝑚 = ( 𝑓 𝑤𝑠

𝑚 )−1,215

where 𝑓 𝑤𝑠
𝑚 calculated as given by Eq. 1 but over the wind sea portion of the observed wave216

spectra 𝐸𝑤𝑠 ( 𝑓 ). Here 𝐸𝑤𝑠 ( 𝑓 ) is estimated using a 1D wave spectral partitioning technique217

following Portilla et al. [2009]. The solid lines in Figure 2d represent the 𝑇𝑚 and 𝑇𝑝 values218

predicted by the Pierson-Moskowitz spectrum, a representative spectrum of fully developed219

wind-driven seas.220

Figure 2e shows the observed range of several characteristic wave heights as a function221

of𝑈10𝑁 , with 𝐻𝑠 = 4(
∫
𝐸 ( 𝑓 )𝑑𝑓 )1/2 the total significant wave height, 𝐻𝑝 = 4(

∫ 1.3 𝑓𝑝
0.7 𝑓𝑝

𝐸 ( 𝑓 )𝑑𝑓 )1/2
222

a peak wave height (after Banner et al. [2000]), and 𝐻𝑤𝑠
𝑠 = 4(

∫
𝐸𝑤𝑠 ( 𝑓 )𝑑𝑓 )1/2 the wind223

sea significant wave height. Two estimates of the significant wave height of fully developed224

seas 𝐻𝑠,fd (solid lines) given by Carter [1982] and Chen et al. [2002] are also plotted in Fig-225

ure 2e. Results shown in Figures 2d and 2e indicate that significant swell is present at moder-226

ate and calm winds in the PAPA data.227

Several estimates of the corresponding wave age are presented in Figure 2f, where 𝑐𝑝228

and 𝑐𝑚 are the wave phase speeds corresponding to 𝑓𝑝 and 𝑓𝑚, respectively. These results229

show that a significant portion of the PAPA data at high winds (𝑈10𝑁 ≥ 15m s−1) are char-230

acterized as developing seas (𝑐𝑝/𝑢∗ < 30 or 𝑐𝑝/𝑈10𝑁 < 1.2), and that equilibrium seas231

(𝑐𝑝/𝑢∗ ≈ 30 or 𝑐𝑝/𝑈10𝑁 ≈ 1.2) are mostly observed at moderate winds.232

It is generally accepted that the wave steepness (or slope), defined as 𝑆 = 𝐻𝑘/2 with233

𝐻 and 𝑘 being a characteristic wave height and wavenumber, is the most relevant local geo-234

metric wave parameter to characterize surface gravity wave breaking and related processes in235

deep water [Perlin et al., 2013]. Several formulations have been proposed to quantify a rep-236

resentative wave steepness in a wave-averaged sense which are either defined based on wave237

spectral information [Banner et al., 2002] or bulk wave parameters [Banner et al., 2000].238

A measure of mean square slope (𝑚𝑠𝑠) over a frequency range 𝑓1 ≤ 𝑓 ≤ 𝑓2, as pro-239

posed by Banner et al. [2002], is calculated as240

𝑚𝑠𝑠 =

∫ 𝑓2

𝑓1

𝑘2𝐸 ( 𝑓 )𝑑𝑓 =
∫ 𝑓2

𝑓1

(2𝜋 𝑓 )4

𝑔2 𝐸 ( 𝑓 )𝑑𝑓 , (2)

and is shown to be a skillful spectral steepness parameter for predicting wave breaking statis-241

tics in the open ocean [Schwendeman and Thomson, 2015a; Brumer et al., 2017]. Many field242

observations of the speed of visible breaking wave crests [Phillips et al., 2001; Melville and243

Matusov, 2002; Gemmrich et al., 2008; Thomson and Jessup, 2009; Kleiss and Melville,244

2010; Sutherland and Melville, 2013; Schwendeman et al., 2014] have shown that most of245

surface gravity wave breaking occurs at frequencies noticeably greater than the frequency at246

the peak of 𝐸 ( 𝑓 ), 𝑓𝑝 , with most frequent breaking occurring at ≈ 2 𝑓𝑝 . We note that 𝑓𝑚/ 𝑓𝑝247

varies between 0.9 and 1.6 in the PAPA data (Figure 2d) where most of the 𝑓𝑚/ 𝑓𝑝 values are248

within a range (1.1 − 1.4), and that the Pierson-Moskowitz spectrum gives 𝑓𝑚/ 𝑓𝑝 ≈ 1.30.249

Following Schwendeman and Thomson [2015a], here we take an equilibrium range 𝑚𝑠𝑠 cal-250

culated over a frequency range
√

2 𝑓𝑚 ≤ 𝑓 ≤
√

5 𝑓𝑚 (2𝑘𝑚 ≤ 𝑘 ≤ 5𝑘𝑚, 𝑐𝑚/
√

5 ≤ 𝑐 ≤ 𝑐𝑚/
√

2),251

which is related to an average spectral steepness of a significant portion of visible breaking252

waves, especially in developed and equilibrium sea states.253

Figures 2g and 2h show the variation of the equilibrium range 𝑚𝑠𝑠 and 𝑚𝑠𝑠/Δ 𝑓 (Δ 𝑓 =254

(
√

5 −
√

2) 𝑓𝑚) against𝑈10𝑁 , all color-coded based on the corresponding wind acceler-255

ations 𝑑𝑈10𝑁/𝑑𝑡 defined as the rate of change of𝑈10𝑁 over 1.5 hr, in the PAPA data to-256

gether with the corresponding data from Schwendeman and Thomson [2015a]. Figures 2g257

and 2h also show the corresponding values that are obtained from the Pierson-Moskowitz258

spectrum, which is a representative spectrum of a fully developed sea under constant wind259

(𝑑𝑈10𝑁/𝑑𝑡 = 0), given by [𝑚𝑠𝑠]𝑃𝑀 ≈ 0.436𝛼 (𝛼 = 8.1 × 10−3) and [𝑚𝑠𝑠/Δ 𝑓 ]𝑃𝑀 ≈260

𝜋𝛼𝑔−1𝑈10𝑁 . Figures 2g also shows that the observed equilibrium range 𝑚𝑠𝑠 in equilibrium,261
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developing, and old seas are, on average, consistent with, greater, and smaller than those pre-262

dicted by the Pierson-Moskowitz spectrum, respectively. Further, our observations corrob-263

orate the analytical relations obtained from the Pierson-Moskowitz spectrum, i.e., equilib-264

rium range 𝑚𝑠𝑠 is independent of wind speeds and 𝑚𝑠𝑠/Δ 𝑓 ∝ 𝑈10𝑁 in fully developed seas265

with constant winds. Further, Figure 2i shows the corresponding wind sea 𝑚𝑠𝑠𝑤𝑠/Δ 𝑓 val-266

ues where 𝑚𝑠𝑠𝑤𝑠 is calculated as given by Eq. 2 but using 𝐸𝑤𝑠 ( 𝑓 ) over a frequency range267 √
2 𝑓𝑚 ≤ 𝑓 ≤

√
5 𝑓𝑚.268

Schwendeman and Thomson [2015a] and Brumer et al. [2017] used a normalized 𝑚𝑠𝑠269

parameter, 𝑚𝑠𝑠/(Δ 𝑓Δ\), where Δ\ is the average of Δ\ ( 𝑓 ) over
√

2 𝑓𝑚 ≤ 𝑓 ≤
√

5 𝑓𝑚 and270

reported a decrease of data scatter in their plots of whitecap coverage against 𝑚𝑠𝑠/(Δ 𝑓Δ\)271

compared to 𝑚𝑠𝑠. At any given wind speed, the 𝑚𝑠𝑠/(Δ 𝑓Δ\) values in the present data are,272

on average, greater than those in Schwendeman and Thomson [2015a] despite consistent273

𝑚𝑠𝑠 and mss/Δ 𝑓 values in both datasets. We note that 𝑚𝑠𝑠/(Δ 𝑓Δ\) can not be defined in274

a long-crested wavefield or from a 1D wave spectrum. We further note that Δ\ is sensitive to275

the type of buoy and method of processing [Donelan et al., 2015], such that values may not276

be directly comparable between datasets. Here we avoid the directional normalization and277

choose the equilibrium range 𝑚𝑠𝑠/Δ 𝑓 as a representative measure of spectral steepness of278

dominant breaking waves.279

The observed range of several bulk steepness parameters, including the significant280

spectral peak steepness 𝐻𝑝𝑘 𝑝/2 (after by Banner et al. [2000]) and the significant wave281

steepness 𝐻𝑠𝑘 𝑝/2, against 𝑚𝑠𝑠/Δ 𝑓 are shown in Figures 2j and 2k. Here the peak 𝑘 𝑝 and282

mean 𝑘𝑚 wave numbers are obtained from the linear gravity wave dispersion relation given283

by 𝑘 = (2𝜋)2𝑔−1𝑇−2. Consistent with the literature, we consider these bulk steepness param-284

eters here.285

Finally, several dimensionless bulk parameters with general forms of286

𝑅𝐻 = 𝑢∗𝐻/a𝑤 , (3)

and287

𝑅𝐵 = 𝑢2
∗/(2𝜋𝑇−1a𝑤), (4)

where a𝑤 ≈ 1.4 × 10−6 m2 s−1 is the kinematic viscosity of seawater for 𝑇𝑤 ≈ 9 ◦C, are con-288

sidered. These parameters represent combined effects of wind forcing and wave field and are289

shown to have skills in predicting oceanic whitecap coverage [Zhao and Toba, 2001; Scanlon290

and Ward, 2016; Brumer et al., 2017]. Figure 2l shows the variation of 𝑅𝐻𝑒𝑞
= 𝑢∗𝐻𝑒𝑞/a𝑤291

and 𝑅𝑚
𝐵

= 𝑢2
∗/(2𝜋𝑇−1

𝑚 a𝑤) parameters as a function of the equilibrium range 𝑚𝑠𝑠/Δ 𝑓 in the292

PAPA data. Here 𝐻𝑒𝑞 = 4[
∫ √

5 𝑓𝑚√
2 𝑓𝑚

𝐸 ( 𝑓 )𝑑𝑓 ]1/2 and 𝑇𝑚 = 𝑓 −1
𝑚 are taken as a characteristic293

wave height 𝐻 and period 𝑇 , respectively.294

2.4 Whitecap Processing295

The whitecap coverage dataset in this study is the same as the North Pacific whitecap296

coverage dataset described in the recent study by Malila et al. [2022]. This section provides297

a summary of the acquisition and processing of the dataset, much of which is equal or similar298

in terms of hardware and software to the study by Schwendeman and Thomson [2015a].299

Visual images of the sea surface were obtained using shipboard video camera systems300

located on both the port and starboard sides of the vessel. The cameras, of model PointGrey301

