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Abstract

Seasonal snow is an important water source and contributor to river discharge in mountainous regions. Therefore the amount of

snow and its distribution are necessary inputs for hydrological modeling. However, the distribution of seasonal snow in mountains

has long been uncertain, for lack of consistent, high resolution satellite retrievals over mountains. Recent research has shown

the potential of the Sentinel-1 radar satellite to map snow depth at sub-kilometer resolution in mountainous regions. In this

study we assimilate these new snow depth retrievals into the Noah-Multiparameterization land surface model using an ensemble

Kalman filter for the western European Alps. The land surface model was coupled to the Hydrological Modeling and Analysis

Platform to provide simulations of routed river discharge. The results show a reduction in the systematic underestimation of

snow depth, going from 38 cm for the open loop (OL) to 11 cm for the data assimilation (DA) experiment. The mean absolute

error similarly improves from 44 cm to 37 cm with DA, with an improvement at 59% of the in situ sites. The DA updates in

snow depth results in enhanced snow water equivalent and discharge simulations. The systematic negative bias in the OL is

mostly resolved, and the median temporal correlation between discharge simulations and measurements increases from 0.61 to

0.73 for the DA. Therefore, our study demonstrates the utility of the S1 snow depth retrievals to improve not only snow depth

amounts, but also the snow melt contribution to river discharge, and hydrological modeling in general.
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Key Points:8

• The assimilation of Sentinel-1 snow depth retrievals reduces the bias in NoahMP9

snow depth and snow water equivalent estimates.10

• The temporal correlation of streamflow simulations increased from 0.61 for the model-11

only run to 0.73 with the assimilation of Sentinel-1 based snow depth.12

• Sentinel-1 based snow depth estimates can be of considerable value for hydrolog-13

ical modeling in mountainous regions.14
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Abstract15

Seasonal snow is an important water source and contributor to river discharge in moun-16

tainous regions. Therefore the amount of snow and its distribution are necessary inputs17

for hydrological modeling. However, the distribution of seasonal snow in mountains has18

long been uncertain, for lack of consistent, high resolution satellite retrievals over moun-19

tains. Recent research has shown the potential of the Sentinel-1 radar satellite to map20

snow depth at sub-kilometer resolution in mountainous regions. In this study we assim-21

ilate these new snow depth retrievals into the Noah-Multiparameterization land surface22

model using an ensemble Kalman filter for the western European Alps. The land sur-23

face model was coupled to the Hydrological Modeling and Analysis Platform to provide24

simulations of routed river discharge. The results show a reduction in the systematic un-25

derestimation of snow depth, going from 38 cm for the open loop (OL) to 11 cm for the26

data assimilation (DA) experiment. The mean absolute error similarly improves from27

44 cm to 37 cm with DA, with an improvement at 59% of the in situ sites. The DA up-28

dates in snow depth results in enhanced snow water equivalent and discharge simulations.29

The systematic negative bias in the OL is mostly resolved, and the median temporal cor-30

relation between discharge simulations and measurements increases from 0.61 to 0.73 for31

the DA. Therefore, our study demonstrates the utility of the S1 snow depth retrievals32

to improve not only snow depth amounts, but also the snow melt contribution to river33

discharge, and hydrological modeling in general.34

1 Introduction35

Snow is an important water resource for people around the globe. It supplies the36

majority of water for consumption for about a sixth of the world’s population during the37

melting season (Barnett et al., 2005). In the European Alps, snow melt is used by the38

densely populated downstream regions, providing water for domestic use, agriculture and39

hydropower generation (Blanc, P., & Schädler, 2014). Knowledge on the amount and dis-40

tribution of snow is essential for hydrological modeling in mountainous catchments to41

support water management planning and flood forecasting (Dechant & Moradkhani, 2011;42

Griessinger et al., 2019; Stigter et al., 2017). Moreover, snow also impacts the surface43

energy balance by insulating the ground, reflecting incoming radiation and absorbing la-44

tent heat during the melt season. A better representation in models would thus also ben-45

efit numerical weather prediction (Helmert et al., 2018; de Rosnay et al., 2014).46

Land surface models (LSM) can simulate the accumulation and melt of snow through-47

out the year, providing continuous estimates of snow depth (SD) and snow water equiv-48

alent (SWE). However, imperfections in the model physics and forcing data cause these49

simulations to be uncertain, especially in complex terrain (Krinner et al., 2018; Mortimer50

et al., 2019). An evaluation by Wrzesien et al. (2017, 2019) of different models and re-51

mote sensing products over the United States showed systematic underestimation of mod-52

eled SWE. Furthermore, the spread between different models or reanalyses is large (Wrzesien53

et al., 2017; Mortimer et al., 2019)54

SD can also be estimated from in situ or remotely sensed observations. Point scale55

measurements, however, are not always representative for the surrounding area due to56

the spatial variability in mountains, in particular in regions where the measuring net-57

work is sparse. Estimates of snow cover can be retrieved from satellite observations in58

the visual or near infra-red spectrum, e.g. from the Moderate Resolution Imaging Spec-59

troradiometer (MODIS) (Hall & Riggs, 2007) or derived from multiple sensors as in the60

Interactive Multisensor Snow and Ice Mapping System (IMS) (Helfrich et al., 2007), but61

these products contain no information on the actual snow depth. Passive microwave satel-62

lite observations, on the other hand, can provide SD estimates with extensive spatial cov-63

erage (Kelly et al., 2003). However, their low spatial resolution (>10 km) and signal sat-64

uration in deep snow (Tedesco & Narvekar, 2010) makes them less suitable for applica-65
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tions in mountain areas. Lidar data such as from the Airborne Snow Observatory (ASO)66

can be used to retrieve high resolution, high quality SD maps (Painter et al., 2016), but67

practical and budget constraints limit their use for large scale applications.68

The snow science community is currently investigating which type of sensors would69

be suitable for a new satellite mission focused on the retrieval of snow mass (via SD or70

directly as SWE), e.g. through NASA’s SnowEx campaign (Durand et al., 2017). L-band71

interferometry experiments have shown promising results (Marshall et al., 2019; Tarri-72

cone et al., 2022; Rott et al., 2004; Guneriussen et al., 2001). The potential of Ku- and73

X-band sensors has been supported by both experimental and modeling studies (Tsang74

et al., 2021). All these radar technologies show potential to deliver a viable SD or SWE75

product in the future, but they are not operationally available yet.76

In the meantime, a study by Lievens et al. (2019) has shown the potential of the77

Sentinel-1 (S1) C-band (5.4GHz) radar satellite to provide SD estimates at sub weekly78

time steps and 1 km spatial resolution. The usability of C-band for snow mass has long79

been put aside after experiments with co-polarized backscatter had shown limited sen-80

sitivity (Bernier & Fortin, 1998; Pivot, 2012). The recent study of Lievens et al. (2019)81

differs from previous work by focusing on cross-polarized backscatter and deeper snow-82

packs. Their SD retrieval algorithm is based on an empirical change detection approach83

of the ratio between cross-polarized an co-polarized backscatter, and performs best for84

deeper snowpacks. The retrievals only work for dry snow and are more uncertain in the85

case of shallow snow and higher forest cover. According to the current physical under-86

standing, the S1 SD retrieval is based on the fact that a growing snowpack leads to an87

increase in scattering. Since the size of individual snow grains is small compared to C-88

band wavelength (∼5 cm), the scattering is more likely to originate from clusters of grains,89

multiple scattering between layer interfaces, snow-ground interactions or other snow struc-90

tures (Tsang et al., 2021). More research is being done to expand the underlying scat-91

tering theory.92

Continuous and improved SWE or SD estimates can be obtained through the as-93

similation of snow observations into LSMs. In the absence of satellite based SD retrievals,94

operational models often make use of in situ SD or SWE measurements added through95

interpolation schemes, snow cover (SC) observations or a combination of both (de Ros-96

nay et al., 2014; de Rosnay et al., 2015; Helmert et al., 2018; Magnusson et al., 2014).97

Charrois et al. (2016); Revuelto et al. (2021) have shown modeled SD can be improved98

by assimilating spectral reflectance data. Derived SC observations have also shown to99

improve model performance (Stigter et al., 2017; Margulis et al., 2016; Toure et al., 2018;100

Largeron et al., 2020), and can be further converted into SWE using snow depletion curves101

(Oaida et al., 2019; Andreadis & Lettenmaier, 2006; Arsenault et al., 2013). However,102

visual light imagery has the disadvantage of being limited to cloud-free situations and103

contains no direct information on the snow mass itself. Other studies have assimilated104

satellite-based SD from passive microwave observations, but with limited success. The105

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) estimates have a coarse106

resolution, tend to saturate for deeper snowpacks and are unable to capture the observed107

interannual variability (Andreadis & Lettenmaier, 2006; De Lannoy et al., 2012). Alter-108

natively, optical or microwave signals can be assimilated to improve snowpack estimates109

