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Abstract

Trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), are estimated using available

surface and ozonesonde profile data for 1993-2019. Using a coherent methodology, observed trends are compared to modeled

trends (1995-2015) from the Arctic Monitoring Assessment Programme SLCF 2021 assessment. Statistically significant increases

in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent decreasing trends in surface carbon

monoxide, are generally captured by multi-model median (MMM) trends. Wintertime increases are also estimated in the free

troposphere at most Arctic sites, but tend to be overestimated by the MMMs. Springtime surface ozone increases in northern

coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are not always reproduced. Possible

reasons for observed changes and model behavior are discussed, including decreasing precursor emissions, changing ozone sinks,

and variability in large-scale meteorology.
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Key Points: 30 

●   Coherent ozone trend analysis methodology applied to multi-decade, pan-Arctic surface 31 
and ozonesonde datasets and multi-model medians. 32 
●    Increasing winter Arctic tropospheric ozone overestimated by models in the free 33 
troposphere, Alaskan spring surface increases not captured.  34 
●    Spring (summer) decreases (increases) in observed ozone throughout the troposphere, not 35 
always simulated by models. 36 
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Abstract 37 

Trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), 38 

are estimated using available surface and ozonesonde profile data for 1993-2019. Using a 39 

coherent methodology, observed trends are compared to modeled trends (1995-2015) from the 40 

Arctic Monitoring Assessment Programme SLCF 2021 assessment. Statistically significant 41 

increases in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent 42 

decreasing trends in surface carbon monoxide, are generally captured by multi-model median 43 

(MMM) trends. Wintertime increases are also estimated in the free troposphere at most Arctic 44 

sites, but tend to be overestimated by the MMMs. Springtime surface ozone increases in northern 45 

coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are 46 

not always reproduced. Possible reasons for observed changes and model behavior are discussed, 47 

including decreasing precursor emissions, changing ozone sinks, and variability in large-scale 48 

meteorology. 49 

Plain Language Summary  50 

The Arctic is warming much faster than the rest of the globe due to increases in carbon dioxide, 51 
and other trace constituents like ozone, also an air pollutant. However, improved understanding 52 
is needed about long-term changes or trends in Arctic tropospheric ozone. A coherent 53 
methodology is applied to determine trends in surface and regular profile measurements over the 54 
last 20-30 years, and results from six chemistry-climate models. Statistically significant increases 55 
in observed ozone are found at the surface and in the free troposphere during winter in the high 56 
Arctic. Paradoxically, decreases in nitrogen oxide emissions at mid-latitudes appear to be leading 57 
to increases in ozone during winter, but associated increases in Arctic tropospheric ozone tend to 58 
be overestimated in the models. Increases are also found at the surface in northern Alaska during 59 
spring but not reproduced by the models. The causes are unknown but could be related to 60 
changes in local sources or sinks of Arctic ozone or in large-scale weather patterns. Declining 61 
mid-latitude emissions may also explain negative surface ozone trends over northern 62 
Scandinavia in spring that are not always captured by the models. Further work is needed to 63 
understand changes in Arctic tropospheric ozone. 64 

1 Introduction 65 

Tropospheric ozone (O3) is a short-lived climate forcer (SLCF) contributing to global and Arctic 66 

warming (AMAP, 2015; Sand et al, 2016; von Salzen et al. 2022), and a critical secondary air 67 

pollutant, detrimental to human health (Anenberg et al., 2010) and ecosystems (Arnold et al., 68 

2018). The Arctic tropospheric O3 budget is complex, as recently discussed in a companion 69 

paper, Whaley et al. (2023). It originates from photochemical production of anthropogenic or 70 
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natural emissions of O3 precursors, including nitrogen oxides (NOx), carbon monoxide (CO) and 71 

methane (CH4), in the Arctic, or following air mass transport from mid-latitudes, as well as 72 

transport of O3 from the stratosphere (Law et al., 2014; Schmale et al., 2018). Sinks include 73 

photochemical destruction, including reactions involving halogens leading to so-called ozone 74 

depletion events (ODEs) (Barrie, et al., 1988; Simpson et al., 2007), and surface dry deposition 75 

(Clifton et al., 2020). Growth in anthropogenic emissions since pre-industrial times has led to 76 

increases in tropospheric O3 throughout the Northern Hemisphere (NH) (Tarasick et al., 2019; 77 

Turnock et al., 2020; Cooper et al., 2020) contributing to observed global and Arctic warming 78 

over the past century (e.g. Griffiths et al., 2021). Since the mid-1990s, a mix of relatively weak 79 

positive and negative trends (+1 to -1 parts per billion by volume (ppbv) per decade) have been 80 

reported in the NH at the surface and in the free troposphere (FT), with largest increases over 81 

south and eastern Asia, associated with increasing anthropogenic emissions (Cooper et al., 2020; 82 

Wang et al., 2022a).  83 

To date, only a few studies have focused on assessing tropospheric O3 trends in the Arctic. While 84 

positive O3 trends were diagnosed at several surface sites, results are not always statistically 85 

significant, and both positive and negative trends were reported at some Canadian sites (Tarasick 86 

et al., 2016; Sharma et al., 2019; Cooper et al., 2020). In the Arctic FT, studies found significant 87 

positive trends (Christiansen et al., 2017; Wang et al., 2022a), no trends (Tarasick et al., 2016), 88 

or mixed trends in different seasons (Bahramvash Shams et al., 2019). Differences in the periods 89 

analyzed, sign or magnitude of trends emphasizes the need to further examine trends using the 90 

same methodology. Coherent estimation of observed trends, and evaluation of modeled trends, is 91 

needed to better understand O3 changes and impacts on Arctic climate that are sensitive to the 92 

altitude where O3 perturbations occur (Rap et al., 2015). This study assesses annual and monthly 93 

trends, together with possible evolution in seasonal cycles, of Arctic tropospheric O3 over the last 94 

20-30 years. Observed changes are compared to results from atmospheric chemistry-climate 95 

models run as part of the recent Arctic Monitoring and Assessment Programme (AMAP) SLCF 96 

assessment (AMAP, 2021; Whaley et al., 2022; von Salzen et al., 2022). Results are discussed in 97 

light of possible changes in sources and sinks of Arctic tropospheric O3.  98 
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2 Methods 99 

2.1 Measurements 100 

The location of surface and ozonesonde sites used in this study are displayed in Fig. 1, together 101 

with the Arctic Circle at 66.6°N, used to define the Arctic. Annual surface trends are shown in 102 

the table grouped into 1) high Arctic coastal sites (Alert, Utqiaġvik/Barrow, Villum), Zeppelin 103 

(situated at 474m on Svalbard) and Summit (high altitude (FT) site on Greenland (3211m), and 104 

2) European continental sites within (Pallas, Esrange), and just south (Tustervatn) of the Arctic 105 

Circle. 106 

107 
Figure 1. Left: Location of surface (bold) and ozonesonde (italic) sites and showing the Arctic 108 

Circle (66.55°N). Right: annual O3 trends at surface sites in % per year (left column), the 109 

significance level (middle column), calculated over periods shown in the right column. 110 

Statistically significant trends (above 90% confidence level) are in bold. Geographical 111 

coordinates for all sites are provided in Whaley et al. (2023). See text for details. 112 

Surface observations are from EBAS Level 2 data, station owners for Villum before 2001, 113 

Canada’s Open Government Portal for Alert, and National Oceanic and Atmospheric 114 
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Administration (NOAA) for Summit, and Barrow Atmospheric Observatory, Utqiaġvik 115 

(Utqiaġvik from now on). Ozonesonde data are from the World Ozone and Ultraviolet Radiation 116 

Data Centre (WOUDC) and Network for the Detection of Atmospheric Composition Change 117 

(NDACC). See also the Supplementary Information (Text S1, Figs. S1 and S2, including data 118 

coverage). 119 

2.2 Trend analysis 120 

Observed monthly and annual trends in surface O3 concentrations at different sites are 121 

determined using the non-parametric Mann-Kendall test at the 90th and 95th confidence level 122 

(CL) and Sen’s slope methodology (Theil, 1950; Sen, 1968) (see Text S2). Daily median data are 123 

sorted into different months and pre-whitened, due to the presence of autocorrelation, via the 124 

3PW algorithm from Collaud Coen et al. (2020). Trends using ozonesonde profiles are calculated 125 

based on weekly medians for selected pressure levels. For the calculation of relative trends, data 126 

are normalized by division with median values and multiplied by 100.  127 

2.3 Modeled trends 128 

Modeled trends at the surface and different altitudes are calculated for 1995-2015 using results 129 

from four global chemistry-climate models (CMAM, GISS-E2.1, MRI-ESM2, UKESM1) and 130 

two chemistry-transport models (DEHM, EMEP MSC-W) run using the same ECLIPSEv6b 131 

anthropogenic emissions, and nudged with meteorological reanalyses as part of AMAP (2021). 132 

Details can be found in Whaley et al. (2022), Text S3 and Table S1. Simulated monthly mean O3 133 

volume mixing ratios from the model grid box containing the measurement location are used to 134 

compute multi-model medians (MMMs). For ozonesonde comparisons, modeled vertical profiles 135 

are interpolated onto the same vertical bins as the measurements before trends are computed.  136 

