Pressure and temperature dependence of shock remanence intensity for single-domain titanomagnetite-bearing basalt: Toward understanding the magnetic anomalies produced by impact events

Masahiko Sato¹, Kosuke Kurosawa², Sunao Hasegawa³, and Futoshi Takahashi⁴

¹The University of Tokyo ²Chiba Institute of Technology ³Japan Aerospace Exploration Agency ⁴Kyushu University

February 20, 2023

Abstract

Knowledge of shock remanent magnetization (SRM) property is crucial for interpreting the spatial change in a magnetic anomaly observed over an impact crater. This study conducted two series of impact-induced SRM acquisition experiments by varying the applied field and impact conditions, and the remanences of cube-shaped subsamples cut from shocked basalt containing single-domain titanomagnetite were measured to investigate the pressure and temperature dependence of the SRM intensity. The peak pressure and peak temperature distributions in the shocked samples were estimated using shock-physics modeling. SRM intensity was proportional to the apple field intensity up to 400 μ T. The SRM intensities under different projectile conditions were consistent at the same pressure values. An empirical equation of SRM intensity is proposed to be the power function of pressure and a linear function of temperature, which can express the experimental SRM intensity values in a range of pressures up to 10 GPa and temperatures up to the Curie temperature. The magnetic anomaly estimation over an impact crater was demonstrated using the empirical equation, and the anomaly distribution shows a distinct feature approximated as a combination of two dipoles located at the basement of the crater and a deeper part.

Hosted file

955970_0_table_10692550_rpsmhv.docx available at https://authorea.com/users/587557/articles/ 625171-pressure-and-temperature-dependence-of-shock-remanence-intensity-for-singledomain-titanomagnetite-bearing-basalt-toward-understanding-the-magnetic-anomaliesproduced-by-impact-events

1	Pressure and temperature dependence of shock remanence intensity for single-
2	domain titanomagnetite-bearing basalt: Toward understanding the magnetic
3	anomalies produced by impact events
4	
5	Masahiko Sato ¹ *, Kosuke Kurosawa ² , Sunao Hasegawa ³ , and Futoshi Takahashi ⁴
6	
7	¹ Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
8	² Planetary Exploration Research Center, Chiba Institute of Technology, Narashino,
9	Japan
10	³ Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency,
11	Sagamihara, Japan
12	⁴ Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
13	
14	*Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo,
15	Bunkyo-ku, Tokyo 113-0033 Japan
16	

17 Key points

18 - Two series of shock remanence acquisition and evaluation experiments are conducted

19 by varying applied field and impact conditions.

20

21 - An empirical expression for shock remanence intensity is proposed to be the power

22 function of pressure and a linear function of temperature.

23

- The magnetic anomaly over an impact crater estimated from the empirical equation

25 shows a distinct pattern approximated as two dipoles.

26

27 Abstract

Knowledge of shock remanent magnetization (SRM) property is crucial for interpreting the spatial change in a magnetic anomaly observed over an impact crater. This study conducted two series of impact-induced SRM acquisition experiments by varying the applied field and impact conditions, and the remanences of cube-shaped subsamples cut from shocked basalt containing single-domain titanomagnetite were measured to

45	Plain Language Summary
44	
43	and a deeper part.
42	feature approximated as a combination of two dipoles located at the basement of the crater
41	demonstrated using the empirical equation, and the anomaly distribution shows a distinct
40	up to the Curie temperature. The magnetic anomaly estimation over an impact crater was
39	experimental SRM intensity values in a range of pressures up to 10 GPa and temperatures
38	power function of pressure and a linear function of temperature, which can express the
37	the same pressure values. An empirical equation of SRM intensity is proposed to be the
36	to 400 μ T. The SRM intensities under different projectile conditions were consistent at
35	shock-physics modeling. SRM intensity was proportional to the apple field intensity up
34	pressure and peak temperature distributions in the shocked samples were estimated using
33	investigate the pressure and temperature dependence of the SRM intensity. The peak

46 Knowledge of shock remanence is crucial for interpreting the spatial change in a magnetic anomaly observed over an impact crater and for reconstructing the magnetic field 47histories of terrestrial planets. This study conducted a suite of shock remanence 48

49	acquisition and evaluation experiments to investigate the pressure and temperature
50	dependence of shock remanence intensity. An empirical expression of shock remanence
51	intensity is proposed on the basis of experimental data, and the magnetic anomaly
52	estimation is demonstrated using the proposed empirical equation. The anomaly shows a
53	distinct feature approximated as a combination of two dipoles located at the basement of
54	the crater and a deeper part, and the feature could be used to detect the magnetic anomaly
55	caused by impact events.
56	
57	1. Introduction
58	Magnetic anomaly records caused by past impact events play an important role
59	in reconstructing the magnetic field histories of terrestrial planets (Acuña et al., 1999;
60	Halekas et al., 2003; Lillis et al., 2013). At the time of impact events, crustal rocks in
61	terrestrial planets can record shock remanent magnetization (SRM) as a result of shock
62	wave propagation. Knowledge of the spatial distribution of SRM intensity is crucial for
63	
00	interpreting the magnetic anomaly over the impact craters and for reconstructing the

65	observations and future explorations. Nevertheless, the SRM intensity distribution is
66	poorly understood because of the difficulty in evaluating the magnetization distribution
67	within the experimentally SRM-imparted samples. Although post-impact remanence
68	modifications, such as thermoremanent magnetization (TRM) acquisition of a melt sheet
69	(Hood, 2011) and chemical remanent magnetization acquisition due to hydrothermalism
70	(Quesnel et al., 2013), are also important for interpreting crustal remanence distributions,
71	the initial structure of remanent magnetization immediately after the impacts should be
72	explored.
73	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities
73 74	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD)
73 74 75	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate.
73 74 75 76	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and
73 74 75 76 77	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and remanence measurements of subsamples for pseudo-single-domain (PSD)
 73 74 75 76 77 78 	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and remanence measurements of subsamples for pseudo-single-domain (PSD) titanomagnetite-bearing basalt and MD magnetite-bearing microdiorite. The SRM
 73 74 75 76 77 78 79 	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and remanence measurements of subsamples for pseudo-single-domain (PSD) titanomagnetite-bearing basalt and MD magnetite-bearing microdiorite. The SRM intensities were homogeneous in their experimental samples (Gattacceca et al., 2008),

81	microscopy measurements for the SRM-bearing basalt (Gattacceca et al., 2010). Sato et
82	al. (2021) established the SRM acquisition method using a two-stage light gas gun and
83	the remanence evaluation method for divided subsamples, and systematic spatial changes
84	in SRM intensity and stability were observed for a single-domain (SD) titanomagnetite-
85	bearing basalt cylinder. Although the spatial changes in SRM intensities were
86	qualitatively evaluated and were different for each magnetic mineral in these previous
87	studies, the quantitative evaluation of SRM intensity with respect to the shock wave
88	conditions such as pressure and temperature changes has not yet been obtained, and
89	further investigation is required to quantitatively understand the relationship between the
90	magnetic anomaly observation data and the crustal remanence originating from the
91	impact event.
92	Using a magnetically well-characterized basalt sample bearing fine-grained SD
93	titanomagnetite, the SRM acquisition experiments, remanence measurements for cube-
94	shaped subsamples cut from the SRM-imparted samples, and impact simulations were
95	conducted for quantitatively investigating the pressure and temperature dependence of
96	SRM intensity. In one series of experiments, impact experiments were conducted under

97	magnetic fields of 100–400 μ T at a nearly constant impact velocity, whereas in the other
98	series of experiments, the impact velocities were set to 1.3-7.0 km/s with different
99	projectiles and a constant applied field value. The peak pressure and peak temperature
100	distributions after the impacts were estimated using shock-physics modeling. Based on
101	the results of the remanence measurements and modeling, we propose an empirical
102	relationship between the SRM intensity and peak pressure/temperature in impact events.
103	In addition, we calculated the magnetic anomaly profile over an impact crater using the
104	empirical equation.
105	
106	2. Method
107	A natural basalt sample (Linxi, Inner Mongolia) was used for the experiments.
108	The basalt samples were the same as those used for the SRM experiments in the study by
109	Sato et al. (2021), and the detailed rock magnetic properties have been reported in a
110	previous study. The basalt sample contained SD titanomagnetite with a Curie temperature
111	of 237°C (Sato et al., 2021). Cylindrical basalt samples with a diameter and length of 8
112	cm were used as targets in the SRM acquisition experiments. The cylindrical basalt

113	samples were subjected to a three-axial alternating field demagnetization (AFD) of 80
114	mT using a DEM-8601C AF demagnetizer (Natsuhara-Giken) before the SRM
115	acquisition experiments.
116	Two-stage light-gas guns (vertical and horizontal) at the Institute of Space and
117	Astronautical Science (ISAS) of the Japan Aerospace and Exploration Agency (JAXA)
118	were used for SRM acquisition experiments. This study follows the method employed by
119	Sato et al. (2021). The basalt cylinder, solenoid coil, and magnetic shield were placed
120	coaxially in a vacuum experimental chamber. An aluminum sphere with a diameter of 2
121	mm and a polycarbonate sphere with a diameter of 7 mm were used as the projectiles,
122	and a nylon slit sabot was used to accelerate the projectile (Kawai et al., 2010). The impact
123	angle was fixed at 90°, measured from the top flat surface of the basalt cylinder, that is,
124	vertical impacts. Two series of experiments were conducted (Table 1). In one series of
125	experiments, impact experiments were conducted under magnetic fields of 100, 150, 200,
126	and 400 μT with nearly constant impact velocities of 5.3–5.5 km/s. In the other series of
127	experiments, the magnetic field was fixed at 100 μ T, and the impact velocities were set
128	to 1.3 (polycarbonate), 2.7, 4.0, 5.3, and 7.0 km/s (aluminum).