(Durand & Margulis, 2006; Alfieri et al., 2022).110

Snow data assimilation has been performed using various methods. The simplest111

method is through direct insertion (Hedrick et al., 2018), however this does not take into112

account relative model and observation uncertainties (Arsenault et al., 2013). A widely113

used and statistically more optimal scheme is the Ensemble Kalman Filter (EnKF) (Evensen,114

2003). In the EnKF, the model uncertainty is estimated from the spread of an ensem-115

ble of model trajectories (Reichle, 2008). Although the underlying assumptions of un-116

biased, normally distributed errors are often lightly violated, the methodology has been117

shown to be robust (Reichle et al., 2002) and has been applied widely and successfully118
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Figure 1. Location of the research area in the European Alps. The black lines delineate the

main drainage basins. The blue and red dots indicate the stations with discharge (Q, n=105) and

snow depth (SD, n=532) measurements respectively.

in assimilation studies for snow (Arsenault et al., 2013; De Lannoy et al., 2010; Magnus-119

son et al., 2014; Andreadis & Lettenmaier, 2006) and its coupling to hydrology (Sun et120

al., 2004; Stigter et al., 2017). More recently, particle filters have received more atten-121

tion (Magnusson et al., 2017; Piazzi et al., 2018). This methodology requires no assump-122

tions on the model or observation distribution and can therefore be a good alternative123

for the EnKF in strongly nonlinear systems (Gordon et al., 1993). For this study, the124

model runs were performed using NASA’s land information system (LIS), a modeling125

framework which combines different types of models, observations and data assimilation126

methods (Kumar et al., 2006). LIS has been used for multiple previous snow DA stud-127

ies (e.g. Kumar et al., 2015; De Lannoy et al., 2012; Park et al., 2022; Cho et al., 2022).128

In this study, we investigate the effectiveness of the new S1 SD estimates in a prac-129

tical application. Over a selected research area of the western European Alps we assim-130

ilate the S1 based SD observations into a coupled land surface and routing model using131

an Ensemble Kalman Filter. The goal is to quantify to which extent SD data assimila-132

tion can improve model simulations of SD, SWE and river discharge. Therefore, the model133

output with and without assimilation has been compared to reference data, consisting134

of point scale SD, SWE and river discharge measurements from different networks across135

the region.136

2 Materials and Methods137

2.1 Study region138

The research domain is presented in Figure 1 and covers the western European Alps,139

specifically from 44.0°N to 47.8°N and 5.5°W to 10.7°W. This region is of considerable140

hydrological importance, containing the upper catchments of some of Europe’s major141

rivers, including the Rhone, the Rhine, the Danube and the Po. The study area covers142

a wide range of land cover types, slopes, aspects and elevations.143

2.2 Sentinel-1 snow depth observations144

C-band (5.4GHz) radar backscatter measurements from the ESA and Copernicus145

S1 constellation were processed over the Alps for the period September 2015 through Au-146

gust 2021. The raw data was processed using the ESA Sentinel Application Platform (SNAP)147

–4–



manuscript submitted to Water Resources Research

toolbox to γ0 (in dB) as in Lievens et al. (2022). The first empirical algorithm to turn148

changes in backscatter into SD was applied over the Northern Hemisphere mountains149

at 1 km resolution in Lievens et al. (2019). The method was further improved and ap-150

plied at 100m, 500m and 1 km resolutions over the European Alps in Lievens et al. (2022).151

This current work makes use of the retrievals from the latter study at the 1 km resolu-152

tion, approximating the 0.01° latitude-longitude model simulation grid to which the re-153

trievals were interpolated using nearest neighbour sampling. Before the launch of Sentinel-154

1B in April 2016 less frequent S1 observations are available than during the rest of the155

period. This makes the earlier SD retrievals more prone to noise, which could adversely156

impact the data assimilation performance.157

The Sentinel-1 snow depth retrieval algorithm is based on an empirical change de-158

tection algorithm applied to γ0
VH and γ0

VV radar backscatter. The presence of liquid wa-159

ter during melt causes a strong decrease in γ0, which increases the uncertainty in the160

associated SD retrievals. A wet snow detection mechanism has been included in the re-161

trieval algorithm (Lievens et al., 2022), which allows for masking the S1 SD observations162

in wet snow conditions. Observations are masked when the backscatter difference be-163

tween an observations and the previous observation from the same relative orbit is larger164

than 2 dB.165

S1 SD estimates are available until April, but we noticed that omitting observa-166

tions from March onwards led to better data assimilation results. The wet snow detec-167

tion algorithm sometimes misses the onset of snow melt, especially if the backscatter de-168

creases gradually. By refraining from assimilating observations from March onwards, we169

can limit the potential negative impacts from missed wet snow presence. The retrievals170

are thus assimilated during the months August through February according to the avail-171

ability and coverage of the S1 acquisitions. Over the Alps, observations are typically avail-172

able every ±3 days.173

The S1 based SDs show very good correspondence to in situ measurements and are174

able to realistically represent spatial and temporal variability. Compared to in situ mea-175

surements, the mean relative errors are 20-30% of the in situ measured SD, for SD val-176

ues between 1.5 and 3m. Higher uncertainties were found in regions with shallow snow177

or dense forest cover (Lievens et al., 2022).178

2.3 Noah MP 3.6 and HyMAP179

To simulate processes at the land surface, we used the Noah land surface model with180

multiparameterization options version 3.6 (NoahMP) (Niu et al., 2011). Given meteo-181

rological forcings, such as precipitation and radiation, and land surface characteristics,182

such as elevation, land cover and soil texture, the model simulates surface and subsur-183

face processes. This leads to continuous estimates of the model state variables, includ-184

ing soil moisture, soil temperature, SD, SWE, and fluxes, including surface and sub-surface185

runoff. In NoahMP the snowpack processes are represented by a detailed physically-based186

parametrization, including multiple snow layers, melt-freeze processes and canopy snow187

interception. In comparison with the previous model version, the Noah LSM, the sim-188

ulation of runoff within NoahMP is improved by the introduction of permeable frozen189

soils and the simulation of snow melt is more accurate (Niu et al., 2011). In NoahMP,190

glaciers are not explicitly simulated, but are simply represented by the land cover class191

of ice. This static land cover cannot provide any melt water contribution other than that192

of the seasonal snow falling on top. Therefore, catchments that are considerably impacted193

by glacial meltwater were excluded from this study.194

NoahMP is coupled to the Hydrological Modeling and Analysis Platform (HyMAP)195

(Getirana et al., 2012; Getirana, Peters-Lidard, et al., 2017). HyMAP is a global river196

routing scheme that uses the LSM’s surface and sub-surface runoff estimates as input197

to simulate horizontal water fluxes. In this study, HyMAP was setup with the kinematic198
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wave equation with optimal sub timesteps determined with the Courant–Freidrichs–Levy199

(CFL) condition (Courant et al., 1967). River flow is routed between grid cells through200

a prescribed river network as in Getirana et al. (2012). HyMAP has been thoroughly val-201

idated over the Amazon basin (Getirana et al., 2012) and has been applied across the202

globe for various studies (Getirana, Kumar, et al., 2017; Jung et al., 2017) including a203

study about the assimilation of SC and SD into an LSM (Kumar et al., 2015).204

2.4 Model-only and data assimilation experiments205

Within NASA LIS, NoahMP ran on a grid of 0.01° resolution with the parametriza-206

tion options as in Kwon et al. (2019). The configuration also closely resembles the study207

of Park et al. (2022), that assimilated S1 backscatter in NoahMP over Western Colorado,208

but here we assimilate S1 derived SD instead of the backscatter itself. The model was209

forced with meteorological input data from the Modern-Era Retrospective analysis for210

Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017). The precipita-211

tion data from MERRA-2 has been bias corrected with gauge-based precipitation ob-212

servations (Reichle et al., 2017). The low resolution (0.5°) MERRA-2 forcings were down-213

scaled to the finer model grid by applying bilinear spatial interpolation with a topographic214

lapse-rate correction. Before starting the assimilation experiments, NoahMP was run for215

20 years (1995-2015) as a spin-up. Then, for the period from September 2015 through216

August 2021 two ensemble runs were performed: first, an open loop run without assim-217

ilation as a benchmark; second, a run with assimilation of S1 SD observations. The model218

was run at 15-min time steps, whereas daily averaged outputs were saved and analyzed.219

The updates of the snow state variables were performed with a one-dimensional220

ensemble Kalman filter (Reichle et al., 2002). During the analysis step, the modeled SD221

and SWE are locally pulled more or less towards the observations depending on the un-222

certainties in the model forecasts and observations. The uncertainty of the S1 SD ob-223

servations is estimated as 30 cm, and is assumed to be constant in space and time. The224

uncertainty of the model forecast is estimated by perturbing selected state variables (SD225

and SWE) and forcings (precipitation, longwave and shortwave radiation) in 12 ensem-226

ble members (see Table 1). Compared to the older Noah LSM, NoahMP simulates a snow-227

pack with multiple snow layers of variable depth. To conserve the snow density of the228

different layers during the analysis, the updates were divided over the layers proportion-229

ate to their share of the total SWE.230

Unlike some earlier snow data assimilation studies (e.g. De Lannoy et al. (2012)),231

the SD retrievals are not rescaled to the model climatology in this study, even if biases232

between both are found. However, since snow is a cumulative variable, any instantaneous233

error can lead to persistent bias and any filter update can correct for it with a lasting234

effect. Furthermore, comparison with in situ measurements have shown S1 to be mostly235

unbiased and the model systematically underestimating SD, especially for the higher SD236

values. By not a priori rescaling the SD observations to the model climatology, we are237

able to counter model bias, even if a bias-blind data assimilation system might be sub-238

optimal (Dee, 2006).239

2.5 Validation240

The daily SD and streamflow outputs of the model runs were compared to point241

scale observations from different in situ networks. The SD data was provided by Météo-242