Flea2 equipped with 2.8 mm focal-length lenses, recorded at a rate of 5 to 7.5 frames per sec-302

ond during daylight hours. A total of 60 hours of image data were collected while the ship303

was stationary, with most of the data coinciding with SWIFT buoy deployments and recov-304

eries. The duration of the video acquisitions varied between 5 and 60 minutes. However, the305

final mean whitecap coverage𝑊 values were obtained over 10 to 20-minute bursts. Each𝑊306

value represents a 10-minute average of consecutive frames.307
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The image processing of the grayscale video frames to estimate whitecap coverage308

closely followed the approach outlined in Schwendeman and Thomson [2015a]. First, cor-309

rections were applied to account for ship motion induced by waves (i.e., pitch and roll). This310

correction was achieved using a slightly modified version of the horizon tracking algorithm311

described in Schwendeman and Thomson [2015b]. Subsequently, The stabilized images were312

geo-rectified and transformed onto regular grids with a resolution of 0.8 m. The whitecap-313

related foam was isolated from the stabilized, geo-rectified, and gridded frames using the314

pixel intensity thresholding algorithm described by Kleiss and Melville [2011]. The frame-315

wise fractional whitecap coverage was then computed as the ratio of pixels detected as be-316

longing to whitecaps (given a value of one) to the total number of pixels in the frame. A317

subset of the original and thresholded frames in each burst was visually quality-controlled318

for satisfactory image exposure and lens contamination (e.g., raindrops or sea spray). Only319

image sequences with consistent lighting conditions and minimal lens contamination were320

included in the final dataset.321

2.5 Echogram Processing322

Acoustic backscattering data were obtained using the echosounding capabilities of the323

downward-looking beam of the Nortek Signature1000 Acoustic Doppler Current Profiler324

(ADCP) mounted on the fourth generation SWIFT buoys. During the PAPA cruise manu-325

facturer firmware version 2205 was used. Sampling frequencies and pulse repetition rates326

for the echosounder were 1 MHz and one second, respectively. A transmit pulse duration of327

500 `s was used. The instrument provided a vertical sampling resolution of 1 cm, covering328

a depth range of 0.3 m ≤ 𝑧𝑤 ≤ 30.3 m, with 𝑧𝑤 being positive downward and 𝑧𝑤 = 0 rep-329

resenting the instantaneous free surface level after accounting for the depth of the unit on the330

SWIFTs. The echosounder mode operated in 512-s bursts, collected in the surface-following331

reference frame, from which echograms are presented. Considering the size of the transducer332

and the operational frequency, we estimate that the acoustic near-field of the echosounders,333

defined as in Medwin and Clay [1998], extends to less than 1 m. To minimize potential im-334

pacts from the acoustic near-field, only data obtained from ranges greater than 1 m from the335

transducer face are presented (i.e., within the depth range of 1.3 m ≤ 𝑧𝑤 ≤ 30.3 m).336

As detailed below, the penetration depths of bubble plumes are estimated based on the337

volume backscattering strength. Volume backscattering strength 𝑆𝑣 [dB re m−1] represents338

the logarithmic form of the backscattering cross-section per unit volume 𝑀𝑣 as given by Va-339

gle et al. [2010]. When the signal is dominated by the presence of bubbles, as is the focus in340

this paper, this is described by341

𝑆𝑣 =10 log10 𝑀𝑣 = 10 log10

∫ ∞

0
𝜎𝑠 (𝑎𝑏)𝑁 (𝑎𝑏)𝑑𝑎𝑏

=10 log10 (10
𝑃𝑟
10 − 10

𝑁𝑡
10 ) + 20 log10 𝑟 + 2𝛼𝑟 + 𝐺𝑐𝑎𝑙 − 10 log10 (

𝑐𝜏

2
) − 𝜙,

(5)

where 𝜎𝑠 (𝑎𝑏) = 4𝜋𝑎2
𝑏
/([( 𝑓𝑅/ 𝑓 )2 − 1]2 + 𝛿2) [m2] is the scattering cross-section for a342

bubble with radius 𝑎𝑏 [m] and 𝑁 (𝑎𝑏) is the bubble size distribution. The use of the upper343

limit of integration (infinity) is consistent with prior formulations [e.g., Vagle and Farmer,344

1992] and is retained here. However, in practice, there is typically a practical limit to the345

maximum bubble size, and this theoretical limit can be replaced with a term representing346

the maximum bubble size. The terms in this integral represent an important aspect of acous-347

tic scattering from bubbles, which is strongly dependent on bubble size and frequency due348

to the presence of a strong resonance peak. At sea level, this strong resonance peak occurs349

at 𝑘𝑎𝑏 ∼ 0.0136, where 𝑘 is the acoustic wavenumbers [Medwin, 1977a]. While acoustic350

scattering is strongest at resonance, scattering at higher frequencies is driven by the geomet-351

ric cross-section. In cases involving relatively large bubbles, this off-resonance scattering352

can even exceed the backscattering contributions from higher densities of smaller bubbles.353

Thus, the observed acoustic backscattering at a given frequency is generally determined by354

the combined contributions from the entire size distribution of bubbles.355
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In practical applications, acoustic scattering is typically measured using instruments356

like echosounders, which operate at a single frequency or across a specific frequency spec-357

trum. The third representation in Eq. 5 corresponds to the implementation of the sonar equa-358

tion, where 𝑃𝑟 represents the received signal including noise, 𝑁𝑡 denotes the noise threshold,359

𝑟 is the range from the transducer to the scattering source, 𝛼 represents the attenuation coef-360

ficient, 𝑐 is the speed of sound in the water, 𝜏 is the transmit pulse duration, 𝜙 corresponds to361

the equivalent beam angle of the transducer, and 𝐺𝑐𝑎𝑙 is a gain factor that accounts for a con-362

figured transmit power level of the transducer (see Appendix A for additional details). 𝐺𝑐𝑎𝑙363

was determined by using standard calibration techniques commonly used for echosounders364

[Demer et al., 2015]. In practice, 𝑃𝑟 represents the received intensity of the signal scattering365

by the distribution of bubbles in keeping with the integral representation, while the remain-366

ing terms represent bookkeeping consistent with system operations and sound propagation.367

We note that we identified issues with the saturation of the signals associated with system368

gains during calibration. This results in saturated signals at short ranges when measured369

backscattering intensity is high, thereby truncating the dynamic range of the system at the370

upper end. A more comprehensive discussion of this issue can be found in Appendix A. Fu-371

ture versions of the instrument firmware may avoid this saturation and enable valid measure-372

ments at shorter ranges.373

To estimate the average noise level of the transducer, we calculate burst-averaged 𝑃𝑟374

values at large ranges at low sea states at which the measured signal, not compensated for375

range and attenuation, does not vary with depth. At these ranges, we assume that, due to376

transmission losses and the weak scattering in the water column, the system is simply mea-377

suring its own electrical noise and that increases in 𝑆𝑣 are driven primarily by the addition378

of the time-varying gain components in Eq. 5. This approach is consistent with those often379

applied in fisheries acoustics applications [e.g., De Robertis and Higginbottom, 2007]. In our380

analysis, we found an average noise level of approximately 22 dB and set 𝑁𝑡 = 26 dB, i.e.,381

only echogram data values with 𝑃𝑟 > 𝑁𝑡 are considered for the bubble statistics analysis.382

We note that future firmware revisions and variations in internal processing parameters may383

result in different noise thresholds and calibration gains.384

To estimate the local penetration depth of entrained bubbles, we first need to identify385

a threshold 𝑆𝑡ℎ𝑣 below which the backscatter signal indicates the absence of signals associ-386

ated with entrained bubbles exceeding the background conditions. These background con-387

ditions may be driven by populations of residual bubbles or biological backscattering in the388

upper water column. Note that the mixed layer depth was always greater than 40 m in areas389

sampled during the PAPA cruise; thus, acoustic scattering from stratification or turbulent mi-390

crostructure can be neglected.391

The local penetration depth of entrained bubbles is then defined relative to the instan-392

taneous free surface level (𝑧𝑤 = 0) at the vertical level 𝑍𝑏, in the surface-following reference393

frame, at which 𝑆𝑣 > 𝑆𝑡ℎ𝑣 for 𝑧𝑤 ≤ 𝑍𝑏; otherwise 𝑍𝑏 = NaN (Not-a-Number). We note394

that this thresholding technique to estimate bubble penetration depth is analogous to the pixel395

intensity thresholding commonly used for whitecap coverage estimations (see §2.4). Similar396

thresholding techniques have been used by previous studies [Thorpe, 1986; Dahl and Jessup,397

1995; Trevorrow, 2003; Vagle et al., 2010; Wang et al., 2016] with empirical 𝑆𝑡ℎ𝑣 values rang-398

ing from -70 dB re m−1 to -50 dB re m−1 using sonars with operating frequencies ranging399

between ≈ 20 kHz and ≈ 200 kHz. Hereafter, we refer to this bubble detection method as400

BDM1.401

We identified the time between 18:00 and 19:00 UTC on Dec 16 as a period with rel-402

atively calm sea surface conditions and minimal whitecapping during which no visible bub-403

bles and surface foam were observed in the above-surface and subsurface images collected404

by the cameras integrated on SWIFT buoys, as well as in the images from the shipboard cam-405

eras. Furthermore, Figure 1b shows that the wind speeds just before the deployment of the406

SWIFTs on Dec 16 were less than 3 m s−1 for several hours. Figure 1b also shows that al-407

though the wind speed was increasing during the rest of the day in the presence of steady408
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Figure 3: Examples of a depth-time map (echogram) of the volume backscattering strength 𝑆𝑣
[dB] in (𝑎 − 𝑏) a rapidly evolving sea with different sea state conditions (but steady rain) on UTC
Dec 16 and in (𝑐 − 𝑑) a storm with sustained wind speeds of𝑈10𝑁 > 18.0 m s−1 on UTC Dec
11. In (𝑎), the signal represents observations just after a steady calm sea state with minimum
whitecapping and is expected to be mainly from scattering particles or bubbles not associated with
breaking waves. The subsurface optical images in (𝑒 − 𝑗) correspond to the time instants 𝑡1 − 𝑡6
marked by the vertical dashed lines in (𝑑) and are collected by a GoPro camera mounted on the
SWIFT buoy. Above-surface optical images in (𝑎 − 𝑑), taken from a camera on the ship’s bridge,
show a snapshot of the surface wave field within the time range of the corresponding echogram.
Dotted-dashed and solid contours indicate 𝑍𝑏 and 𝑧𝑏, the two estimates of the local penetration
depth of entrained bubbles defined in § 2.5. Echograms are collected by a downward-looking
echosounder integrated on SWIFT buoys in a surface-following reference frame 𝑧𝑤 , where 𝑧𝑤 is
positive downward, and 𝑧𝑤 = 0 represents the instantaneous free surface level.