3 Surface ozone trends in the Arctic 137 

3.1 Observed ozone trends 138 

Annual trends are calculated for 1993-2019, or for the longest period with sufficient data, for all 139 

the sites (see Fig. 1, Table S2).  140 
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141 

142 

 143 
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Figure 2. Observed surface O3 trends and seasonal cycles. Left: seasonal cycles of monthly 144 

median O3 (ppbv) at a) Alert, b) Utqiaġvik, c) Villum, d) Zeppelin, and e) Pallas for 1993-2000 145 

(blue lines) vs 2012-2019 (red lines). Shaded areas show upper and lower quartiles of hourly 146 

values. Right: monthly trends for 1993-2019. Boxes represent the slope of the trend in ppbv per 147 

year with red boxes significant at 95th% CL, blue boxes at 90th% CL, and black boxes not 148 

statistically significant. Error bars show 95th% CLs. Results are shown for shorter periods 149 

depending on data availability. 150 

Average O3 seasonal cycles are also calculated for earlier (1993-2000) and later (2012-2019) 151 

periods, to examine possible changes, together with monthly trends (Fig. 2) at selected sites (see 152 

Fig. S3 for other sites). Monthly trends are also analyzed for different 21-year periods (1993-153 

2012, 1999-2019) (Fig. S4).  154 

First considering high Arctic sites at coastal locations that exhibit a winter maximum with low 155 

spring concentrations attributed to ODEs, as discussed in Whaley et al. (2023). Alert has 156 

statistically significant (“ss”) positive O3 annual trends, as does Villum for the shorter time 157 

period 1999-2019, while annual trends at Utqiaġvik are not significant (see Fig. 1). Ss trends are 158 

also calculated in particular seasons, as shown in Fig. 2. Notably, ss positive trends are found 159 

during late autumn and/or winter at Alert, Villum and Utqiaġvik. Positive trends are also 160 

calculated for spring at Utqiaġvik (April-May). Winter trends at Alert and spring trends at 161 

Utqiaġvik are more pronounced when using the later record (1999-2019) (see Fig. S4). To 162 

further characterize these changes, probability distributions in observed O3 concentrations are 163 

calculated for months with ss trends (see Fig. S5). Positive ss trends during winter and spring at 164 

Utqiaġvik are the result of a decrease (increase) in the frequency of low (high) concentrations 165 

(Jan.-May), whereas wintertime O3 concentrations shifted recently towards higher values at Alert 166 

(Nov.-Feb.) and Villum (Oct.-Jan.). Zeppelin shows a different seasonal behavior compared to 167 

Arctic sea-level coastal sites with a spring maximum, more similar to remote mid-latitude sites. 168 

Here, ss positive annual trends are estimated for 1993-2019 (Fig. 1), and in winter (Fig. 2), 169 

driven by increases in the earlier part of the record (1993-2013) (Fig. S4). 170 

Continental northern Scandinavian sites exhibit a different behavior with Pallas and Tustervatn 171 

showing ss negative annual trends but no ss annual (or monthly) trends at Esrange over any of 172 

the periods considered. The shape of the seasonal cycle for the earlier versus the later period is 173 
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similar at these sites, which also have a spring maximum like Zeppelin. O3 appears to be 174 

decreasing throughout the year when comparing earlier and later periods although ss negative 175 

trends are only evident at Pallas (March, December), and at Tustervatn in spring and early 176 

summer (Fig. S4, 1999-2019 trends). Summit is more representative of the FT and samples air 177 

masses transported from North America and Asia, or of stratospheric origin (Dibb, 2007; 178 

Schmeisser et al., 2018). The annual trend, calculated over the shorter 2001-2019 record, is not 179 

ss at the 90th % CL, but ss negative monthly trends are estimated for January, March-May and 180 

September.   181 

3.2 Comparison of observed and modeled surface trends 182 

Figure 3 compares observed monthly and MMM trends for 1995-2015, or the closest possible 183 

time interval in case of years with missing observations. Results for other sites are shown in Fig. 184 

S6. Observed ss trends are more frequently diagnosed over 1993-2019 (Fig. 2) than over the 185 

shorter period ending in 2015 (Fig. 3). While the MMMs simulate O3 seasonal cycles reasonably 186 

well, low O3 concentrations are missed in spring, and wintertime O3 is underestimated (Whaley 187 

et al., 2023). The MMMs simulate ss positive and negative trends at Zeppelin (Jan.) and Esrange 188 

(May), respectively, but not ss positive trends at Utqiaġvik (April). Ss trends are simulated, but 189 

not observed, at Alert (January, December) and Tustervatn (March).  190 

 191 
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192 

 193 

Figure 3: Comparison of observed (left) and MMM (right) surface O3 trends and seasonal cycles 194 

at a) Alert, b) Utqiaġvik, c) Villum, d) Zeppelin, and e) Esrange. Upper panels: seasonal cycles 195 

for 1995-2004 (red lines) vs 2005-2015 (blue lines). Shaded areas show upper and lower 196 

quartiles of monthly values (observations only). Lower panels: monthly median trends in ppbv 197 

per year for 1995-2015, or shorter periods depending on data availability. Box coloring and 198 

error bars are the same as Fig. 2.         199 

4 Arctic ozone trends in the free troposphere 200 

4.1 Observed vertical trends 201 

This analysis focuses on O3 changes in the lower and mid-troposphere. Figure 4 shows observed 202 

relative trends at six Arctic ozonesonde sites from 925-400 hPa for 1993-2019. Absolute trends 203 

above and below 400 hPa, and relative trends from 925-100 hPa, are also calculated (Figs. S7a, 204 



manuscript submitted to Geophys. Res. Letts. 

 10 

S7b). Overall, while there are few ss trends, there seems to be a “dipole effect” with positive 205 

trends in winter and summer, and negative trends in spring and autumn. Positive ss winter 206 

(Jan/Dec) trends are found up to 400 hPa at most sites (except Resolute), and also at 207 

Scoresbysund in early spring. Positive wintertime trends are more evident in the earlier period in 208 

the upper troposphere (UT) and lower stratosphere (LS) (Fig. S8). Eureka, Resolute, and 209 

Sodankyla have periods with negative trends especially during spring and early summer in the 210 

lower troposphere. Resolute decreases extend up to 500 hPa in March-April. Relative ss trends 211 

vary from -1.5% to +0.5-1.0 % per year (Figs. 4, S7b) while stronger negative trends are 212 

diagnosed in later years (1999-2019) compared to 1993-2013 at all sites (Fig. S8). 213 

214 

 215 

Figure 4: Vertical trends in observed monthly O3 for 1993-2019, relative to monthly median 216 

concentrations, in % per year, from 925-400 hPa at a) Alert, b) Eureka, c) Ny Alesund, d) 217 

Resolute, e) Scoresbysund, and f) Sodankyla. Stippled lines/areas show statistical significance at 218 

the 90th % CL (smaller marker size) and 95th % CL (larger marker size).  219 



manuscript submitted to Geophys. Res. Letts. 

 11 

 220 

 221 

 222 
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Figure 5: Comparison of observed (left) and MMM (right) vertical trends in monthly O3, relative 223 

to monthly medians, in % per year, from 925-400 hPa over 1995-2015 at a) Alert, b) Eureka, c) 224 

Ny Alesund, d) Resolute, e) Scoresbysund, and f) Sodankyla. Shading/symbols are as in Fig. 4.  225 

4.2 Comparison of observed and modeled vertical trends 226 

Figure 5 shows observed ozonesonde and MMM trends for 1995-2015 up to 400 hPa (see Fig. 227 

S9 for results up to 100 hPa). Only results from 5 models are used, since EMEP MSC-W only 228 

provided surface O3. The MMMs appear to capture the observed “dipole effect” seen in the 229 

observed trends. Models also capture observed increases in the winter but trends are 230 

overestimated at most sites, especially Ny Alesund and Sodankyla. Negative winter trends at 231 

Resolute are not simulated. This may be linked to positive modeled trends above 500 hPa at all 232 

sites (Fig. S9). Summertime positive ss MMM trends are larger than observed trends at some 233 

sites, e.g. Resolute and Ny Alesund. 234 

5 Discussion and conclusions 235 

Increasing annual surface O3 trends at Arctic coastal sites, and at Zeppelin, are in qualitative 236 

agreement with Cooper et al. (2020), but in contrast to negative or non-significant surface trends 237 

at Canadian ozonesonde sites (Tarasick et al., 2016). A notable finding is that ss positive trends 238 

occur mainly in the winter months. While such increases were reported previously at Utqiaġvik 239 

(Gaudel et al. 2018; Christiansen et al., 2022) and Alert (Sharma et al., 2019), we confirm this 240 

tendency over the wider Arctic. Emission reductions of NOx in Europe and North America, and 241 

more recently over eastern Asia, have led to increasing wintertime O3 at mid-latitudes due to less 242 

NO titration of O3 (Jhun et al., 2015, Wang et al., 2022b, Bowman et al., 2022). This can explain 243 

observed increases in wintertime surface Arctic O3, influenced primarily by transport of air 244 

masses from Europe (Hirdman et al., 2010). Evidence for declining O3 precursor trends is 245 

supported by decreases in observed CO in the Arctic during autumn and winter (Fig. S10). At the 246 

same time, CH4 continues to increase globally contributing to rising O3 in the NH (Zeng et al., 247 