France and the WSL Institute for Snow and Avalanche Research SLF. SWE data was243

provided by Electricité de France and ARPA Valle d’Aosta. Of the 68 SWE stations, 17244

are automatic stations with daily observations, the others provide biweekly observations.245

Daily streamflow data were collected from various local instances, specifically Eaufrance246

(France), eHYD (Austria), Federal Office for the Environment (Switzerland), Gewässerkundlicher247

Dienst Bayern (Germany), Landesanstalt für Umwelt Baden-Württemberg (Germany),248
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Table 1. Perturbation parameters applied for the OL and DA runs (with M=multiplicative,

A=additive, Std=standard deviation, Tcorr=temporal autocorrelation, Xcorr=cross-correlations).

State/Forcing Type Std Tcorr Xcorr

Snow depth M 0.0005 3 hours 1 0.9
SWE M 0.0005 3 hours 0.9 1

Precipitation M 0.5 1 day 1 -0.8 0.5
Shortwave radiation M 0.3 1 day -0.8 1 -0.5
Longwave radiation A 50 W/m2 1 day 0.5 -0.5 1

Agenzia Regionale per la Protezione Ambientale - ARPA Lombardia (Italy), ARPA Piemonte249

(Italy) and ARPA Valle d’Aosta (Italy). Reference data of daily precipitation was ac-250

quired from MeteoSwiss. In total we used 532 stations for SD, of which 460 above 1000m251

elevation, 105 stations for discharge, 68 stations for SWE and 603 for precipitation val-252

idation (see Figure 1).253

First, the in situ SD and SWE measurements were compared to the modeled SD254

and SWE from the OL and DA runs. Improvements were quantified in terms of conven-255

tional metrics like temporal correlation (R; dimensionless), mean absolute error (MAE;256

in m) and bias (in m). Timesteps with in situ SD=0 cm were excluded from the cal-257

culation of the metrics, but were included when plotting the time series of mean SD or258

SWE. To focus on sites impacted most by the snow DA, stations with a maximal in situ259

SD below 25 cm were removed, as were stations without S1 observations. In situ SD sta-260

tions are typically located in flat areas that are relatively easily accessible. The network261

in the region of study is relatively dense, however the highest mountain peaks are un-262

derrepresented in the analysis. The impact of SD assimilation at the highest elevations263

can still be determined indirectly through the impact on river discharge.264

Second, the OL and DA streamflow estimates were compared with in situ measure-265

ments. With a better representation of the snow state, we expect improvements in the266

DA runoff volume during the melting season, and thus a better representation of peak267

flow. We calculated the validation metrics only for the melting season (chosen as Febru-268

ary through September), when most impact of SD retrieval DA is expected. We excluded269

stations with low flows (< 1m3/s) and less than 100 days of data. Another necessary270

quality control measure was to manually remove discharge stations that are consider-271

ably influenced by glaciers, since NoahMP is not able to estimate glacier melt (manual272

selection based on glacier cover fraction), and to remove basins that are largely impacted273

by dams. These constraints strongly limited the amount of available stations, but are274

necessary to ensure the quality of the analysis. The 105 remaining stations measure the275

flow from basins of variable size and elevation, and are assumed to be a representative276

sample. The considered metrics are the time series correlation, the normalized mean ab-277

solute error (MAE; dimensionless) and the total volume error (DV; dimensionless). The278

MAE was normalized by the mean observed flow to allow for comparison of rivers of dif-279

ferent sizes. The total volume error shows the fraction of under- or overestimation of the280

total discharge volume during the melting season, independent of daily fluctuations. It281

was calculated per station, as follows:282

DV =

∑n
i=1 simi −

∑n
i=1 obsi∑n

i=1 obsi

with n equaling the number of observations, obsi the in situ observations, and simi the283

simulated (OL or DA) discharge for time steps i = 1, . . . , n.284

–7–
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Figure 2. Time series of weekly SD (m) mean over all in situ SD stations (n=532).

3 Results and Discussion285

3.1 Snow depth and SWE286

We evaluated the effect of the S1 SD assimilation on the time series of SD across287

the study area. As one can see in the timeseries of mean spatial SD in Figure 2, the model288

only run (OL) performs quite well in reproducing the seasonal trend of accumulation of289

the snowpack, and is able to simulate the interannual variability (anomaly R = 0.69).290

However, it systematically underestimates the SD compared to in situ observations, caus-291

ing an unrealistically early melt onset. On average, the S1 DA causes the model to be292

pulled upwards closer to the in situ observations. The reduced bias furthermore results293

in an improved representation of the snow melt. The generally deeper DA snowpack re-294

quires more energy and thus takes more time to melt.295

For each of the stations above 1000m (n=460), the SD time series R, MAE and296

bias were calculated (zero SD values excluded). The distribution of the metrics is show297

in Figure 3. The DA strongly reduces the bias from -27 cm to -6 cm. This does, however,298

not translate into an improved correlation with in situ measurements. The correlation299

remains unchanged at 0.83, which can likely by attributed to two counteracting effects.300

On the one hand, the reduction in bias causes the timing of the melt season to be rep-301

resented better. On the other hand, noisy satellite observations, and the gradual correc-302

tion towards the observations distorts the seasonal trend in snow accumulation. The MAE303

remains mostly unchanged, with only a marginal improvement. The violin shape indi-304

cates that after DA there are less sites with high MAE, but also less sites with very low305

MAE. Anomaly correlations slightly decrease from Ran=0.69 for the OL run to 0.59 for306

the DA run (not shown), because the filter updates inevitably introduce unnatural short-307

term variability.308

The S1 SD observations are translated to updates in both the SD and SWE state309

variables. Figure 4 shows timeseries of SWE and SD along with the ensemble standard310

deviation for a single station in the French Alps. The state perturbations are multiplica-311

tive, causing a larger model spread in case of higher SD or SWE. The model uncertainty,312

and thereby the weight on the observations, increases along the season with the accu-313

mulation of snow. The observation uncertainty is considered constant at 30 cm through-314

out the season. Future research could optimize the spatiotemporal representation of the315

observation uncertainty.316

Figure 5 shows the relationship between modeled and in situ SD or SWE for all317

validation points in space and time. The spatiotemporal metrics displayed on the fig-318

ure differ from the site-based temporal metrics in Figure 3. For the latter figure, sites319

were limited to elevations above >1000m. Similar to the previous results, the OL run320
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Figure 3. SD performance. a) Plots showing the distribution of station performance for cho-

sen metrics. The metrics are calculated for all stations above 1000m (n=461) excluding timesteps

with in situ SD=0 cm. b) Change in MAE (DA-OL) for all stations (n=532) in the study area.

shows a bias in SD. The underestimation gradually increases with higher SD values. The321

patterns are consistent between the SD and SWE data, indicating no major issues with322

modeled snow densities. In the DA experiment, the biases in SD and SWE are strongly323

reduced, with a bias of -38 cm for the OL to -12 cm for the DA run.324

The spatial distribution of SD for the OL and DA results is mapped in Figure 6325

for February 2019. The spatial pattern in the OL run is relatively uniform and does not326

well represent the variability and range that are expected in high mountain regions. This327

might be caused by the low resolution of the meteorological input, a sub-optimal forc-328

ing interpolation scheme or other imperfections in the model and forcing data. Poten-329

tial limitations of the meteorological forcings are further discussed in section 3.3. By as-330

similating the S1 SD retrievals, it is possible to derive a more realistic spatial distribu-331

tion in SD (Figure 6c). To verify this, the spatial correlation was calculated per month332

and is presented in a time series in Figure 7. The figure indicates a minor degradation333

in spatial correlation with DA, except during the melt season. The scatter plot of in situ334

versus modeled SD in Figure 7b shows an increased spatial variability of the DA com-335

pared to the OL. The DA leads to a substantial reduction in bias (closer to the diago-336

nal), but with a wider spread.337

Figure 8 further elaborates on the DA performance. Figure 8a demonstrates im-338

proved DA results (quantified as a change in MAE relative to the OL) in case of high339

OL error and low S1 error, and worse DA results case of low OL error and high S1 er-340

ror. This is an indication that the DA system is working as expected. The figure also341

shows the complementarity of S1 and the model, with OL and S1 performing relatively342

better at different sites. Figure 8b shows a relationship between OL and S1 bias. The343

S1 SD estimates are based on remote sensing data only, and are created independently344

of the model run. Nevertheless, a relationship between the OL and S1 biases is found.345

That is, sites for which a larger bias is observed in the OL simulations typically also fea-346

ture a larger bias in the S1 retrievals. This can likely be attributed to in situ stations347

that are not representative for the larger 1 km pixel they are assumed to portray. When348

comparing relatively coarse scale data in mountainous terrain with point scale sites, some349

representativity issues are to be expected and are hard to avoid.350

Figure 8c shows the change in MAE relative to the mean site SD. The sites with351

the highest in situ snow depths coincide with the sites with the most underestimated OL352

simulations. Here the DA has the largest potential for improvement. However, the op-353

posite is true for the sites with lower observed SD’s. There, the OL is mostly unbiased354

and the MAE is deteriorated by the assimilation of S1 SD. From previous work, S1 ob-355
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Figure 4. Timeseries of (a) SD (m) and (b) SWE (mm) for a station in the French Alps

(45.22°N 6.88°E). The range of ensemble members is shown by the shaded area surrounding the

mean.

