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Abstract

Climate models face limitations in their ability to accurately represent highly variable atmospheric phenomena. To resolve fine-

scale physical processes, allowing for local impact assessments, downscaling techniques are essential. We propose spateGAN,

a novel approach for spatio-temporal downscaling of precipitation data using conditional generative adversarial networks. Our

method is based on a video super-resolution approach and trained on ten years of country wide radar observations for Germany.

It simultaneously increases the spatial and temporal resolution of coarsened precipitation observations from 32 km to 2 km and

from 1 hour to 10 minutes. Our experiments indicate that the ensembles of generated temporally consistent rainfall fields are in

high agreement with the observational data. Spatial structures with plausible advection were accurately generated. Compared to

trilinear interpolation and a classical convolutional neural network, the generative model reconstructs the resolution-dependent

extreme value distribution with high skill. It showed a high Fractions Skill Score of 0.73 for rainfall intensities over 15mmh-1

and a low BIAS of 3.55%. A power spectrum analysis confirmed that the probabilistic downscaling ability of our model further

increased its skill. We observed that neural network predictions may be interspersed by recurrent structures not related to

rainfall climatology, which should be a known issue for future studies. We were able to mitigate them by using an appropriate

model architecture and model selection process. Our findings suggest that spateGAN offers the potential to complement and

further advance the development of climate model downscaling techniques, due to its performance and computational efficiency.
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Abstract15

Climate models face limitations in their ability to accurately represent highly variable16

atmospheric phenomena. To resolve fine-scale physical processes, allowing for local im-17

pact assessments, downscaling techniques are essential. We propose spateGAN, a novel18

approach for spatio-temporal downscaling of precipitation data using conditional gen-19

erative adversarial networks. Our method is based on a video super-resolution approach20

and trained on ten years of country wide radar observations for Germany. It simulta-21

neously increases the spatial and temporal resolution of coarsened precipitation obser-22

vations from 32 km to 2 km and from 1 hour to 10 minutes. Our experiments indicate23

that the ensembles of generated temporally consistent rainfall fields are in high agree-24

ment with the observational data. Spatial structures with plausible advection were ac-25

curately generated. Compared to trilinear interpolation and a classical convolutional neu-26

ral network, the generative model reconstructs the resolution-dependent extreme value27

distribution with high skill. It showed a high Fractions Skill Score of 0.73 for rainfall in-28

tensities over 15mmh−1 and a low BIAS of 3.55%. A power spectrum analysis confirmed29

that the probabilistic downscaling ability of our model further increased its skill. We ob-30

served that neural network predictions may be interspersed by recurrent structures not31

related to rainfall climatology, which should be a known issue for future studies. We were32

able to mitigate them by using an appropriate model architecture and model selection33

process. Our findings suggest that spateGAN offers the potential to complement and fur-34

ther advance the development of climate model downscaling techniques, due to its per-35

formance and computational efficiency.36

Plain Language Summary37

Natural disasters like floods, hail, or landslides originate from precipitation. Global38

climate models are an important tool to understand these hazards and derive expected39

changes in a future climate. However, they operate on spatial and temporal scales that40

limit the regional ability to reflect their small scale characteristics. This has led to the41

development of dynamical and statistical downscaling methods. Due to their computa-42

tional efficiency, machine learning algorithms recently get increased attention as method43

for improving the spatial resolution of climate data. Here, we describe a new deep learn-44

ing model that allows to simultaneously increase both the temporal and spatial resolu-45

tion of precipitation data. Our presented approach enhances the spatial resolution by46

a factor of 16 and the temporal resolution by factor of 6. The generated rain fields are47

hardly identifiable as artificial generated and exhibit the typical structure, movement and48

distribution of observed rain fields.49
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1 Introduction50

In the 2010s around 83% of all natural disasters were caused by weather and cli-51

mate extremes killing more than 410,000 people. Half of all disasters were a direct con-52

sequence of precipitation extremes like floods or landslides (IFRC, 2021). Rising aver-53

age temperatures are expected to further increase both mean and extreme precipitation54

(Seneviratne et al., 2021), a development that may even be underestimated in climate55

projections (Allan & Soden, 2008). In order to adapt to a changing climate, accurate lo-56

cal and global information about the current and future hydrological cycle is indispens-57

able. However, precipitation shows high spatial and temporal variability, exhibiting fluc-58

tuations on almost all spatial and temporal scales (Berg et al., 2013). Dynamical global59

climate models are restricted to larger scales by their high computational demand and60

for numerical stability criteria. With typical horizontal grid spacing of 30–80 km (Chen61

et al., 2021) and temporal resolutions of 1–24 hours, they are beyond of resolving fine-62

scale physical processes, extreme precipitation in particular. Due to subgrid-scale pa-63

rameterizations, conclusions about the development of small-scale processes under a chang-64

ing climate are not generally limited. However, for physically-based local climate impact65

studies, the characterization of high-resolution information about precipitation and its66

extremes is inevitable.67

68

Consequently, downscaling methods have been developed and applied to increase69

the resolution of climate model outputs. These methods include statistical and dynam-70

ical downscaling using regional climate models, as well as AI-based downscaling that lever-71

ages artificial neural networks (ANNs), which have become increasingly popular in re-72

cent years. The AI-based downscaling methods are based on the image ”super-resolution”73

approach which originates from computer science, precisely computer vision, where the74

resolution of optical images is increased (Dong et al., 2016; Kim et al., 2016; J. John-75

son et al., 2016). The logical extension of this approach to the temporal domain is called76

”video-super-resolution” (Lucas et al., 2018; X. Wang, Lucas, et al., 2019). While the77

original application of super-resolution is based on a clear understanding of the data-generating78

process, the processes of generating climate observations are less well understood, pre-79

senting both a challenge and an opportunity for the application of ANNs (Reichstein et80

al., 2019). Following the super-resolution approach, high-resolution observational, cli-81

mate model, or reanalysis data are first spatially coarsened to a lower resolution. The82

training objective of the ANN is to recover the original resolution. For example, in pre-83

cipitation downscaling, high-resolution weather radar observations enable the modeling84

of complex precipitation patterns using ANNs. An additional benefit of ANNs is a con-85

siderable reduction in computation time and energy compared to traditional dynami-86

cal models (Pathak et al., 2022).87

88

First approaches for spatial precipitation downscaling with ANNs used a determin-89

istic convolutional neural network (CNN) which does not account for potential biases90

between observations and global climate model data or cover uncertainties related to the91

highly underdetermined problem (Vandal et al., 2017; F. Wang et al., 2021). Recent stud-92

ies have extended the spatial super-resolution approach to the temporal domain and gen-93

erated a single image with a fourfold higher spatio-temporal resolution applied to rain-94

fall and temperature data (Serifi et al., 2021). CNNs have also shown their potential in95

downscaling low-resolution climate model outputs while outperforming other statistical96

approaches (Baño-Medina et al., 2020; Mu et al., 2020; Sun & Tang, 2020; Vaughan et97

al., 2022).98

Recently, conditional generative adversarial networks (cGANs) (Mirza & Osindero,99