2022)  (see also Text S4 on Arctic O3 precursor trends).  248 

Another intriguing finding is springtime ss surface O3 increases at Utqiaġvik (especially over 249 

1999-2019, Fig S4), but no ss changes at Alert and Villum. Changes in O3 concentrations at this 250 
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time of year may be driven by changes in ODE frequency linked to climate change or weather 251 

patterns (Oltmans et al, 2012). ODEs lead to zero or very low springtime O3 due to bromine 252 

released from frost flowers or blowing snow (on sea-ice) (Simpson et al., 2007) or iodine 253 

compounds with a possible oceanic source (Benevant et al., 2022). Increases in springtime 254 

tropospheric bromine oxide have been observed from satellites, especially along the north coast 255 

of Greenland and central Arctic Ocean, correlating weakly with an increasing frequency in first 256 

year sea-ice (Bougoudis et al., 2020). Indeed, the frequency of low springtime O3 concentrations 257 

has been increasing at Canadian high Arctic sites (see Fig. S11) but no ss springtime monthly 258 

trends are determined at Alert or Villum in our analysis. Springtime increases at Utqiaġvik could 259 

be due to stronger transport from mid-latitudes to this site during periods with a more northerly 260 

extension of the Pacific storm track, hampering conditions for  ODEs (Koo et al., 2012). They 261 

could also be due to an increasing influence from local emissions, such as shipping or Alaskan 262 

petroleum extraction, when photochemistry becomes active in spring (Gunsch et al., 2017).  263 

Decreases in springtime/early summer O3 in northern Scandinavia, especially over the later 264 

1999-2019 period, are consistent with negative trends reported at Tustervatn (Cooper et al., 265 

2020), and sites in northern Sweden during summer (Andersson et al., 2017). These decreases 266 

are associated with lower maximum O3 concentrations linked to reductions in European 267 

precursor emissions leading to less photochemical O3 production (Cooper et al., 2020) although 268 

no ss trends in observed Arctic CO are found at this time of year (Fig. S10). Springtime ss 269 

negative trends at Summit may also be due to emission reductions over North America. Our 270 

results do not suggest a shift in the O3 seasonal cycle toward higher concentrations in the spring 271 

(i.e. moving back toward pre-industrial O3 seasonality) as reported at NH mid-latitudes 272 

(Bowman et al., 2022). Another explanation for decreasing springtime O3 at the surface could be 273 

that reductions in snow cover (Mudryk et al., 2020) are leading to more O3 dry deposition to 274 

Scandinavian forests.  275 

The observed and modeled surface trend comparison covers 1995-2015, thereby missing the later 276 

time period when stronger observed O3 trends are found, especially ss positive trends in winter. 277 

MMMs capture wintertime O3 increases at Zeppelin, but overestimate at Alert and miss increase 278 

at Utqiaġvik. However, Whaley et al. (2023) noted that these models underestimate wintertime 279 

Arctic O3 due to deficiencies modeling shallow boundary layers, O3 deposition or NOx lifetimes. 280 
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Nevertheless, decreasing winter trends in surface CO are captured at Alert and Utqiaġvik (Fig. 281 

S10). Ss positive spring O3 trend at Utqiaġvik is not evident in MMM trends over 1995-2015. 282 

However, the models do not capture springtime O3 seasonality due to incorrect simulation of 283 

transport patterns (Oltmans et al., 2012) or missing surface halogen chemistry (Whaley et al., 284 

2023). Negative ss springtime (May) trends are not always reproduced, possibly reflecting issues 285 

in the emission trends or modeled dry deposition. 286 

 287 

FT O3 trends are ss positive in winter at all Arctic sites, except Resolute, in common with several 288 

coastal Arctic surface sites. These results are in-line with increases reported at NH mid-latitudes 289 

(Cooper et al., 2020), and at Canadian ozonesonde sites (up to 400 hPa), except Resolute (Wang 290 

et al., 2022a). MMM trends are similar to observed trends over 1995-2015, including where they 291 

are ss. Patterns in observed trends are quite well captured, notably positive ss trends in winter 292 

and summer, although they tend to be overestimated. Observed negative trends in spring, 293 

extending from near the surface into the FT, are generally reproduced, and are likely to be due to 294 

decreasing NOx emissions leading to lower FT O3 where photochemical production is NOx-295 

limited. Overestimation of winter trends contrasts to previous studies where models 296 

underestimated NH trends (Wang et al., 2022a; Christiansen et al., 2022). This may be due to 297 

differences in model transport or O3 precursor emission trends, including NOx reductions (see 298 

also Text S4). AMAP models overestimate mid-latitude FT O3 (Whaley et al., 2023), possibly 299 

suggesting a larger sensitivity to precursor emission changes. 300 

 301 

Observed trends in the UT (LS) appear to have switched from positive to negative since 1993 in 302 

winter/spring, which may explain stronger positive FT trends in the earlier part of the record 303 

(1993-2013). More frequent positive phases of the Arctic Oscillation in recent years may be 304 

contributing with a weaker Brewer-Dobson circulation leading to less transport of  stratospheric 305 

O3 into the Arctic UT-LS, a higher tropopause height, and thus lower O3 concentrations in this 306 

region (Zhang et al., 2017). However, Liu et al. (2020) did not detect any trend in the 307 

stratospheric O3 flux into the Arctic UT. On the other hand, Wang et al. (2022a) attributed FT 308 

increases in NH mid-high latitude O3 to increases in aircraft NOx emissions.  309 

Overall, this study finds significant robust trends in Arctic tropospheric O3. Observed trends are 310 

generally quite well captured by multi-model median results, although for example, they 311 
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overestimate wintertime free tropospheric increases, and miss Alaskan surface increases in 312 

spring. Further investigation into the causes of observed trends, and model performance, are 313 

needed taking into account uncertainties in the observations and models (Young et al., 2018; 314 

Fiore et al., 2022).  315 
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Data	Availability	Statement:	323 

Surface O3 monitoring datasets are provided by EMEP (European Monitoring and Evaluation 324 

Program), and Global Atmosphere Watch (GAW) World Data Centre for Reactive Gases. EMEP 325 

and GAW O3 data are available via the EBAS data portal (from end of 1989 to present). CO data 326 

at Utqiaġvik/Barrow and Zeppelin are also available via the EBAS data portal: 327 

http://ebas.nilu.no. Select the station name, and the component (CO, O3) to access the data files. 328 

Canadian surface O3 data can be downloaded from: https://data-329 

donnees.ec.gc.ca/data/air/monitor/networks-and-studies/alert-nunavut-ground-level-ozone-330 

study/. Canadian surface CO is available at: https://data-331 

donnees.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/?lang=en. 332 

Click on folders Data, Year, ContinuousData, then HourlyData. Surface O3 records for 333 

Utqiaġvik/Barrow (BRW) and Summit (SUM) are provided by PE and IE via NOAA GML. Data 334 

is available at https://gml.noaa.gov/aftp/data/ozwv/SurfaceOzone/. Click on the directories for 335 

BRM or SUM to obtain the data. Surface O3 measurements at Summit are made possible via the 336 

U.S. National Science Foundation Office of Polar Programs and their contract with Battelle 337 

Arctic Research Operations (contract #49100420C0001). Ny Ålesund, Scoresbysund and 338 

Sodankylä ozonesonde data are obtained as part of the Network for the Detection of Atmospheric 339 
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Composition Change (NDACC). Data is available via 340 

https://ndacc.larc.nasa.gov/index.php/stations. Click on the relevant site location to access the 341 

data files. Ozonesonde data for Alert, Resolute and Eureka have been reprocessed according to 342 

Tarasick et al. (2016), available at https://hegiftom.meteo.be/datasets/ozonesondes. 343 

All model output files in NetCDF format from the simulations used in this study can be found 344 

here: https://open.canada.ca/data/en/dataset/c9a333ea-b81c-4df3-9880-ea7c3daeb76f. Model 345 

codes for GISS-E2.1 are available at: https://www.giss.nasa.gov/tools/modelE/. 346 

Open-source codes for the Mann-Kendall test associated with Sen’s slope are distributed under 347 

the BSD 3-Clause License in dedicated GitHub repositories hosted within the “mannkendall” 348 

organization (https://github.com/mannkendall), a Matlab (Collaud Coen and Vogt, 2020, 349 

https://doi.org/10.5281/zenodo.4134618, https://github.com/mannkendall/Matlab), Python (Vogt, 350 

2020, https://doi.org/10.5281/zenodo.4134435, https://github.com/mannkendall/Python), and R 351 

(Bigi and Vogt, 2020, https://doi.org/10.5281/zenodo.4134632, 352 

https://github.com/mannkendall/R). Last access for all codes 27 January 2023. 353 
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 29 

Key Points: 30 

●   Coherent ozone trend analysis methodology applied to multi-decade, pan-Arctic surface 31 
and ozonesonde datasets and multi-model medians. 32 
●    Increasing winter Arctic tropospheric ozone overestimated by models in the free 33 
troposphere, Alaskan spring surface increases not captured.  34 
●    Spring (summer) decreases (increases) in observed ozone throughout the troposphere, not 35 
always simulated by models. 36 
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Abstract 37 

Trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), 38 

are estimated using available surface and ozonesonde profile data for 1993-2019. Using a 39 

coherent methodology, observed trends are compared to modeled trends (1995-2015) from the 40 