Figure 5. Density plots showing the relationship between simulated and in situ SD and SWE

for all sites and timesteps: (a, b, c) OL, and (d, e, f) DA. Zero values were masked, leaving 27

376 observations for SWE (MAE and bias given in mm) and 455 637 observations for SD (MAE

and bias given in m).
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Figure 6. Mean snow depth (m) in February 2019 for (a) S1 retrievals, (b) the model-only

run, and (c) the data assimilation run.

Figure 7. Spatial correlation of SD. a) Time series of spatial correlation of monthly averaged

SD (including zeros). The black line indicates the time step that was used for the scatter plot. b)

Scatter plot of in situ vs modeled SD for February 2019 (n=532).

Figure 8. Distribution of station-based performance metrics (n=532). a) DA improvement in

MAE relative to the OL and S1 performance. b) Relationship between the OL and S1 biases. c)

Improvement in model performance (MAE) related to the mean site SD and the OL bias.

servations are known to perform best at the higher elevations with deep dry snow (Lievens356

et al., 2022). Thus for this model setup the S1 based SD observations are working best357

where they are most needed i.e. at high elevations.358

3.2 Discharge359

We also evaluated the impact of the SD assimilation on the simulation of river dis-360

charge. The discharge is an integrated measurement of water flow from an entire basin,361

and since in situ SD measurement sites are scarce, an evaluation in terms of discharge362

can give a more complete assessment of the added value of the S1 SD retrievals. Figure363

9 shows the distribution of performance metrics for the discharge stations. The metrics364
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Figure 9. River discharge performance. a) The violin plots with the distribution of the per-

formance metrics for the used discharge stations (n=105). The MAE and DV were normalized

by the mean observed flow and total observed flow respectively. All metrics are unitless and are

calculated for the melting season only (February-September). b) Change in R (DA-OL) for the

different stations in the study area.

were calculated for the melt season only (February-September). In our analysis, the DA365

run was found to outperform the OL for all metrics. The median R improves from 0.61366

to 0.73, meaning that the seasonal variability of discharge is represented more accurately.367

To illustrate this, two time series with a clear improvement in the timing of peak dis-368

charge are shown in Figure 10. Similar to the bias in SD, the total volume of discharge369

is underestimated in the OL by ∼ 24% of the total observed flow. The latter is partly370

corrected by the DA, reducing the negative bias to ∼ 13% of the total flow. For instance,371

in the time series in Figure 10, the OL flow is underestimated during the melt period,372

and the shape is distorted. After assimilation of S1 SD, the snow melt contribution to373

the streamflow is simulated more realistically. The improved snow distribution in the model,374

especially the addition of snow at the highest elevations, leads to a delay in peak flow.375

Deeper snow packs have a higher energy requirement before reaching isothermal condi-376

tions and melt onset. We therefore assume the improvements in the discharge can be at-377

tributed mostly to fixing the snow bias into more realistic peak SWE amounts.378

Our results show how some of the shortcomings of the model (input) can be cor-379

rected with qualitative SD estimates. Similarly, recent work from Alfieri et al. (2022) found380

a 4% KGE improvement in river discharge by assimilating S1 SD estimates in a hydro-381

logical model for the Po valley. Park et al. (2022) assimilated the raw Sentinel-1 backscat-382

ter in a model setup similar to this current study. Their results showed improvements383

in SWE, with R increasing from 0.75 to 0.80, and slight improvements for river discharge384

for an area in western Colorado.385

3.3 SD bias and precipitation386

Figure 3 and 5 showed that the SD is systematically underestimated in the OL NoahMP387

simulations. Wrzesien et al. (2019) found a similar underestimation of SD using NoahMP388

in North American catchments using multiple meteorological forcings, including MERRA-389

2. They attributed the underestimation to errors in the forcing inputs. To verify if this390

was also the case in our experiment, we compared the total precipitation as used in the391

model with data from 603 in situ precipitation gauges in Switzerland. The total precip-392

itation used here refers to the bias corrected MERRA-2 precipitation (Reichle et al., 2017)393

with a bilinear spatial interpolation applied to downscale to the model grid. The forc-394

ings like air temperature and pressure are adjusted for the elevation with a lapse-rate395
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Figure 10. Time series of discharge at two stations, showing the impact of the S1 SD assim-

ilation on river discharge. a) Landquart, Switzerland (46.97°N 9.61°E), b) La Durance, France

(44.92°N 6.68°E).

correction (Cosgrove et al., 2003). This impacts the partitioning of precipitation between396

snow and rain, but otherwise no elevation correction is applied to the precipitation it-397

self. Orographic effects that could play a significant role in the distribution of precip-398

itation throughout the MERRA-2 pixels are not taken into account. To compare the amount399

of solid precipitation, the total precipitation of both the model and the in-situ stations400

were multiplied with the model derived ice fraction (derived as in Jordan (1991)).401

Contrary to our expectations, the analysis did not show a systematic underestima-402

tion of precipitation by MERRA-2. Figure 11 even shows that MERRA-2 slightly over-403

estimates the accumulated precipitation compared to in situ measurements. The mean404

end of season accumulated precipitation was 14% higher for MERRA-2 than for the in405

situ measurements. For snowfall only, the estimates were mostly unbiased. However, it406

is important to note that automated measurements tend to underestimate the amount407

of precipitation, especially snow, depending on the type of gauges used and the wind speed408

(Grossi et al., 2017). Rasmussen et al. (2012) mentions errors from 20 to 50% for solid409

precipitation. It is thus possible that the precipitation forcing is slightly low biased even410

though the comparison with in situ stations does not indicate this. When looking at in-411

dividual precipitation events in Figure 11b, MERRA-2 was found to favor smaller and412

more moderate rainfall events and underestimates storms. This can be expected due to413

the coarse resolution of the input, spreading out local storms onto larger regions. Although414

precipitation information at the highest elevations is lacking, no clear trend between ac-415

cumulation bias and elevation was found (Figure 11c).416
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Figure 11. Validation of MERRA-2 bias corrected precipitation with in situ data. (a) Time

series of the mean accumulated precipitation over all stations (n=603). (b) Density plot compar-

ing in situ and MERRA-2 precipitation of individual rainfall events. (c) Bias in end of season

accumulated precipitation stratified by elevation.

Next to flaws in the forcing data, errors can also be caused by inaccuracies in model417

parametrizations like the rain-snow partitioning, snow density evolution, albedo, heat418

exchange, sublimation or melt-freeze dynamics. A more thorough analysis of the precip-419

itation, the water balance and model structure is needed to identify the cause of the sys-420

tematic underestimation in SD in NoahMP forced by MERRA-2. Once a faulty param-421

eter could be identified, it should be included in the update vector of the DA experiment422

to improve the results and construct a more robust assimilation system.423

4 Conclusions424

In this study we investigated the potential of S1-based snow depth retrievals to im-425

prove model simulations of SD, SWE and river discharge. Specifically, 1-km resolution426

S1 SD retrievals were assimilated into the NoahMP LSM version 3.6 coupled to the HyMAP427

river routing model using an EnKF scheme. The results were validated by comparing428

the model output to in situ measurements of SD, SWE and river discharge. Compared429

to the model-only run, the DA simulation significantly reduced the bias in SD (from -430

38 cm to -11 cm) and SWE (from -209mm to -56mm). The MAE improved at 59% of431

the in situ sites. The impact on R was limited. Sites with shallow snow showed a small432

deterioration after the assimilation of S1 SD, whereas sites with deep snow featured mostly433

improvements. The updates in the spatial snow distribution also had a positive impact434

on the discharge simulations of the studied basins. With the S1 SD DA, we obtained a435

better representation of the timing (R from 0.61 for OL to 0.73 for DA) and amount of436

discharge (DV from -24% to -13%) during the snow melt period. The results could dif-437
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fer for a different region, model or forcing setup. A limitation of our model setup (NoahMP438

forced with MERRA-2 bias corrected precipitation) was that it led to systematically bi-439

ased SD estimates. A comparison with precipitation measurements however could not440

attribute the SD bias to an underestimation in the amount of precipitation. Identifying441

the cause of this bias and resolving it requires further research.442

For this work we used a globally applicable setup without parameter calibration.443