129	After the impact experiments on SRM acquisition, the target samples were cut
130	into cube-shaped subsamples approximately 3 mm in length using rock cutters. The
131	subsamples are denoted as <i>RiZ</i> j, where the indices i and j are the numbers from the impact
132	point in the radial and axial directions of a cylindrical sample. The measured subsamples
133	are listed in Table 2. Remanence measurements were conducted using a superconducting
134	quantum interference device magnetometer (Model 755, 2G Enterprise) at the University
135	of Tokyo. This study followed the method of Sato et al. (2015) for small-sample
136	measurements. The cube-shaped subsample was set at the edge of a rod made of polylactic
137	acid using a double-sided tape. The remanence of the polylactic acid rod was measured
138	before and after sample measurement, and the average remanence of the rod was
139	subtracted to calculate the sample moment. Stepwise AFD treatments of up to 80 mT were
140	conducted using an alternating field demagnetizer (DEM-95C, Natsuhara-Giken) with a
141	two-axis tumbling system. After the stepwise AFD measurements of the SRM state,
142	several samples were selected for each cylindrical sample, and the anhysteretic remanent
143	magnetization (ARM) with DC and AC fields of 100 μ T and 80 mT, respectively, were
144	measured to normalize the effect of heterogeneity of magnetic minerals. Additionally,

145stepwise thermal demagnetization (THD) treatments up to 320°C were conducted on eight 146 cube samples selected from one cylindrical basalt sample using a thermal demagnetizer (TDS-1, Natsuhara-Giken). 147148A series of impact simulations using a two-dimensional version of the iSALE 149shock physics code (Amsden et al., 1980; Ivanov et al., 1997; Wünnemann et al., 2006) was conducted to estimate the peak pressure P_{peak} and peak temperature T_{peak} values in 150151the SRM acquisition experiments. This study followed the impact simulations of Sato et 152al. (2021), and the details of the impact simulation are described in their paper. The impact velocities and shapes of the projectile and target in the simulation were set to the same 153154values as those in the SRM acquisition experiments. The mass-weighted averaged values 155of P_{peak} and T_{peak} in each 3 mm cube region were calculated to compare the calculated peak pressures and peak temperatures with the experimentally measured SRM properties. 1561571583. Results

159 The experimental results for an aluminum sphere with a diameter of 2 mm and
160 an impact velocity of 7 km/s (cylindrical basalt samples 3767 and 3769) are summarized

-

161	in Figures 1–3. The SRM component was calculated as $J_{\text{SRM}}(2) - J_{\text{SRM}}(80)$ and the
162	stability of the SRM component was evaluated as $ J_{\text{SRM}}(6) - J_{\text{SRM}}(80) / J_{\text{SRM}}(2) -$
163	$J_{\text{SRM}}(80)$, where $J_{\text{SRM}}(X)$ is the SRM vector at the X mT AFD step. The basalt sample
164	acquired SRM and the SRM properties were systematically change with increasing the
165	distance from impact point as observed in Sato et al. (2021): (1) The SRM component is
166	a single component in one direction in the orthogonal vector plots (Figure 1). (2) The
167	SRM intensity systematically changes with distance in the case with an applied field of
168	100 μT , and the SRM intensity in the case with an applied field of 100 μT is larger than
169	that of the zero field (Figure 2), indicating that the basalt sample acquired remanent
170	magnetization as a result of shock wave propagation in the applied magnetic field. (3)
171	The SRM intensity systematically changed with distance from the impact point (Figure
172	2). (4) The SRM stability with respect to the AFD treatment systematically changed with
173	distance from the impact point, and the median destructive field of the SRM components
174	was less than 20 mT (Figure 3).
175	The experimental results for cylindrical basalt samples with different sizes and

the same projectile condition (aluminum sphere with a diameter of 2 mm and impact

177	velocity of approximately 7 km/s) are compared in Figure 4. The diameters and lengths
178	of the basalt samples were 8 cm (this study) and 10 cm (Sato et al., 2021), respectively.
179	To normalize the heterogeneity of magnetic minerals among the cylindrical basalt
180	samples, the SRM intensity was normalized as $ J_{SRM}(2) - J_{SRM}(80) /J_{ARM}$, where J_{ARM} is
181	the average ARM intensity for several cube samples. The 10 cm basalt cylinder sample
182	shows a systematic change in the normalized SRM intensity with approximately 0.1
183	dispersion at the same P_{peak} value. The changes in the normalized SRM intensity with
184	respect to P_{peak} for the 8 cm basalt cylinder were consistent with those of the 10 cm basalt
185	cylinder within 3-4 cm from the impact point, while the SRM intensity for the 8 cm
186	cylinder deviated from the trend for the 10 cm cylinder beyond 3-4 cm from the impact
187	point. This deviation likely arose from the arrival of an expansion wave from the side of
188	the cylinder, where a free surface exists. Although the effects of sudden pressure release
189	due to the expansion wave from the side surface are not yet fully understood, the geometry
190	is largely different from that of natural impact events. Consequently, we decided to use
191	only the SRM data within 3 cm from the impact point where the pressure release occurred
192	because of the expansion wave from the top surface.

193	The results of the stepwise THD treatments in the case of an aluminum sphere
194	with a diameter of 2 mm and an impact velocity of 5.3 km/s (cylindrical basalt sample
195	835) are summarized in Figures 5 and 6. The SRM component was a single component
196	in one direction in the orthogonal vector plot (Figure 5), similar to the stepwise AFD
197	treatments (Figure 1). In contrast to the AFD treatment, the SRM stability with respect to
198	the THD treatment was almost unchanged with the distance from the impact point (Figure
199	6).
200	The experimental results in the case of an aluminum sphere with a diameter of
201	2 mm and nearly-identical impact velocity (5.3-5.5 km/s) and varying the applied field
202	intensity (cylindrical basalt samples 835, 838, 839, and 840) are shown in Figures 7a and
203	7b. The SRM intensity was normalized as $\{ J_{SRM}(2) - J_{SRM}(80) /B_{SRM}\}/(J_{ARM}/B_{ARM})$,
204	where B_{SRM} and B_{ARM} are the applied DC field intensities for the SRM and ARM,
205	respectively. The normalized SRM intensities and SRM stabilities at 150, 200, and 400
206	μT showed similar values over the entire pressure range. The normalized SRM intensity
207	and SRM stability values in the cases of 100 μ T slightly deviated from the trends of higher
208	field intensities below ~0.5 and ~1 GPa, respectively. These deviations increased with

209 decreasing pressure. These deviations indicate that the SRM properties below ~1 GPa 210 were saturated above 100 μ T field conditions. Despite slight saturation, the normalized 211 SRM intensity and SRM stability values were similar in the four cylindrical samples 212 (Figure 7b); thus, the SRM intensity was proportional to the applied field intensity up to 213 400 μ T.

The experimental results for an applied field intensity of 100 μ T and various 214projectile conditions (cylindrical basalt samples 835, 836, 837, 3767, and 3773) are 215216shown in Figures 7c and 7d. The SRM intensity increased with increasing P_{peak} value and 217deviated from the increasing trend near the impact point owing to the significant 218temperature increase for each cylindrical sample (Figure 7c). The deviation from this trend becomes significant above 310 K (Figure 8). Comparing the regions with the 219 220increasing trend, the SRM intensities for the different projectile conditions were almost consistent at the same P_{peak} values, although the SRM intensities of the slowest aluminum 221222projectile velocity samples were slightly higher than those of the other samples (Figure 7c). The SRM stability systematically increased with increasing P_{peak} value, even in the 223case T_{peak} values above 310 K, and all basalt cylinder samples showed a consistent trend 224

225 (Figure 7d).

226

227 **4. Discussion**

The SRM intensity approximated as linear and power functions of the P_{peak} 228value for cube samples with T_{peak} below 310 K are shown in Figure 7c. The difference 229230between the linear regression line and experimental data was significant below 0.2 GPa, while the experimental data agreed well with the power function for the entire P_{peak} range 231232(Figure 7c). The SRM intensity dependence on T_{peak} value is assumed to be a linear function because the T_{peak} variations in the experimental data are sparse compared to the 233234 P_{peak} variations. The root mean square of the differences between the estimated value and the experimental value were 0.065 and 0.043 for linear and power functions of the P_{peak} , 235236respectively. Thus, this study proposes a power function as an empirical expression for 237the SRM intensity dependence on P_{peak} value, and the SRM intensity J_{SRM} was 238approximated for the entire P_{peak} and T_{peak} ranges as

239
$$\frac{J_{\text{SRM}}}{J_{\text{ARM}}} = 7.09 \times 10^{-1} \times \left(\frac{P_{\text{peak}}}{\text{GPa}}\right)^{0.134} - 1.19 \times 10^{-3} \left(\frac{T_{\text{peak}}}{\text{K}}\right) (1).$$

240 The experimental and modeled SRM intensities are compared in Figure 9. The intensity

241 differences between the experimental and model values were smaller than the SRM 242 intensity values over the entire P_{peak} and T_{peak} ranges.