2014) have been becoming increasingly popular for data generation problems. In com-100

parison to classical CNN approaches, their advantages are that they do not rely on a pre-101

defined expert metric, but instead utilize an evolving metric in the form of an individ-102

ual trained neural network. Furthermore, they have a stochastic design which enables103

them to generate an ensemble of solutions (Goodfellow et al., 2014). cGANs consist of104
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two networks: a generator and a discriminator. The generator, typically a CNN, gen-105

erates high-resolution images conditioned on low-resolution inputs, whereas the discrim-106

inator evaluates the quality of the generated images by distinguishing between real and107

artificial images. The generator´s task trying to trick the discriminator is defined by the108

model´s objective function (Ledig et al., 2017; X. Wang, Yu, et al., 2019). Both networks109

are simultaneously trained in an adversarial manner. This concept of a two-part archi-110

tecture and model training has increased the generative performance of neural networks111

significantly, which is illustrated by the creation of realistic human faces (Karras et al.,112

2019). In climate science, cGANs can learn to reconstruct high-resolution solutions from113

climate model outputs and random components. Leinonen et al. (2021) demonstrated114

the performance and capability of cGANs within a spatial super-resolution approach by115

downscaling coarsened precipitation data from a resolution of 16 km to 1 km. The same116

idea has also been applied to downscaling global precipitation forecasts (Price & Rasp,117

2022; L. Harris et al., 2022). Furthermore, cGANs outperformed traditional precipita-118

tion nowcasting algorithms (Ravuri et al., 2021).119

120

Mapping low- to high-resolution precipitation data is an underdetermined prob-121

lem due to fluctuations across scales. Resolving the temporal evolution of precipitation122

events in terms of intensity and advection, is necessary to obtain a complete picture of123

the high variability of precipitation and the expression of extreme events. Kashinath et124

al. (2021) refer to the generation of spatially and temporally coherent fields as the holy125

grail of downscaling. However, existing deep learning methods for spatio-temporal down-126

scaling using CNN based downscaling methods can not sufficiently represent the high127

variability of precipitation due to their deterministic nature. Even though cGANs have128

proven to be suitable to present a probabilistic solution for the problem, the focus so far129

has been on increasing spatial resolutions without temporal downscaling. Often, the super-130

resolution approaches also address spatial or temporal scales not directly transferable131

to global climate model data. Furthermore, ”recurrent structures” such as reappearing132

local biases in the generated fields can be an issue. This will also be addressed later in133

this manuscript.134

135

In this study we propose spateGAN, a cGAN for spatio-temporal downscaling of136

precipitation based on the video super-resolution approach. We compare a determinis-137

tic version of the model to a probabilistic version. Precisely, the objective of this study138

is:139

1. To evaluate the ability of a 3D fully-convolutional cGAN to simultaneously down-140

scale rainfall fields in space and time, from a spatial resolution of 32 km to 2 km141

and temporally from 1hr to 10min.142

2. To analyze the model results with respect to spatial structures, temporal consis-143

tency and extreme value statistics of the generated fields.144

2 Methods145

In the following we introduce a new spatio-temporal downscaling approach using146

a conditional generative adversarial network that learned to downscale spatially and tem-147

porally coarsened gridded precipitation observations from a weather radar network (Fig-148

ure 1). As an evaluation case study we applied the final trained models to the domain149

of whole Germany and a time period consisting of 12 weeks of data distributed over all150

seasons. We compared a deterministic and a probabilistic cGAN (spateGANdet and spateGANprob)151

to a classical CNN approach and trilinear interpolation.152

–4–
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Figure 1. Overview of the proposed spateGAN model for spatio-temporal downscaling of

precipitation data. The Figure illustrates the downscaling of a complex precipitation event in

Germany, with both stratiform and convective elements. (a) spateGAN downscales coarsened

data, derived from weather radar images, with arbitrary spatial and temporal dimensions from a

resolution of 32x32 km and 1 hour to a higher resolution of 2x2 km and 10 minutes. The model

is trained on smaller patches, represented by the colored boxes. (b) Schematic overview of the

model components and training process. (c) Detailed downscaling results from a). spateGANdet

is able to convert the hourly resolved coarsened data into a sequence of temporally consistent,

finely structured precipitation fields, while also reconstructing the original distribution with

higher precipitation intensities.
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2.1 Conditional Generative Adversarial Networks for Downscaling153

A conditional generative adversarial network comprises two neural networks, the154

generator G and the discriminator D, which are trained in an adversarial manner. G is155

a function156

G : Rt×n×m → Rdtt×dsn×dsm

x 7→ G(x)
(1)

that performs the actual spatio-temporal downscaling of the coarse input x by increas-157

ing the temporal resolution by a factor dt ∈ N and the spatial resolution by a factor158

ds ∈ N. In this study dt = 6 and ds = 16. The number of time steps t and grid cells159

n,m were fixed during training, but can be larger during inference. The discriminator160

D is a classifier161

D : Rt×n×m × Rdtt×dsn×dsm → R
(x, y) 7→ b

(2)

that distinguishes whether the sequence of high-resolution rainfall maps y has been ar-162

tificially generated from x (i.e. y = G(x)) or is the original high-resolution radar im-163

age corresponding to x (Figure 1, b). Both functions are defined as convolutional neu-164

ral networks (see Section 2.2) trained in a so called adversarial training process. G and165

D improve their abilities, the generation and discrimination of realistic rainfall time se-166

quences by alternatively minimizing and maximizing the objective function described167

in Section 2.3. The key point is the custom trainable objective function for G which does168

not require prior knowledge about the problem to be constructed, but is learned from169

the data itself via D. The data set and its preparation is explained in Section 2.5. The170

selection of an optimal model during training and its evaluation requires metrics that171

we introduce in Section 2.6.172

Opposed to the downscaling task is the coarsening operator that was used to syn-173

thetically produce coarsened data from high-resolution images. We can define it by174