This makes the setup easily extendable to other domains. The improvements in SD and444

discharge with the S1 SD DA are encouraging. It shows how high resolution S1-based445

SD estimates can be useful in hydrological modeling applications, offering a new tool to446

support operational river forecasting and water management.447

Open Research Section448

The LSM runs and DA were executed using NASA’s LIS platform, which is avail-449

able on GitHub. Compared to the NASA master, routines were introduced to read S1450

SD data, and adjustments were made to the NoahMP3.6 SD DA routine. The GitHub451

fork with updated routines will be added here after review, and the output will be up-452

loaded on Zenodo.453
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Key Points:8
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snow depth and snow water equivalent estimates.10

• The temporal correlation of streamflow simulations increased from 0.61 for the model-11
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• Sentinel-1 based snow depth estimates can be of considerable value for hydrolog-13

ical modeling in mountainous regions.14
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Abstract15

Seasonal snow is an important water source and contributor to river discharge in moun-16

tainous regions. Therefore the amount of snow and its distribution are necessary inputs17

for hydrological modeling. However, the distribution of seasonal snow in mountains has18

long been uncertain, for lack of consistent, high resolution satellite retrievals over moun-19

tains. Recent research has shown the potential of the Sentinel-1 radar satellite to map20

snow depth at sub-kilometer resolution in mountainous regions. In this study we assim-21

ilate these new snow depth retrievals into the Noah-Multiparameterization land surface22

model using an ensemble Kalman filter for the western European Alps. The land sur-23

face model was coupled to the Hydrological Modeling and Analysis Platform to provide24

simulations of routed river discharge. The results show a reduction in the systematic un-25

derestimation of snow depth, going from 38 cm for the open loop (OL) to 11 cm for the26

data assimilation (DA) experiment. The mean absolute error similarly improves from27

44 cm to 37 cm with DA, with an improvement at 59% of the in situ sites. The DA up-28

dates in snow depth results in enhanced snow water equivalent and discharge simulations.29

The systematic negative bias in the OL is mostly resolved, and the median temporal cor-30

relation between discharge simulations and measurements increases from 0.61 to 0.73 for31

the DA. Therefore, our study demonstrates the utility of the S1 snow depth retrievals32

to improve not only snow depth amounts, but also the snow melt contribution to river33

discharge, and hydrological modeling in general.34

1 Introduction35

Snow is an important water resource for people around the globe. It supplies the36

majority of water for consumption for about a sixth of the world’s population during the37

melting season (Barnett et al., 2005). In the European Alps, snow melt is used by the38

densely populated downstream regions, providing water for domestic use, agriculture and39

hydropower generation (Blanc, P., & Schädler, 2014). Knowledge on the amount and dis-40

tribution of snow is essential for hydrological modeling in mountainous catchments to41

support water management planning and flood forecasting (Dechant & Moradkhani, 2011;42

Griessinger et al., 2019; Stigter et al., 2017). Moreover, snow also impacts the surface43

energy balance by insulating the ground, reflecting incoming radiation and absorbing la-44

tent heat during the melt season. A better representation in models would thus also ben-45

efit numerical weather prediction (Helmert et al., 2018; de Rosnay et al., 2014).46

Land surface models (LSM) can simulate the accumulation and melt of snow through-47

out the year, providing continuous estimates of snow depth (SD) and snow water equiv-48

alent (SWE). However, imperfections in the model physics and forcing data cause these49

simulations to be uncertain, especially in complex terrain (Krinner et al., 2018; Mortimer50

et al., 2019). An evaluation by Wrzesien et al. (2017, 2019) of different models and re-51

mote sensing products over the United States showed systematic underestimation of mod-52

eled SWE. Furthermore, the spread between different models or reanalyses is large (Wrzesien53

et al., 2017; Mortimer et al., 2019)54

SD can also be estimated from in situ or remotely sensed observations. Point scale55

measurements, however, are not always representative for the surrounding area due to56

the spatial variability in mountains, in particular in regions where the measuring net-57

work is sparse. Estimates of snow cover can be retrieved from satellite observations in58

the visual or near infra-red spectrum, e.g. from the Moderate Resolution Imaging Spec-59

troradiometer (MODIS) (Hall & Riggs, 2007) or derived from multiple sensors as in the60

Interactive Multisensor Snow and Ice Mapping System (IMS) (Helfrich et al., 2007), but61

these products contain no information on the actual snow depth. Passive microwave satel-62

lite observations, on the other hand, can provide SD estimates with extensive spatial cov-63

erage (Kelly et al., 2003). However, their low spatial resolution (>10 km) and signal sat-64

uration in deep snow (Tedesco & Narvekar, 2010) makes them less suitable for applica-65
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tions in mountain areas. Lidar data such as from the Airborne Snow Observatory (ASO)66

can be used to retrieve high resolution, high quality SD maps (Painter et al., 2016), but67

practical and budget constraints limit their use for large scale applications.68

The snow science community is currently investigating which type of sensors would69

be suitable for a new satellite mission focused on the retrieval of snow mass (via SD or70

directly as SWE), e.g. through NASA’s SnowEx campaign (Durand et al., 2017). L-band71

interferometry experiments have shown promising results (Marshall et al., 2019; Tarri-72

cone et al., 2022; Rott et al., 2004; Guneriussen et al., 2001). The potential of Ku- and73

X-band sensors has been supported by both experimental and modeling studies (Tsang74

et al., 2021). All these radar technologies show potential to deliver a viable SD or SWE75

product in the future, but they are not operationally available yet.76

In the meantime, a study by Lievens et al. (2019) has shown the potential of the77

Sentinel-1 (S1) C-band (5.4GHz) radar satellite to provide SD estimates at sub weekly78

time steps and 1 km spatial resolution. The usability of C-band for snow mass has long79

been put aside after experiments with co-polarized backscatter had shown limited sen-80

sitivity (Bernier & Fortin, 1998; Pivot, 2012). The recent study of Lievens et al. (2019)81

differs from previous work by focusing on cross-polarized backscatter and deeper snow-82

packs. Their SD retrieval algorithm is based on an empirical change detection approach83

of the ratio between cross-polarized an co-polarized backscatter, and performs best for84

deeper snowpacks. The retrievals only work for dry snow and are more uncertain in the85

case of shallow snow and higher forest cover. According to the current physical under-86

standing, the S1 SD retrieval is based on the fact that a growing snowpack leads to an87

increase in scattering. Since the size of individual snow grains is small compared to C-88

band wavelength (∼5 cm), the scattering is more likely to originate from clusters of grains,89

multiple scattering between layer interfaces, snow-ground interactions or other snow struc-90

tures (Tsang et al., 2021). More research is being done to expand the underlying scat-91

tering theory.92

Continuous and improved SWE or SD estimates can be obtained through the as-93

similation of snow observations into LSMs. In the absence of satellite based SD retrievals,94

operational models often make use of in situ SD or SWE measurements added through95

interpolation schemes, snow cover (SC) observations or a combination of both (de Ros-96

nay et al., 2014; de Rosnay et al., 2015; Helmert et al., 2018; Magnusson et al., 2014).97

Charrois et al. (2016); Revuelto et al. (2021) have shown modeled SD can be improved98

by assimilating spectral reflectance data. Derived SC observations have also shown to99

improve model performance (Stigter et al., 2017; Margulis et al., 2016; Toure et al., 2018;100

Largeron et al., 2020), and can be further converted into SWE using snow depletion curves101

(Oaida et al., 2019; Andreadis & Lettenmaier, 2006; Arsenault et al., 2013). However,102

visual light imagery has the disadvantage of being limited to cloud-free situations and103

contains no direct information on the snow mass itself. Other studies have assimilated104

satellite-based SD from passive microwave observations, but with limited success. The105

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) estimates have a coarse106

resolution, tend to saturate for deeper snowpacks and are unable to capture the observed107

interannual variability (Andreadis & Lettenmaier, 2006; De Lannoy et al., 2012). Alter-108

natively, optical or microwave signals can be assimilated to improve snowpack estimates109

(Durand & Margulis, 2006; Alfieri et al., 2022).110

Snow data assimilation has been performed using various methods. The simplest111

method is through direct insertion (Hedrick et al., 2018), however this does not take into112

account relative model and observation uncertainties (Arsenault et al., 2013). A widely113

used and statistically more optimal scheme is the Ensemble Kalman Filter (EnKF) (Evensen,114

2003). In the EnKF, the model uncertainty is estimated from the spread of an ensem-115

ble of model trajectories (Reichle, 2008). Although the underlying assumptions of un-116

biased, normally distributed errors are often lightly violated, the methodology has been117

shown to be robust (Reichle et al., 2002) and has been applied widely and successfully118
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Figure 1. Location of the research area in the European Alps. The black lines delineate the

main drainage basins. The blue and red dots indicate the stations with discharge (Q, n=105) and

snow depth (SD, n=532) measurements respectively.