- 243 The efficiencies of TRM and ARM acquisition for the basalt sample were 46.0
- and 12.0 $Am^2kg^{-1}T^{-1}$, respectively, and the SRM acquisition efficiency with respect to
- TRM is expressed as

246
$$\frac{J_{\text{SRM}}}{J_{\text{TRM}}} = 1.85 \times 10^{-1} \times \left(\frac{P_{\text{peak}}}{\text{GPa}}\right)^{0.134} - 3.10 \times 10^{-4} \left(\frac{T_{\text{peak}}}{\text{K}}\right) (2),$$

where J_{TRM} is the TRM intensity. Additionally, the law of proportionality of the remanence intensity to the applied field intensity was almost satisfied for the SRM in this study. Then, the empirical SRM intensity relationship with respect to the applied field intensities *B*, P_{peak} , and T_{peak} is given as

251
$$J_{\text{SRM}} = \left\{ 1.85 \times 10^{-1} \times \left(\frac{P_{\text{peak}}}{\text{GPa}}\right)^{0.134} - 3.10 \times 10^{-4} \left(\frac{T_{\text{peak}}}{\text{K}}\right) \right\} \times J_{\text{TRM}}(B_0) \times \frac{B}{B_0}$$
 (3),

252 where $J_{\text{TRM}}(B_0)$ is the TRM intensity at the acquisition field of B_0 .

Based on the empirical equation, we estimated the magnetic anomaly profile over an impact crater on basaltic crust containing SD titanomagnetite. Given that the SD titanomagnetite grains contained in the basaltic crust are identical to those in our experimental sample, the empirical equation for SRM acquisition can be applied to the

257	basaltic crust. The P_{peak} and T_{peak} distributions in the basaltic crust were calculated using
258	the iSALE shock-physics code (Figures 10c and 10d). Details of the shock physics
259	modeling are provided in the Supporting Information. The P_{peak} and T_{peak} values were
260	substituted into the empirical equation (2), and the crustal remanence intensity with
261	respect to the TRM intensity was calculated for the basaltic crust. The crustal rock near
262	the impact point experiences a high temperature during and after the shock wave
263	propagation and should acquire TRM. Then, the TRM values were allocated to the crustal
264	rocks with T_{peak} values above the Curie temperature of titanomagnetite (510 K). The
265	magnetic field was vertically applied to the basaltic crust, and the crustal rock acquired
266	TRM and SRM parallel to the applied field. Because our empirical relationship cannot
267	evaluate the effects of lithostatic pressure and geotherm, zero pressure and uniform
268	temperature in the basaltic crust were assumed to be the initial conditions, which
269	correspond to the craters produced on a laboratory scale. Nevertheless, our simulation
270	may provide a qualitative understanding of the magnetic anomaly profile above the
271	magnetized crater immediately after impact.

The distribution of the crustal remanence is illustrated in Figure 10b. A thin

272

273	layer of approximately one projectile radius (R_p) around the impact point acquired a
274	strong remanence as TRM, and a vast region outside the TRM layer (20–30 R_p) acquired
275	a significant SRM intensity (>0.05 J_{TRM}). Consequently, the magnetic anomaly at an
276	altitude comparable to the crater diameter (20 R_p) showed a broader distribution with
277	respect to the crater shape (Figure 10a). The contributions of the TRM and SRM regions
278	to the magnetic anomaly are evaluated in Figure 10a. The contribution of the SRM region
279	is three times higher than that of the TRM layer at the center of the crater. These
280	contributions can be approximated as dipole moments located at depths of 10 R_p and 43
281	$R_{\rm p}$ for the TRM and SRM regions, respectively. The intensity of latter dipole is ten times
282	larger than that of former. The depth of 43 R_p corresponds to the P_{peak} value of
283	approximately 0.1 GPa and the SRM intensity of 0.04–0.05 J_{TRM} . The remanence
284	intesnsity decreases with increasing the distance from the impact point in the SRM region,
285	and the volume of the same distance area increases with increasing the distance. As the
286	result, an effective center of dipole locates at the depth of 43 R_p . While the remanence
287	intensity at the SRM region is smaller than that of TRM, the volume of SRM region is
288	significantly larger than that of TRM, resulting in the large contribution to the magnetic

289	anomaly. This distinct feature of the anomaly expressed as the two dipoles located at the
290	basement of the crater and a deeper part could be used to detect the magnetic anomaly
291	caused by impact events and would play an important role in reconstructing the magnetic
292	field histories of terrestrial planets. However, a more systematic study based on impact
293	simulations under various conditions and these magnetic anomaly calculations are
294	required to further evaluate the detectability of impact magnetization events on terrestrial
295	planets.
296	
297	5. Conclusion
298	This study conducted two series of SRM acquisition experiments varying
299	applied fields and projectile conditions and the remanence measurements for cube-shaped
300	subsamples were conducted for the cylindrical basalt samples containing SD
301	titanomagnetite. The normalized SRM intensity and SRM stability values were similar in
302	the experiments with varying applied fields, and the SRM intensity was proportional to
303	the apple field intensity up to 400 μ T. The SRM intensities for different projectile
304	conditions were almost consistent at the same P_{peak} values. Then, the empirical expression

305	for SRM intensity is proposed to be the power function of P_{peak} and a linear function of
306	T_{peak} , which can be used to express the experimental SRM intensity values in the ranges
307	P_{peak} up to 10 GPa and T_{peak} up to the Curie temperature. This empirical equation can be
308	used to estimate the magnetic anomaly distribution over an impact crater. The anomaly
309	showed a distinct feature approximated as two dipoles located at the basement of the
310	crater and a deeper part, and this feature could be used to detect the magnetic anomaly
311	caused by impact events.
312	
313	Data Availability Statement
313 314	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE
313 314 315	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to
313314315316	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the
 313 314 315 316 317 	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the application requirements can be found at the iSALE website (https://isale-
 313 314 315 316 317 318 	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the application requirements can be found at the iSALE website (https://isale- code.github.io/terms-of-use.html). The M-ANEOS package is available from Thompson
 313 314 315 316 317 318 319 	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the application requirements can be found at the iSALE website (https://isale- code.github.io/terms-of-use.html). The M-ANEOS package is available from Thompson et al. (2019). The list of input parameters for the iSALE computations can be found in the

321

322 Acknowledgement

323 This study was performed under the collaborative research program with the

- 324 Hypervelocity Impact Facility (former name: Space Plasma Laboratory), ISAS, JAXA.
- 325 The authors thank the developers of iSALE, including G. Collins, K. Wünnemann, B.
- 326 Ivanov, J. Melosh, and D. Elbeshausen. We used pySALEplot to analyze the output file
- 327 of iSALE, and also thank Tom Davison for the development of pySALEPlot. This study
- 328 was supported by JSPS KAKENHI grants JP21H01140. K.K. is supported by JSPS
- 329 KAKENHI grant JP18KK0092 and JP19H00726. K.K. and M.S. are supported by JSPS
- 330 KAKENHI grant JP21K18660.

331

332 **References**

- 333 1. Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden,
- J., et al. (1999). Global distribution of crustal magnetization discovered by the Mars
- Global Surveyor MAG/ER experiment. Science, 284(5415), 790–793.
- 336 2. Amsden, A., Ruppel, H., and Hirt, C. (1980). SALE: A simplified ALE computer

- 337 program for fluid flow at all speeds, Los Alamos National Laboratories Report, LA-
- 338 8095:101p.
- 339 3. Dunlop, D. J., & Özdemir, Ö. (1997). Rock magnetism: Fundamentals and frontiers,
- 340 (p. 573). Cambridge University Press.
- 341 4. Gattacceca, J., L. Berthe, M. Boustie, F. Vadeboin, P. Rochette, and T. De Resseguier
- 342 (2008), On the efficiency of shock magnetization processes, Phys. Earth Planet.
- 343 Inter., 166, 1–10.
- 344 5. Gattacceca, J., M. Boustie, E. Lima, B. P. Weiss, T. de Resseguier, and J.-P. Cuq-
- 345 Lelandais (2010), Unraveling the simultaneous shock magnetization and
- demagnetization of rocks, Phys. Earth Planet. Inter., 182, 42–49.
- 347 6. Halekas, J. S., R. P. Lin, and D. L. Mitchell (2003), Magnetic fields of lunar multi-
- ring impact basins, Meteorit. Planet. Sci., 38, 565–578.
- 349 7. Hood, L. L. (2011), Central magnetic anomalies of Nectarian-aged lunar impact
- basins: Probable evidence for an early core dynamo, Icarus, 211, 1109–1128.
- 8. Ivanov, B. A., Deniem, D., and Neukum, G. (1997). Implementation of dynamic
- 352 strength models into 2-D hydrocodes: Applications for atmospheric breakup and

353		impact cratering. International Journal of Impact Engineering, 20(1-5), 411-430.
354	9.	Kawai, N., K. Tsurui, S. Hasegawa, and E. Sato (2010), Single microparticle
355		launching method using two-stage light-gas gun for simulating hypervelocity
356		impacts of micrometeoroids and space debris, Rev. Sci. Instrum., 81, 115105.
357	10.	Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S., & Frey, H. V. (2013). Time
358		history of the Martian dynamo from crater magnetic field analysis. Journal of
359		Geophysical Research: Planets, 118, 1488–1511.
360	11.	Néel, L. (1949), Théorie du traînage magnétique des ferromagnétiques en grains fins
361		avec applications aux terres cuites, Ann. Geophys., 5, 99–136.
362	12.	Quesnel, Y., J. Gattacceca, G. R. Osinski, and P. Rochette (2013), Origin of the
363		central magnetic anomaly at the Haughton impact structure, Canada, Earth Planet.
364		Sci. Lett., 367, 116–122.
365	13.	Sato, M. (2023). Data in "Pressure and temperature dependence of shock remanence
366		intensity for single-domain titanomagnetite-bearing basalt: Toward understanding
367		the magnetic anomalies produced by impact events". Retrieved from
368		http://hdl.handle.net/2261/0002006019.