–12–



Confidential manuscript submitted to JGR-Oceans

rain, it remained below 5 m s−1 between 18:00 and 19:00 UTC. These observations suggest409

that this is a suitable period for establishing baseline levels for near-surface backscattering,410

with negligible contributions of bubbles injected by active breaking at the surface.411

The baseline can be established by using statistical averages of the 𝑆𝑣 from this rel-412

atively calm period with low levels of observed volume backscattering. Figure 3a shows413

an example echogram, above-surface image, and vertical profiles of burst-averaged and top414

10%-averaged of 𝑆𝑣 values just after the low backscattering conditions on Dec 16, as de-415

scribed above. The echogram data during low-backscattering conditions reveals that signifi-416

cant portions of the corresponding 𝑆𝑣 values vary between -90 dB re m−1 and -75 dB re m−1,417

with the burst-averaged values, 𝑆𝑣 , less than -80 dB re m−1. We also found that 𝑆𝑣 < −80418

dB re m−1 holds for the rest of calm sea state conditions (𝑈10𝑁 < 3 m s−1, 𝑑𝑈10𝑁/𝑑𝑡 < 1419

m s−1 / hr) within the PAPA data. We take 𝑆𝑡ℎ𝑣 = −70 dB re m−1 (as in Vagle et al. [2010])420

to distinguish between regions with and without the presence of recently entrained bubbles in421

the water column.422

Even very low bubble void fractions, 𝑂 (10−7) or less, can result in 𝑆𝑣 values greater423

than 𝑆𝑡ℎ𝑣 due to the relatively strong acoustic backscattering response of bubbles [Dahl and424

Jessup, 1995; Czerski et al., 2022a], even when they are sampled well above resonance. For425

reference, at 1 MHz, bubble radii from approximately 3 `m to 7 `m would be resonant in the426

upper water column [Medwin and Clay, 1998; Vagle and Farmer, 1998]. Thus, the measured427

backscattering reflects backscattering from an unknown and evolving population of bubbles428

that are slowly transported by their own buoyancy and/or local currents and turbulence.429

We define another estimate of the local penetration depth of entrained bubbles as the430

depth 𝑧𝑏 (≤ 𝑍𝑏) at which 𝑆𝑣 > 𝑆𝑡ℎ𝑣 for 𝑧𝑤 ≤ 𝑧𝑏 and 𝑆𝑣 > 𝑆𝑡ℎ𝑣 + 20 dB for 𝑧𝑏/2 ≤ 𝑧𝑤 ≤ 𝑧𝑏;431

otherwise 𝑧𝑏 = NaN. In this definition, the penetration depth is defined by the depth at which432

the volume backscattering signal continuously exceeds the specified threshold at the surface,433

and 𝑆𝑣 values deeper in the water column exceed background thresholds by at least 20 dB.434

Hereafter, we refer to this bubble detection method as BDM2.435

Figure 3 shows examples of echogram data and the corresponding 𝑍𝑏 (obtained from436

BDM1, dotted-dashed lines) and 𝑧𝑏 (obtained from BDM2, solid lines) values during a de-437

veloping sea on Dec 16 just after the relatively bubble-free condition described above (panels438

𝑎 and 𝑏) and during a storm with sustained wind speeds of greater than 18 m s−1 on Dec 11439

(panels 𝑐 and 𝑑). Additionally, Figure 3 shows examples of subsurface optical images, col-440

lected at times when 𝑆𝑣 < 𝑆𝑡ℎ𝑣 for 1.3 m ≤ 𝑧𝑤 (panel 𝑒), portions of 𝑆𝑣 values are greater441

than 𝑆𝑡ℎ𝑣 but remain below 𝑆𝑡ℎ𝑣 + 20 dB (panels 𝑓 and 𝑔), and a portion of 𝑆𝑣 values is greater442

than 𝑆𝑣 > 𝑆𝑡ℎ𝑣 + 20 (panels ℎ, 𝑖 and 𝑗). These images qualitatively demonstrate that the443

entrained surface bubbles at times at which both BDM1 and BDM2 are satisfied, i.e., 𝑍𝑏 ≠444

NaN and 𝑧𝑏 ≠ NaN, have significantly more subsurface visible optical signature than those445

at times at which 𝑍𝑏 ≠ NaN but 𝑧𝑏 = NaN. Comparing all available concurrent subsurface446

images and echogram data, we conclude that a similar trend exists across all the PAPA data.447

Although we cannot ultimately constrain the differences in void fractions or bubble448

populations using our sampling method, we can confidently state that our second bubble449

detection criterion (BDM2) laid out above identifies periods during which void fractions450

increase by a minimum of two orders of magnitude compared to the first bubble detection451

criterion (BDM1). Under the simplest conditions where the bubble size distribution remains452

constant, a 20 dB increase in backscattering would correspond to a void fraction increase of453

over two orders of magnitude. This is driven by a linear relationship between backscattering454

and the number of scatterers as long as the distribution remains unchanged or is not attenu-455

ated by high bubble volumes (Eq. 5). Furthermore, the high bubble void fractions following456

breaking waves may result in significant excess attenuation of the signals, which is not ac-457

counted for in our analysis here [Vagle and Farmer, 1998; Deane et al., 2016; Bassett and458

Lavery, 2021]. Such observations have been reported at lower frequencies, where extinction459

cross-sections for resonant bubbles are much larger. However, we expect that the high void460
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fractions following a breaking event will also have a temporary impact on measured acous-461

tic backscatter. As a result, increases in volume backscattering following localized breaking462

events likely understate the increase in scattering that would otherwise be observed from the463

bubble populations, given the transducer’s location near the surface.464

In general, 𝑧𝑏 values represent the local penetration depths of entrained bubbles with465

notably higher void fraction and visible optical signature than those reaching 𝑍𝑏. This aligns466

with a broad range of prior observations measuring bubbles in the upper ocean, which con-467

sistently show significant decreases in bubble densities with increasing depth [Vagle and468

Farmer, 1998; Medwin, 1977b].469

2.6 Defining Plume Penetration Depth and Residence Time470

We define the mean, 𝐷𝑏𝑝 and 𝐷𝑏𝑝,𝑣 , and significant bubble plume depths, 𝐷1/3
𝑏𝑝

and471

𝐷
1/3
𝑏𝑝,𝑣

, as472

𝐷𝑏𝑝 =

∑𝑁𝑍𝑏

𝑖=1 𝑍 𝑖
𝑏

𝑁𝑍𝑏

, 𝐷𝑏𝑝,𝑣 =

∑𝑁𝑧𝑏

𝑖=1 𝑧 𝑖
𝑏

𝑁𝑧𝑏

, (6)

and473

𝐷
1/3
𝑏𝑝

=

∑𝑁𝑍𝑏

𝑖=2𝑁𝑍𝑏
/3 𝑍 𝑖

𝑏

𝑁𝑍𝑏
/3 , 𝐷

1/3
𝑏𝑝,𝑣

=

∑𝑁𝑧𝑏

𝑖=2𝑁𝑧𝑏
/3 𝑧

𝑖
𝑏

𝑁𝑧𝑏/3
, (7)

where 1.3 m ≤ 𝑍 𝑖
𝑏
≤ 𝑍 𝑖+1

𝑏
≤ 30.3 m, 1.3 m ≤ 𝑧𝑖

𝑏
≤ 𝑧𝑖+1

𝑏
≤ 30.3 m (see Figure 3), and 𝑁𝑍𝑏

474

and 𝑁𝑧𝑏 are the total numbers of the estimated 𝑍𝑏 (obtained from BDM1) and 𝑧𝑏 (obtained475

from BDM2) values over available concurrent (1 to 4) bursts (each burst includes more than476

8 minutes of data) of echogram data, respectively.477

Next, we define the residence time of bubble plumes, 𝑇𝑏𝑝 and 𝑇𝑏𝑝,𝑣 , as an average of478

the highest one-third of the apparent residence time of bubble clouds, 𝑇𝑏 and 𝑡𝑏, detected in479

all concurrent bursts of the echogram data, given by480

𝑇𝑏𝑝 =

∑𝑁𝑇𝑏

𝑖=2𝑁𝑇𝑏
/3 𝑇

𝑖
𝑏

𝑁𝑇𝑏/3
, 𝑇𝑏𝑝,𝑣 =

∑𝑁𝑡𝑏

𝑖=2𝑁𝑡𝑏
/3 𝑡

𝑖
𝑏

𝑁𝑡𝑏/3
, (8)

where 𝑇𝑏 and 𝑡𝑏 represent the residence time of bubble clouds detected by BDM1 and BDM2,481

respectively, with 2 s ≤ 𝑇 𝑖
𝑏
≤ 𝑇 𝑖+1

𝑏
≤ 512 s, 2 s ≤ 𝑡𝑖

𝑏
≤ 𝑡𝑖+1

𝑏
≤ 512 s, and 𝑁𝑇𝑏 and 𝑁𝑡𝑏 being482

the total numbers of bubble clouds detected over the available concurrent (1 to 4) bursts.483

These representative bubble plume residence times, as well as mean and significant484

bubble plume depths, are obtained at 12-minute intervals coinciding with the availability485

of the wind and wave statistics. Hereafter the statistics of bubble plumes obtained from the486

bubble detection methods BDM1 and BDM2 (described in §2.5) are denoted by ()𝑏𝑝 and487

()𝑏𝑝,𝑣 , respectively.488

3 Results489

In this section, we present observations of the residence time (§3.1) and the penetration490

depth (§3.2) of bubble plumes as well as whitecap coverage (§3.3) as a function of various491

wind and sea state parameters defined in §2. Estimations of the volume of bubble plumes492

based on the measured whitecap coverage and plume penetration depths are discussed in the493

next section.494

3.1 Bubble Plume Residence Time495

Figure 4a shows a schematic of a SWIFT track drifting through an intermittent field of496

saturated (with visible optical surface signature) and diffused (without visible optical surface497
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Figure 4: (𝑎) Schematic of a SWIFT track (with respect to the earth frame) drifting through an in-
termittent field of bubble clouds during a 512-s burst, along which echogram data are collected in a
surface-following reference frame, and (𝑏) apparent residence time of bubble plumes in echogram
data against wind speeds. In (𝑎), (𝑥0, 𝑦0) is the initial horizontal location of the buoy, and the black
and red arrows show the dominant wave and wind directions, respectively. Subscripts 𝑏𝑝 and 𝑏𝑝, 𝑣
denote the statistics corresponding to the bubble plumes obtained from the thresholding methods
BDM1 and BDM2 (described in §2.5), respectively.