Arctic Monitoring Assessment Programme SLCF 2021 assessment. Statistically significant 41 

increases in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent 42 

decreasing trends in surface carbon monoxide, are generally captured by multi-model median 43 

(MMM) trends. Wintertime increases are also estimated in the free troposphere at most Arctic 44 

sites, but tend to be overestimated by the MMMs. Springtime surface ozone increases in northern 45 

coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are 46 

not always reproduced. Possible reasons for observed changes and model behavior are discussed, 47 

including decreasing precursor emissions, changing ozone sinks, and variability in large-scale 48 

meteorology. 49 

Plain Language Summary  50 

The Arctic is warming much faster than the rest of the globe due to increases in carbon dioxide, 51 
and other trace constituents like ozone, also an air pollutant. However, improved understanding 52 
is needed about long-term changes or trends in Arctic tropospheric ozone. A coherent 53 
methodology is applied to determine trends in surface and regular profile measurements over the 54 
last 20-30 years, and results from six chemistry-climate models. Statistically significant increases 55 
in observed ozone are found at the surface and in the free troposphere during winter in the high 56 
Arctic. Paradoxically, decreases in nitrogen oxide emissions at mid-latitudes appear to be leading 57 
to increases in ozone during winter, but associated increases in Arctic tropospheric ozone tend to 58 
be overestimated in the models. Increases are also found at the surface in northern Alaska during 59 
spring but not reproduced by the models. The causes are unknown but could be related to 60 
changes in local sources or sinks of Arctic ozone or in large-scale weather patterns. Declining 61 
mid-latitude emissions may also explain negative surface ozone trends over northern 62 
Scandinavia in spring that are not always captured by the models. Further work is needed to 63 
understand changes in Arctic tropospheric ozone. 64 

1 Introduction 65 

Tropospheric ozone (O3) is a short-lived climate forcer (SLCF) contributing to global and Arctic 66 

warming (AMAP, 2015; Sand et al, 2016; von Salzen et al. 2022), and a critical secondary air 67 

pollutant, detrimental to human health (Anenberg et al., 2010) and ecosystems (Arnold et al., 68 

2018). The Arctic tropospheric O3 budget is complex, as recently discussed in a companion 69 

paper, Whaley et al. (2023). It originates from photochemical production of anthropogenic or 70 
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natural emissions of O3 precursors, including nitrogen oxides (NOx), carbon monoxide (CO) and 71 

methane (CH4), in the Arctic, or following air mass transport from mid-latitudes, as well as 72 

transport of O3 from the stratosphere (Law et al., 2014; Schmale et al., 2018). Sinks include 73 

photochemical destruction, including reactions involving halogens leading to so-called ozone 74 

depletion events (ODEs) (Barrie, et al., 1988; Simpson et al., 2007), and surface dry deposition 75 

(Clifton et al., 2020). Growth in anthropogenic emissions since pre-industrial times has led to 76 

increases in tropospheric O3 throughout the Northern Hemisphere (NH) (Tarasick et al., 2019; 77 

Turnock et al., 2020; Cooper et al., 2020) contributing to observed global and Arctic warming 78 

over the past century (e.g. Griffiths et al., 2021). Since the mid-1990s, a mix of relatively weak 79 

positive and negative trends (+1 to -1 parts per billion by volume (ppbv) per decade) have been 80 

reported in the NH at the surface and in the free troposphere (FT), with largest increases over 81 

south and eastern Asia, associated with increasing anthropogenic emissions (Cooper et al., 2020; 82 

Wang et al., 2022a).  83 

To date, only a few studies have focused on assessing tropospheric O3 trends in the Arctic. While 84 

positive O3 trends were diagnosed at several surface sites, results are not always statistically 85 

significant, and both positive and negative trends were reported at some Canadian sites (Tarasick 86 

et al., 2016; Sharma et al., 2019; Cooper et al., 2020). In the Arctic FT, studies found significant 87 

positive trends (Christiansen et al., 2017; Wang et al., 2022a), no trends (Tarasick et al., 2016), 88 

or mixed trends in different seasons (Bahramvash Shams et al., 2019). Differences in the periods 89 

analyzed, sign or magnitude of trends emphasizes the need to further examine trends using the 90 

same methodology. Coherent estimation of observed trends, and evaluation of modeled trends, is 91 

needed to better understand O3 changes and impacts on Arctic climate that are sensitive to the 92 

altitude where O3 perturbations occur (Rap et al., 2015). This study assesses annual and monthly 93 

trends, together with possible evolution in seasonal cycles, of Arctic tropospheric O3 over the last 94 

20-30 years. Observed changes are compared to results from atmospheric chemistry-climate 95 

models run as part of the recent Arctic Monitoring and Assessment Programme (AMAP) SLCF 96 

assessment (AMAP, 2021; Whaley et al., 2022; von Salzen et al., 2022). Results are discussed in 97 

light of possible changes in sources and sinks of Arctic tropospheric O3.  98 
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2 Methods 99 

2.1 Measurements 100 

The location of surface and ozonesonde sites used in this study are displayed in Fig. 1, together 101 

with the Arctic Circle at 66.6°N, used to define the Arctic. Annual surface trends are shown in 102 

the table grouped into 1) high Arctic coastal sites (Alert, Utqiaġvik/Barrow, Villum), Zeppelin 103 

(situated at 474m on Svalbard) and Summit (high altitude (FT) site on Greenland (3211m), and 104 

2) European continental sites within (Pallas, Esrange), and just south (Tustervatn) of the Arctic 105 

Circle. 106 

107 
Figure 1. Left: Location of surface (bold) and ozonesonde (italic) sites and showing the Arctic 108 

Circle (66.55°N). Right: annual O3 trends at surface sites in % per year (left column), the 109 

significance level (middle column), calculated over periods shown in the right column. 110 

Statistically significant trends (above 90% confidence level) are in bold. Geographical 111 

coordinates for all sites are provided in Whaley et al. (2023). See text for details. 112 

Surface observations are from EBAS Level 2 data, station owners for Villum before 2001, 113 

Canada’s Open Government Portal for Alert, and National Oceanic and Atmospheric 114 
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Administration (NOAA) for Summit, and Barrow Atmospheric Observatory, Utqiaġvik 115 

(Utqiaġvik from now on). Ozonesonde data are from the World Ozone and Ultraviolet Radiation 116 

Data Centre (WOUDC) and Network for the Detection of Atmospheric Composition Change 117 

(NDACC). See also the Supplementary Information (Text S1, Figs. S1 and S2, including data 118 

coverage). 119 

2.2 Trend analysis 120 

Observed monthly and annual trends in surface O3 concentrations at different sites are 121 

determined using the non-parametric Mann-Kendall test at the 90th and 95th confidence level 122 

(CL) and Sen’s slope methodology (Theil, 1950; Sen, 1968) (see Text S2). Daily median data are 123 

sorted into different months and pre-whitened, due to the presence of autocorrelation, via the 124 

3PW algorithm from Collaud Coen et al. (2020). Trends using ozonesonde profiles are calculated 125 

based on weekly medians for selected pressure levels. For the calculation of relative trends, data 126 

are normalized by division with median values and multiplied by 100.  127 

2.3 Modeled trends 128 

Modeled trends at the surface and different altitudes are calculated for 1995-2015 using results 129 

from four global chemistry-climate models (CMAM, GISS-E2.1, MRI-ESM2, UKESM1) and 130 

two chemistry-transport models (DEHM, EMEP MSC-W) run using the same ECLIPSEv6b 131 

anthropogenic emissions, and nudged with meteorological reanalyses as part of AMAP (2021). 132 

Details can be found in Whaley et al. (2022), Text S3 and Table S1. Simulated monthly mean O3 133 

volume mixing ratios from the model grid box containing the measurement location are used to 134 

compute multi-model medians (MMMs). For ozonesonde comparisons, modeled vertical profiles 135 

are interpolated onto the same vertical bins as the measurements before trends are computed.  136 

3 Surface ozone trends in the Arctic 137 

3.1 Observed ozone trends 138 

Annual trends are calculated for 1993-2019, or for the longest period with sufficient data, for all 139 

the sites (see Fig. 1, Table S2).  140 



manuscript submitted to Geophys. Res. Letts. 