in assimilation studies for snow (Arsenault et al., 2013; De Lannoy et al., 2010; Magnus-119

son et al., 2014; Andreadis & Lettenmaier, 2006) and its coupling to hydrology (Sun et120

al., 2004; Stigter et al., 2017). More recently, particle filters have received more atten-121

tion (Magnusson et al., 2017; Piazzi et al., 2018). This methodology requires no assump-122

tions on the model or observation distribution and can therefore be a good alternative123

for the EnKF in strongly nonlinear systems (Gordon et al., 1993). For this study, the124

model runs were performed using NASA’s land information system (LIS), a modeling125

framework which combines different types of models, observations and data assimilation126

methods (Kumar et al., 2006). LIS has been used for multiple previous snow DA stud-127

ies (e.g. Kumar et al., 2015; De Lannoy et al., 2012; Park et al., 2022; Cho et al., 2022).128

In this study, we investigate the effectiveness of the new S1 SD estimates in a prac-129

tical application. Over a selected research area of the western European Alps we assim-130

ilate the S1 based SD observations into a coupled land surface and routing model using131

an Ensemble Kalman Filter. The goal is to quantify to which extent SD data assimila-132

tion can improve model simulations of SD, SWE and river discharge. Therefore, the model133

output with and without assimilation has been compared to reference data, consisting134

of point scale SD, SWE and river discharge measurements from different networks across135

the region.136

2 Materials and Methods137

2.1 Study region138

The research domain is presented in Figure 1 and covers the western European Alps,139

specifically from 44.0°N to 47.8°N and 5.5°W to 10.7°W. This region is of considerable140

hydrological importance, containing the upper catchments of some of Europe’s major141

rivers, including the Rhone, the Rhine, the Danube and the Po. The study area covers142

a wide range of land cover types, slopes, aspects and elevations.143

2.2 Sentinel-1 snow depth observations144

C-band (5.4GHz) radar backscatter measurements from the ESA and Copernicus145

S1 constellation were processed over the Alps for the period September 2015 through Au-146

gust 2021. The raw data was processed using the ESA Sentinel Application Platform (SNAP)147
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toolbox to γ0 (in dB) as in Lievens et al. (2022). The first empirical algorithm to turn148

changes in backscatter into SD was applied over the Northern Hemisphere mountains149

at 1 km resolution in Lievens et al. (2019). The method was further improved and ap-150

plied at 100m, 500m and 1 km resolutions over the European Alps in Lievens et al. (2022).151

This current work makes use of the retrievals from the latter study at the 1 km resolu-152

tion, approximating the 0.01° latitude-longitude model simulation grid to which the re-153

trievals were interpolated using nearest neighbour sampling. Before the launch of Sentinel-154

1B in April 2016 less frequent S1 observations are available than during the rest of the155

period. This makes the earlier SD retrievals more prone to noise, which could adversely156

impact the data assimilation performance.157

The Sentinel-1 snow depth retrieval algorithm is based on an empirical change de-158

tection algorithm applied to γ0
VH and γ0

VV radar backscatter. The presence of liquid wa-159

ter during melt causes a strong decrease in γ0, which increases the uncertainty in the160

associated SD retrievals. A wet snow detection mechanism has been included in the re-161

trieval algorithm (Lievens et al., 2022), which allows for masking the S1 SD observations162

in wet snow conditions. Observations are masked when the backscatter difference be-163

tween an observations and the previous observation from the same relative orbit is larger164

than 2 dB.165

S1 SD estimates are available until April, but we noticed that omitting observa-166

tions from March onwards led to better data assimilation results. The wet snow detec-167

tion algorithm sometimes misses the onset of snow melt, especially if the backscatter de-168

creases gradually. By refraining from assimilating observations from March onwards, we169

can limit the potential negative impacts from missed wet snow presence. The retrievals170

are thus assimilated during the months August through February according to the avail-171

ability and coverage of the S1 acquisitions. Over the Alps, observations are typically avail-172

able every ±3 days.173

The S1 based SDs show very good correspondence to in situ measurements and are174

able to realistically represent spatial and temporal variability. Compared to in situ mea-175

surements, the mean relative errors are 20-30% of the in situ measured SD, for SD val-176

ues between 1.5 and 3m. Higher uncertainties were found in regions with shallow snow177

or dense forest cover (Lievens et al., 2022).178

2.3 Noah MP 3.6 and HyMAP179

To simulate processes at the land surface, we used the Noah land surface model with180

multiparameterization options version 3.6 (NoahMP) (Niu et al., 2011). Given meteo-181

rological forcings, such as precipitation and radiation, and land surface characteristics,182

such as elevation, land cover and soil texture, the model simulates surface and subsur-183

face processes. This leads to continuous estimates of the model state variables, includ-184

ing soil moisture, soil temperature, SD, SWE, and fluxes, including surface and sub-surface185

runoff. In NoahMP the snowpack processes are represented by a detailed physically-based186

parametrization, including multiple snow layers, melt-freeze processes and canopy snow187

interception. In comparison with the previous model version, the Noah LSM, the sim-188

ulation of runoff within NoahMP is improved by the introduction of permeable frozen189

soils and the simulation of snow melt is more accurate (Niu et al., 2011). In NoahMP,190

glaciers are not explicitly simulated, but are simply represented by the land cover class191

of ice. This static land cover cannot provide any melt water contribution other than that192

of the seasonal snow falling on top. Therefore, catchments that are considerably impacted193

by glacial meltwater were excluded from this study.194

NoahMP is coupled to the Hydrological Modeling and Analysis Platform (HyMAP)195

(Getirana et al., 2012; Getirana, Peters-Lidard, et al., 2017). HyMAP is a global river196

routing scheme that uses the LSM’s surface and sub-surface runoff estimates as input197

to simulate horizontal water fluxes. In this study, HyMAP was setup with the kinematic198
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wave equation with optimal sub timesteps determined with the Courant–Freidrichs–Levy199

(CFL) condition (Courant et al., 1967). River flow is routed between grid cells through200

a prescribed river network as in Getirana et al. (2012). HyMAP has been thoroughly val-201

idated over the Amazon basin (Getirana et al., 2012) and has been applied across the202

globe for various studies (Getirana, Kumar, et al., 2017; Jung et al., 2017) including a203

study about the assimilation of SC and SD into an LSM (Kumar et al., 2015).204

2.4 Model-only and data assimilation experiments205

Within NASA LIS, NoahMP ran on a grid of 0.01° resolution with the parametriza-206

tion options as in Kwon et al. (2019). The configuration also closely resembles the study207

of Park et al. (2022), that assimilated S1 backscatter in NoahMP over Western Colorado,208

but here we assimilate S1 derived SD instead of the backscatter itself. The model was209

forced with meteorological input data from the Modern-Era Retrospective analysis for210

Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017). The precipita-211

tion data from MERRA-2 has been bias corrected with gauge-based precipitation ob-212

servations (Reichle et al., 2017). The low resolution (0.5°) MERRA-2 forcings were down-213

scaled to the finer model grid by applying bilinear spatial interpolation with a topographic214

lapse-rate correction. Before starting the assimilation experiments, NoahMP was run for215

20 years (1995-2015) as a spin-up. Then, for the period from September 2015 through216

August 2021 two ensemble runs were performed: first, an open loop run without assim-217

ilation as a benchmark; second, a run with assimilation of S1 SD observations. The model218

was run at 15-min time steps, whereas daily averaged outputs were saved and analyzed.219

The updates of the snow state variables were performed with a one-dimensional220

ensemble Kalman filter (Reichle et al., 2002). During the analysis step, the modeled SD221

and SWE are locally pulled more or less towards the observations depending on the un-222

certainties in the model forecasts and observations. The uncertainty of the S1 SD ob-223

servations is estimated as 30 cm, and is assumed to be constant in space and time. The224

uncertainty of the model forecast is estimated by perturbing selected state variables (SD225

and SWE) and forcings (precipitation, longwave and shortwave radiation) in 12 ensem-226

ble members (see Table 1). Compared to the older Noah LSM, NoahMP simulates a snow-227

pack with multiple snow layers of variable depth. To conserve the snow density of the228

different layers during the analysis, the updates were divided over the layers proportion-229

ate to their share of the total SWE.230

Unlike some earlier snow data assimilation studies (e.g. De Lannoy et al. (2012)),231

the SD retrievals are not rescaled to the model climatology in this study, even if biases232

between both are found. However, since snow is a cumulative variable, any instantaneous233

error can lead to persistent bias and any filter update can correct for it with a lasting234

effect. Furthermore, comparison with in situ measurements have shown S1 to be mostly235

unbiased and the model systematically underestimating SD, especially for the higher SD236

values. By not a priori rescaling the SD observations to the model climatology, we are237

able to counter model bias, even if a bias-blind data assimilation system might be sub-238

optimal (Dee, 2006).239

2.5 Validation240

The daily SD and streamflow outputs of the model runs were compared to point241

scale observations from different in situ networks. The SD data was provided by Météo-242

France and the WSL Institute for Snow and Avalanche Research SLF. SWE data was243

provided by Electricité de France and ARPA Valle d’Aosta. Of the 68 SWE stations, 17244

are automatic stations with daily observations, the others provide biweekly observations.245

Daily streamflow data were collected from various local instances, specifically Eaufrance246

(France), eHYD (Austria), Federal Office for the Environment (Switzerland), Gewässerkundlicher247

Dienst Bayern (Germany), Landesanstalt für Umwelt Baden-Württemberg (Germany),248
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Table 1. Perturbation parameters applied for the OL and DA runs (with M=multiplicative,

A=additive, Std=standard deviation, Tcorr=temporal autocorrelation, Xcorr=cross-correlations).