signature) bubble clouds during a 512-s burst of data along which echogram data are col-498

lected in a surface-following reference frame. The buoy has a "wind slip" velocity relative to499

the surface water𝑈𝑠𝑙𝑖 𝑝 ≈ 0.01𝑈10𝑁 that is caused by wind drag on the portion of the buoy500

above the surface [Iyer et al., 2022]. Note that the example SWIFT track shown here is cal-501

culated with respect to the earth frame, so the example includes both the true surface current502

and the wind slip of the buoy (which combine together to make the observed drift velocity of503

the buoy, typically𝑈𝑑𝑟𝑖 𝑓 𝑡 ≈ 0.04𝑈10𝑁 ). Thus, the apparent residence time of detectable bub-504

ble clouds (defined in section 2.6) in echogram data could be shorter than their true residence505

time due to the relative drift of the buoys. We also note that the apparent residence time of506

each bubble cloud in echogram data is directly related to the way the buoy crosses the bubble507

cloud with respect to its main axis, as visually illustrated in Figure 4a.508

Figure 4b shows the variation of the bubble plume residence times 𝑇𝑏𝑝 and 𝑇𝑏𝑝,𝑣 scaled509

by the wind sea mean wave period 𝑇𝑤𝑠
𝑚 (defined in §2.3) for wind speeds greater than 6 m510

s−1. Results indicate that the bubble plumes, especially those detected by BDM1, persist511

in the water column much longer than the corresponding dominant active breaking period,512

which is expected to be a fraction of 𝑇𝑤𝑠
𝑚 .513

Figure 5 shows the subsurface visible signature of an example evolving bubble plume514

at several instances during (panels (𝑎1) to (𝑎3)) and after (panels (𝑎4) to (𝑎8)) active break-515

ing, collected by a GoPro camera on a SWIFT buoy looking from behind (upwave) the break-516

ing event in an old sea with moderate wind speeds of𝑈10𝑁 ≈ 11 m s−1 and 𝑇𝑤𝑠
𝑚 ≈ 6s.517

Figure 6 also shows example subsurface images of two evolving bubble plumes during (pan-518

els (𝑎 − 𝑐) and (𝑒 − 𝑓 )) and after (panels 𝑑 and 𝑔 − ℎ) active breaking during a storm with519

sustained wind speeds of𝑈10𝑁 > 18 m s−1 and 𝑇𝑤𝑠
𝑚 ≈ 10s. These images qualitatively show520

that void fractions in the bubble plumes rapidly decrease after the active breaking period and521

that residual void fractions persist for many wave periods. These observations are consistent522

with previous experimental [Lamarre and Melville, 1991; Blenkinsopp and Chaplin, 2007;523

Anguelova and Huq, 2012] and numerical [Derakhti and Kirby, 2014, 2016; Derakhti et al.,524
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Figure 5: Example subsurface images collected by a GoPro camera on a SWIFT buoy showing the
subsurface visible signature of an evolving bubble plume in an old sea with moderate wind speeds
of𝑈10𝑁 ≈ 11 m s−1.

2018, 2020a,b] studies of laboratory-scale breaking waves showing that average void frac-525

tions within bubble clouds vary from 𝑂 (10%) to 𝑂 (1%) during active breaking, and then526

drop rapidly by several orders of magnitude within a few wave periods.527

As discussed in detail in §2.5, plume regions with tiny bubble void fractions, e.g., the528

diffused bubble clouds shown in panels (𝑎7) and (𝑎8) of Figure 5, are still detectable in our529

sampling method. Assuming that the scattering is dominated by bubbles with radii less than530

100 `𝑚, the low bubble rise velocities (i.e., a few cm s−1 or less) would yield bubble resi-531

dence times of 𝑂 (minutes) which is consistent with the apparent residence time of the bub-532

ble plumes detected by BDM1 (Figure 4b), here 𝑇𝑏𝑝 ≈ 100s and ≈ 200s for sea states similar533

to Figure 5 and Figure 6, respectively. Thus, the statistics of the bubble plumes detected by534

BDM1, referred to by subscript 𝑏𝑝, correspond to bubble plumes ranging from saturated535

plumes during active breaking to highly diffused plumes that may remain in the water col-536

umn long after active breaking (e.g., panel (𝑎8) of Figure 5). These observations also con-537

firm that the bubble plumes detected by BDM2 in a given sea state represent plumes that538

have much shorter residence times and much more visible optical signature than those de-539

tected by BDM1 but noticeably exceed the persistence of visible surface foam formed during540

breaking, where 𝑇𝑏𝑝,𝑣 ≈ 12s and ≈ 40s for sea states similar to Figure 5 and Figure 6, re-541

spectively.542

3.2 Bubble Plume Penetration Depth543

Example subsurface images of the bubble plume shown in Figure 5 illustrate that the544

average plume penetration depth (and volume) rapidly increases during the initial phase of545

the bubble plume evolution (e.g., panels (𝑎1) to (𝑎5), over several seconds). As shown in546
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Figure 6: Example subsurface images collected by a GoPro camera on a SWIFT buoy showing
the subsurface visible signature of two different evolving bubble plumes in a storm with sustained
wind speeds of𝑈10𝑁 > 18 m s−1.
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panels (𝑎6) to (𝑎8), the overall size of the plume keeps increasing for several wave periods547

but at rates much lower than during active breaking. This is consistent with the evolution of548

bubble plumes, turbulent kinetic energy (TKE), and dye patches in previous numerical and549

experimental studies of laboratory-scale isolated breaking focused waves [Rapp and Melville,550

1990; Melville et al., 2002; Derakhti and Kirby, 2014; Derakhti et al., 2018, 2020a]. Large-551

scale coherent structures generated by wave breaking crests are among potential drivers of552

such slow but persistent transport of bubbles long after active breaking [Melville et al., 2002;553

Derakhti and Kirby, 2014; Derakhti et al., 2016].554

Figure 7 presents the variations in the mean (Eq. 6) and significant (Eq. 7) bubble555

plume depths as functions of wind speed𝑈10𝑁 and equilibrium range 𝑚𝑠𝑠/Δ 𝑓 (Eq. 2), along556

with the corresponding best fits. All the plume depth measures show strong correlations with557

wind speed and 𝑚𝑠𝑠/Δ 𝑓 , exhibiting data scatter smaller than existing whitecap coverage558

datasets, including the PAPA dataset shown in Figure 11 below. Because time-dependent559

bubble depths less than 1.3 m are unavailable here, the resultant plume depth statistics are560

expected to be biased high in low winds. Hereafter, the data points with𝑈10𝑁 < 6 m s−1 are561

not considered in obtaining the relevant fits and their statistics (This is also a typical mini-562

mum wind speed for visible whitecaps to occur.).563

Of the bubble depths defined here (by Eqs. 6 and 7 above), 𝐷𝑏𝑝 is defined similar to564

previous studies [Vagle et al., 2010; Wang et al., 2016; Strand et al., 2020]. Our observa-565

tions, as shown in Figure 7a, indicate that the mean bubble plume depth 𝐷𝑏𝑝 could be as566

high as to 14 m at𝑈10𝑁 ≈ 20 m s−1. This is in good agreement with the observations of567

Vagle et al. [2010] and Strand et al. [2020].568

The black solid line in Figure 7a represents the best fit to the binned 𝐷𝑏𝑝 values with a569

power law form given by570

𝐷𝑏𝑝 = 0.092 [𝑈10𝑁 ]1.58 (9)

with 𝑟2 = 0.90 defined as in Eq. 13 below. As shown in Figure 7a, the linear fit by Vagle571

et al. [2010] also well describes the observed variability of 𝐷𝑏𝑝 for moderate winds. How-572

ever, for high winds, the relationship between 𝐷𝑏𝑝 and wind speed becomes nonlinear, and573

the 𝐷𝑏𝑝 values are, on average, greater than those reported by Vagle et al. [2010]. This un-574

derprediction of 𝐷𝑏𝑝 at high winds in Vagle et al. [2010] could be simply due to the linear575

extrapolation of 𝑆𝑣 at depths greater than 8 m (see their Figure 3). Additionally, Wang et al.576

[2016] also found a nonlinear relationship between mean bubble depth and wind speed at577

high winds. However, their mean bubble depths are significantly higher (a factor of 1.5-2)578

than the present (and other) observations. We note that the averaging time used to obtain579

𝐷𝑏𝑝 at high winds is 8 or 16 minutes (depending on available concurrent bursts), which is580

comparable to that in Wang et al. [2016].581

At any given wind speed, individual breaking events could generate bubble clouds582

with penetration depths much higher than 𝐷𝑏𝑝 . For example, Figure 3c documents an ex-583

ample individual bubble cloud with a penetration depth of ≈ 30 m, which is approximately584

three times greater than the corresponding average bubble plume depth (e.g., Eq. 9). Fig-585

ure 8 illustrates that the Rayleigh distribution could reasonably describe the observed prob-586

ability distribution function (PDF) of the 𝐷𝑏𝑝 values at various wind speeds, especially for587

𝐷𝑏𝑝 > 𝐷𝑏𝑝 . Assuming the Rayleigh distribution for 𝐷𝑏𝑝 , we obtain the significant bubble588

depth as 𝐷1/3
𝑏𝑝

≈ 1.6𝐷𝑏𝑝 , which is consistent with our observations, especially for𝑈10𝑁 > 10589

m s−1. The best fit to the observed binned 𝐷1/3
𝑏𝑝

values with a power law form (black solid590

line in Figure 7c) is obtained as591

𝐷
1/3
𝑏𝑝

= 0.13[𝑈10𝑁 ]1.63, (10)

with 𝑟2 = 0.92. Additionally, assuming the Rayleigh distribution for 𝐷𝑏𝑝 , the maximum592

bubble depth can be further approximated as593

𝐷𝑚𝑎𝑥
𝑏𝑝 ≈ 2𝐷1/3

𝑏𝑝
≈ 3.2𝐷𝑏𝑝 . (11)
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Figure 7: Observed range of (𝑎 − 𝑏) mean (Eq. 6) and (𝑐 − 𝑑) significant (Eq. 7) bubble plume
depths against wind speed𝑈10𝑁 and the equilibrium range 𝑚𝑠𝑠/Δ 𝑓 . Fits are obtained from the
least squares fitting to the binned data points (large circles). Subscripts 𝑏𝑝 and 𝑏𝑝, 𝑣 denote the
statistics corresponding to the bubble plumes obtained from the thresholding methods BDM1 and
BDM2 (described in §2.5), respectively.