 6 

141 

142 

 143 
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Figure 2. Observed surface O3 trends and seasonal cycles. Left: seasonal cycles of monthly 144 

median O3 (ppbv) at a) Alert, b) Utqiaġvik, c) Villum, d) Zeppelin, and e) Pallas for 1993-2000 145 

(blue lines) vs 2012-2019 (red lines). Shaded areas show upper and lower quartiles of hourly 146 

values. Right: monthly trends for 1993-2019. Boxes represent the slope of the trend in ppbv per 147 

year with red boxes significant at 95th% CL, blue boxes at 90th% CL, and black boxes not 148 

statistically significant. Error bars show 95th% CLs. Results are shown for shorter periods 149 

depending on data availability. 150 

Average O3 seasonal cycles are also calculated for earlier (1993-2000) and later (2012-2019) 151 

periods, to examine possible changes, together with monthly trends (Fig. 2) at selected sites (see 152 

Fig. S3 for other sites). Monthly trends are also analyzed for different 21-year periods (1993-153 

2012, 1999-2019) (Fig. S4).  154 

First considering high Arctic sites at coastal locations that exhibit a winter maximum with low 155 

spring concentrations attributed to ODEs, as discussed in Whaley et al. (2023). Alert has 156 

statistically significant (“ss”) positive O3 annual trends, as does Villum for the shorter time 157 

period 1999-2019, while annual trends at Utqiaġvik are not significant (see Fig. 1). Ss trends are 158 

also calculated in particular seasons, as shown in Fig. 2. Notably, ss positive trends are found 159 

during late autumn and/or winter at Alert, Villum and Utqiaġvik. Positive trends are also 160 

calculated for spring at Utqiaġvik (April-May). Winter trends at Alert and spring trends at 161 

Utqiaġvik are more pronounced when using the later record (1999-2019) (see Fig. S4). To 162 

further characterize these changes, probability distributions in observed O3 concentrations are 163 

calculated for months with ss trends (see Fig. S5). Positive ss trends during winter and spring at 164 

Utqiaġvik are the result of a decrease (increase) in the frequency of low (high) concentrations 165 

(Jan.-May), whereas wintertime O3 concentrations shifted recently towards higher values at Alert 166 

(Nov.-Feb.) and Villum (Oct.-Jan.). Zeppelin shows a different seasonal behavior compared to 167 

Arctic sea-level coastal sites with a spring maximum, more similar to remote mid-latitude sites. 168 

Here, ss positive annual trends are estimated for 1993-2019 (Fig. 1), and in winter (Fig. 2), 169 

driven by increases in the earlier part of the record (1993-2013) (Fig. S4). 170 

Continental northern Scandinavian sites exhibit a different behavior with Pallas and Tustervatn 171 

showing ss negative annual trends but no ss annual (or monthly) trends at Esrange over any of 172 

the periods considered. The shape of the seasonal cycle for the earlier versus the later period is 173 
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similar at these sites, which also have a spring maximum like Zeppelin. O3 appears to be 174 

decreasing throughout the year when comparing earlier and later periods although ss negative 175 

trends are only evident at Pallas (March, December), and at Tustervatn in spring and early 176 

summer (Fig. S4, 1999-2019 trends). Summit is more representative of the FT and samples air 177 

masses transported from North America and Asia, or of stratospheric origin (Dibb, 2007; 178 

Schmeisser et al., 2018). The annual trend, calculated over the shorter 2001-2019 record, is not 179 

ss at the 90th % CL, but ss negative monthly trends are estimated for January, March-May and 180 

September.   181 

3.2 Comparison of observed and modeled surface trends 182 

Figure 3 compares observed monthly and MMM trends for 1995-2015, or the closest possible 183 

time interval in case of years with missing observations. Results for other sites are shown in Fig. 184 

S6. Observed ss trends are more frequently diagnosed over 1993-2019 (Fig. 2) than over the 185 

shorter period ending in 2015 (Fig. 3). While the MMMs simulate O3 seasonal cycles reasonably 186 

well, low O3 concentrations are missed in spring, and wintertime O3 is underestimated (Whaley 187 

et al., 2023). The MMMs simulate ss positive and negative trends at Zeppelin (Jan.) and Esrange 188 

(May), respectively, but not ss positive trends at Utqiaġvik (April). Ss trends are simulated, but 189 

not observed, at Alert (January, December) and Tustervatn (March).  190 

 191 
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192 

 193 

Figure 3: Comparison of observed (left) and MMM (right) surface O3 trends and seasonal cycles 194 

at a) Alert, b) Utqiaġvik, c) Villum, d) Zeppelin, and e) Esrange. Upper panels: seasonal cycles 195 

for 1995-2004 (red lines) vs 2005-2015 (blue lines). Shaded areas show upper and lower 196 

quartiles of monthly values (observations only). Lower panels: monthly median trends in ppbv 197 

per year for 1995-2015, or shorter periods depending on data availability. Box coloring and 198 

error bars are the same as Fig. 2.         199 

4 Arctic ozone trends in the free troposphere 200 

4.1 Observed vertical trends 201 

This analysis focuses on O3 changes in the lower and mid-troposphere. Figure 4 shows observed 202 

relative trends at six Arctic ozonesonde sites from 925-400 hPa for 1993-2019. Absolute trends 203 

above and below 400 hPa, and relative trends from 925-100 hPa, are also calculated (Figs. S7a, 204 
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S7b). Overall, while there are few ss trends, there seems to be a “dipole effect” with positive 205 

trends in winter and summer, and negative trends in spring and autumn. Positive ss winter 206 

(Jan/Dec) trends are found up to 400 hPa at most sites (except Resolute), and also at 207 

Scoresbysund in early spring. Positive wintertime trends are more evident in the earlier period in 208 

the upper troposphere (UT) and lower stratosphere (LS) (Fig. S8). Eureka, Resolute, and 209 

Sodankyla have periods with negative trends especially during spring and early summer in the 210 

lower troposphere. Resolute decreases extend up to 500 hPa in March-April. Relative ss trends 211 

vary from -1.5% to +0.5-1.0 % per year (Figs. 4, S7b) while stronger negative trends are 212 

diagnosed in later years (1999-2019) compared to 1993-2013 at all sites (Fig. S8). 213 

214 

 215 

Figure 4: Vertical trends in observed monthly O3 for 1993-2019, relative to monthly median 216 

concentrations, in % per year, from 925-400 hPa at a) Alert, b) Eureka, c) Ny Alesund, d) 217 

Resolute, e) Scoresbysund, and f) Sodankyla. Stippled lines/areas show statistical significance at 218 

the 90th % CL (smaller marker size) and 95th % CL (larger marker size).  219 
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Figure 5: Comparison of observed (left) and MMM (right) vertical trends in monthly O3, relative 223 

to monthly medians, in % per year, from 925-400 hPa over 1995-2015 at a) Alert, b) Eureka, c) 224 

Ny Alesund, d) Resolute, e) Scoresbysund, and f) Sodankyla. Shading/symbols are as in Fig. 4.  225 

4.2 Comparison of observed and modeled vertical trends 226 

Figure 5 shows observed ozonesonde and MMM trends for 1995-2015 up to 400 hPa (see Fig. 227 

S9 for results up to 100 hPa). Only results from 5 models are used, since EMEP MSC-W only 228 

provided surface O3. The MMMs appear to capture the observed “dipole effect” seen in the 229 

observed trends. Models also capture observed increases in the winter but trends are 230 

overestimated at most sites, especially Ny Alesund and Sodankyla. Negative winter trends at 231 

Resolute are not simulated. This may be linked to positive modeled trends above 500 hPa at all 232 

sites (Fig. S9). Summertime positive ss MMM trends are larger than observed trends at some 233 

sites, e.g. Resolute and Ny Alesund. 234 

5 Discussion and conclusions 235 

Increasing annual surface O3 trends at Arctic coastal sites, and at Zeppelin, are in qualitative 236 

agreement with Cooper et al. (2020), but in contrast to negative or non-significant surface trends 237 

at Canadian ozonesonde sites (Tarasick et al., 2016). A notable finding is that ss positive trends 238 

occur mainly in the winter months. While such increases were reported previously at Utqiaġvik 239 

(Gaudel et al. 2018; Christiansen et al., 2022) and Alert (Sharma et al., 2019), we confirm this 240 

tendency over the wider Arctic. Emission reductions of NOx in Europe and North America, and 241 

more recently over eastern Asia, have led to increasing wintertime O3 at mid-latitudes due to less 242 

NO titration of O3 (Jhun et al., 2015, Wang et al., 2022b, Bowman et al., 2022). This can explain 243 

observed increases in wintertime surface Arctic O3, influenced primarily by transport of air 244 

masses from Europe (Hirdman et al., 2010). Evidence for declining O3 precursor trends is 245 

supported by decreases in observed CO in the Arctic during autumn and winter (Fig. S10). At the 246 

same time, CH4 continues to increase globally contributing to rising O3 in the NH (Zeng et al., 247 

2022)  (see also Text S4 on Arctic O3 precursor trends).  248 

Another intriguing finding is springtime ss surface O3 increases at Utqiaġvik (especially over 249 

1999-2019, Fig S4), but no ss changes at Alert and Villum. Changes in O3 concentrations at this 250 
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time of year may be driven by changes in ODE frequency linked to climate change or weather 251 

patterns (Oltmans et al, 2012). ODEs lead to zero or very low springtime O3 due to bromine 252 

released from frost flowers or blowing snow (on sea-ice) (Simpson et al., 2007) or iodine 253 

compounds with a possible oceanic source (Benevant et al., 2022). Increases in springtime 254 

tropospheric bromine oxide have been observed from satellites, especially along the north coast 255 

of Greenland and central Arctic Ocean, correlating weakly with an increasing frequency in first 256 

year sea-ice (Bougoudis et al., 2020). Indeed, the frequency of low springtime O3 concentrations 257 

has been increasing at Canadian high Arctic sites (see Fig. S11) but no ss springtime monthly 258 

trends are determined at Alert or Villum in our analysis. Springtime increases at Utqiaġvik could 259 

be due to stronger transport from mid-latitudes to this site during periods with a more northerly 260 

extension of the Pacific storm track, hampering conditions for  ODEs (Koo et al., 2012). They 261 

could also be due to an increasing influence from local emissions, such as shipping or Alaskan 262 

petroleum extraction, when photochemistry becomes active in spring (Gunsch et al., 2017).  263 