State/Forcing Type Std Tcorr Xcorr

Snow depth M 0.0005 3 hours 1 0.9
SWE M 0.0005 3 hours 0.9 1

Precipitation M 0.5 1 day 1 -0.8 0.5
Shortwave radiation M 0.3 1 day -0.8 1 -0.5
Longwave radiation A 50 W/m2 1 day 0.5 -0.5 1

Agenzia Regionale per la Protezione Ambientale - ARPA Lombardia (Italy), ARPA Piemonte249

(Italy) and ARPA Valle d’Aosta (Italy). Reference data of daily precipitation was ac-250

quired from MeteoSwiss. In total we used 532 stations for SD, of which 460 above 1000m251

elevation, 105 stations for discharge, 68 stations for SWE and 603 for precipitation val-252

idation (see Figure 1).253

First, the in situ SD and SWE measurements were compared to the modeled SD254

and SWE from the OL and DA runs. Improvements were quantified in terms of conven-255

tional metrics like temporal correlation (R; dimensionless), mean absolute error (MAE;256

in m) and bias (in m). Timesteps with in situ SD=0 cm were excluded from the cal-257

culation of the metrics, but were included when plotting the time series of mean SD or258

SWE. To focus on sites impacted most by the snow DA, stations with a maximal in situ259

SD below 25 cm were removed, as were stations without S1 observations. In situ SD sta-260

tions are typically located in flat areas that are relatively easily accessible. The network261

in the region of study is relatively dense, however the highest mountain peaks are un-262

derrepresented in the analysis. The impact of SD assimilation at the highest elevations263

can still be determined indirectly through the impact on river discharge.264

Second, the OL and DA streamflow estimates were compared with in situ measure-265

ments. With a better representation of the snow state, we expect improvements in the266

DA runoff volume during the melting season, and thus a better representation of peak267

flow. We calculated the validation metrics only for the melting season (chosen as Febru-268

ary through September), when most impact of SD retrieval DA is expected. We excluded269

stations with low flows (< 1m3/s) and less than 100 days of data. Another necessary270

quality control measure was to manually remove discharge stations that are consider-271

ably influenced by glaciers, since NoahMP is not able to estimate glacier melt (manual272

selection based on glacier cover fraction), and to remove basins that are largely impacted273

by dams. These constraints strongly limited the amount of available stations, but are274

necessary to ensure the quality of the analysis. The 105 remaining stations measure the275

flow from basins of variable size and elevation, and are assumed to be a representative276

sample. The considered metrics are the time series correlation, the normalized mean ab-277

solute error (MAE; dimensionless) and the total volume error (DV; dimensionless). The278

MAE was normalized by the mean observed flow to allow for comparison of rivers of dif-279

ferent sizes. The total volume error shows the fraction of under- or overestimation of the280

total discharge volume during the melting season, independent of daily fluctuations. It281

was calculated per station, as follows:282

DV =

∑n
i=1 simi −

∑n
i=1 obsi∑n

i=1 obsi

with n equaling the number of observations, obsi the in situ observations, and simi the283

simulated (OL or DA) discharge for time steps i = 1, . . . , n.284
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Figure 2. Time series of weekly SD (m) mean over all in situ SD stations (n=532).

3 Results and Discussion285

3.1 Snow depth and SWE286

We evaluated the effect of the S1 SD assimilation on the time series of SD across287

the study area. As one can see in the timeseries of mean spatial SD in Figure 2, the model288

only run (OL) performs quite well in reproducing the seasonal trend of accumulation of289

the snowpack, and is able to simulate the interannual variability (anomaly R = 0.69).290

However, it systematically underestimates the SD compared to in situ observations, caus-291

ing an unrealistically early melt onset. On average, the S1 DA causes the model to be292

pulled upwards closer to the in situ observations. The reduced bias furthermore results293

in an improved representation of the snow melt. The generally deeper DA snowpack re-294

quires more energy and thus takes more time to melt.295

For each of the stations above 1000m (n=460), the SD time series R, MAE and296

bias were calculated (zero SD values excluded). The distribution of the metrics is show297

in Figure 3. The DA strongly reduces the bias from -27 cm to -6 cm. This does, however,298

not translate into an improved correlation with in situ measurements. The correlation299

remains unchanged at 0.83, which can likely by attributed to two counteracting effects.300

On the one hand, the reduction in bias causes the timing of the melt season to be rep-301

resented better. On the other hand, noisy satellite observations, and the gradual correc-302

tion towards the observations distorts the seasonal trend in snow accumulation. The MAE303

remains mostly unchanged, with only a marginal improvement. The violin shape indi-304

cates that after DA there are less sites with high MAE, but also less sites with very low305

MAE. Anomaly correlations slightly decrease from Ran=0.69 for the OL run to 0.59 for306

the DA run (not shown), because the filter updates inevitably introduce unnatural short-307

term variability.308

The S1 SD observations are translated to updates in both the SD and SWE state309

variables. Figure 4 shows timeseries of SWE and SD along with the ensemble standard310

deviation for a single station in the French Alps. The state perturbations are multiplica-311

tive, causing a larger model spread in case of higher SD or SWE. The model uncertainty,312

and thereby the weight on the observations, increases along the season with the accu-313

mulation of snow. The observation uncertainty is considered constant at 30 cm through-314

out the season. Future research could optimize the spatiotemporal representation of the315

observation uncertainty.316

Figure 5 shows the relationship between modeled and in situ SD or SWE for all317

validation points in space and time. The spatiotemporal metrics displayed on the fig-318

ure differ from the site-based temporal metrics in Figure 3. For the latter figure, sites319

were limited to elevations above >1000m. Similar to the previous results, the OL run320
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Figure 3. SD performance. a) Plots showing the distribution of station performance for cho-

sen metrics. The metrics are calculated for all stations above 1000m (n=461) excluding timesteps

with in situ SD=0 cm. b) Change in MAE (DA-OL) for all stations (n=532) in the study area.

shows a bias in SD. The underestimation gradually increases with higher SD values. The321

patterns are consistent between the SD and SWE data, indicating no major issues with322

modeled snow densities. In the DA experiment, the biases in SD and SWE are strongly323

reduced, with a bias of -38 cm for the OL to -12 cm for the DA run.324

The spatial distribution of SD for the OL and DA results is mapped in Figure 6325

for February 2019. The spatial pattern in the OL run is relatively uniform and does not326

well represent the variability and range that are expected in high mountain regions. This327

might be caused by the low resolution of the meteorological input, a sub-optimal forc-328

ing interpolation scheme or other imperfections in the model and forcing data. Poten-329

tial limitations of the meteorological forcings are further discussed in section 3.3. By as-330

similating the S1 SD retrievals, it is possible to derive a more realistic spatial distribu-331

tion in SD (Figure 6c). To verify this, the spatial correlation was calculated per month332

and is presented in a time series in Figure 7. The figure indicates a minor degradation333

in spatial correlation with DA, except during the melt season. The scatter plot of in situ334

versus modeled SD in Figure 7b shows an increased spatial variability of the DA com-335

pared to the OL. The DA leads to a substantial reduction in bias (closer to the diago-336

nal), but with a wider spread.337

Figure 8 further elaborates on the DA performance. Figure 8a demonstrates im-338

proved DA results (quantified as a change in MAE relative to the OL) in case of high339

OL error and low S1 error, and worse DA results case of low OL error and high S1 er-340

ror. This is an indication that the DA system is working as expected. The figure also341

shows the complementarity of S1 and the model, with OL and S1 performing relatively342

better at different sites. Figure 8b shows a relationship between OL and S1 bias. The343

S1 SD estimates are based on remote sensing data only, and are created independently344

of the model run. Nevertheless, a relationship between the OL and S1 biases is found.345

That is, sites for which a larger bias is observed in the OL simulations typically also fea-346

ture a larger bias in the S1 retrievals. This can likely be attributed to in situ stations347

that are not representative for the larger 1 km pixel they are assumed to portray. When348

comparing relatively coarse scale data in mountainous terrain with point scale sites, some349

representativity issues are to be expected and are hard to avoid.350

Figure 8c shows the change in MAE relative to the mean site SD. The sites with351

the highest in situ snow depths coincide with the sites with the most underestimated OL352

simulations. Here the DA has the largest potential for improvement. However, the op-353

posite is true for the sites with lower observed SD’s. There, the OL is mostly unbiased354

and the MAE is deteriorated by the assimilation of S1 SD. From previous work, S1 ob-355

–9–
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Figure 4. Timeseries of (a) SD (m) and (b) SWE (mm) for a station in the French Alps

(45.22°N 6.88°E). The range of ensemble members is shown by the shaded area surrounding the

mean.