369	14.	Sato, M., Kurosawa, K., Kato, S., Ushioda, M., & Hasegawa, S. (2021), Shock
370		remanent magnetization intensity and stability distributions of single-domain
371		titanomagnetite-bearing basalt sample under the pressure range of 0.1-10 GPa.
372		Geophysical Research Letters, 48, e2021GL092716.
373	15.	Sato, M., S. Yamamoto, Y. Yamamoto, Y. Okada, M. Ohno, H. Tsunakawa, and S.
374		Maruyama (2015), Rock-magnetic properties of single zircon crystals sampled from
375		the Tanzawa tonalitic pluton, central Japan, Earth Planets Space, 67, 150.
376	16.	Srnka, L., G. Martelli, G. Newton, S. Cisowski, M. Fuller, and R. Schaal (1979),
377		Magnetic field and shock effects and remanent magnetization in a hypervelocity
378		impact experiment, Earth Planet. Sci. Lett., 42, 127–137.
379	17.	Wünnemann, K., Collins, G. S., and Melosh, H. J. (2006). A strain-based porosity
380		model for use in hydrocode simulations of impacts and implications for transient
381		crater growth in porous targets. Icarus, 180(2), 514-527.
382		
383	Fig	are 1. Orthogonal vector plots for stepwise alternating field demagnetization of shock
384	rem	anence (cylindrical basalt sample 3767). Closed and open symbols denote projections

385 for X–Y and X–Z planes, respectively.

386

Figure 2. Shock remanence intensity plotted as a function of distance from the impactpoint (cylindrical basalt samples 3767 and 3769).

389

Figure 3. Stepwise alternating field demagnetization curves for shock remanences

391 (cylindrical basalt sample 3767). Normalized remanence intensity is plotted as a function

392 of peak alternating field.

393

```
Figure 4. Shock remanence intensity plotted as a function of peak pressure during the
```

395 shock wave propagation. Closed and open black circles denote the data of this study

- 396 (cylindrical basalt sample 3767) within and beyond 3 cm from impact point, respectively.
- 397 Grey circles denote the data in Sato et al. (2021).

398

Figure 5. Orthogonal vector plots for stepwise thermal demagnetization of shock
remanence (cylindrical basalt sample 835). Closed and open symbols denote projections

401 for X–Y and X–Z planes, respectively.

402

403 Figure 6. Stepwise thermal demagnetization curves for shock remanences (cylindrical
404 basalt sample 835). Normalized remanence intensity is plotted as a function of peak
405 heating temperature.

406

Figure 7. Shock remanence (SRM) intensity (a) and stability (b) are plotted as a function 407 408 of peak pressure during the shock wave propagation for the cylindrical basalt samples 409 835, 838, 839, and 840. The SRM intensity was calculated as $(J_{SRM}/B_{SRM})/(J_{ARM}/B_{ARM})$, 410 where the J_{SRM} , J_{ARM} , B_{SRM} , and B_{ARM} are the SRM intensity, anhysteretic remanence intensity, applied field intensity in SRM experiment, and applied DC field intensity in 411 412ARM experiment. The shock remanence stability was calculated as $|J_{SRM}(6) - J_{SRM}(80)|/|$ 413 $J_{\text{SRM}}(2) - J_{\text{SRM}}(80)$, where $J_{\text{SRM}}(X)$ is the SRM vector at the X mT AFD step. SRM intensity (c) and stability (d) are plotted as a function of peak pressure during the shock 414 wave propagation for the cylindrical basalt samples 835, 836, 837, 3767, and 3773. The 415416 SRM intensity was calculated as $J_{\text{SRM}}/J_{\text{ARM}}$. Black and gray lines in (c) are the linear 417 regression and power function lines, respectively.

418

419 Figure 8. Shock remanent magnetization (SRM) intensity (a and c) and stability (b and 420 d) are plotted as a function of peak temperature during the shock wave propagation (cylindrical basalt samples 835, 836, 837, 3767, and 3773). The SRM intensity was 421422calculated as $|J_{SRM}(2) - J_{SRM}(80)|/|J_{ARM} - J_{ARM}(80)|$, where the J_{SRM} and J_{ARM} are the 423SRM and anhysteretic remanence vectors, respectively, and the numbers in parentheses 424indicate peak amplitude of alternating field demagnetization treatments. The shock 425remanence stability was calculated as $|J_{SRM}(6) - J_{SRM}(80)|/|J_{SRM}(2) - J_{SRM}(80)|$. 426 Figure 9. (a) Relationship between the experimental and model SRM intensities. (b) 427428Differences between the experimental and model SRM intensity. Sizes of symbols 429indicate the magnitude of residual values.

430

431 Figure 10. (a) Amplitudes of crustal magnetic fields at an altitude of 20 projectile radius
432 (*R*_p). Two-dimensional maps for (b) crustal remanence intensity, (c) peak pressure during

433 the shock wave propagation, and (d) peak temperature during the shock wave propagation.

- 434 The remanence intensity of shock remanence (SRM) is normalized with respect to that of
- 435 thermal remanent magnetization (TRM). The vertical and radial distances in the two-
- 436 dimensional maps are normalized with respect to $R_{\rm p}$.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Tuble T. Summary of experimental samples				
Cylinder ID	Gun-type	Projectile	Impactor velocity	Magnetic field
		Material/Diameter	(km/s)	(µT)
835	Vertical	Al 2 mm	5.3	100
836	Vertical	Al 2 mm	4.0	100
837	Vertical	Al 2 mm	2.7	100
838	Vertical	Al 2 mm	5.5	150
839	Vertical	Al 2 mm	5.3	200
840	Vertical	Al 2 mm	5.4	400
3767	Horizontal	Al 2 mm	7.0	100
3769	Horizontal	Al 2 mm	7.0	0
3773	Horizontal	PC 7 mm	1.3	100

 Table 1. Summary of experimental samples

Cylinder ID	Cube ID		
	R	Ζ	Treatment
835	1	3–10	AFD at 2 and 80 mT
	2	2–10	AFD at 2 and 80 mT
	2	2-4 and 6-10	THD at 100–320 °C
836	1	2–10	AFD at 2 and 80 mT
	2	2–10	AFD at 2 and 80 mT
837	1	2–10	AFD at 2 and 80 mT
	2	2–10	AFD at 2 and 80 mT
838	1	3–10	AFD at 2 and 80 mT
	2	2–10	AFD at 2 and 80 mT
839	1	2–10	AFD at 2 and 80 mT
	2	2–10	AFD at 2 and 80 mT
840	1	2–10	AFD at 2 and 80 mT
	2	2–10	AFD at 2 and 80 mT
3767	1	2, 4, 6, and 8	AFD at 2–80 mT
	2	2–25	AFD at 2 and 80 mT
	3	1–9	AFD at 2 and 80 mT
3769	1	1, 6, 9, 12, 15, 18, and 21	AFD at 2 and 80 mT
3773	2	1-6, 8, and 9	AFD at 2 and 80 mT
	3	1–9	AFD at 2 and 80 mT

 Table 2. Summary of shock remanence measurements

AFD: alternating field demagnetization.

1	Pressure and temperature dependence of shock remanence intensity for single-
2	domain titanomagnetite-bearing basalt: Toward understanding the magnetic
3	anomalies produced by impact events
4	
5	Masahiko Sato ¹ *, Kosuke Kurosawa ² , Sunao Hasegawa ³ , and Futoshi Takahashi ⁴
6	
7	¹ Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
8	² Planetary Exploration Research Center, Chiba Institute of Technology, Narashino,
9	Japan
10	³ Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency,
11	Sagamihara, Japan
12	⁴ Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
13	
14	*Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo,
15	Bunkyo-ku, Tokyo 113-0033 Japan
16	

17 Key points

18 - Two series of shock remanence acquisition and evaluation experiments are conducted

19 by varying applied field and impact conditions.

20

21 - An empirical expression for shock remanence intensity is proposed to be the power

22 function of pressure and a linear function of temperature.

23

- The magnetic anomaly over an impact crater estimated from the empirical equation

25 shows a distinct pattern approximated as two dipoles.