Decreases in springtime/early summer O3 in northern Scandinavia, especially over the later 264 

1999-2019 period, are consistent with negative trends reported at Tustervatn (Cooper et al., 265 

2020), and sites in northern Sweden during summer (Andersson et al., 2017). These decreases 266 

are associated with lower maximum O3 concentrations linked to reductions in European 267 

precursor emissions leading to less photochemical O3 production (Cooper et al., 2020) although 268 

no ss trends in observed Arctic CO are found at this time of year (Fig. S10). Springtime ss 269 

negative trends at Summit may also be due to emission reductions over North America. Our 270 

results do not suggest a shift in the O3 seasonal cycle toward higher concentrations in the spring 271 

(i.e. moving back toward pre-industrial O3 seasonality) as reported at NH mid-latitudes 272 

(Bowman et al., 2022). Another explanation for decreasing springtime O3 at the surface could be 273 

that reductions in snow cover (Mudryk et al., 2020) are leading to more O3 dry deposition to 274 

Scandinavian forests.  275 

The observed and modeled surface trend comparison covers 1995-2015, thereby missing the later 276 

time period when stronger observed O3 trends are found, especially ss positive trends in winter. 277 

MMMs capture wintertime O3 increases at Zeppelin, but overestimate at Alert and miss increase 278 

at Utqiaġvik. However, Whaley et al. (2023) noted that these models underestimate wintertime 279 

Arctic O3 due to deficiencies modeling shallow boundary layers, O3 deposition or NOx lifetimes. 280 
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Nevertheless, decreasing winter trends in surface CO are captured at Alert and Utqiaġvik (Fig. 281 

S10). Ss positive spring O3 trend at Utqiaġvik is not evident in MMM trends over 1995-2015. 282 

However, the models do not capture springtime O3 seasonality due to incorrect simulation of 283 

transport patterns (Oltmans et al., 2012) or missing surface halogen chemistry (Whaley et al., 284 

2023). Negative ss springtime (May) trends are not always reproduced, possibly reflecting issues 285 

in the emission trends or modeled dry deposition. 286 

 287 

FT O3 trends are ss positive in winter at all Arctic sites, except Resolute, in common with several 288 

coastal Arctic surface sites. These results are in-line with increases reported at NH mid-latitudes 289 

(Cooper et al., 2020), and at Canadian ozonesonde sites (up to 400 hPa), except Resolute (Wang 290 

et al., 2022a). MMM trends are similar to observed trends over 1995-2015, including where they 291 

are ss. Patterns in observed trends are quite well captured, notably positive ss trends in winter 292 

and summer, although they tend to be overestimated. Observed negative trends in spring, 293 

extending from near the surface into the FT, are generally reproduced, and are likely to be due to 294 

decreasing NOx emissions leading to lower FT O3 where photochemical production is NOx-295 

limited. Overestimation of winter trends contrasts to previous studies where models 296 

underestimated NH trends (Wang et al., 2022a; Christiansen et al., 2022). This may be due to 297 

differences in model transport or O3 precursor emission trends, including NOx reductions (see 298 

also Text S4). AMAP models overestimate mid-latitude FT O3 (Whaley et al., 2023), possibly 299 

suggesting a larger sensitivity to precursor emission changes. 300 

 301 

Observed trends in the UT (LS) appear to have switched from positive to negative since 1993 in 302 

winter/spring, which may explain stronger positive FT trends in the earlier part of the record 303 

(1993-2013). More frequent positive phases of the Arctic Oscillation in recent years may be 304 

contributing with a weaker Brewer-Dobson circulation leading to less transport of  stratospheric 305 

O3 into the Arctic UT-LS, a higher tropopause height, and thus lower O3 concentrations in this 306 

region (Zhang et al., 2017). However, Liu et al. (2020) did not detect any trend in the 307 

stratospheric O3 flux into the Arctic UT. On the other hand, Wang et al. (2022a) attributed FT 308 

increases in NH mid-high latitude O3 to increases in aircraft NOx emissions.  309 

Overall, this study finds significant robust trends in Arctic tropospheric O3. Observed trends are 310 

generally quite well captured by multi-model median results, although for example, they 311 
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overestimate wintertime free tropospheric increases, and miss Alaskan surface increases in 312 

spring. Further investigation into the causes of observed trends, and model performance, are 313 

needed taking into account uncertainties in the observations and models (Young et al., 2018; 314 

Fiore et al., 2022).  315 
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Data	Availability	Statement:	323 

Surface O3 monitoring datasets are provided by EMEP (European Monitoring and Evaluation 324 

Program), and Global Atmosphere Watch (GAW) World Data Centre for Reactive Gases. EMEP 325 

and GAW O3 data are available via the EBAS data portal (from end of 1989 to present). CO data 326 

at Utqiaġvik/Barrow and Zeppelin are also available via the EBAS data portal: 327 

http://ebas.nilu.no. Select the station name, and the component (CO, O3) to access the data files. 328 

Canadian surface O3 data can be downloaded from: https://data-329 

donnees.ec.gc.ca/data/air/monitor/networks-and-studies/alert-nunavut-ground-level-ozone-330 

study/. Canadian surface CO is available at: https://data-331 

donnees.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/?lang=en. 332 

Click on folders Data, Year, ContinuousData, then HourlyData. Surface O3 records for 333 

Utqiaġvik/Barrow (BRW) and Summit (SUM) are provided by PE and IE via NOAA GML. Data 334 

is available at https://gml.noaa.gov/aftp/data/ozwv/SurfaceOzone/. Click on the directories for 335 

BRM or SUM to obtain the data. Surface O3 measurements at Summit are made possible via the 336 

U.S. National Science Foundation Office of Polar Programs and their contract with Battelle 337 

Arctic Research Operations (contract #49100420C0001). Ny Ålesund, Scoresbysund and 338 

Sodankylä ozonesonde data are obtained as part of the Network for the Detection of Atmospheric 339 
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Composition Change (NDACC). Data is available via 340 

https://ndacc.larc.nasa.gov/index.php/stations. Click on the relevant site location to access the 341 

data files. Ozonesonde data for Alert, Resolute and Eureka have been reprocessed according to 342 

Tarasick et al. (2016), available at https://hegiftom.meteo.be/datasets/ozonesondes. 343 

All model output files in NetCDF format from the simulations used in this study can be found 344 

here: https://open.canada.ca/data/en/dataset/c9a333ea-b81c-4df3-9880-ea7c3daeb76f. Model 345 

codes for GISS-E2.1 are available at: https://www.giss.nasa.gov/tools/modelE/. 346 

Open-source codes for the Mann-Kendall test associated with Sen’s slope are distributed under 347 

the BSD 3-Clause License in dedicated GitHub repositories hosted within the “mannkendall” 348 

organization (https://github.com/mannkendall), a Matlab (Collaud Coen and Vogt, 2020, 349 

https://doi.org/10.5281/zenodo.4134618, https://github.com/mannkendall/Matlab), Python (Vogt, 350 

2020, https://doi.org/10.5281/zenodo.4134435, https://github.com/mannkendall/Python), and R 351 

(Bigi and Vogt, 2020, https://doi.org/10.5281/zenodo.4134632, 352 

https://github.com/mannkendall/R). Last access for all codes 27 January 2023. 353 
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The supporting information gives details about surface and ozonesonde data coverage (Text S1, 38 
Figs. S1 and S2), the trend analysis method (Text S2), and the models (Text S3) used in this 39 
study, and discusses trends of tropospheric ozone (O3) precursors in the Arctic (Text S4). 40 
Additional figures show O3 trends at Arctic locations not shown in the main text, and trends over 41 
different time periods for both the observations and models (Figs. S3-S9). Trends in surface 42 
carbon monoxide (CO) (Fig. S10), and in low springtime O3 concentrations at Canadian Arctic 43 
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sites (Fig. S11) are also shown. Tables S1 and S2 provide additional details about the models and 44 
surface annual O3 trends, respectively. See Fig. 1 in main text for measurement site locations. 45 

Text S1. Data coverage 46 
To ensure proper statistical representation of the data coverage thresholds at least 50% of 47 
available data is required for the calculation of monthly and annual trends. Data coverage for the 48 
surface sites is shown in Fig. S1. It is also verified that at least one complete year of data is 49 
available at the beginning and end of the time series, since incomplete years at the beginning and 50 
end of a time series can have a larger influence on trend analysis results (Collaud Coen et al., 51 
2020). Esrange has full data coverage, with less than five months having coverage lower than 52 
50%. Pallas, Summit, Tustervatn and Zeppelin have one to three periods of 1-2 years without data 53 
that do not preclude long-term trend analysis, although it should be noted that the Summit record 54 
only started in June 2000. Alert and Villum have a high monthly data coverage but suffer from 55 
missing data over a 4-5 year period in the middle of the time series. For Alert, there are two 56 
missing periods throughout the time series. For Villum there is only one missing period although 57 
the period 1996-2002 suffers from poor data coverage. Therefore, trends at Villum and Alert can 58 
be considered as valid but should be interpreted with caution (Collaud Coen et al., 2020).   59 
 60 
Ozonesondes were launched at least once per week at the six Arctic stations used in this analysis. 61 
There are periods with up to three soundings a week, mostly in winter and spring  (Fig. S2). 62 
Periods without measurements do not exceed 1 month except at Eureka, where there are five 63 
periods with missing data of three to eight months mostly in spring (2000, 2003, 2005, 2006, and 64 
2016) and a 3-month period missing in 2006 at Sodankyla. The mean yearly number of soundings 65 
varies between 38 (Resolute) and 90 (Ny Ålesund). At Alert and Sodankyla a lower number of 66 
soundings were performed in 2016-2020.  A visual inspection of the O3 time series at the 20 67 
pressure levels used in this analysis does not show evidence for any rupture apart from at the 4 68 
lowest levels before 1995 at Eureka, potentially resulting in lower O3 concentrations. 69 