C : Rdtt×dsn×dsm → Rt×n×m

y 7→ C(y),
(3)

where C(y)i,j,k := 1
dtd2

s

i+dt∑
i′=i

j+ds∑
j′=j

k+ds∑
k′=k

yi′,j′,k′ is the average over dt time steps and ds by175

ds grid cells. If not mentioned otherwise we will refer to y as the original high-resolution176

observation image that was used to produce x, i.e. x = C(y).177

2.2 Network Architecture178

G and D are convolutional neural networks with a model architecture (Figure 2179

a) built from three principal functional blocks (Figure 2 b). G is fully convolutional. The180

final architecture resulted from an iterative model optimization with special focus on spatio-181

temporal consistency and the absence of recurrent structures and artifacts. Due to the182

training time of several days, a full hyperparameter tuning routine and ablation study183

had to be omitted. For both networks we included 3D convolutional layers. For D these184

allow the extraction of spatio-temporal features of rain field structures for the decision185

making. For G they allow to account for spatial and temporal non-linear correlation em-186

bedded in the given conditions (Tran et al., 2015) and the reconstruction of temporally187

consistent high-resolution rainfall fields.188

189

Convolutional-Block190

The Convolutional-Block is intended to efficiently represent spatio-temporal struc-191

tures within a feature map. The first part processes the input data through a 3D con-192

volutional layer with kernel size 1× 1× 1. Depending of the previous layer, the feature193

dimensionality is decreased to save computational costs and allow for a deeper model (Szegedy194

et al., 2015). This is followed by a ReLU activation function, another 3D-convolutional195

layer with kernel size 3× 3× 3, a Batch Normalization layer and another ReLU activa-196

tion (Ioffe & Szegedy, 2015).197
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Figure 2. Detailed model architecture of spateGAN consisting of a generator and a discrimi-

nator. (a) The discriminator acts as a classification model, evaluating whether the high-resolution

time sequences it receives are real or artificial, taking into account their possible affiliation

with the coarsened input data provided as a condition. The generator spatially and tempo-

rally downscales the coarsened input data. For spateGANprob dropout layer within the first three

Upsampling-Blocks enable ensemble generation. (b) Architectures of Upsampling, Downsampling

and Convolutional Blocks, the main components of both networks.

198

Upsampling-Block199

The upsampling part of the network intends to increase the resolution of the in-200

put data by refining the grid size using bilinear interpolation in the spatial dimensions201

and linear interpolation for the time dimension. Each interpolation step is followed by202

a Convolutional-Block using a leaky ReLU activation to prevent the complete inactiv-203

ity of these layers.204

205

Downsampling-Block206

The Downsampling-Blocks are only used within the discriminator. They are based207

on the presented Convolutional-Blocks, but with a kernel size of 4× 4× 4 within the sec-208

ond 3D convolutional layer combined with strided convolution and leaky ReLU as sec-209

ond activation function. The approach is similar to Isola et al. (2017) and uses the spa-210

tial and temporal stride operation to reduce dimensionality of extracted features.211

212

Generator213

The generator initially consists of two Convolutional-Blocks without Batch Nor-214

malization. Subsequently, the spatial and temporal resolution of the hidden represen-215

tation is increased using six Upsampling-Blocks to achieve the factors dt = 6 and ds =216

16 to increase the temporal resolution of 1 hr to 10 min and the spatial resolution from217

32 km to 2 km. Each interpolation step is followed by a Convolutional-Block to adjust218

spatio-temporal structures. There are two final Convolutional-Blocks, where the second219

block has no Batch Normalization. The model output is determined by a final convo-220

–7–
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lutional layer to reduce the filter dimension. A softplus activation function limits the dis-221

tribution of the output to positive values, which can be directly interpreted as rainfall222

intensity in mm/10 min. For each convolutional layer within G with a kernel size > 1223

we applied a reflection padding strategy to reduce boundary errors.224

Since downscaling is in general an underdetermined problem, the model uncertainty225

is closely related to the possible valid realizations of the high-resolution image. The ca-226

pability of ensemble generation can provide additional valuable information. Leinonen227

et al. (2021) have shown that for pure spatial downscaling noise, passed as an additional228

generator feature, is suitable for ensemble generation. We compared a deterministic cGAN229

approach (spateGANdet) to an alternative probabilistic approach (spateGANprob) for en-230

semble generation, exploiting dropout layers (Isola et al., 2017) within the first three gen-231

erator Upsampling-Blocks during model training and inference. The dropout rate was232

set to 0.2 with temporal constant selected neurons for each individual ensemble mem-233

ber.234

235

Discriminator236

One challenge in training the discriminator is that the given data should be dis-237

tinguished solely based on the temporal and spatial structures and the distribution. As238

a first model layer we add noise following a Gaussian distribution (mean=0, stddev=0.05)239

to the high- and coarse-resolution data to counteract a decision making based on a po-240

tential numerical inexactness of the generator while the real images are quantized and241

a perfect match for the coarse data.242

There are two input branches to the network. The high-resolution data is processed243

by a series of four Downsampling-Blocks. The first one has no batch normalization layer.244

The extracted features are concatenated with the coarsened model input data, that passed245

through one 3D convolutional layer and a leaky ReLU activation function. After another246

3D convolutional layer, Batch Normalization and a leaky ReLU activation function, the247

filter dimension is reduced using a last 3D convolutional layer. The resulting output is248

flattend and passed to a single dense layer using a linear activation function allowing for249

binary classification similar to Ravuri et al. (2021). We observed that Batch Normaliza-250

tion would not be required in all downsampling blocks to get to a similar model perfor-251

mance. However, they lead to a faster desirable model state during training (Ioffe & Szegedy,252

2015).253

2.3 Objective Function254

We express the objective functions for spateGAN following Isola et al. (2017) com-255

bining Binary Cross Entropy with a L1 loss term. The L1 loss term or mean absolute256

error is a pixel-wise error that is only applied to the generator objective. It ensures that257

the generated rain fields remain close to the ground truth. However, the distribution of258

rainfall deviates strongly from prominent ANN image data sets. Common methods to259

achieve a well-performing model and a stable training in spite of this, are data logarith-260

mization and normalization routines (L. Harris et al., 2022; Leinonen et al., 2021; Price261

& Rasp, 2022).262

This, however, can amplify the generation of unrealistically high rainfall intensi-263

ties in case of a model overestimation during inference or training and a potential ne-264

cessity of a limitation of the value range in form of an activation function like sigmoid265

or tanh, or by a fixed allowed maximum value. In our opinion such a constraint would266

limit the model to perform well in a non-stationary system. Therefore, we present a new267

alternative approach using an updated objective function. We logarithmized and nor-268

malized data that enter the discriminator or were considered for the calculation of the269

L1 loss according to270

λ(v) =
log(v + ε)− log(ȳ + ε)

log(ȳ + ε)
, (4)271
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where ȳ is the maximum of the high-resolution pixel values of the training data set (see272

Section 2.5.2) and ε = 10−3.273

The generator, on the other hand, as visualized in Figure 1 b), was provided un-274

modified input data and also produced output values that follow the original distribu-275

tion of the radar data set. The final objective function is276

LcGAN (G,D) = Ex,y[logD(λ(x), λ(y))] +277

Ex[log(1−D(λ(x), λ(G(x))))] +278

αEx,y[||λ(y)− λ(G(x))||1] (5)279

where G tries to minimize this objective and the adversarial D tries to maximize it. We280

set α to 20, to align the loss terms to a comparable range. For spateGANprob we con-281

sulted one random ensemble member per training step during model training for loss cal-282

culation to save computational resources.283

2.4 Comparison Models: Trilinear Interpolation and Convolutional Neu-284

ral Network285

As a baseline model we refined the grid size of the coarsened validation data cor-286

respondingly by a spatial factor of ds = 16 and temporal dt = 6 using trilinear inter-287

polation. In addition, we compared the performance of the spateGANs with a classical288

neural network approach. For this purpose, we trained a CNN with the exact same ar-289

chitecture as the generator of spateGANdet (see Section 2.2) only applying L1 loss from290