As explained in detail in §2.5 and consistent with observations shown in §3.1, at a594

given sea state condition, 𝐷𝑏𝑝,𝑣 represents the penetration depth of bubbles that have, on595

average, at least two orders of magnitude more void fraction and significantly more visible596

optical signature than those reaching 𝐷𝑏𝑝 . Figure 8 shows that the population of the bub-597

ble plume depth 𝐷𝑏𝑝,𝑣 values around their mean is considerably elevated compared to that598

in 𝐷𝑏𝑝 , and that the observed PDF of 𝐷𝑏𝑝,𝑣 is better described by the Gamma distribution.599

Furthermore, our observations show that 𝐷1/3
𝑏𝑝,𝑣

/𝐷𝑏𝑝,𝑣 varies, on average, from 1.2 at low600

winds to 1.5 at high winds and that, in contrast to 𝐷1/3
𝑏𝑝

, 𝐷1/3
𝑏𝑝,𝑣

has an approximately linear601

relationship with wind speed, as shown in Figure 7. Additionally, they indicate that the ratio602

𝐷
1/3
𝑏𝑝,𝑣

/𝐷1/3
𝑏𝑝

decreases with increasing wind speeds, varying from ≈ 1 at low winds to ≈ 0.6603

at high winds.604

We assess the predictive skill of several wind and wave parameters, commonly used in605

whitecap coverage parameterizations, for bubble plume depths 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

. We evaluate606

the predictive performance of each predictor X (e.g.,𝑈10𝑁 , 𝑢∗,mss/Δ 𝑓 , 𝑆, 𝑅, . . . , all defined607
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Figure 8: Probability distribution function, PDF, of the estimated bubble depths at different wind
speed ranges. Dotted and dashed lines show the fitted Rayleigh and Gamma distributions to the
observed PDFs.

in §2) by calculating the best fit with a power law form 𝑎X𝑛 to the binned 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

608

values using the least squares method. We then compare the resulting fit statistics obtained609

over all individual data points with𝑈10𝑁 ≥ 6 m s−1. Bins containing fewer than four bursts610

of data are excluded for the data fitting process. We evaluate the overall quality of the fits611

using two metrics: the root-mean-square error (RMSE) and the coefficient of determination612

𝑟2, given by613

RMSE =

√︄
Σ𝑖=𝑁
𝑖=1 𝐷

2
𝑟𝑒𝑠,𝑖

𝑁
, (12)

and614

𝑟2 = 1 −
Σ𝑖=𝑁
𝑖=1 𝐷

2
𝑟𝑒𝑠,𝑖

Σ𝑖=𝑁
𝑖=1 (𝐷𝑖 − 𝐷𝑖)2

, (13)

where 𝐷𝑟𝑒𝑠,𝑖 = 𝐷𝑖 − [𝑎 (X𝑖)𝑛], 𝐷𝑖 represents either 𝐷1/3
𝑏𝑝

or 𝐷1/3
𝑏𝑝,𝑣

, 𝑁 is the number of615

observations, and the overbar indicates an average over all the considered data points. In this616

context, RMSE, defined in linear space, quantifies the average deviation from the fit, while617

𝑟2 measures the proportion of the observed variability in bubble plume depths that can be618

predicted from the X parameter. A perfect fit corresponds to 𝑅𝑀𝑆𝐸 ∼ 0 and 𝑟2 ∼ 1.619

Table 1 summarizes the coefficients (𝑎 and 𝑛) and statistics (RMSE, 𝑟2) of the best fits,620

𝑎X𝑛, to the PAPA data for several predictive parameters X. Of all the parameters considered621

here,𝑈10𝑁 exhibits the highest skill in predicting the observed variability of both 𝐷1/3
𝑏𝑝

and622

𝐷
1/3
𝑏𝑝,𝑣

. Results summarized in Table 1 also demonstrate that the equilibrium range 𝑚𝑠𝑠/Δ 𝑓623

and 𝐻𝑠𝐾𝑚/2 show the highest skill among the spectral and bulk wave steepness predictors,624

respectively. For each type of the predictors considered here, those that contain either the625

peak wave height, peak wave number, or peak wave period show the least skill. These results626

also hold for the mean bubble plume depths statistics 𝐷𝑏𝑝 and 𝐷𝑏𝑝,𝑣 .627

We now investigate the variations of scaled bubble plume penetration depths across628

different sea states. Our observations indicate that 𝐷1/3
𝑏𝑝

(with the note that 𝐷𝑏𝑝 ≈ 0.6𝐷1/3
𝑏𝑝

)629

ranges from approximately 0.4𝐻𝑠 to 4.8𝐻𝑠 and from about 0.01𝐿𝑚 to 0.20𝐿𝑚 for wind630

speeds exceeding 6 m s−1 (as shown in Figure 9), where 𝐻𝑠 represents the significant wave631

height, and 𝐿𝑚 = 2𝜋/𝑘𝑚 denotes the mean wavelength. These findings align well with the632

previously reported ranges of scaled mean bubble depths observed in the field [Thorpe, 1986;633

Wang et al., 2016; Strand et al., 2020].634

Bulk wave statistics 𝐻𝑠 and 𝐿𝑚 (or 𝐻𝑝 and 𝐿𝑝) may be completely uncorrelated with635

the scales of the corresponding wind sea (and dominant breaking waves) in the presence of636

proportionally significant swell, such as in low and moderate winds (𝑈10𝑁 < 15m s−1) in637

the PAPA dataset, as illustrated in Figures 2d and 2e. Thus, we also consider the wind sea638
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Table 1: Parameterizations of significant bubble plume depths 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

represented by the
best fits with a power law form 𝑎X𝑛 as a function of several wind and wave parameters X to the
binned PAPA data for𝑈10𝑁 ≥ 6 m s−1. The statistics of each fit are also calculated. The fits and
their statistics are computed in linear space. The units for the bubble penetration depths (𝐷𝑏𝑝),
wave heights (𝐻), and wavelengths (𝐿 = 2𝜋/𝑘) are in meters [m]. The unit for Δ 𝑓 is in inverse sec-
onds [1 / s]. Moreover, the units for𝑈10𝑁 and 𝑢∗ are in meters per second [m / s]. The predictors
of the 𝑅-, mss-, and 𝐻𝑘-type are all dimensionless.

Results of the best fit Statistics of the best fit
Plume Depth Predictor 𝑎X𝑛 𝑈10𝑁 ≥ 6 m s−1

X 𝑎 𝑛 RMSE 𝑟2

𝐷
1/3
𝑏𝑝

𝑈10𝑁 1.27 × 10−1 1.63 1.326 0.921

𝐷
1/3
𝑏𝑝

𝑢∗ 1.49 × 101 1.14 1.417 0.910

𝐷
1/3
𝑏𝑝

𝑅𝐵,𝑚 =
𝑢2
∗

a𝑤𝜔𝑚
1.07 × 10−2 0.52 1.502 0.899

𝐷
1/3
𝑏𝑝

𝑅𝐵,𝑝 =
𝑢2
∗

a𝑤𝜔𝑝
1.12 × 10−2 0.51 1.653 0.877

𝐷
1/3
𝑏𝑝

𝑅𝐻𝑒𝑞
=

𝑢∗𝐻𝑒𝑞

a𝑤
2.56 × 10−3 0.61 1.894 0.839

𝐷
1/3
𝑏𝑝

𝑅𝐻𝑠
=

𝑢∗𝐻𝑠

a𝑤
1.36 × 10−3 0.60 1.986 0.823

𝐷
1/3
𝑏𝑝

𝑅𝐻𝑝
=

𝑢∗𝐻𝑝

a𝑤
2.05 × 10−3 0.59 2.139 0.794

𝐷
1/3
𝑏𝑝

mss 1.86 × 104 1.34 2.893 0.619

𝐷
1/3
𝑏𝑝

mss/Δ 𝑓 7.60 × 102 1.32 2.419 0.734

𝐷
1/3
𝑏𝑝

mss/(Δ 𝑓Δ\) 3.35 × 102 1.37 2.911 0.614

𝐷
1/3
𝑏𝑝

𝐻𝑝𝑘 𝑝/2 9.06 × 101 0.88 4.055 0.251

𝐷
1/3
𝑏𝑝

𝐻𝑠𝑘 𝑝/2 6.33 × 101 0.83 4.027 0.262

𝐷
1/3
𝑏𝑝

𝐻𝑒𝑞𝑘𝑚/2 1.34 × 104 2.23 3.017 0.586

𝐷
1/3
𝑏𝑝

𝐻𝑝𝑘𝑚/2 2.20 × 103 2.31 3.211 0.531

𝐷
1/3
𝑏𝑝

𝐻𝑠𝑘𝑚/2 1.29 × 103 2.34 2.888 0.620

𝐷
1/3
𝑏𝑝,𝑣

𝑈10𝑁 3.78 × 10−1 1.10 1.112 0.822

𝐷
1/3
𝑏𝑝,𝑣

𝑢∗ 9.55 × 100 0.83 1.110 0.822

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐵,𝑚 =
𝑢2
∗

a𝑤𝜔𝑚
5.09 × 10−2 0.38 1.139 0.813

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐵,𝑝 =
𝑢2
∗

a𝑤𝜔𝑝
4.88 × 10−2 0.37 1.197 0.794

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐻𝑒𝑞
=

𝑢∗𝐻𝑒𝑞

a𝑤
1.58 × 10−2 0.45 1.290 0.760

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐻𝑠
=

𝑢∗𝐻𝑠

a𝑤
9.56 × 10−3 0.45 1.318 0.750

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐻𝑝
=

𝑢∗𝐻𝑝

a𝑤
1.43 × 10−2 0.43 1.383 0.725

𝐷
1/3
𝑏𝑝,𝑣

mss 1.43 × 103 0.94 1.917 0.466

𝐷
1/3
𝑏𝑝,𝑣

mss/Δ 𝑓 1.55 × 102 0.94 1.589 0.634

𝐷
1/3
𝑏𝑝,𝑣

mss/(Δ 𝑓Δ\) 8.62 × 101 0.96 1.839 0.509

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑝𝑘 𝑝/2 2.63 × 101 0.50 2.334 0.209

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑠𝑘 𝑝/2 2.11 × 101 0.46 2.341 0.205

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑒𝑞𝑘𝑚/2 1.25 × 103 1.59 1.974 0.434

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑝𝑘𝑚/2 2.09 × 102 1.44 2.000 0.419

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑠𝑘𝑚/2 2.15 × 102 1.63 1.858 0.499
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Figure 9: Scaled bubble plume penetration depths against wind speeds. Here 𝐻𝑠 is the total signif-
icant wave height, 𝐿𝑚 = 𝑔/2𝜋 ∗ 𝑇2

𝑚 is the total mean wavelength, 𝐻𝑤𝑠
𝑠 is the wind sea significant

wave height, 𝐿𝑤𝑠
𝑚 = 𝑔/2𝜋 ∗ (𝑇𝑤𝑠

𝑚 )2 is the wind sea mean wavelength, all defined in §2.3. Large
circles represent the binned data points. Subscripts 𝑏𝑝 and 𝑏𝑝, 𝑣 denote statistics correspond to
the bubble plumes obtained from the thresholding methods BDM1 and BDM2 (described in §2.5),
respectively.

significant wave height 𝐻𝑤𝑠
𝑠 and mean wavelength 𝐿𝑤𝑠

𝑚 as scaling parameters here. Our data639

show that 𝐷1/3
𝑏𝑝

varies from ≈ 1.4𝐻𝑤𝑠
𝑠 to ≈ 9.2𝐻𝑤𝑠

𝑠 and from ≈ 0.06𝐿𝑤𝑠
𝑚 to ≈ 0.33𝐿𝑤𝑠

𝑚 for640

wind speeds greater than 6 m s−1 (Figure 9).641

Furthermore, the corresponding binned data indicate that 𝐷1/3
𝑏𝑝

varies from approxi-642

mately 2.4 to 4.4 times 𝐻𝑤𝑠
𝑠 , and approximately from 0.11 to 0.2 times 𝐿𝑤𝑠

𝑚 (with 𝐷𝑏𝑝 vary-643

ing roughly from 1.6 to 2.8 times 𝐻𝑤𝑠
𝑠 , and approximately from 0.07 to 0.13 times 𝐿𝑤𝑠