Figure 5. Density plots showing the relationship between simulated and in situ SD and SWE

for all sites and timesteps: (a, b, c) OL, and (d, e, f) DA. Zero values were masked, leaving 27

376 observations for SWE (MAE and bias given in mm) and 455 637 observations for SD (MAE

and bias given in m).
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Figure 6. Mean snow depth (m) in February 2019 for (a) S1 retrievals, (b) the model-only

run, and (c) the data assimilation run.

Figure 7. Spatial correlation of SD. a) Time series of spatial correlation of monthly averaged

SD (including zeros). The black line indicates the time step that was used for the scatter plot. b)

Scatter plot of in situ vs modeled SD for February 2019 (n=532).

Figure 8. Distribution of station-based performance metrics (n=532). a) DA improvement in

MAE relative to the OL and S1 performance. b) Relationship between the OL and S1 biases. c)

Improvement in model performance (MAE) related to the mean site SD and the OL bias.

servations are known to perform best at the higher elevations with deep dry snow (Lievens356

et al., 2022). Thus for this model setup the S1 based SD observations are working best357

where they are most needed i.e. at high elevations.358

3.2 Discharge359

We also evaluated the impact of the SD assimilation on the simulation of river dis-360

charge. The discharge is an integrated measurement of water flow from an entire basin,361

and since in situ SD measurement sites are scarce, an evaluation in terms of discharge362

can give a more complete assessment of the added value of the S1 SD retrievals. Figure363

9 shows the distribution of performance metrics for the discharge stations. The metrics364

–11–



manuscript submitted to Water Resources Research

Figure 9. River discharge performance. a) The violin plots with the distribution of the per-

formance metrics for the used discharge stations (n=105). The MAE and DV were normalized

by the mean observed flow and total observed flow respectively. All metrics are unitless and are

calculated for the melting season only (February-September). b) Change in R (DA-OL) for the

different stations in the study area.

were calculated for the melt season only (February-September). In our analysis, the DA365

run was found to outperform the OL for all metrics. The median R improves from 0.61366

to 0.73, meaning that the seasonal variability of discharge is represented more accurately.367

To illustrate this, two time series with a clear improvement in the timing of peak dis-368

charge are shown in Figure 10. Similar to the bias in SD, the total volume of discharge369

is underestimated in the OL by ∼ 24% of the total observed flow. The latter is partly370

corrected by the DA, reducing the negative bias to ∼ 13% of the total flow. For instance,371

in the time series in Figure 10, the OL flow is underestimated during the melt period,372

and the shape is distorted. After assimilation of S1 SD, the snow melt contribution to373

the streamflow is simulated more realistically. The improved snow distribution in the model,374

especially the addition of snow at the highest elevations, leads to a delay in peak flow.375

Deeper snow packs have a higher energy requirement before reaching isothermal condi-376

tions and melt onset. We therefore assume the improvements in the discharge can be at-377

tributed mostly to fixing the snow bias into more realistic peak SWE amounts.378

Our results show how some of the shortcomings of the model (input) can be cor-379

rected with qualitative SD estimates. Similarly, recent work from Alfieri et al. (2022) found380

a 4% KGE improvement in river discharge by assimilating S1 SD estimates in a hydro-381

logical model for the Po valley. Park et al. (2022) assimilated the raw Sentinel-1 backscat-382

ter in a model setup similar to this current study. Their results showed improvements383

in SWE, with R increasing from 0.75 to 0.80, and slight improvements for river discharge384

for an area in western Colorado.385

3.3 SD bias and precipitation386

Figure 3 and 5 showed that the SD is systematically underestimated in the OL NoahMP387

simulations. Wrzesien et al. (2019) found a similar underestimation of SD using NoahMP388

in North American catchments using multiple meteorological forcings, including MERRA-389

2. They attributed the underestimation to errors in the forcing inputs. To verify if this390

was also the case in our experiment, we compared the total precipitation as used in the391

model with data from 603 in situ precipitation gauges in Switzerland. The total precip-392

itation used here refers to the bias corrected MERRA-2 precipitation (Reichle et al., 2017)393

with a bilinear spatial interpolation applied to downscale to the model grid. The forc-394

ings like air temperature and pressure are adjusted for the elevation with a lapse-rate395
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Figure 10. Time series of discharge at two stations, showing the impact of the S1 SD assim-

ilation on river discharge. a) Landquart, Switzerland (46.97°N 9.61°E), b) La Durance, France

(44.92°N 6.68°E).

correction (Cosgrove et al., 2003). This impacts the partitioning of precipitation between396

snow and rain, but otherwise no elevation correction is applied to the precipitation it-397

self. Orographic effects that could play a significant role in the distribution of precip-398

itation throughout the MERRA-2 pixels are not taken into account. To compare the amount399

of solid precipitation, the total precipitation of both the model and the in-situ stations400

were multiplied with the model derived ice fraction (derived as in Jordan (1991)).401

Contrary to our expectations, the analysis did not show a systematic underestima-402

tion of precipitation by MERRA-2. Figure 11 even shows that MERRA-2 slightly over-403

estimates the accumulated precipitation compared to in situ measurements. The mean404

end of season accumulated precipitation was 14% higher for MERRA-2 than for the in405

situ measurements. For snowfall only, the estimates were mostly unbiased. However, it406

is important to note that automated measurements tend to underestimate the amount407

of precipitation, especially snow, depending on the type of gauges used and the wind speed408

(Grossi et al., 2017). Rasmussen et al. (2012) mentions errors from 20 to 50% for solid409

precipitation. It is thus possible that the precipitation forcing is slightly low biased even410

though the comparison with in situ stations does not indicate this. When looking at in-411

dividual precipitation events in Figure 11b, MERRA-2 was found to favor smaller and412

more moderate rainfall events and underestimates storms. This can be expected due to413

the coarse resolution of the input, spreading out local storms onto larger regions. Although414

precipitation information at the highest elevations is lacking, no clear trend between ac-415

cumulation bias and elevation was found (Figure 11c).416
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Figure 11. Validation of MERRA-2 bias corrected precipitation with in situ data. (a) Time

series of the mean accumulated precipitation over all stations (n=603). (b) Density plot compar-

ing in situ and MERRA-2 precipitation of individual rainfall events. (c) Bias in end of season

accumulated precipitation stratified by elevation.

Next to flaws in the forcing data, errors can also be caused by inaccuracies in model417

parametrizations like the rain-snow partitioning, snow density evolution, albedo, heat418

exchange, sublimation or melt-freeze dynamics. A more thorough analysis of the precip-419

itation, the water balance and model structure is needed to identify the cause of the sys-420

tematic underestimation in SD in NoahMP forced by MERRA-2. Once a faulty param-421

eter could be identified, it should be included in the update vector of the DA experiment422

to improve the results and construct a more robust assimilation system.423

4 Conclusions424

In this study we investigated the potential of S1-based snow depth retrievals to im-425

prove model simulations of SD, SWE and river discharge. Specifically, 1-km resolution426

S1 SD retrievals were assimilated into the NoahMP LSM version 3.6 coupled to the HyMAP427

river routing model using an EnKF scheme. The results were validated by comparing428

the model output to in situ measurements of SD, SWE and river discharge. Compared429

to the model-only run, the DA simulation significantly reduced the bias in SD (from -430

38 cm to -11 cm) and SWE (from -209mm to -56mm). The MAE improved at 59% of431

the in situ sites. The impact on R was limited. Sites with shallow snow showed a small432

deterioration after the assimilation of S1 SD, whereas sites with deep snow featured mostly433

improvements. The updates in the spatial snow distribution also had a positive impact434

on the discharge simulations of the studied basins. With the S1 SD DA, we obtained a435

better representation of the timing (R from 0.61 for OL to 0.73 for DA) and amount of436

discharge (DV from -24% to -13%) during the snow melt period. The results could dif-437
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fer for a different region, model or forcing setup. A limitation of our model setup (NoahMP438

forced with MERRA-2 bias corrected precipitation) was that it led to systematically bi-439

ased SD estimates. A comparison with precipitation measurements however could not440

attribute the SD bias to an underestimation in the amount of precipitation. Identifying441

the cause of this bias and resolving it requires further research.442

For this work we used a globally applicable setup without parameter calibration.443

This makes the setup easily extendable to other domains. The improvements in SD and444

discharge with the S1 SD DA are encouraging. It shows how high resolution S1-based445

SD estimates can be useful in hydrological modeling applications, offering a new tool to446

support operational river forecasting and water management.447

Open Research Section448

The LSM runs and DA were executed using NASA’s LIS platform, which is avail-449

able on GitHub. Compared to the NASA master, routines were introduced to read S1450

SD data, and adjustments were made to the NoahMP3.6 SD DA routine. The GitHub451

fork with updated routines will be added here after review, and the output will be up-452

loaded on Zenodo.453
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