Text S2. Trend analysis methodology 70 

Long-term trend determination needs to be applied to homogeneous time series in order to 71 
analyze real variations or changes in the observations as opposed to artifacts. For the surface O3 72 
concentrations, while data is taken from quality-controlled repositories, this does not take into 73 
account technical changes such as modification or changes in instrumentation, station position, 74 
changes to calibration procedures or instrumental drifts. Visual inspection allowed detection of 75 
potential ruptures in the time series. 76 

Trends in surface O3 concentrations at different sites are determined using the non-parametric 77 
Mann-Kendall test and Sen’s slope methodology (Theil, 1950; Sen, 1968), and calculated using 78 
daily medians of the O3 volume mixing ratios using hourly observations. These tests require the 79 
data to be serially independent and homogeneously distributed. However, the O3 measurements 80 
are significantly lag-1 auto-correlated and exhibit high amounts of seasonality. Therefore, the 81 
data is prewhitened to remove the lag-1 autocorrelation. The seasonal Mann-Kendall test is 82 
applied to address the seasonality present in the data (Hirsch et al., 1982) using the Matlab 83 
version (Collaud Coen and Vogt, 2021) of the 3PW algorithm from Collaud Coen et al. (2020). 84 
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The 3PW method uses two prewhitening methods prior to testing for statistical significance. The 85 
first method from Kulkarni and von Storch (1995) simply removes the lag-1 autocorrelation 86 
(referred to as PW). This method has a low rate of false positives but lowers the power of the 87 
Mann-Kendall test. The second prewhitening method from Yue and Wang (2002), detrends the 88 
data before prewhitening (referred to as TFPW-Y). This method returns the power of the Mann-89 
Kendall test although it increases the rate of false positives. Trends must be statistically 90 
significant using both methods to be considered significant in the 3PW algorithm. If a significant 91 
trend is present, then the slope is calculated using the variance corrected trend free prewhitening 92 
(VCTFPW) method from Wang et al. (2015), which gives an unbiased estimate of the Theil Sen 93 
slope. This method maximizes the advantages of these prewhitening methods and minimizes their 94 
disadvantages. We use the seasonal Mann-Kendall test on a monthly temporal segmentation  (i.e., 95 
a trend analysis is performed on each value in a respective month over the period analyzed). For 96 
the O3 soundings weekly resolution is applied since regular daily measurements are not available. 97 
Relative monthly trends (% per year) for the 20 pressure levels of the ozonesonde data are 98 
calculated as absolute monthly trends divided by monthly median concentrations x 100 %. 99 
Statistically significant (ss) trends are determined at the 90th and 95th % confidence levels (CLs). 100 
The Theil-Sen estimator is the median of all possible pairwise slopes. Upper CL and lower CL, 101 
on the 95th % CL, contain the middle 95% of the pairwise slopes, which are normally distributed 102 
(Gilbert, 1987). To test the robustness of the results, trends are also compared for different 103 
periods of available records (1993-2019, 1993-2013, 1999-2019), and comparison with the model 104 
results (1995-2015). Monthly medians are used to compare model results with the observations 105 
since higher temporal resolution results are not available from the models. In all cases, model 106 
results are averaged to produce multi-model median (MMM) results. 107 

For trends in the yearly median, a simple Mann-Kendall test and Theil Sen Slope without 108 
prewhitening are employed, using the MAKESENS application (Salmi et al., 2002), since there is 109 
no seasonality present, and the data are not autocorrelated. The minimum requirement for 110 
including observation series in this evaluation is data available from 1996 to 2018 in order to 111 
have comparable trends. Nearly all of the stations have years with less than 50% data coverage 112 
which are not included in the calculations of the annual trends. Relative trends are given as 113 
percentages of median concentrations. 114 

Text S3. Models 115 
Four global chemistry-climate (CMAM, GISS-E2.1, MRI-ESM2, UKESM1) and two chemistry-116 
transport (DEHM, EMEP MSC-W) models were run using the same (ECLIPSEv6b) 117 
anthropogenic emissions for 1990 (1995 for GISS model) to 2015 as part of the Arctic 118 
Monitoring and Assessment Programme (AMAP) assessment (AMAP, 2021). They were run 119 
with different biogenic emissions and meteorology and nudged using different reanalysis products 120 
(see Table S1). The models also vary in their representation of the stratosphere with only a subset 121 
of having a fully simulated stratosphere. CMAM, MRI-ESM2, GISS-E2.1, and UKESM1 contain 122 
relatively complete stratospheric O3 chemistry (involving nitrogen oxides (NOx), chlorine and 123 
bromine chemistry), while the other models have no stratospheric chemistry (DEHM, EMEP 124 
MSC-W). Model results from 1995-2015 are used in this study. 125 
 126 
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Present-day model simulations for 2014-2015, including the models contributing to this study, 127 
were evaluated first against a limited set of tropospheric Arctic O3 observations (Whaley et al., 128 
2022), and also in more detail, including tropospheric Arctic O3 seasonal cycles, in our 129 
companion paper Whaley et al. (2023). These evaluations show large variability in model 130 
performance. The MMMs capture surface Arctic O3 observations quite well, except for low 131 
concentrations observed during high Arctic polar spring (Whaley et al., 2023). Most atmospheric 132 
models, including all of the models in this study, do not yet contain Arctic tropospheric halogen 133 
chemistry, and thus cannot simulate the surface-level bromine and iodine-driven O3 depletion 134 
events that occur during spring at some Arctic locations (Whaley et al., 2023). Model 135 
performance in the free troposphere is better (within +/- 10%) compared to satellite, aircraft and 136 
ozonesonde data, but upper tropospheric O3 is overestimated  (Whaley et al., 2022, 2023).  137 

Text S4. Trends in tropospheric Arctic O3 precursors  138 

To understand Arctic tropospheric O3 trends, it is important to understand trends in O3 precursors 139 
as well as other factors such as changing transport patterns. O3 precursors include methane (CH4), 140 
CO, NOx and non-methane volatile organic compounds (NMVOCs). While, as pointed out in the 141 
main text, precursor trends over Northern Hemisphere (NH) mid-latitude emission regions are 142 
likely contributing to changes in Arctic tropospheric O3, it is also useful to examine precursor 143 
trends in the Arctic, when long-term measurements are available, and to evaluate MMM trends. 144 
The contribution of different sources, including precursor emissions, and sinks of Arctic O3 is 145 
discussed in Whaley et al. (2023) and references therein. 146 

Arctic CH4 at the surface rose from 1.75 ppmv in 1984 to 1.95 ppmv in 2020 (AMAP, 2021). The 147 
increasing trend was interrupted by a plateau between 2000 and 2005 that accelerated after 2015 148 
based on data from Pallas, Zeppelin and Utqiaġvik (formerly known as Barrow). AMAP (2021) 149 
derived an ss (95th % CL) observed annual trend of +2.29+/-0.55 ppbv per year, whereas modeled 150 
CH4, which was prescribed, had an annual trend of +2.79 ppbv per year, ss only at 90th % CL. 151 
Thus, modeled and measured trends are reasonably comparable. Around 40% of Arctic O3 152 
response to precursor emission changes may be due to increasing CH4 (AMAP, 2015).  153 

Mackie et al. (2016) showed that CO decreased from 1989-2012 at Utqiaġvik with the largest ss 154 
decreases in winter and spring attributed to decreasing anthropogenic CO emissions in Europe 155 
and North America. Figure S10 compares seasonal CO trends from observations and MMM 156 
results at the few sites with long time series (Alert, Utqiaġvik and Zeppelin). These trend 157 
calculations are based on monthly averages, applying the 3PW algorithm, as discussed in 2.3 and 158 
S2, for periods with available data. MMM results are in general agreement with the observations 159 
showing ss negative trends in winter and autumn. However, it can be noted that the models 160 
underestimate surface NH CO in winter (Whaley et al, 2023). This discrepancy is larger earlier in 161 
the time series, while the models agree better with observed CO later in the time series (not 162 
shown).  163 