𝑚 ).644

Interestingly, the observed range of these scaled bubble plume depths is comparable with the645

scaled penetration depth of TKE and dye patches reported in previous numerical and experi-646

mental studies of isolated breaking focused waves [Rapp and Melville, 1990; Melville et al.,647

2002; Derakhti and Kirby, 2014; Derakhti et al., 2018, 2020a], although the length scales of648

these laboratory-scale breaking waves are one to two orders of magnitude smaller than those649

of the dominant breaking waves in the PAPA datasets.650

Figures 9 and 10, illustrating the dependency of scaled plume depths on wind speed651

and wave age, reveal intriguing trends. Similar trends are observed for the other scaled plume652
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depths considered in our dataset. Our data reveals that all the scaled bubble plume penetra-653

tion depths considered here exhibit non-monotonic variations with increasing wind speeds.654

However, on average, they all display decreasing trends with respect to wave age in develop-655

ing seas (i.e., 𝑐𝑝/𝑈10𝑁 < 1.2). In other words, during the early stages of a young sea (i.e.,656

𝑐𝑝/𝑈10𝑁 ≪ 1.2), the scaled bubble plume penetration depth, scaled by either significant657

wave height or mean wavelength, tends to be substantially greater (often two times or more)658

than in equilibrium sea states (i.e., 𝑐𝑝/𝑈10𝑁 ≈ 1.2). Previous field observations revealed659

that the former is dominated by plunging breaking waves Thorpe [1992], while the dominant660

breaker type in the latter is expected to be spilling breaking. Notably, prior numerical and661

experimental studies of laboratory-scale breaking waves have consistently demonstrated that662

bubbles (and the associated breaking-generated turbulence) penetrate, on average, deeper be-663

neath plunging breakers compared to spilling breakers of equivalent length scales, especially664

during active breaking periods [Rapp and Melville, 1990; Melville et al., 2002; Derakhti and665

Kirby, 2014; Derakhti et al., 2018, 2020a,b]. Hence, the observed dependence of scaled bub-666

ble plume penetration depths on wave age in developing seas, as illustrated in Figure 10, can667

be attributed to the change in dominant breaker types. We note that our observed dependence668

of scaled bubble depth on wave age is consistent with the dependence of bubble-mediated669

gas flux on wave age reported by Liang et al. [2017].670

Furthermore, our results reveal a monotonic decrease in scaled bubble plume penetra-671

tion depths, scaled by either 𝐻𝑠 or 𝐿𝑚, with increasing wave age across the observed range672

of sea states in the PAPA dataset, spanning from developing to old seas. Specifically, our673

data indicates that 𝐷1/3
𝑏𝑝

/𝐻𝑠 has a linear relationship with the inverse of wave age, given by674

𝐷
1/3
𝑏𝑝

𝐻𝑠

= 2.42[
𝑐𝑝

𝑈10𝑁
]−0.96. (14)

This relationship, shown by the solid line in Figure 10a, exhibits relatively small data scat-675

ter with 𝑟2 = 0.77. Assuming an approximately linear relationship between𝑈10𝑁 and air676

friction velocity (Figure 2b), our findings in Figures 10a and 10b and Eq. 14 align with the677

corresponding results reported in Wang et al. [2016].678

3.3 Whitecap Coverage and Its Relation with Bubble Plume Depths679

Existing parameterizations of oceanic whitecap coverage𝑊 generally take a thresh-680

old power law form𝑊 = 𝑎 (X − 𝑏)𝑛, where X is a selected predictive parameter (e.g.,681

𝑈10𝑁 , 𝑢∗,mss/Δ 𝑓 , 𝑆, 𝑅, . . . , all defined in §2). The coefficients 𝑎, 𝑏, and 𝑛 are empirically682

determined through best-fit curve fitting, minimizing the sum of the squares of the log resid-683

uals𝑊𝑟𝑒𝑠 = log10𝑊 − log10 [𝑎 (X − 𝑏)𝑛]. This approach ensures that equal weight is given to684

𝑊 data across several orders of magnitude.685

It is widely recognized that various environmental factors contribute to the scatter in686

whitecap variability for a given predictive parameter X. These factors may include surfac-687

tants, salinity, wind fetch and duration, wind history, surface shear, and rain. However, these688

secondary effects are generally thought to have a relatively minor impact on the mean val-689

ues of𝑊 . Consequently, we obtain the corresponding best fits over the binned data as in §3.2690

and similar to Scanlon and Ward [2016] and Brumer et al. [2017]. Bins with fewer than four691

bursts of data are excluded from the fitting process.692

Figures 11a and 11b show the variation of whitecap coverage (𝑊) in the PAPA dataset693

and the dataset of Schwendeman and Thomson [2015a] against wind speed (𝑈10𝑁 ) and air694

friction velocity (𝑢∗). The panels also include best-fit curves obtained from the binned PAPA695

data, as well as several relevant threshold power law fits from recent literature [Sugihara696

et al., 2007; Callaghan et al., 2008; Schwendeman and Thomson, 2015a; Scanlon and Ward,697

2016; Brumer et al., 2017]. Consistent with recent studies, the observed values of𝑊 as func-698

tions of𝑈10𝑁 are considerably smaller than those reported in early whitecap coverage stud-699

ies [e.g., Monahan and Muircheartaigh, 1980], which relied on manual whitecap extraction700
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Figure 10: Scaled bubble plume depths against wave age color-coded based on the corresponding
wind speeds. In (𝑎) and (𝑏), the fits are obtained from the least squares fitting to the binned data
points (large circles). Definitions are as in Figure 9.

methods [Monahan, 1969]. Furthermore, the observed range of𝑊 (𝑈10𝑁 ) and𝑊 (𝑢∗) values701

and their associated data scatter are consistent with recent studies that employed experimen-702

tal methods comparable to those used in this study (see §2.4).703

Figure 11a shows that the observed𝑊 (𝑈10𝑁 ) values and their corresponding best fits704

at high winds are considerably comparable with those in the other datasets, especially those705

that include𝑊 observations at𝑈10𝑁 > 16 m s−1. The solid line section of each fit shown in706

Figure 11 represents the range of data used to obtain the best fit. However, it is worth noting707

that the fits tend to diverge for𝑈10𝑁 < 10 m s−1. This divergence can be attributed to the708

sensitivity of the shape of a threshold power law fit, particularly the coefficient 𝑏 (which in-709

corporates the threshold behavior of the fit), to the data at the lower range of X values. Thus,710

any systematic bias in the selected wind parameter at low wind speeds will impact the result-711

ing best fit. Several previous studies did not correct wind speeds for atmospheric stability,712

e.g., Sugihara et al. [2007] and Schwendeman and Thomson [2015a], or they used𝑈𝑃𝐿
10 as a713

proxy for𝑈10𝑁 , e.g., Callaghan et al. [2008]. As discussed in §2.2, while these simplifica-714

tions have a relatively minor effect on estimated wind speeds at high winds, they can intro-715

duce significant errors in estimated wind parameters at low winds.716

Our observations shown in Figures 11a and 11b illustrate that the observed𝑊 (𝑈10𝑁 )717

and𝑊 (𝑢∗) values exhibit significant variation when wind speeds are rapidly decreasing718

(𝑑𝑈10𝑁/𝑑𝑡 ≪ 0) and are at low levels (𝑈10𝑁 < 4 m s−1 or 𝑢∗ < 0.2 m s−1), ranging from719

10−4 and 2×10−3. In contrast, the best wind-speed-only or 𝑢∗-only fits obtained from the re-720

maining data points predict no whitecapping (𝑊 = 0) at these low wind conditions. This721

suggests that a strong wind history may result in a systematic bias in𝑊 (𝑈10𝑁 ) and𝑊 (𝑢∗)722

data at low winds, potentially contributing to the apparent divergence observed in existing723

wind-speed-only and 𝑢∗-only fits at low and moderate wind speeds.724
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Figure 11: Observed range of whitecap coverage against various environmental factors: (𝑎) wind
speed𝑈10𝑁 , (𝑏) air friction velocity 𝑢∗, (𝑐) the equilibrium range 𝑚𝑠𝑠/Δ 𝑓 , and (𝑑) the significant
spectral peak steepness 𝐻𝑝𝑘 𝑝/2 (all defined in §2). Each data point is color-coded based on the
corresponding wind accelerations 𝑑𝑈10𝑁/𝑑𝑡. Circles with black edges indicate observations in the
presence of rain (rain rates have not been measured). The best fits to the present data are obtained
from the least squares fitting to the bin-averaged data points (large black circles).
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Figures 11a and 11b also present compelling evidence that, under similar wind forc-725

ing represented by either𝑈10𝑁 or 𝑢∗, a significant portion of𝑊 values in the PAPA dataset726

exhibit tendencies to be smaller and larger than the corresponding mean𝑊 values predicted727

by the best fits during increasing (𝑑𝑈10𝑁/𝑑𝑡 > 0) and decreasing (𝑑𝑈10𝑁/𝑑𝑡 < 0) wind728

speeds, respectively. This trend is consistent with the observations of Callaghan et al. [2008]729

for wind speeds exceeding approximately 9 m s−1. However, in contrast to Callaghan et al.730

[2008], our observations extend this trend to encompass moderate and low winds, provided731

that the magnitude of 𝑑𝑈10𝑁/𝑑𝑡 is sufficiently large.732

Next, we assess the predictive skill of several wind and wave parameters for the ob-733

served range of𝑊 values in the PAPA dataset, employing a methodology similar to that de-734

scribed in §3.2. However, in this analysis, we work in log10 space. To evaluate the overall735

quality of the fits, we employ Eqs. 12 and 13, with𝑊𝑟𝑒𝑠,𝑖 = log10𝑊𝑖 − log10 [𝑎 (X𝑖 − 𝑏)𝑛].736

In this context, RMSE quantifies the average order of magnitude deviation from the fit, while737

𝑟2 measures the proportion of the observed log10𝑊 variability that can be predicted from the738

X parameter. Note that a negative 𝑟2 value indicates that the fit performs worse than a hori-739

zontal line at the mean of the data. Similar to the approach in §3.2, all the fits are obtained740

from the binned data for𝑈10𝑁 ≥ 6 m s−1. The fit statistics are computed using individual741

10-minute average data points,𝑊𝑖 (𝑖 = 1, . . . , 𝑁), with three conditions: including all data742

(𝑁 = 165), limiting to𝑈10𝑁 ≥ 6 m s−1 (𝑁 = 144), and restricting to |𝑑𝑈10𝑁/𝑑𝑡 | < 2 m743

s−1hr−1 (𝑁 = 126).744

Table 2: Parameterizations of whitecap coverage represented by the best fits with a threshold power
law form𝑊 = 𝑎 (X − 𝑏)𝑛 as a function of several wind and wave parameters X. These fits are
obtained from the binned PAPA data for𝑈10𝑁 ≥ 6 m s−1 under three specific conditions. These
fits and their associated statistics are computed in log space. Throughout the paper, whitecap cov-
erage𝑊 is presented as a dimensionless fraction. The units for wave heights (𝐻) and wavelengths
(𝐿 = 2𝜋/𝑘) are meters [m]. The unit for Δ 𝑓 is in inverse seconds [1 / s]. Moreover, the units
for𝑈10𝑁 and 𝑢∗ are in meters per second [m / s]. The predictors of the 𝑅-, mss-, 𝐻𝑘-type are all
dimensionless.