[5] without D. The remaining training routine was unchanged.291

2.5 Radar Data292

For model training, testing and validation we used RADKLIM-YW, a publicly avail-293

able gauge-adjusted and climatologically-corrected weather radar product provided by294

the German Meteorologic Service (DWD) that can be retrieved from Winterrath et al.295

(2018) . The radar composite contains information of 16 weather radars adjusted by ap-296

prox. 1000 rain gauges homogeneously distributed throughout Germany. A detailed de-297

scription of the radar data processing and correction can be found in Winterrath et al.298

(2017).299

The grid extent is 900 km× 1100 km with a resolution of 1 km× 1 km. The tem-300

poral resolution is 5 minutes, where each grid cell represents a 5 minute rainfall sum. Re-301

gions not covered by the 150 km measurement radii of the radars or missing measured302

values are marked with ”NaNs”. For our investigation we used data from 1 January 2010303

until 31 December 2021. After downloading we transformed the binary data to a NetCDF304

format following Chwala and Polz (2021) to be able to easily handle the large amounts305

of data (1Tb/year).306

To prevent information leakage and to validate the model’s ability to generalize out-307

side the training distribution, the data was split into three sets: 2010–2019 for training,308

2020 for testing, and 2021 for validation. All presented results stem from the validation309

data set.310

2.5.1 Data Preprocessing311

Before network training, testing and validation, suitable data was selected, the down-312

scaling factor was defined and the high-resolution samples were coarsened. The spatial313

resolution should increase 16-fold from 32× 32 km to 2× 2 km and the temporal reso-314

lution 6-folded from 1 hour to 10 minutes. The chosen scales are sufficient to simulate315

the downscaling of global climate model data, which can be provided with similar res-316

olution and to be fine enough to reveal the high temporal and spatial variability of pre-317

cipitation. A further increase of the resolution towards the original RADKLIM-YW data318

(1× 1 km and 5min) would have exceeded our currently available computational resources319
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in terms of GPU memory. Consequently, as a first preprocessing step, the data was spa-320

tially averaged and temporal aggregated to a 2 km and 10 minute resolution.321

2.5.2 Training and Testing Sample Preparation322

GPU memory limitation did not allow the usage of longer time series of whole maps323

of Germany for model training and testing. Therefore, we randomly selected samples with324

a spatio-temporal extent of 160× 160 pixels and 36 time steps, i.e. 320 km× 320 km× 6 hr.325

This approach also reduces the risk of the model memorizing spatial dependencies and326

patterns in the data.327

The rain intensity in the data follows a near-lognormal distribution and only about328

5% of the pixels of the radar composite contain precipitation, leading to a high imbal-329

anced and skewed distribution which is difficult for training neural networks. The main330

issue is learning reasonable predictions for the minority class (J. M. Johnson & Khosh-331

goftaar, 2019). For rainfall this refers to rarely occurring events and high precipitation332

intensities. To overcome this problem a simple data augmentation routine was applied.333

This routine balances the distribution of the train and test samples, increasing the num-334

ber of wet pixels and total amount of precipitation, and allowing the model to focus on335

relevant rain events. The data augmentation process selected only samples free of miss-336

ing values, total precipitation (of all time steps and pixels) exceeding 1000 kg and with337

at least 100 kg/ 10min per time step for 2/3 of all time steps. To avoid a systematic bias338

due to the prevailing westerly wind flow influence in Germany, half of the chosen sam-339

ples were rotated (90° or 270°) or mirrored (vertically or horizontally).340

In total, 112,500 samples were randomly drawn for model training (ytrain) and 1000341

samples ytest for model testing during training. The test data was also used for model342

selection (see Section 2.8). As a final preprocessing step, coarsened versions C(ytrain)343

and C(ytest) were calculated, resulting in a final model input shape during training (t×n×m)344

of 6 time steps and 10× 10 pixels.345

2.5.3 Validation Data346

To validate the model performance, we utilized the fully convolutional architecture347

of G to downscale entire maps of Germany. This entails a future possible application of348

downscaling global climate model outputs over a larger domain than the training sam-349

ples dimension, and the model’s ability to generalize for this. To include all seasons and350

connected temporal sequences, while reducing data volume, we selected the first week351

of each month of 2021 for validation, resulting in 12,096 validation time steps.352

We applied C(yval) to derive the coarse validation data, ignoring missing values353

and setting completely empty coarsened pixels to zero. After model prediction, we masked354

the downscaled data to exclude pixels with NaN values in yval and areas of coarsened355

pixels that were not entirely within the radar network coverage, but intersect with it.356

Additionally we excluded the first and last hour of individually predicted time steps to357

avoid temporal boundary errors. We applied this procedure to contain all available in-358

formation in the coarsened data, but derive valid predictions only for those areas where359

no data is missing. Evaluation metrics were calculated for a cropped area of 370× 560 km360

(highlighted in Figure 6) to further mitigate boundary effects.361

The length of time sequences downscaled by G is mutable and only limited by GPU362

memory. Using a NVIDIA Tesla V100, G is able to predict 66 time steps of high-resolution363

maps (66× 480× 480) from 11 coarse precipitation maps (11× 30× 30) in one single pro-364

cessing step, taking 0.1 seconds. Successive predictions were made for contiguous time365

sequences of this size, resulting in 11,652 images. For spateGANprob we calculated, ac-366

cording to Section 2.2, 5 ensemble members (spateGANprob01,02etc.) using fixed drop-out367

neurons for each member and a sixth member, spateGANprob06, in which the selected368

neurons were randomly changed for every prediction step, i.e. 6 hours. The aggregation369

of this mixed ensemble member represents the accumulated ensemble mean in this study.370
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2.6 Metrics371

The high temporal and spatial complexity of precipitation makes it difficult to val-372

idate the results using a single metric. In addition, different users and decision makers373

have different requirements on the capabilities of a downscaling model. Thus, the eval-374

uation of the results was carried out with a set of metrics considering different spatial375

scales and temporal aggregations. Additionally, a qualitative analysis was performed.376

For calculating the following metrics and for all shown results, we set observed (Rref )377

and generated (Rgen) rain rates below 0.01mmh−1 to zero.378

2.6.1 Fractions Skill Score379

The Fractions Skill Score (FSS) is a spatial verification method to evaluate the per-380

formance of precipitation forecasts. It is a measure of the rainfall misplacement error with381

respect to a given spatial and temporal scale (N. Roberts, 2008; N. M. Roberts & Lean,382