26

27 Abstract

Knowledge of shock remanent magnetization (SRM) property is crucial for interpreting the spatial change in a magnetic anomaly observed over an impact crater. This study conducted two series of impact-induced SRM acquisition experiments by varying the applied field and impact conditions, and the remanences of cube-shaped subsamples cut from shocked basalt containing single-domain titanomagnetite were measured to

45	Plain Language Summary
44	
43	and a deeper part.
42	feature approximated as a combination of two dipoles located at the basement of the crater
41	demonstrated using the empirical equation, and the anomaly distribution shows a distinct
40	up to the Curie temperature. The magnetic anomaly estimation over an impact crater was
39	experimental SRM intensity values in a range of pressures up to 10 GPa and temperatures
38	power function of pressure and a linear function of temperature, which can express the
37	the same pressure values. An empirical equation of SRM intensity is proposed to be the
36	to 400 μ T. The SRM intensities under different projectile conditions were consistent at
35	shock-physics modeling. SRM intensity was proportional to the apple field intensity up
34	pressure and peak temperature distributions in the shocked samples were estimated using
33	investigate the pressure and temperature dependence of the SRM intensity. The peak

46 Knowledge of shock remanence is crucial for interpreting the spatial change in a magnetic anomaly observed over an impact crater and for reconstructing the magnetic field 47histories of terrestrial planets. This study conducted a suite of shock remanence 48

49	acquisition and evaluation experiments to investigate the pressure and temperature
50	dependence of shock remanence intensity. An empirical expression of shock remanence
51	intensity is proposed on the basis of experimental data, and the magnetic anomaly
52	estimation is demonstrated using the proposed empirical equation. The anomaly shows a
53	distinct feature approximated as a combination of two dipoles located at the basement of
54	the crater and a deeper part, and the feature could be used to detect the magnetic anomaly
55	caused by impact events.
56	
57	1. Introduction
58	Magnetic anomaly records caused by past impact events play an important role
59	in reconstructing the magnetic field histories of terrestrial planets (Acuña et al., 1999;
60	Halekas et al., 2003; Lillis et al., 2013). At the time of impact events, crustal rocks in
61	terrestrial planets can record shock remanent magnetization (SRM) as a result of shock
62	wave propagation. Knowledge of the spatial distribution of SRM intensity is crucial for
63	
00	interpreting the magnetic anomaly over the impact craters and for reconstructing the

65	observations and future explorations. Nevertheless, the SRM intensity distribution is
66	poorly understood because of the difficulty in evaluating the magnetization distribution
67	within the experimentally SRM-imparted samples. Although post-impact remanence
68	modifications, such as thermoremanent magnetization (TRM) acquisition of a melt sheet
69	(Hood, 2011) and chemical remanent magnetization acquisition due to hydrothermalism
70	(Quesnel et al., 2013), are also important for interpreting crustal remanence distributions,
71	the initial structure of remanent magnetization immediately after the impacts should be
72	explored.
73	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities
73 74	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD)
73 74 75	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate.
73 74 75 76	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and
73 74 75 76 77	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and remanence measurements of subsamples for pseudo-single-domain (PSD)
 73 74 75 76 77 78 	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and remanence measurements of subsamples for pseudo-single-domain (PSD) titanomagnetite-bearing basalt and MD magnetite-bearing microdiorite. The SRM
 73 74 75 76 77 78 79 	Srnka et al. (1979) qualitatively demonstrated that the SRM intensities decreased with increasing distance from the impact point for multidomain (MD) titanomagnetite-bearing basalt using core samples drilled from a shocked basalt plate. Gattacceca et al. (2008) conducted laser-induced SRM acquisition experiments and remanence measurements of subsamples for pseudo-single-domain (PSD) titanomagnetite-bearing basalt and MD magnetite-bearing microdiorite. The SRM intensities were homogeneous in their experimental samples (Gattacceca et al., 2008),

81	microscopy measurements for the SRM-bearing basalt (Gattacceca et al., 2010). Sato et
82	al. (2021) established the SRM acquisition method using a two-stage light gas gun and
83	the remanence evaluation method for divided subsamples, and systematic spatial changes
84	in SRM intensity and stability were observed for a single-domain (SD) titanomagnetite-
85	bearing basalt cylinder. Although the spatial changes in SRM intensities were
86	qualitatively evaluated and were different for each magnetic mineral in these previous
87	studies, the quantitative evaluation of SRM intensity with respect to the shock wave
88	conditions such as pressure and temperature changes has not yet been obtained, and
89	further investigation is required to quantitatively understand the relationship between the
90	magnetic anomaly observation data and the crustal remanence originating from the
91	impact event.
92	Using a magnetically well-characterized basalt sample bearing fine-grained SD
93	titanomagnetite, the SRM acquisition experiments, remanence measurements for cube-
94	shaped subsamples cut from the SRM-imparted samples, and impact simulations were
95	conducted for quantitatively investigating the pressure and temperature dependence of
96	SRM intensity. In one series of experiments, impact experiments were conducted under

97	magnetic fields of 100–400 μ T at a nearly constant impact velocity, whereas in the other
98	series of experiments, the impact velocities were set to 1.3-7.0 km/s with different
99	projectiles and a constant applied field value. The peak pressure and peak temperature
100	distributions after the impacts were estimated using shock-physics modeling. Based on
101	the results of the remanence measurements and modeling, we propose an empirical
102	relationship between the SRM intensity and peak pressure/temperature in impact events.
103	In addition, we calculated the magnetic anomaly profile over an impact crater using the
104	empirical equation.
105	
106	2. Method
107	A natural basalt sample (Linxi, Inner Mongolia) was used for the experiments.
108	The basalt samples were the same as those used for the SRM experiments in the study by
109	Sato et al. (2021), and the detailed rock magnetic properties have been reported in a
110	previous study. The basalt sample contained SD titanomagnetite with a Curie temperature
111	of 237°C (Sato et al., 2021). Cylindrical basalt samples with a diameter and length of 8
112	cm were used as targets in the SRM acquisition experiments. The cylindrical basalt

113	samples were subjected to a three-axial alternating field demagnetization (AFD) of 80
114	mT using a DEM-8601C AF demagnetizer (Natsuhara-Giken) before the SRM
115	acquisition experiments.
116	Two-stage light-gas guns (vertical and horizontal) at the Institute of Space and
117	Astronautical Science (ISAS) of the Japan Aerospace and Exploration Agency (JAXA)
118	were used for SRM acquisition experiments. This study follows the method employed by
119	Sato et al. (2021). The basalt cylinder, solenoid coil, and magnetic shield were placed
120	coaxially in a vacuum experimental chamber. An aluminum sphere with a diameter of 2
121	mm and a polycarbonate sphere with a diameter of 7 mm were used as the projectiles,
122	and a nylon slit sabot was used to accelerate the projectile (Kawai et al., 2010). The impact
123	angle was fixed at 90°, measured from the top flat surface of the basalt cylinder, that is,
124	vertical impacts. Two series of experiments were conducted (Table 1). In one series of
125	experiments, impact experiments were conducted under magnetic fields of 100, 150, 200,
126	and 400 μT with nearly constant impact velocities of 5.3–5.5 km/s. In the other series of
127	experiments, the magnetic field was fixed at 100 μ T, and the impact velocities were set
128	to 1.3 (polycarbonate), 2.7, 4.0, 5.3, and 7.0 km/s (aluminum).

129	After the impact experiments on SRM acquisition, the target samples were cut
130	into cube-shaped subsamples approximately 3 mm in length using rock cutters. The
131	subsamples are denoted as <i>RiZ</i> j, where the indices i and j are the numbers from the impact
132	point in the radial and axial directions of a cylindrical sample. The measured subsamples
133	are listed in Table 2. Remanence measurements were conducted using a superconducting
134	quantum interference device magnetometer (Model 755, 2G Enterprise) at the University
135	of Tokyo. This study followed the method of Sato et al. (2015) for small-sample
136	measurements. The cube-shaped subsample was set at the edge of a rod made of polylactic
137	acid using a double-sided tape. The remanence of the polylactic acid rod was measured
138	before and after sample measurement, and the average remanence of the rod was
139	subtracted to calculate the sample moment. Stepwise AFD treatments of up to 80 mT were
140	conducted using an alternating field demagnetizer (DEM-95C, Natsuhara-Giken) with a
141	two-axis tumbling system. After the stepwise AFD measurements of the SRM state,
142	several samples were selected for each cylindrical sample, and the anhysteretic remanent
143	magnetization (ARM) with DC and AC fields of 100 μ T and 80 mT, respectively, were
144	measured to normalize the effect of heterogeneity of magnetic minerals. Additionally,

145stepwise thermal demagnetization (THD) treatments up to 320°C were conducted on eight 146 cube samples selected from one cylindrical basalt sample using a thermal demagnetizer (TDS-1, Natsuhara-Giken). 147148A series of impact simulations using a two-dimensional version of the iSALE 149shock physics code (Amsden et al., 1980; Ivanov et al., 1997; Wünnemann et al., 2006) was conducted to estimate the peak pressure P_{peak} and peak temperature T_{peak} values in 150151the SRM acquisition experiments. This study followed the impact simulations of Sato et 152al. (2021), and the details of the impact simulation are described in their paper. The impact velocities and shapes of the projectile and target in the simulation were set to the same 153154values as those in the SRM acquisition experiments. The mass-weighted averaged values 155of P_{peak} and T_{peak} in each 3 mm cube region were calculated to compare the calculated peak pressures and peak temperatures with the experimentally measured SRM properties. 1561571583. Results