Results of the best fit Statistics of the best fit with conditions:
Predictor 𝑊 = 𝑎 (X − 𝑏)𝑛 𝑈10𝑁 ≥ 6 m s−1 | 𝑑𝑈10𝑁

𝑑𝑡
| < 2 ms−1

hr all data
X 𝑎 𝑏 𝑛 RMSE 𝑟2 RMSE 𝑟2 RMSE 𝑟2

𝑈10𝑁 2.06 × 10−5 3.89 2.65 0.412 0.70 0.471 0.60 0.752 0.05
𝑢∗ 3.63 × 10−2 0.18 2.00 0.394 0.72 0.476 0.59 0.698 0.18

𝑅𝐵,𝑚 =
𝑢2
∗

a𝑤𝜔𝑚
3.87 × 10−9 5.81 × 104 1.14 0.400 0.72 0.646 0.25 0.935 −0.47

𝑅𝐵,𝑝 =
𝑢2
∗

a𝑤𝜔𝑝
3.86 × 10−9 7.01 × 104 1.12 0.424 0.68 0.657 0.22 0.916 −0.41

𝑅𝐻𝑒𝑞
=

𝑢∗𝐻𝑒𝑞

a𝑤
3.02 × 10−10 1.50 × 105 1.31 0.428 0.68 0.415 0.69 0.645 0.30

𝑅𝐻𝑠
=

𝑢∗𝐻𝑠

a𝑤
2.45 × 10−10 5.07 × 105 1.23 0.456 0.63 0.434 0.66 0.692 0.20

𝑅𝐻𝑝
=

𝑢∗𝐻𝑝

a𝑤
1.64 × 10−9 4.05 × 105 1.12 0.590 0.38 0.589 0.37 0.801 −0.08

mss 6.50 × 106 − 3.60 0.565 0.43 0.557 0.44 0.572 0.44
mss/Δ 𝑓 1.61 × 102 6.23 × 10−3 2.79 0.487 0.58 0.482 0.58 0.512 0.55

mss/(Δ 𝑓Δ\) 4.79 1.72 × 10−2 2.16 0.537 0.49 0.534 0.49 0.557 0.47
𝐻𝑝𝑘 𝑝/2 4.85 − 2.33 0.737 0.03 0.520 0.06 0.778 −0.04
𝐻𝑠𝑘 𝑝/2 2.06 × 10−1 3.86 × 10−2 0.99 0.766 −0.05 0.795 −0.14 0.837 −0.20
𝐻𝑒𝑞𝑘𝑚/2 1.89 × 107 − 6.58 0.564 0.43 0.550 0.46 0.576 0.43
𝐻𝑝𝑘𝑚/2 3.80 × 102 3.12 × 10−2 3.87 0.547 0.46 0.550 0.46 0.552 0.48
𝐻𝑠𝑘𝑚/2 5.53 × 102 4.56 × 10−2 4.27 0.507 0.54 0.502 0.54 0.503 0.56
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Table 2 summarizes the coefficients (𝑎, 𝑏, and 𝑛) and statistics associated with the best745

fits, represented as𝑊 = 𝑎 (X − 𝑏)𝑛, for several predictive parameters X to the PAPA dataset.746

Among all the predictors considered for𝑊 at moderate and high wind conditions, 𝑢∗ demon-747

strates the strongest fit (𝑟2 = 0.72, RMSE = 0.394), with only a slight advantage over the748

𝑈10𝑁 fit (𝑟2 = 0.70, RMSE = 0.412). Our results highlight that the fits obtained from differ-749

ent variations of the predictors 𝑅𝐻 (Eq. 3) and 𝑅𝐵 (Eq. 4), which incorporate both 𝑢∗ and a750

characteristic scale of the wave field, exhibit comparable or slightly weaker performance than751

the 𝑢∗-only fit. Importantly, these parameterizations are not able to reasonably predict𝑊 un-752

der conditions of rapidly varying wind speeds, characterized by large wind accelerations.753

Our observations in Figure 2 illustrate that either the normalized or unnormalized equi-754

librium range 𝑚𝑠𝑠 values tend to be smaller at increasing winds compared to those in de-755

creasing winds at a given wind speed. This observation suggests that these spectral parame-756

ters may reflect a combination of wind forcing and wind history effects. In alignment with757

these observations, the results presented in Table 2 emphasize that the parameterizations758

based on the equilibrium range 𝑚𝑠𝑠 exhibit consistent skill across various sea state condi-759

tions, even in conditions with substantial wind accelerations. Specifically, the equilibrium760

range 𝑚𝑠𝑠/Δ 𝑓 (Figure 11c) appears to be a more reliable predictor of the observed variabil-761

ity in𝑊 compared to other spectral predictors considered. Among the bulk steepness predic-762

tors, 𝐻𝑠𝑘𝑚/2 demonstrates the highest skill. Overall, among the predictor types explored in763

this analysis, those incorporating either peak wave height, peak wave number, or peak wave764

period appear to have the least skill (Figure 11d). Additionally, a recent study by Malila et al.765

[2022] suggests that wave field groupiness may exhibit superior predictive skill in predicting766

the variability of𝑊 compared to conventional bulk wave spectrum predictors.767

Figure 11 shows that the observed𝑊 (𝑈10𝑁 ),𝑊 (𝑢∗), and𝑊 (𝑚𝑠𝑠/Δ 𝑓 ) values in the768

PAPA dataset at moderate winds (e.g., 8 m s−1 ≤ 𝑈10𝑁 ≤ 16 m s−1) are generally smaller769

than the Schwendeman and Thomson [2015a] dataset. Notably, a significant portion of the770

data at these wind speeds was collected in the presence of rain (Figure 1b). This observation771

highlights the potential influence of rain on whitecap activity, a phenomenon that has been772

observed by mariners for decades but has yet to be quantified. Detailed quantification of the773

effects of rain on𝑊 would require measurements of rain rates, which were not available in774

this study.775

Finally, Figure 12 illustrates that the mean and significant bubble plume penetration776

depths are, on average, correlated and exhibit a nonlinear relationship with whitecap cover-777

age, given by778

𝐷𝑏𝑝 = 29.5 𝑊 0.33 , 𝐷
1/3
𝑏𝑝

= 52.8 𝑊 0.36, (15)

with 𝑟2 = 0.60 (for the fit in Figure 12a) and 𝑟2 = 0.62 (for the fit in Figure 12c), and779

𝐷𝑏𝑝,𝑣 = 12.6 𝑊 0.19 , 𝐷
1/3
𝑏𝑝,𝑣

= 21.9 𝑊 0.24, (16)

with 𝑟2 = 0.33 (for the fit in Figure 12b) and 𝑟2 = 0.43 (for the fit in Figure 12d). These fits780

are obtained using the binned data as a function of𝑈10𝑁 , with data points corresponding to781

𝑈10𝑁 < 6m s−1 excluded from the fitting process. As detailed in §2.5 and consistent with the782

observations presented in §3.1 and §3.2, 𝐷𝑏𝑝,𝑣 represents the penetration depth of bubbles783

characterized by, on average, at least two orders of magnitude higher void fraction and signif-784

icantly more visible optical signature compared to those reaching 𝐷𝑏𝑝 for a given sea state785

condition.786

Intuitively, increasing the rate of breaking events with the same scale leads to a linear787

increase in W without affecting mean bubble plume depth. However, in reality, wave break-788

ing occurs across a range of scales. Therefore, the increase in𝑊 results from both a higher789

rate and larger-scale breaking waves. This may partially explain the observed relationship790

between bubble plume depths and𝑊 shown in Figure 12. In other words, on average, plume791

depths tend to increase with increasing𝑊 , but at a considerably lower rate. This is reflected792

in the exponents in Eqs. 15 and 16, which are positive but significantly less than 1.793
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Figure 12: Mean and significant bubble plume depths against whitecap coverage. The best fits
to the present data are obtained through least squares fitting to the bin-averaged data points as a
function of𝑈10𝑁 (large black circles). Open circles denote the data with𝑈10𝑁 < 6 m s−1.
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4 Discussion: Bubble Plumes Volumes794

In this section, we define the volume of bubble plumes as a measure of their overall795

size rather than the total volume of bubbles they contain. As detailed in §2.5, these bubble796

plumes are identified as regions where volume backscattering strength, which is somewhat797

related to bubble void fractions, exceeds a specific threshold value. With this definition, the798

volume of bubble plumes per unit sea surface area can be expressed as799

V𝑏𝑝 = A𝑏𝑝𝐷𝑏𝑝 , and V𝑏𝑝,𝑣 = A𝑏𝑝,𝑣𝐷𝑏𝑝,𝑣 , (17)

where A represents the fractional surface area of bubble plumes, 𝐷 is the mean penetration800

depth of bubbles within these plumes, and the subscripts 𝑏𝑝 and 𝑏𝑝, 𝑣 denote the statistics801

corresponding to the bubble plumes obtained using our bubble detection methods BDM1802

and BDM2 (as described in §2.5), respectively. As elaborated in §2.5, 𝐷𝑏𝑝,𝑣 represents the803

mean penetration depth of bubbles where the volume backscattering is at least 20 dB higher804

compared to 𝐷𝑏𝑝 for a given sea state condition. Note that this difference in backscattering805

strength is expected to reflect a significant increase in bubble void fraction. Our observa-806

tions and several simple parameterizations of the mean plume depths 𝐷𝑏𝑝 and 𝐷𝑏𝑝,𝑣 are807

presented in §3.808

We note that A represents the fractional surface area, with or without a visible sur-809

face signature, of bubble plumes that persist significantly longer than the visible surface foam810

generated during active breaking, as discussed in §3.1. Therefore, both A𝑏𝑝 and A𝑏𝑝,𝑣 are811

expected to be noticeably greater than the measured whitecap coverage𝑊 . However, our812

sampling method does not allow for a direct quantification of A𝑏𝑝 and A𝑏𝑝,𝑣 . In the follow-813

ing, we introduce a proxy for A and comment on its relation to𝑊 .814

We define 𝑃 as a time fraction of echogram data over concurrent bursts during which815

bubble plumes are detected. Assuming the buoys had an approximately constant "wind slip"816

velocity𝑈𝑠𝑙𝑖 𝑝 during each burst, 𝐴 = 𝑃2 then provides a proxy for A if the drifting distance817

of the buoy relative to the surface water ≈ 𝑈𝑠𝑙𝑖 𝑝𝑇𝑏𝑢𝑟𝑠𝑡 is much greater than the average hori-818

zontal length of the bubble clouds ≈ 𝑈𝑠𝑙𝑖 𝑝𝑇𝑎𝑏 or𝑈𝑠𝑙𝑖 𝑝𝑇𝑎𝑏,𝑣 (see §3.1). Further, at least a few819

bubble clouds should be available in a burst to consider that A ≈ 𝐴.820

Figure 13a shows the 𝐴𝑏𝑝 and 𝐴𝑏𝑝,𝑣 values as a function of𝑈10𝑁 where the size of the821

symbols is a function of the number of the bubble clouds detected in a burst, averaged over822

concurrent bursts, 𝑁 , with 0.67 ≤ 𝑁𝑏𝑝 ≤ 26 and 0.5 ≤ 𝑁𝑏𝑝,𝑣 ≤ 24. Note that 𝑃, and thus823