There are no reported trends in NOx or NMVOCs in the Arctic due to a lack of long-term 164 
measurements (AMAP, 2021). In general, observed NMVOC concentrations are low at Arctic 165 
sites monitoring background air masses, and away from local sources (Pernov et al. 2021). Thus, 166 
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local NMVOC photo-oxidation only has limited effect on Arctic tropospheric O3 as discussed by 167 
Helmig et al. (2014) and Gautrois et al. (2003). However, long-range transport of air masses, 168 
influenced by mid-latitude anthropogenic and natural NMVOC emissions, can influence Arctic 169 
tropospheric O3 (Whaley et al., 2023). NOx concentrations are also generally low in the 170 
background Arctic troposphere (Whaley et al., 2023), but can be elevated near local sources, for 171 
example due to shipping emissions (e.g. Marelle et al., 2016). Also, long-range transport of NOx 172 
reservoir species such as peroxy-acetyl nitrate (PAN) or nitric acid can decompose in the warmer 173 
spring and summer months producing NOx (Law et al. (2014) and refs therein). Walker et al. 174 
(2012) estimated that more than 50% of O3 in the Arctic during summer is formed from local 175 
PAN decomposition. Whaley et al (2023) showed that MMMs underestimate CO and NOx 176 
throughout the troposphere, but overestimates PAN compared to observed aircraft profiles in the 177 
Arctic. Despite these differences, models match observed O3 profiles in the troposphere, but 178 
significantly overestimates O3 near the tropopause, as noted earlier.  179 
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180 

 181 

Figure S1. Data coverage for surface O3 measurements at a) Alert, b) Utqiaġvik, c) Villum, d) 182 
Zeppelin, e) Summit, f) Pallas, g) Esrange, and h) Tustervatn. Coverage is given as a percentage 183 
of hours with measurements compared to the total number of hours for each month. Monthly 184 
coverage is color-coded by the meteorological seasons. See Figure 1 for station locations. 185 
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 187 

Figure S2. Ozonesonde data coverage at a) Alert, b) Eureka, c) Ny Alesund, d) Resolute, e) 188 
Scoresbysund, and f) Sodankyla. The number of O3 soundings in each month is shown color-189 
coded by the meteorological seasons. See Figure 1 for station locations. 190 



8 

 

191 

 192 

Figure S3.  Observed surface O3 trends and seasonal cycles. Left panels: seasonal cycles of 193 
monthly median O3 (ppbv) at a) Esrange, and b) Tustervatn for 1993-2000 (blue lines) vs 2012-194 
2019 (red lines), and c) Summit for 2001-2019 only.  Shaded areas show upper and lower 195 
quartiles of hourly values. Right panels: monthly trends over 1993-2019, or for shorter periods 196 
depending on data availability. Boxes represent the slope of the trend in ppbv per year with red 197 
boxes significant at 95th% CL, blue boxes at 90th% CL, and black boxes not statistically 198 
significant. Error bars show 95th% CLs. 199 

 200 
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Figure S4. Comparison of observed surface O3 monthly median trends in ppbv per year for 204 
different time periods at a) Alert, b) Utqiaġvik, c) Zeppelin, d) Esrange, e) Tustervatn for 1993-205 
2012 and 1999-2019, depending on data availability, and f) Pallas (left) and Villum (right) for 206 
1999-2019, when good data coverage is available. Box coloring and error bars are the same as 207 
Fig. S3 (right panels).  208 

  209 
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211 

   212 
Figure S5.  Changes in probability distributions of surface O3 concentrations in ppbv between 213 
earlier (1993-2000) and later (2012-2019) periods for selected months with statistically 214 
significant trends (see Figs. 2 and S3) at a) Alert, b) Utqiaġvik, c) Villum, d) Zeppelin, and e) 215 
Pallas. Periods shown vary depending on data availability. 216 
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 217 

Figure S6. Comparison of observed (left) and MMM (right) surface O3 trends and seasonal 218 
cycles at a) Pallas and b) Tustervatn. Upper panels: seasonal cycles for 1995-2004 (red lines) vs 219 
2005-2015 (blue lines). Shaded areas show upper and lower quartiles of hourly values 220 
(observations only). Lower panels: monthly median trends in ppbv per year for 1995-2015. Box 221 
coloring and error bars are the same as Fig. S3. Shorter periods are shown depending on data 222 
availability. 223 
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 225 

Figure S7a. Absolute vertical trends in observed monthly O3 for 1993-2019 in ppbv per year at a) 226 
Alert, b) Eureka, c) Ny Alesund, d) Resolute, e) Scoresbysund and f) Sodankyla. Upper panels: 227 
upper troposphere and lower stratosphere (400-100 hPa). Lower panels: mid- and lower 228 
troposphere (925-400 hPa). Note the different color scales. Stippled lines/areas show statistical 229 
significance at the 90th % CL (smaller marker size) and 95th % CL (larger marker size).   230 
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 232 
 233 

Figure S7b: Same as Figure S7a, but vertical trends from 925-100 hPa in observed monthly O3 234 
for 1993-2019, relative to monthly median concentrations, in % per year. Shading and symbols 235 
are the same as Fig S7a.  236 



15 

 

 237 

238 

239 



16 

 

240 

241 



17 

 

242 

 243 
 244 

Figure S8. Vertical trends in observed monthly O3, relative to monthly median concentrations, in 245 
% per year, for different time periods (1993-2013, 1999-2019, and 1993-2019) from 925-100 hPa 246 
at a) Alert, b) Eureka, c) Ny Alesund, d) Resolute, e) Scoresbysund, and f) Sodankyla. Shading 247 
and symbols are the same as Fig S7a. 248 



18 

 

249 

250 

251 
Figure S9: Comparison of observed (left) and MMM (right) vertical trends in monthly O3, 252 
relative to monthly medians, in % per year, from 925-100 hPa over 1995-2015 at a) Alert, b) 253 
Eureka, c) Ny Alesund, d) Resolute, e) Scoresbysund, and f) Sodankyla. Shading/symbols are the 254 
same as Fig. S7a.  255 
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256 

 257 

Figure S10. Observed (left) and MMM (right) seasonal surface CO trends at a) Alert, b) 258 
Utqiagvik, and c) Zeppelin. Boxes represent the slope of the trend in ppbv per year with red boxes 259 
significant at 95th % CL, blue boxes at 90th % CL, and black boxes not statistically significant. 260 
Error bars show 95th % CLs.  261 
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               262 
Figure S11.  Frequency of occurrence in % of March to May low O3 concentrations, defined as 263 
<10 ppbv and indicative of O3 depletion events, using ozonesonde data at the surface, and the 264 
first measurement level after balloon release, at Canadian Arctic sites from 1966–2020. Data are 265 
adjusted for the effects of occasional variation in sounding frequency. Details about the 266 
methodology are given in Tarrasick and Bottenheim (2002).  267 
  268 
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Table S1.  Emissions and meteorology used in the models. See Whaley et al. (2022) for further 269 
details. 270 

Model 
name 

Biogenic emissions Forest fire 
emissions 

Meteorology 

CMAM None CMIP6 Nudged to ERA-Interim 
reanalysis 

DEHM MEGANv2 GFAS Nudged to ERA-Interim 
reanalysis 

EMEP 
MSC-W 

EMEP scheme (Simpson et 
al., 2012) 

FINN (based on 
Wiedinmyer et al., 
2011) 

Driven by 3-hourly data from 
the Integrated Forecast System 
(IFS) at ECMWF 

GISS-E2.1 Isoprene:Guenther et al. 
(2012); Terpenes: 
ORCHIDEE; Online DMS, 
Sea-salt and dust   

CMIP6 Nudged to NCEP reanalysis 

MRI-ESM2 Biogenic VOCs emissions 
are taken from Horowitz et 
al. (2003) 

CMIP6 Nudged to the Japanese 55-year 
Reanalysis (JRA55) 

UKESM1 Isoprene and monoterpenes 
interactive with land 
surface vegetation scheme 

Prescribed from 
CMIP6 dataset 

Nudged to ERA-Interim 
reanalysis 

  271 
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Table S2.  Annual surface O3 trends in % per year based at Arctic sites. ‘Significance level’ is 272 
the probability that the observed trend is not the result of random variations. Lower and upper 95 273 
% CLs are also shown together with the significance (confidence) level for the annual trends 274 
calculated over the periods indicated. Statistically significant trends (above 90% CL) are in bold. 275 
The far right column displays the number of years included in the trend calculation compared to 276 
the maximum number of years over the period considered. 277 
Site	 Annual	

trend	(%)	
Lower	95%	

CL	
Upper	95%	

CL	
Significance	

level	
Period	 Number	yrs	

included/	
max.	yrs	

Alert	 0.29	 0.00	 0.75	 95%	 1999-2019	 16/21	
0.24	 0.00	 0.60	 95%	 1993-2019	 22/27	

Utqiagvik	 0.53	 -0.32	 1.18	 <90%	 1999-2019	 20/21	
0.26	 -0.21	 0.76	 <90%	 1993-2019	 26/27	

Villum	 1.98	 0.09	 3.11	 95%	 1999-2019	 16/21	
0.68	 -0.28	 2.30	 <90%	 1996-2019	 18/24	

Zeppelin	 -0.19	 -0.45	 0.15	 <90%	 1999-2019	 20/21	
0.18	 -0.03	 0.46	 90%	 1993-2019	 26/27	

Summit	 -0.28	 -0.77	 0.12	 <90%	 2001-2019	 19/19	
Esrange	 0.08	 -0.37	 0.64	 <90%	 1999-2019	 21/21	

0.00	 -0.24	 0.38	 <90%	 1993-2019	 27/27	
Pallas	 -0.30	 0.85	 -0.06	 90%	 1999-2019	 21/21	

-0.40	 -0.84	 0.00	 90%	 1995-2019	 25/25	
Tustervatn	 -0.52	 -1.14	 -0.08	 99%	 1999-2019	 21/21	

-0.18	 -0.51	 0.08	 <90%	 1994-2019	 26/26	
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