159 The experimental results for an aluminum sphere with a diameter of 2 mm and
160 an impact velocity of 7 km/s (cylindrical basalt samples 3767 and 3769) are summarized

-

161	in Figures 1–3. The SRM component was calculated as $J_{\text{SRM}}(2) - J_{\text{SRM}}(80)$ and the
162	stability of the SRM component was evaluated as $ J_{\text{SRM}}(6) - J_{\text{SRM}}(80) / J_{\text{SRM}}(2) -$
163	$J_{\text{SRM}}(80)$, where $J_{\text{SRM}}(X)$ is the SRM vector at the X mT AFD step. The basalt sample
164	acquired SRM and the SRM properties were systematically change with increasing the
165	distance from impact point as observed in Sato et al. (2021): (1) The SRM component is
166	a single component in one direction in the orthogonal vector plots (Figure 1). (2) The
167	SRM intensity systematically changes with distance in the case with an applied field of
168	100 μT , and the SRM intensity in the case with an applied field of 100 μT is larger than
169	that of the zero field (Figure 2), indicating that the basalt sample acquired remanent
170	magnetization as a result of shock wave propagation in the applied magnetic field. (3)
171	The SRM intensity systematically changed with distance from the impact point (Figure
172	2). (4) The SRM stability with respect to the AFD treatment systematically changed with
173	distance from the impact point, and the median destructive field of the SRM components
174	was less than 20 mT (Figure 3).
175	The experimental results for cylindrical basalt samples with different sizes and

the same projectile condition (aluminum sphere with a diameter of 2 mm and impact

177	velocity of approximately 7 km/s) are compared in Figure 4. The diameters and lengths
178	of the basalt samples were 8 cm (this study) and 10 cm (Sato et al., 2021), respectively.
179	To normalize the heterogeneity of magnetic minerals among the cylindrical basalt
180	samples, the SRM intensity was normalized as $ J_{SRM}(2) - J_{SRM}(80) /J_{ARM}$, where J_{ARM} is
181	the average ARM intensity for several cube samples. The 10 cm basalt cylinder sample
182	shows a systematic change in the normalized SRM intensity with approximately 0.1
183	dispersion at the same P_{peak} value. The changes in the normalized SRM intensity with
184	respect to P_{peak} for the 8 cm basalt cylinder were consistent with those of the 10 cm basalt
185	cylinder within 3-4 cm from the impact point, while the SRM intensity for the 8 cm
186	cylinder deviated from the trend for the 10 cm cylinder beyond 3-4 cm from the impact
187	point. This deviation likely arose from the arrival of an expansion wave from the side of
188	the cylinder, where a free surface exists. Although the effects of sudden pressure release
189	due to the expansion wave from the side surface are not yet fully understood, the geometry
190	is largely different from that of natural impact events. Consequently, we decided to use
191	only the SRM data within 3 cm from the impact point where the pressure release occurred
192	because of the expansion wave from the top surface.

193	The results of the stepwise THD treatments in the case of an aluminum sphere
194	with a diameter of 2 mm and an impact velocity of 5.3 km/s (cylindrical basalt sample
195	835) are summarized in Figures 5 and 6. The SRM component was a single component
196	in one direction in the orthogonal vector plot (Figure 5), similar to the stepwise AFD
197	treatments (Figure 1). In contrast to the AFD treatment, the SRM stability with respect to
198	the THD treatment was almost unchanged with the distance from the impact point (Figure
199	6).
200	The experimental results in the case of an aluminum sphere with a diameter of
201	2 mm and nearly-identical impact velocity (5.3-5.5 km/s) and varying the applied field
202	intensity (cylindrical basalt samples 835, 838, 839, and 840) are shown in Figures 7a and
203	7b. The SRM intensity was normalized as $\{ J_{SRM}(2) - J_{SRM}(80) /B_{SRM}\}/(J_{ARM}/B_{ARM})$,
204	where B_{SRM} and B_{ARM} are the applied DC field intensities for the SRM and ARM,
205	respectively. The normalized SRM intensities and SRM stabilities at 150, 200, and 400
206	μT showed similar values over the entire pressure range. The normalized SRM intensity
207	and SRM stability values in the cases of 100 μ T slightly deviated from the trends of higher
208	field intensities below ~ 0.5 and ~ 1 GPa, respectively. These deviations increased with

209 decreasing pressure. These deviations indicate that the SRM properties below ~1 GPa 210 were saturated above 100 μ T field conditions. Despite slight saturation, the normalized 211 SRM intensity and SRM stability values were similar in the four cylindrical samples 212 (Figure 7b); thus, the SRM intensity was proportional to the applied field intensity up to 213 400 μ T.

The experimental results for an applied field intensity of 100 μ T and various 214projectile conditions (cylindrical basalt samples 835, 836, 837, 3767, and 3773) are 215216shown in Figures 7c and 7d. The SRM intensity increased with increasing P_{peak} value and 217deviated from the increasing trend near the impact point owing to the significant 218temperature increase for each cylindrical sample (Figure 7c). The deviation from this trend becomes significant above 310 K (Figure 8). Comparing the regions with the 219 220increasing trend, the SRM intensities for the different projectile conditions were almost consistent at the same P_{peak} values, although the SRM intensities of the slowest aluminum 221222projectile velocity samples were slightly higher than those of the other samples (Figure 7c). The SRM stability systematically increased with increasing P_{peak} value, even in the 223case T_{peak} values above 310 K, and all basalt cylinder samples showed a consistent trend 224

225 (Figure 7d).

226

227 **4. Discussion**

The SRM intensity approximated as linear and power functions of the P_{peak} 228value for cube samples with T_{peak} below 310 K are shown in Figure 7c. The difference 229230between the linear regression line and experimental data was significant below 0.2 GPa, while the experimental data agreed well with the power function for the entire P_{peak} range 231232(Figure 7c). The SRM intensity dependence on T_{peak} value is assumed to be a linear function because the T_{peak} variations in the experimental data are sparse compared to the 233234 P_{peak} variations. The root mean square of the differences between the estimated value and the experimental value were 0.065 and 0.043 for linear and power functions of the P_{peak} , 235236respectively. Thus, this study proposes a power function as an empirical expression for 237the SRM intensity dependence on P_{peak} value, and the SRM intensity J_{SRM} was 238approximated for the entire P_{peak} and T_{peak} ranges as

239
$$\frac{J_{\text{SRM}}}{J_{\text{ARM}}} = 7.09 \times 10^{-1} \times \left(\frac{P_{\text{peak}}}{\text{GPa}}\right)^{0.134} - 1.19 \times 10^{-3} \left(\frac{T_{\text{peak}}}{\text{K}}\right) (1).$$

240 The experimental and modeled SRM intensities are compared in Figure 9. The intensity

241 differences between the experimental and model values were smaller than the SRM 242 intensity values over the entire P_{peak} and T_{peak} ranges.

- 243 The efficiencies of TRM and ARM acquisition for the basalt sample were 46.0
- and 12.0 $Am^2kg^{-1}T^{-1}$, respectively, and the SRM acquisition efficiency with respect to
- TRM is expressed as

246
$$\frac{J_{\text{SRM}}}{J_{\text{TRM}}} = 1.85 \times 10^{-1} \times \left(\frac{P_{\text{peak}}}{\text{GPa}}\right)^{0.134} - 3.10 \times 10^{-4} \left(\frac{T_{\text{peak}}}{\text{K}}\right) (2),$$

where J_{TRM} is the TRM intensity. Additionally, the law of proportionality of the remanence intensity to the applied field intensity was almost satisfied for the SRM in this study. Then, the empirical SRM intensity relationship with respect to the applied field intensities *B*, P_{peak} , and T_{peak} is given as

251
$$J_{\text{SRM}} = \left\{ 1.85 \times 10^{-1} \times \left(\frac{P_{\text{peak}}}{\text{GPa}}\right)^{0.134} - 3.10 \times 10^{-4} \left(\frac{T_{\text{peak}}}{\text{K}}\right) \right\} \times J_{\text{TRM}}(B_0) \times \frac{B}{B_0}$$
 (3),

252 where $J_{\text{TRM}}(B_0)$ is the TRM intensity at the acquisition field of B_0 .

Based on the empirical equation, we estimated the magnetic anomaly profile over an impact crater on basaltic crust containing SD titanomagnetite. Given that the SD titanomagnetite grains contained in the basaltic crust are identical to those in our experimental sample, the empirical equation for SRM acquisition can be applied to the

257	basaltic crust. The P_{peak} and T_{peak} distributions in the basaltic crust were calculated using
258	the iSALE shock-physics code (Figures 10c and 10d). Details of the shock physics
259	modeling are provided in the Supporting Information. The P_{peak} and T_{peak} values were
260	substituted into the empirical equation (2), and the crustal remanence intensity with
261	respect to the TRM intensity was calculated for the basaltic crust. The crustal rock near
262	the impact point experiences a high temperature during and after the shock wave
263	propagation and should acquire TRM. Then, the TRM values were allocated to the crustal
264	rocks with T_{peak} values above the Curie temperature of titanomagnetite (510 K). The
265	magnetic field was vertically applied to the basaltic crust, and the crustal rock acquired
266	TRM and SRM parallel to the applied field. Because our empirical relationship cannot
267	evaluate the effects of lithostatic pressure and geotherm, zero pressure and uniform
268	temperature in the basaltic crust were assumed to be the initial conditions, which
269	correspond to the craters produced on a laboratory scale. Nevertheless, our simulation
270	may provide a qualitative understanding of the magnetic anomaly profile above the
271	magnetized crater immediately after impact.