2008). A neighborhood of a pixel P contains all grid cells in a r by r square centered at383

P and T previous and following time steps. Let fref be the fraction of grid values larger384

than δ contained in a neighborhood averaged over all possible neighborhoods in an ob-385

served image. We define fgen in the same way using the generated image. Then the FSS386

for δ, r and T is defined by387

FSS =
(fgen − fref )2

f2
gen + f2

ref

, (6)

where f denotes the average over all images in the data set. For ensemble predictions388

the fraction is given by the average fraction over all ensemble members. We computed389

the FSS for various combinations of thresholds δ and scales, r and T .390

2.6.2 Radially Averaged Logarithmic Power Spectrum Density391

We computed the radially averaged power spectral density (RAPSD) and tempo-392

ral power spectrum density PSDt to analyze spatial and temporal patterns independent393

of their location (D. Harris et al., 2001; Sinclair & Pegram, 2005). The RAPSD of a sin-394

gle image was obtained through transforming its 2D power spectrum into a 1D power395

spectrum by radial averaging, as implemented in pysteps (Pulkkinen et al., 2019). The396

pixel wise power spectrum along the time dimension is referred to as PSDt. We calcu-397

lated the RAPSD for single images (RAPSD10), hourly aggregated images (RAPSD60)398

and the accumulation of the entire evaluation data set RAPSDaggr.399

We compared the power spectrum density of the artificially generated rain fields400

with the analog measure derived from the observation data. First, we used RAPSD10401

to evaluate spatial patterns in terms of their frequency and amplitude. Second, we used402

PSDt and RAPSD60 to quantify the ability to generate temporally consistent fields. And403

third, we used RAPSDaggr to reveal if models produce recurrent structures (local bi-404

ases) that sum up over time and are distinct from recurrent local structures in the ref-405

erence data. An example of such structures is given in Figure 6.406

2.6.3 Point Wise and Distribution Error407

As a point wise error we computed the mean absolute error (MAE) given by408

MAE = |Rref −Rgen|. (7)

The continuous ranked probability score (CRPS) is a generalization of the mean abso-409

lute error and evaluates a probabilistic models predictive distribution against observed410

values (Gneiting & Raftery, 2007).411
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The relative BIAS measures the average model error as a percentage of the mean412

observed rainfall and is given by413

BIAS =
Rgen −Rref

Rref

∗ 100 (8)

The Kolmogorov-Smirnov (KS) test measures the maximal distance between the414

cumulative distribution of observed and generated rainfall. It evaluates the modelled dis-415

tribution independent of the spatial distribution of values. Because of the skewed dis-416

tribution of rainfall this maximal distance is most often located at low rainfall intensi-417

ties which limits conclusions about extreme values.418

2.7 Model Training419

Each model was trained for three days resulting in about 3 × 105 training steps420

using mixed precision. The optimization of the spateGANs followed a standard approach421

by alternating between one gradient descent step for D, followed by one step for G (Goodfellow422

et al., 2014) and counted as one training step of the spateGAN. We trained on randomly423

selected samples from the training data set on one Nvidia Tesla V100 GPU limiting batch424

size to 7. For gradient descent, Adam optimizer was chosen with a learning rate of 1×425

10−4 for G (momentum parameters: β1 = 0.0, β2 = 0.999) and 2 × 10−4 for D (β1 =426

0.5, β2 = 0.999). Models were saved after every 500th training step to later select the427

best performing state. We implemented the ANNs and model optimization in a Python428

framework using tensorflow (version: 2.6) (Developers, 2022).429

2.8 Model Selection430

We selected the best performing models (i.e. the optimal state of either CNN, spateGANdet431

and spateGANprob during training) by downscaling the test data. We took the structural432

error of all generated images into account using both RAPSDaggr and the average RAPSD10.433

We represent the RAPSD deviation by a single value by calculating the mean absolute434

error of the logarithmized RAPSDs of predicted and real images:435

σ =
1

n

n∑
i=1

|10 ∗ log10(RAPSDreal)− 10 ∗ log10(RAPSDpredicted)| (9)436

Based on RAPSDaggr, σaggr considers potential model artefacts in the form of recur-437

rent structures and the model ability to reconstruct adequate rain sums for a longer time438

period. Based on RAPSD10, σ10min takes the models ability to generate rain fields with439

spatial structures of the right amplitudes and frequencies into account. To avoid too strong440

influence of boundary errors in this selection we excluded the outermost edge, correspond-441

ing to one coarse resolution pixel, for this calculation. Finally, the model minimizing σaggr+442

σ10min was selected.443

3 Results444

To evaluate the spatio-temporal downscaling performance we considered the mod-445

els capability to reconstruct the target distribution from spatially and temporally coars-446

ened input data and to generate rain fields that closely resemble the observations regard-447

ing spatial structure and temporal consistency.448

3.1 Qualitative Analysis449

We start with a qualitative analysis examining a detailed visualization of the se-450

quences generated for three rain events. One is a convective case study scenario and the451

other two show a stratiform and a mixed type rain event. The observation data, their452
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Figure 3. Detailed case study of the spatio-temporal downscaling performance for a con-

vective precipitation event for central Germany. Shown are a temporal sequence of coarsened

model input data, associated RADKLIM-YW observations, and model predictions. Hourly and

two-hourly aggregated images highlight specific advection structures.
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associated coarsened representation and the respective models are shown in Figures 3,453

4 and A1. The predictions from the probabilistic generative approach stem from a sin-454

gle ensemble member (spateGANprob01). Additionally, the preceding and subsequent time455

steps of the coarsened images are presented to provide a better understanding of what456

information is available to the model to generate the high-resolution images. A more com-457

plete picture is given by the attached animations visualizing the full time sequences of458

different events (https://doi.org/10.5281/zenodo.7636929).459

Case Study: Convective Rain Events460

Figure 3 shows the temporal evolution of a convective rainfall event. The challenge461

for the downscaling models was to determine that the connected rainfall field in the coars-462

ened input data represents disconnected convective cells and to localize them correctly463

with plausible advection.464

Both spateGAN approaches effectively generated small convective rain cells from465

the low-resolution data which cannot be easily identified as artificially generated. The466

spatial structures, localization and advection were in good agreement with the observa-467

tion data. However, there are differences in certain regions. For example, a more con-468

nected rain field in the north was represented as smaller separated cells. The observed469

small rain event in the southeast at t+20min with a rain rate > 20mmh−1 was gen-470

erated as a larger event with lower rain rates. Despite these small scale dissimilarities,471

spateGAN was able to construct plausible local extremes like in the northern part of the472

images. In addition to the individual time steps, the 1-hour aggregations revealed ad-473

vection structures that are very similar to the observation data in large parts of the im-474

ages. This supports the hypothesis that the model is able to reproduce spatio-temporally475