𝐴 = 𝑃2, values that approach one indicate that either the main portion of the surface layer is824

covered by bubble plumes or the net drifting distance of the buoy (relative to the surface wa-825

ter) is smaller than the horizontal length of the sampled bubble cloud. As shown in Figure 4b826

and 13a, the latter may explain 𝐴𝑏𝑝 ∼ 1 at moderate winds where 𝑁 < 2 and 𝑇𝑎𝑏 values827

are on the order of several hundreds of seconds (comparable to 𝑇𝑏𝑢𝑟𝑠𝑡 = 512s). Despite the828

uncertainties in the interpretation of 𝐴, the observations shown in Figure 13a suggest that829

𝐴𝑏𝑝 is several times greater than 𝐴𝑏𝑝,𝑣 , which is qualitatively consistent with the continu-830

ous increase of the overall size of the bubble plume shown in Figure 5 and the corresponding831

residence time results shown in Figure 4b.832

Figure 13b shows that both 𝐴𝑏𝑝 and 𝐴𝑏𝑝,𝑣 are, on average, increase as a function of𝑊833

as834

𝐴𝑏𝑝 = 2.5𝑊 0.33 ≤ 1, and 𝐴𝑏𝑝,𝑣 = 8.4𝑊 0.97 ≤ 1. (18)

Note that the data points with 𝑁 < 3 are neglected in Figure 13b. Our observations show that835

𝐴𝑏𝑝 , which is comparable to a fractional surface area defined in Thorpe [1986], is at least836

an order of magnitude larger than𝑊 . This is consistent with the semi-empirical plume area837

analysis of Thorpe [1986].838

Finally by substituting Eqs. 15, 16, and 18 into Eq. 17, we obtain839

V𝑏𝑝 = A𝑏𝑝𝐷𝑏𝑝 ≈ 74𝑊 0.66 ≤ 29.5𝑊 0.33 [m3/m2], (19)
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Figure 13: Proxy for the fractional area of the bubble plumes against (𝑎) wind speed and (𝑏)
whitecap coverage. Symbol sizes are a function of the number of bubble clouds detected in a burst
averaged over concurrent (1 to 4) bursts ranging from 0.5 to 26. In (𝑏), large symbols represent the
corresponding binned data with more than three detected bubble clouds in a burst. Subscripts 𝑏𝑝
and 𝑏𝑝, 𝑣 denote the statistics corresponding to the bubble plumes obtained from the thresholding
methods BDM1 and BDM2 (described in §2.5), respectively.

and840

V𝑏𝑝,𝑣 = A𝑏𝑝,𝑣𝐷𝑏𝑝,𝑣 ≈ 106𝑊 1.16 ≤ 12.6𝑊 0.19 [m3/m2], (20)

assuming that the best fits to the binned data shown in Figure 13b (Eq. 18) provide a proxy841

for A𝑏𝑝 and A𝑏𝑝,𝑣 .842

We emphasize that uncertainty in our estimates of the fractional surface area of bubble843

plumes (and thus plume volumes) increases with decreasing𝑊 , especially at low𝑊 values844

(e.g.,𝑊 < 10−3) because of increasing effect of sparse sampling of intermittent breaking845

crests on the resulting statistics [Derakhti et al., 2020a].846

5 Summary847

The observational results presented in this study quantify the statistics of penetration848

depth and fractional surface area of bubble plumes generated by breaking surface waves as849

a function of various wind and sea state parameters across a wide range of sea state condi-850

tions. Bubble plume data include concurrent high-resolution (with a 12 minutes temporal851

resolution) plume depth statistics and whitecap coverage. The former is obtained from the852

echogram data with 1 cm vertical resolution, collected by downward-looking echosounders853

mounted on arrays of freely drifting SWIFT buoys. The latter is obtained from visual im-854

ages, collected by shipboard cameras operated near the buoys. The findings offer valuable855

insights into the size characteristics of bubble plumes under varying environmental condi-856

tions.857

Our observations highlight strong correlations between the statistics of bubble plume858

penetration depths and environmental factors such as wind speed, spectral wave steepness,859

and whitecap coverage. Notably, we find that at high wind speeds, the mean plume depths860

extend beyond 10 m beneath the surface, with individual bubble clouds reaching depths ex-861

ceeding 30 m.862
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Furthermore, our results reveal that the mean plume depths exhibit variations, on aver-863

age, ranging from 1.6 to 2.8 times the wind sea significant wave height 𝐻𝑤𝑠
𝑠 . Scaled plume864

depths, by either 𝐻𝑤𝑠
𝑠 or the total significant wave height 𝐻𝑠 , demonstrate a non-monotonic865

relationship with increasing wind speeds. Interestingly, plume depths scaled by 𝐻𝑠 exhibit a866

robust linear correlation with the inverse of wave age, spanning from developing to old seas.867

All scaled plume depths considered here are decreasing functions of wave age in developing868

seas.869

Moreover, our study offers multiple parameterizations that effectively predict the ob-870

served variability in the penetration depth and surface area of bubble plumes. These parame-871

terizations are based on readily available wind and wave statistics, making them valuable for872

applications in existing forecast models.873

This study is the first to establish a direct relation between bubble plume penetration874

depth and whitecap coverage, revealing that the depth of bubble plumes is linked to their vis-875

ible surface area. This finding is significant as it advocates the possibility of estimating the876

volume of bubble plumes by remote sensing. Moreover, it significantly expands the appli-877

cability of the recent theoretical framework introduced by Callaghan [2018] on predicting878

total wave breaking dissipation as a function of bubble plume penetration depth and white-879

cap coverage. In a companion paper, we examine dynamic relationships between the bubble880

plume statistics presented here and total wave breaking dissipation using our synchronized881

observations of bubble plumes and dissipation rates.882

Finally, the parameterizations of bubble plume penetration depth presented in this883

study hold the potential for estimating the effective vertical transport of various particles,884

with a rising velocity on the order of few cm s−1 or less, induced by breaking surface waves.885

It is possible that the drifting SWIFT buoys used in this study aggregate in convergence886

zones with enhanced downwelling velocities, such that there would be a sampling bias in887

the interpretation of vertical transport [Zippel et al., 2020]. However, no obvious conver-888

gence zones, windrows, or other organized surface fronts were observed during the PAPA889

data collection. Furthermore, the wind slip (1% of wind speed) of the buoys tends to cause a890

quasi-uniform sampling along a drift track even in the presence of surface features.891
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A: Echosounder calibration902

The echosounder was calibrated using standard sphere calibration techniques Demer903

et al. [2015]. In this approach, a sphere of a known material is suspended below the beam904

of an echosounder. Since the sphere’s properties are known, an analytical solution for the905

acoustic target strength can be calculated. The difference between the measured intensity of906

the scattering and the known scattering from the sphere at the transmit frequency is the total907

gain for the system. In post-cruise testing, a 38.1 mm diameter tungsten-carbide sphere with908

6% cobalt binder was suspended 8 m below the transducers by a bridle connected to the hull909
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of the SWIFTs. The units were then deployed for 30-60 minutes on Lake Washington (Wash-910

ington, USA), during which the attitude of the SWIFTS caused the suspended sphere to pass911

through the beam of the echosounder. The top 1% of targets at the sphere range, which are912

assumed to be those associated with the sphere being on-axis within the beam where the913

combined transmit-receive beampattern is highest, were then selected. The gain is then deter-914

mined by solving for 𝐺𝑐𝑎𝑙 in the target strength equation using the known analytical solution915

for the target strength of the sphere.916

In practice, a sphere is sized such that its scattering response contains no significant917

nulls within the bandwidth [Demer et al., 2015; Stanton and Chu, 2008; Lavery et al., 2017].918

However, this is not feasible at 1 MHz since a small (< 1 cm) sphere would be required. Fur-919

thermore, for such a small sphere, the monofilament securing the sphere would contribute920

significantly to scattering, biasing the results [Renfree et al., 2020]. Thus, we chose to use a921

larger sphere whose response is quite complex over the relevant frequency range. The pulse-922

compressed signal has sufficient bandwidth to clearly resolve the echo from the front inter-923

face and subsequent contributions from circumference waves. We, therefore, assumed that924

the peak of the pulse compressed signal represents the partial wave scattering cross-section925

of the sphere [Stanton and Chu, 2008]. This assumption is necessary given that a frequency-926

dependent calibration cannot be performed given the only output data product is a scattering927

intensity measurement representing the average within the range bin output by the ADCP.928

At the time of this experiment, the firmware resulted in scattering that saturated the re-929

ceiver in the high gain setting and saturated the receiver when using the calibration sphere930

at a range of ∼8 m. There is, therefore, some uncertainty in the calibration gains and the931

field observations. We cannot conclusively state the magnitude of this uncertainty, but it is932

believed to be on the order of a few dB or less from the calibration gain. The justification933

for this statement is that the elastic response of the sphere is well resolved with the inten-934

sity (impulse response squared) of the signal from the first Rayleigh wave, approximately 9935

dB smaller than the echo from the front interface of the sphere when the calibrations were936

performed at the lower gain setting. This is consistent with expectations based on the im-937

pulse response of a 38.1 mm tungsten carbine sphere [Demer et al., 2015] and the arrival of938

the signal associated with the first Rayleigh wave. In the saturated data, the difference in in-939

tensity between the first Rayleigh wave and the saturated echo from the front interface was940

approximately 3 dB. Given the impulse response of the 38.1 mm sphere, this suggests that941

about 6 dB of scattering from the sphere had been clipped. When used in the high power942

setting, gains were applied assuming the clipped value was 6 dB. The practical effect of this943

uncertainty is to put consistent error bars on the volume scattering coefficients measured in944

the data. That is, all data are shifted similarly, making the absolute intensity of the backscat-945

tering more uncertain without impacting the relevant ranges between the thresholds.946

The fact that scattering from the tungsten carbide sphere saturated at 8 m indicates the947

high gain setting almost certainly caused widespread saturation of signals in the upper por-948

tion (∼ 10 m) of the water column when high densities of bubbles were present. A conse-949

quence of this is that the full dynamic range of volume backscattering is not resolved. De-950

spite these challenges and uncertainties, we consider it preferable to present backscattering951

intensities in this approach to backscattering intensities expressed in decibels with reference952

value ground in physical measurements.953
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