The distribution of the crustal remanence is illustrated in Figure 10b. A thin

272

273	layer of approximately one projectile radius (R_p) around the impact point acquired a
274	strong remanence as TRM, and a vast region outside the TRM layer (20–30 R_p) acquired
275	a significant SRM intensity (>0.05 J_{TRM}). Consequently, the magnetic anomaly at an
276	altitude comparable to the crater diameter (20 R_p) showed a broader distribution with
277	respect to the crater shape (Figure 10a). The contributions of the TRM and SRM regions
278	to the magnetic anomaly are evaluated in Figure 10a. The contribution of the SRM region
279	is three times higher than that of the TRM layer at the center of the crater. These
280	contributions can be approximated as dipole moments located at depths of 10 R_p and 43
281	$R_{\rm p}$ for the TRM and SRM regions, respectively. The intensity of latter dipole is ten times
282	larger than that of former. The depth of 43 R_p corresponds to the P_{peak} value of
283	approximately 0.1 GPa and the SRM intensity of 0.04–0.05 J_{TRM} . The remanence
284	intesnsity decreases with increasing the distance from the impact point in the SRM region,
285	and the volume of the same distance area increases with increasing the distance. As the
286	result, an effective center of dipole locates at the depth of 43 R_p . While the remanence
287	intensity at the SRM region is smaller than that of TRM, the volume of SRM region is
288	significantly larger than that of TRM, resulting in the large contribution to the magnetic

289	anomaly. This distinct feature of the anomaly expressed as the two dipoles located at the
290	basement of the crater and a deeper part could be used to detect the magnetic anomaly
291	caused by impact events and would play an important role in reconstructing the magnetic
292	field histories of terrestrial planets. However, a more systematic study based on impact
293	simulations under various conditions and these magnetic anomaly calculations are
294	required to further evaluate the detectability of impact magnetization events on terrestrial
295	planets.
296	
297	5. Conclusion
298	This study conducted two series of SRM acquisition experiments varying
299	applied fields and projectile conditions and the remanence measurements for cube-shaped
300	subsamples were conducted for the cylindrical basalt samples containing SD
301	titanomagnetite. The normalized SRM intensity and SRM stability values were similar in
302	the experiments with varying applied fields, and the SRM intensity was proportional to
303	the apple field intensity up to 400 μ T. The SRM intensities for different projectile
304	conditions were almost consistent at the same P_{peak} values. Then, the empirical expression

305	for SRM intensity is proposed to be the power function of P_{peak} and a linear function of
306	T_{peak} , which can be used to express the experimental SRM intensity values in the ranges
307	P_{peak} up to 10 GPa and T_{peak} up to the Curie temperature. This empirical equation can be
308	used to estimate the magnetic anomaly distribution over an impact crater. The anomaly
309	showed a distinct feature approximated as two dipoles located at the basement of the
310	crater and a deeper part, and this feature could be used to detect the magnetic anomaly
311	caused by impact events.
312	
313	Data Availability Statement
313 314	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE
313 314 315	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to
313314315316	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the
 313 314 315 316 317 	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the application requirements can be found at the iSALE website (https://isale-
 313 314 315 316 317 318 	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the application requirements can be found at the iSALE website (https://isale- code.github.io/terms-of-use.html). The M-ANEOS package is available from Thompson
 313 314 315 316 317 318 319 	Data Availability Statement Data from this paper are archived at the UTokyo Repository (Sato, 2023). The iSALE shock physics code is not fully open-source, but is distributed on a case-by-case basis to academic users in the impact community for non-commercial use. A description of the application requirements can be found at the iSALE website (https://isale- code.github.io/terms-of-use.html). The M-ANEOS package is available from Thompson et al. (2019). The list of input parameters for the iSALE computations can be found in the

321

322 Acknowledgement

323 This study was performed under the collaborative research program with the

- 324 Hypervelocity Impact Facility (former name: Space Plasma Laboratory), ISAS, JAXA.
- 325 The authors thank the developers of iSALE, including G. Collins, K. Wünnemann, B.
- 326 Ivanov, J. Melosh, and D. Elbeshausen. We used pySALEplot to analyze the output file
- 327 of iSALE, and also thank Tom Davison for the development of pySALEPlot. This study
- 328 was supported by JSPS KAKENHI grants JP21H01140. K.K. is supported by JSPS
- 329 KAKENHI grant JP18KK0092 and JP19H00726. K.K. and M.S. are supported by JSPS
- 330 KAKENHI grant JP21K18660.

331

332 **References**

- 333 1. Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden,
- J., et al. (1999). Global distribution of crustal magnetization discovered by the Mars
- Global Surveyor MAG/ER experiment. Science, 284(5415), 790–793.
- 336 2. Amsden, A., Ruppel, H., and Hirt, C. (1980). SALE: A simplified ALE computer
- 337 program for fluid flow at all speeds, Los Alamos National Laboratories Report, LA-
- 338 8095:101p.
- 339 3. Dunlop, D. J., & Özdemir, Ö. (1997). Rock magnetism: Fundamentals and frontiers,
- 340 (p. 573). Cambridge University Press.
- 341 4. Gattacceca, J., L. Berthe, M. Boustie, F. Vadeboin, P. Rochette, and T. De Resseguier
- 342 (2008), On the efficiency of shock magnetization processes, Phys. Earth Planet.
- 343 Inter., 166, 1–10.
- 5. Gattacceca, J., M. Boustie, E. Lima, B. P. Weiss, T. de Resseguier, and J.-P. Cuq-
- 345 Lelandais (2010), Unraveling the simultaneous shock magnetization and
- demagnetization of rocks, Phys. Earth Planet. Inter., 182, 42–49.
- 347 6. Halekas, J. S., R. P. Lin, and D. L. Mitchell (2003), Magnetic fields of lunar multi-
- ring impact basins, Meteorit. Planet. Sci., 38, 565–578.
- 349 7. Hood, L. L. (2011), Central magnetic anomalies of Nectarian-aged lunar impact
- basins: Probable evidence for an early core dynamo, Icarus, 211, 1109–1128.
- 8. Ivanov, B. A., Deniem, D., and Neukum, G. (1997). Implementation of dynamic
- 352 strength models into 2-D hydrocodes: Applications for atmospheric breakup and

353		impact cratering. International Journal of Impact Engineering, 20(1-5), 411-430.
354	9.	Kawai, N., K. Tsurui, S. Hasegawa, and E. Sato (2010), Single microparticle
355		launching method using two-stage light-gas gun for simulating hypervelocity
356		impacts of micrometeoroids and space debris, Rev. Sci. Instrum., 81, 115105.
357	10.	Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S., & Frey, H. V. (2013). Time
358		history of the Martian dynamo from crater magnetic field analysis. Journal of
359		Geophysical Research: Planets, 118, 1488–1511.
360	11.	Néel, L. (1949), Théorie du traînage magnétique des ferromagnétiques en grains fins
361		avec applications aux terres cuites, Ann. Geophys., 5, 99–136.
362	12.	Quesnel, Y., J. Gattacceca, G. R. Osinski, and P. Rochette (2013), Origin of the
363		central magnetic anomaly at the Haughton impact structure, Canada, Earth Planet.
364		Sci. Lett., 367, 116–122.
365	13.	Sato, M. (2023). Data in "Pressure and temperature dependence of shock remanence
366		intensity for single-domain titanomagnetite-bearing basalt: Toward understanding
367		the magnetic anomalies produced by impact events". Retrieved from
368		http://hdl.handle.net/2261/0002006019.

369	14.	Sato, M., Kurosawa, K., Kato, S., Ushioda, M., & Hasegawa, S. (2021), Shock
370		remanent magnetization intensity and stability distributions of single-domain
371		titanomagnetite-bearing basalt sample under the pressure range of 0.1-10 GPa.
372		Geophysical Research Letters, 48, e2021GL092716.
373	15.	Sato, M., S. Yamamoto, Y. Yamamoto, Y. Okada, M. Ohno, H. Tsunakawa, and S.
374		Maruyama (2015), Rock-magnetic properties of single zircon crystals sampled from
375		the Tanzawa tonalitic pluton, central Japan, Earth Planets Space, 67, 150.
376	16.	Srnka, L., G. Martelli, G. Newton, S. Cisowski, M. Fuller, and R. Schaal (1979),
377		Magnetic field and shock effects and remanent magnetization in a hypervelocity
378		impact experiment, Earth Planet. Sci. Lett., 42, 127–137.
379	17.	Wünnemann, K., Collins, G. S., and Melosh, H. J. (2006). A strain-based porosity
380		model for use in hydrocode simulations of impacts and implications for transient
381		crater growth in porous targets. Icarus, 180(2), 514-527.
382		
383	Fig	are 1. Orthogonal vector plots for stepwise alternating field demagnetization of shock
384	rem	anence (cylindrical basalt sample 3767). Closed and open symbols denote projections

385 for X–Y and X–Z planes, respectively.

386

Figure 2. Shock remanence intensity plotted as a function of distance from the impactpoint (cylindrical basalt samples 3767 and 3769).