consistent small-scale rainfall structures with plausible advection.476

The CNN could generate rain fields with reasonable position and timing, but the477

cells lacked fine-scaled spatial structure and local extremes. Especially the gradients were478

very smooth. The model was not able to separate individual convective cells, however479

by comparing the presented time steps in chronological order, a plausible movement and480

temporal consistency became apparent.481

The trilinear interpolation created a blurry version of the low-resolution data lack-482

ing local gradients, extreme values or advection.483

Case Study: Stratiform Rain Events and Embedded Convection484

Figure 4 presents the one hour time sequence of a stratiform rain event. The chal-485

lenge for the models was to reconstruct the evolution of this larger rain field including486

areas with no precipitation and a smaller separated cell in the north, from contiguous487

pixels in the coarsened input data. The results from the spateGANs appear very sim-488

ilar to the observational data, including the size and positioning of the generated rain489

fields. The artificially generated events show plausible structures with a slight underes-490

timation of the maximum rainfall intensity in, e.g., image t+20min. Higher rainfall in-491

tensities in the southeast corner and correctly positioned holes were created. The small492

detached rain events in the north are also depicted and are hardly distinguishable from493

the observation data. The generated structures exhibit a plausible temporal and spatial494

development, even though the rain field is moving slowly. spateGANs ability to gener-495

ate both small and large rain events in a single image is further demonstrated for a com-496

plex precipitation event in Figure A1.497

As within Figure 3, the trilinear interpolation and CNN results were blurry and498

lacked spatial structure. The CNN was more accurate in terms of the spatial extent of499

the rain field, while the trilinear interpolation produced fields that exceeded the spatial500

extent of the reference.501
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Figure 4. As Figure 3 for a stratiform event.
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Figure 5. Evaluation of the downscaling methods (spateGANs, CNN, and trilinear interpola-

tion) for a cropped area of the 2021 validation data set for Germany. (a) presents the Fractions

Skill Score (FSS) for different thresholds and spatial and temporal scales, with the ensemble FSS

of multiple members for spateGANprob. Part (b) evaluates the generated spatial and temporal

structures using power spectra analysis. spateGANprob refers not to multiple ensemble mem-

bers, but to the mixed ensemble member as described in Section 2.5.3. The temporal consistency

of the generated fields is evaluated using RAPSD60 and the average PSDt. All ANN models

show peaks in RAPSDaggr. at different wavelengths and intensities, indicating the presence of

recurrent patterns in the predictions.

3.2 Quantitative Investigation502

The quantitative analysis is divided into two parts. First we investigated the mod-503

els regarding their capability to generate detailed spatio-temporal rain field structures504

by analyzing the power spectrum. Then, we examined the pixel accuracy and the abil-505

ity to reconstruct a skillful distribution in time and space by calculating the FSS, CRPS,506

MAE, KS statistics and BIAS.507

3.2.1 Structural Analysis508

We calculated the average RAPSD10 and RAPSD60 of the high-resolution obser-509

vation images and the associated model predictions to investigate whether the models510

are able to represent the structural variability and advection of precipitation across spa-511

tial and temporal scales. The same analysis was performed for the accumulated precip-512

itation of all 11652 validation images (RAPSDaggr.) to visualize potential undesirable513

model characteristics such as the generation of recurrent structures that would manifest514

as peaks at certain wavelengths.515

Figure 5 b) shows that the generated images from spateGANdet and spateGANprob516

have a high structural similarity to the observations for both, single images and hourly517

aggregations on all considered scales. A small underestimation occurred between wave-518

lengths of 128 to 64 and < 6 km for spateGANdet. Respectively a slight overestimation519

occurred for spateGANprob. The same was observable in the temporal power spectrum520

PSDt for wavelengths between 30 min. and 4 hours. For higher frequencies spateGANprob521

showed a slight overestimation. The RAPSDaggr was close to the observation data. How-522
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Figure 6. Aggregated observed and predicted rainfall of the validation data set for Germany

for the year 2021. The accumulation shows the models ability to maintain the total rainfall

amount and reveals recurrent structures within the predictions that contradict the physical prin-

ciple of developing rain fields. spateGANprob represents an ensemble mean as described in Section

2.5.3 and the rectangle defines the area considered for the quantitative analysis.

ever, peaks mainly prominent at a wavelength of 8 and 6 km could be observed. Recur-523

rent structures with this frequency were also visible in the accumulated rainfall maps from524

Germany in Figure 6. Predictions of spateGANdet also exhibited this conspicuity at a525

wavelength of 32 km. At shorter aggregations (e.g. individual predictions, RAPSD10 or526

RAPSD60) these structures were not detectable.527

For the CNN, RAPSD10, 60 and aggr. showed an underestimation, especially for528

higher frequencies. This results from the missing model ability to generate small scale529

structures and to reconstruct the original high-resolution distribution. Recurrent struc-530

tures could be also observed at wavelength of 32 km.531

Trilinear interpolation was in general not capable to generate small scale spatio-532

temporal structures that were similar to the observation data. A high RAPSD and PSDt533

underestimation could be shown for wavelength smaller 128 km or 8 hours. Within the534

whole accumulated validation data set no recurrent structures could be observed con-535

sidering RAPSDaggr or Figure 6.536

3.2.2 Distribution Reconstruction Skill537

The coarse resolution provided as model input compresses the distribution of rain-538

fall intensities towards lower values. The decisive factor of a skilful downscaling model539

is therefore not only the generation of realistic spatial structures, but rather the abil-540

ity to reconstruct the correct distribution of rainfall intensities with accurate spatial and541

temporal placement of the rain events. We measured this downscaling skill by consid-542

ering the FFS for the spatial and temporal precision of reconstructing high intensities543

using thresholds δ of 0.1mmh−1, 1mmh−1, 5mmh−1 and 15mmh−1. These thresh-544

olds represent the 0.9, 0.97, 0.997 and 0.9998 quantiles of the validation data set. The545

spatial scales r were between 0 and 128 km and the temporal scales T were 0 and 60 min-546

utes. The results are shown in Figure 5 a). The generative models demonstrated a high547

skill for small to moderate rainfall (0.1 and 1mmh−1) with FSS exceeding 0.9 at a spa-548

tial scale of 32 km. They also performed well for high and strong rainfall intensities, with549

FSS values over 0.8 and 0.7 for a threshold of 5 and 15mmh−1. The score of spateGANprob550

increased further, especially for small rain rates and scales, when multiple ensemble mem-551

bers were considered and the ensemble FSS was calculated. The CNN showed the best552

performance for small and moderate rainfall rates, but the accuracy decreased for strong553

rainfall intensities with a maximum FSS of 0.06 for 15mmh−1. Trilinear interpolation554

performed well for moderate precipitation (1mmh−1) but had the lowest overall skill.555

Additionally, we calculated pixel accuracy metrics CRPS, or MAE for determin-556

istic models, and the BIAS, as well as the distribution error as the KS statistics shown557

in Table 1. In terms of MAE, KS statistics, and BIAS the spateGAN models achieved558
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Table 1. Set of downscaling skill metrics computed for the validation data set. The FSS

refers to the maximum score of Figure 5 a) each model achieved for different thresholds. For

spateGANprob multiple ensembles were considered for CRPS and FSS, a single member for MAE,

KS statistic, power spectra deviation σ10min [9] and BIAS.

CRPS/MAE KS FSS0.1 FSS1 FSS5 FSS15 σ10min BIAS

spateGANdet: -/0.018 0.010 0.98 0.97 0.87 0.73 1.36 3.35
spateGANprob: 0.012/0.018 0.014 0.98 0.97 0.89 0.71 0.31 -3.55

CNN: -/0.012 0.008 0.98 0.98 0.81 0.06 16.1 -22.22
Trilinear: -/0.016 0.20 0.81 0.91 0.23 0 18.6 -0.25

overall good scores, compared to CNN and trilinear interpolation. The BIAS of spateGANdet559

showed a slight overestimation and an underestimation for spateGANprob. The CNN had560

the best KS score and MAE, but a negative BIAS of -22.28% indicated a strong under-561

estimation (see Figure 6). Trilinear interpolation showed the best BIAS with -0.28% .562

3.3 Ensemble Downscaling563

The generation of multiple ensemble members is crucial to quantify uncertainties564

in the downscaling process like the likelihood of extreme events (Pathak et al., 2022).565

By comparing the probabilistic generative approach to the deterministic, it could566

be shown that the predictions of an individual ensemble member, like spateGANprob01,567

looked similarly realistic as the predictions of spateGANdet (see Figure 3, 4 and A1). Re-568

garding the RAPSD10, RAPSD60 and PSDt the predictions where even closer to the ob-569

servation data as can be seen in Figure 5. The downscaling skill of spateGANprob01 was570

only minimally reduced with lower FSS for the thresholds 0.1, 1 and 15mmh−1, but higher571

scores for 5mmh−1. The potential of a probabilistic approach which considers multi-572

ple spateGANprob ensemble members was investigated by calculating the CRPS and en-573

semble FSS (see Table 1). The CRPS showed an improvement with a value of 0.012 com-574

pared to the MAE of SpateGANdet and SpateGANprob01. Furthermore, the FSS indi-575

cated a better downscaling performance compared to SpateGANdet and SpateGANprob01,576

particularly for small scales and low rainfall amounts. The probabilistic model was also577

able to well represent the precipitation sum of the validation reference considering the578

aggregated ensemble mean, as can be seen in Figure 6.579

However, Figure 5 shows that the aggregation of a single ensemble member (RAPSDaggr580

for spateGANprob01) showed an overestimation from scales between 8 and 128 km. We581

assume that this model characteristic was due to the chosen dropout routine. For one582

ensemble member selected drop out neurons were fixed for all time steps. The behaviour583

was not visible in single predictions and could only be revealed via the aggregation and584

analysis of multiple thousand images. To address this constraint, we emphasize to al-585

ways consider multiple ensemble members, when applying this approach for longer time586

series.587

Furthermore, we experimented to change the drop out rate after model training,588

which lead to an increased variance of the ensemble members. However, the downscal-589

ing skill was not further improved. Additionally, we trained a model applying random590

drop out neurons for each time step, which could generate temporal consistent rain fields591

without issues when aggregating single ensemble members. However, it frequently pro-592

duced low rain rates during dry time steps and regions. Overall this exemplifies that var-593

ious approaches for ensemble generation are feasible, but the creation of ensembles that594

reflect the physical plausible solutions and the stochasticity of the target data set is chal-595

lenging and therefore subject to further research.596
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4 Discussion597

In this study we proposed spateGAN, a novel approach for spatio-temporal down-598

scaling of precipitation data combining cGANs, 3D convolution and interpolation tech-599

niques. It effectively increases the spatial resolution of coarsened weather radar data from600

32 km x 32 km and 1 hour to 2 km x 2 km and 10 minutes. In the following we will dis-601

cuss the models ability to accurately reconstruct spatial structures with temporal con-602

sistency and correct extreme value statistics. Additionally, we present the models lim-603

itations and additional unexpected findings.604

Spatial Structures605

The qualitative investigation (see Section 3.1) and the presented animation prove606

the ability of spateGAN to generate plausible precipitation fields from coarsened input607

data that are hardly classifiable as artificially generated. This is supported by the power608

spectrum analysis using RAPSD and PSD, which are in highest agreement with the609

observation data for all scales when compared to CNN and interpolation. The FSS con-610

firms that unlike trilinear interpolation and a classical CNN approach, the cGAN approach611

accurately produces structures with higher rainfall intensities. spateGAN is the only model612

that is able to generate rain cells of small spatial extent (see Figure 3). Besides the spa-613

tial extent and the rainfall intensity, the number of generated cells has a similar order614

of magnitude compared to the observations. Only the precise location of these cells de-615

viates due to the stochastic nature of the model. spateGAN also tends to produce slightly616

smoother structures than the observed ones for large scale rain events like shown in Fig-617

ure 4. We assume that an increase of the training sample dimensions could improve the618

structural quality of such large rain events. Overall, the results emphasize the necessity619

of a generative network downscaling approach for modeling realistic rain fields, since tri-620

linear interpolation and CNN lack higher frequencies in the power spectrum. Trilinear621

interpolation approximates the low-resolution data providing limited additional infor-622

mation, while the CNN generates more detailed, but still too blurry events (Larsen et623

al., 2016).624

Temporal Consistency625

The animations of downscaled rain fields illustrate temporal consistency as a key626

property of spateGAN. The generated fields exhibit plausible advection, showing that627

rain cells are not randomly appearing and disappearing between time steps. This is sup-628

ported by the 1 hour and 2 hour aggregations (see case study Figures 3, 4, A1), where629

the sum of individual time steps leads to smooth, connected cells elongated in the di-630

rection of advection. Furthermore, RAPSD60 and PSDt are in high agreement with the631

observation data. The visual evaluation of the CNN predictions and its improved PSDt632

compared to trilinear interpolation also indicate the CNN’s ability to generate tempo-633

rally consistent events. This leads us to conclude that 3D convolutions are suitable for634

creating temporally coherent downscaled images (Vondrick et al., 2016; Tran et al., 2015).635