389

Figure 3. Stepwise alternating field demagnetization curves for shock remanences

391 (cylindrical basalt sample 3767). Normalized remanence intensity is plotted as a function

392 of peak alternating field.

393

```
Figure 4. Shock remanence intensity plotted as a function of peak pressure during the
```

395 shock wave propagation. Closed and open black circles denote the data of this study

- 396 (cylindrical basalt sample 3767) within and beyond 3 cm from impact point, respectively.
- 397 Grey circles denote the data in Sato et al. (2021).

398

Figure 5. Orthogonal vector plots for stepwise thermal demagnetization of shock
remanence (cylindrical basalt sample 835). Closed and open symbols denote projections

401 for X–Y and X–Z planes, respectively.

402

403 Figure 6. Stepwise thermal demagnetization curves for shock remanences (cylindrical
404 basalt sample 835). Normalized remanence intensity is plotted as a function of peak
405 heating temperature.

406

Figure 7. Shock remanence (SRM) intensity (a) and stability (b) are plotted as a function 407 408 of peak pressure during the shock wave propagation for the cylindrical basalt samples 409 835, 838, 839, and 840. The SRM intensity was calculated as $(J_{SRM}/B_{SRM})/(J_{ARM}/B_{ARM})$, 410 where the J_{SRM} , J_{ARM} , B_{SRM} , and B_{ARM} are the SRM intensity, anhysteretic remanence intensity, applied field intensity in SRM experiment, and applied DC field intensity in 411 412ARM experiment. The shock remanence stability was calculated as $|J_{SRM}(6) - J_{SRM}(80)|/|$ 413 $J_{\text{SRM}}(2) - J_{\text{SRM}}(80)$, where $J_{\text{SRM}}(X)$ is the SRM vector at the X mT AFD step. SRM intensity (c) and stability (d) are plotted as a function of peak pressure during the shock 414 wave propagation for the cylindrical basalt samples 835, 836, 837, 3767, and 3773. The 415416 SRM intensity was calculated as $J_{\text{SRM}}/J_{\text{ARM}}$. Black and gray lines in (c) are the linear 417 regression and power function lines, respectively.

418

419 Figure 8. Shock remanent magnetization (SRM) intensity (a and c) and stability (b and 420d) are plotted as a function of peak temperature during the shock wave propagation (cylindrical basalt samples 835, 836, 837, 3767, and 3773). The SRM intensity was 421422calculated as $|J_{SRM}(2) - J_{SRM}(80)|/|J_{ARM} - J_{ARM}(80)|$, where the J_{SRM} and J_{ARM} are the 423SRM and anhysteretic remanence vectors, respectively, and the numbers in parentheses 424indicate peak amplitude of alternating field demagnetization treatments. The shock 425remanence stability was calculated as $|J_{SRM}(6) - J_{SRM}(80)|/|J_{SRM}(2) - J_{SRM}(80)|$. 426 Figure 9. (a) Relationship between the experimental and model SRM intensities. (b) 427428Differences between the experimental and model SRM intensity. Sizes of symbols 429indicate the magnitude of residual values.

430

431 Figure 10. (a) Amplitudes of crustal magnetic fields at an altitude of 20 projectile radius
432 (*R*_p). Two-dimensional maps for (b) crustal remanence intensity, (c) peak pressure during

433 the shock wave propagation, and (d) peak temperature during the shock wave propagation.

- 434 The remanence intensity of shock remanence (SRM) is normalized with respect to that of
- 435 thermal remanent magnetization (TRM). The vertical and radial distances in the two-
- 436 dimensional maps are normalized with respect to $R_{\rm p}$.

[Journal of Geophysical Research: Planets]

Supporting Information for

[Pressure and temperature dependence of shock remanence intensity for singledomain titanomagnetite-bearing basalt: Toward understanding the magnetic anomalies produced by impact events]

[Masahiko Sato¹, Kosuke Kurosawa², Sunao Hasegawa³, and Futoshi Takahashi⁴]

[¹Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan, ²Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan, ³Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan, ⁴Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan]

Contents of this file

- Description for impact simulation (Table S1 and S2)

Impact simulation

We conducted shock physics modeling to calculate the peak pressure and peak temperature distributions around an impact crater using the iSALE shock physics code (Amsden et al., 1980; Ivanov et al., 1997; Wünnemann et al., 2006). We employed cylindrical coordinates, and we assumed a vertical impact of a dunite projectile onto a basaltic crust. The material model pertaining to basalt is summarized in Table S1. The impact velocity was set to 6 km s⁻¹, which corresponds to the minimum impact velocity onto Mars (Zahnle, 1993).

Because our empirical relationship cannot evaluate the effects of lithostatic pressure and geotherm, zero pressure and uniform temperature in the basaltic crust were assumed to be the initial conditions, which correspond to the craters produced on a laboratory scale. Nevertheless, our simulation may provide a qualitative understanding of the magnetic anomaly profile above the magnetized crater immediately after impact.

Since we needed to continue numerical integration until the end of a crater formation, the computational cost of this simulation is relatively high. To reduce the computational time, the spatial resolution was relatively low, and a relatively large value of gravitational acceleration was employed. The calculation settings are summarized in Table S2.

Table S1. Input parameters for the material models. Note that the parameter set pertaining to the dunite projectile and the basalt target are the same as used by Johnson et al. (2015) and Bowling et al. (2020), respectively.

EOS type	ANEOS ^a	ANEOS ^a
Material	Dunite ^b	Basalt ^c
Strength model	Rock ^d	Rock ^d
Poisson's ratio	0.25	0.25
Melting temperature (K)	1373	1360
Thermal softening parameter	1.2	0.7
Simon parameter, A (GPa)	1.52	4.5
Simon parameter, C	4.05	3.0
Cohesion (undamaged) (MPa), $Y_{\text{coh,i}}$	10	20
Cohesion (damaged) (kPa), Y_{coh}	10	10
Internal friction (undamaged), μ_{int}	1.2	1.4
Internal friction (damaged), μ_{dam}	0.6	0.6
Limiting strength (GPa), Y _{limit}	3.5	2.5
Minimum failure strain	10-4	10-4
Constant for the damage model	10-11	10-11
Threshold pressure for	300	300
the damage model (MPa)		

^aThompson and Lauson (1972), Thompson et al. (2019) ^bBenz et al. (1989) ^cPierazzo et al., (2005), Sato et al. (2021)

^dCollins et al. (2004)

 Table S2. Numerical model settings.

Computational geometry	Cylindrical coordinates	
Number of computational cells in the <i>R</i> direction	500	
Number of computational cells in the Z direction	500	
Number of cells for the extension zone in the R	200	
direction		
Number of cells for the extension zone in the Z	100	
direction (top)		
Number of cells for the extension zone in the Z	200	
direction (bottom)		
Cells per projectile radius (CPPR) ^b	5	
Impact velocity (km s ⁻¹)	6	
Layer position	400 cells from the bottom of the	
	computational domain	
Artificial viscosity, a_1	0.24	
Artificial viscosity, a_2	1.2	

References

Amsden, A., Ruppel, H., and Hirt, C. (1980). SALE: A simplified ALE computer program for fluid flow at all speeds, Los Alamos National Laboratories Report, LA - 8095:101p.

- Benz, W., Cameron, G. W., & Melosh, H. J. (1989). The origin of the Moon and the singleimpact hypothesis III. Icarus, 81(1), 113–131. https:// doi.org/10.1016/0019-1035(89)90129-2
- Collins, G. S., Melosh, H. J., and Ivanov, B. A. (2004). Modeling damage and deformation in impact simulations, Met. And Planet. Sci., 39, 217–231.
- Ivanov, B. A., Deniem, D., and Neukum, G. (1997). Implementation of dynamic strength models into 2 - D hydrocodes: Applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering, 20(1–5), 411–430.
- Johnson, B. C., Minton, D. A., Melosh, H. J. and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339-341.
- Pierazzo, E., Artemieva, N. A., Ivanov, B. A. (2005). Starting conditions for hydrothermal systems underneath Martian craters: Hydrocode modeling. in Large meteorite impacts III, eds., Kenkmann, T., Hörz, F., and Deutsch, A.,: Geological Society of America Special Paper, 384, p. 443–457.
- Sato M., Kurosawa K., Kato S., Ushioda M., and Hasegawa S. (2021). Shock Remanent Magnetization Intensity and Stability Distributions of Single-Domain Titanomagnetite-Bearing Basalt Sample Under the Pressure Range of 0.1–10 GPa. Geophysical Research Letters, 48, 8.
- Thompson, S. L., & Lauson, H. S. (1972). Improvements in the Chart-D radiation hydrodynamic code III: Revised analytical equation of state. pp. SC-RR-71 0714 119 pp., Sandia Laboratories, Albuquerque, NM.
- Thompson, S. L., Lauson, H. S., Melosh, H. J., Collins, G. S., & Stewart, S. T. (2019,
November 1). M-ANEOS (Version 1.0). Zenodo.
https://doi.org/10.5281/zenodo.3525030
- Wünnemann, K., Collins, G. S., and Melosh, H. J. (2006). A strain based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus, 180(2), 514–527.
- Zahnle, K., Xenological constraints on the impact erosion of the early martian atmosphere, J. Geophys. Res., 98, 10899–10913, 1993.