In combination with linear temporal interpolation within G, 3D convolutions are a cru-636

cial factor for the generation of these consistently evolving rain fields. 3D convolutional637

layers in D may also contribute to spateGANs high temporal consistency, which is sup-638

ported by a similar application for precipitation nowcasting (Ravuri et al., 2021). How-639

ever, in our use case their impact on structural precision, that is, the localization of rain640

cells, might be more significant.641

Model Limitations642

Despite its potential, 3D convolution has certain limitations and its usefulness for643

video generation is still a matter of debate (Saito et al., 2017). The main challenge is644

that the possible amount of exploitable large-scale and long-term spatio-temporal cor-645
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relations is not arbitrarily expandable. It depends on the model architecture and model646

depth which define the receptive field size. Furthermore, also the spatial and temporal647

dimensions of the training samples are important, since model extrapolation capabili-648

ties beyond this dimension might be highly limited. Overall, the potential is therefore649

tied to the available GPU resources, while the memory requirements of 3D convolution650

are substantial. On the other hand, fully convolutional networks allow for arbitrary in-651

put dimensions and we found that spateGANs architecture and depth is sufficient to achieve652

high performance within the super-resolution downscaling approach. While the model653

predictions are already spatially and temporally consistent beyond the training sample654

dimensions it remains unclear if the performance could be further increased by leverag-655

ing longer time scales and a larger spatial extent during training. We assume that in the656

case of downscaling global climate data, an increase in the model’s receptive field might657

be crucial to realize the full potential.658

Distribution of Downscaled Rainfall659

A main objective of a spatio-temporal downscaling model is the ability to accurately660

reconstruct the distribution of rainfall at a higher spatial and temporal resolution, which661

is typically characterized by increased variability and extremes. As expected, the FSS662

of all models declines towards heavier rainfall, which is harder to model due to its rare663

occurrence and higher spatio-temporal gradients.664

Among the evaluated models, spateGAN stands out as the only model that suc-665

cessfully reconstructed rainfall intensities greater than 5mmh−1 or 15mmh−1, while666

maintaining a low BIAS (< 3.6%). This is a crucial feature that is not provided by the667

comparison models. Trilinear interpolation shows the lowest BIAS, however, also the low-668

est downscaling skill in terms of FSS and RAPSD. The CNN predictions show high skill669

regarding pixel accuracy metrics, distribution error or downscaling skill for small and670

moderate rain rates. However, the model is not able to skilfully reconstruct strong pre-671

cipitation intensities. Furthermore, the model fails to preserve the overall rain sum, main-672

tained within the coarsened input data showing a strong negative BIAS (-22.22%). We673

therefore emphasize, as also described in Leinonen et al. (2021), that MAE and KS statis-674

tics should be interpreted with caution, as the results could be highly affected by the large675

amount of small values within the skewed rainfall distribution. They are therefore not676

suitable to account for the model’s ability to recover the target rain distribution contain-677

ing also extreme values. Furthermore, they can lead to poor metrics, even if models are678

able to generate rain cells with correct structure and intensity, since these rain cells might679

be slightly off positioned within the underdetermined downscaling problem and the stochas-680

ticity of the solution.681

Unexpected Findings682

Our analysis of long aggregations (several thousand time steps) of generated rain683

fields revealed the presence of local biases in the form of recurrent structures. With vary-684

ing intensity and frequency, they could be observed within the predictions of all ANN685

models. It is known that GANs can produce artefacts (Karras et al., 2019). However,686

in our case they were not detectable in single images, e.g., by calculating the power spec-687

trum density. Preliminary results indicate that such model behavior is not unique to the688

models used in this study, as other prominent ANN downscaling models might also be689

affected by this behaviour.690

While the training images for our models are selected at random locations, reduc-691

ing the influence of topography, the generated structures are not completely random. In-692

stead, they might follow a spatial or even geometric regularity which is contradictory to693

the physical principle of emerging rain fields. This does not imply that the downscal-694

ing performance of the models is reduced, but can be a seen as a limitation and should695

be a known feature to be tested. In an effort to minimize the occurrence of these struc-696
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tures, we presented a model with a sophisticated architecture and interpolation technique.697

Furthermore, we also considered the appearance of these structures in the selection pro-698

cess of the final models (see Section 2.8). Despite this, we were unable to completely elim-699

inate them. Our analysis revealed that a discriminator with many parameters (e.g. G :700

2 million., D: 10 million) might lead to an earlier and more intense occurrence of these701

phenomena. Additionally, we assume that the combination of up and down-sampling lay-702

ers and their kernel sizes also have an influence. To fully understand the underlying mech-703

anisms responsible for the observed structures, a comprehensive investigation involving704

the comparison of various hyper-parameterizations would be required. Given the com-705

putational effort for training one model, this investigation is beyond the scope of this study706

and will be left for future research. In the geosciences not only single instances, but also707

the aggregation of many instances is of importance. Therefore, we emphasize that it is708

not sufficient to only analyze single predictions, but also the models abilities to fulfill global709

properties like the climatology of the modeled target variable.710

5 Conclusion711

Downscaling the output of global climate models is a long-standing problem for pro-712

viding high-resolution information which is needed to develop adaptation and mitiga-713

tion strategies in a changing climate. We presented spateGAN, a deep generative model,714

for simultaneous spatio-temporal downscaling of low-resolution precipitation data. The715

model was trained using ten years of high-resolution country-wide weather radar rain-716

fall observations in Germany. Our results demonstrated that 3D convolution in combi-717

nation with conditional generative adversarial networks is an effective tool for leverag-718

ing spatio-temporal structures embedded in the low-resolution domain to generate tem-719

porally consistent high-resolution rainfall fields and reconstruct the scale dependent ex-720

treme value distribution with high skill. This confirms that super-resolution deep learn-721

ing approaches can be extended to the time dimension to map, in addition to the spa-722

tial variability, also the temporal evolution of atmospheric variables.723

While a visual inspection leads to the conclusion that generated rain cells look re-724

alistic, we found the power spectrum analysis and the Fractions Skill Score to be use-725

ful metrics for quantifying this property. Pixel accuracy metrics like the mean absolute726

error were unable to distinguish between models with high or low skill in generating re-727

alistic rain fields. Especially our findings about recurrent structures in downscaled rain-728

fall fields show that a structural analysis is very important in order to mitigate these is-729

sues. Overall, the chosen analysis was able to prove that models like spateGAN show great730

potential to complement and even outperform the capabilities of traditional downscal-731

ing methods due to their high performance, computational efficiency and the ability to732

process arbitrary spatial and temporal input dimensions.733

One of the primary purposes of spateGAN is the application for downscaling global734

climate model outputs. We envision that the approach for this task will have to extend735

the presented video super-resolution approach, since model outputs are biased with re-736

spect to the observed precipitation. Therefore, requirements for the downscaling model737

would include an additional bias correction step. The potential for bias correction and738

spatial downscaling of weather forecast data using generative networks has in been demon-739

strated in L. Harris et al. (2022) and Price and Rasp (2022) and resulted in a performance740

reduction compared to downscaling coarsened observations. A similar result should be741

expected for spatio-temporal downscaling. However, we assume that with increased lead742

time a decoupling of model projections from real observations is the reason for the per-743

formance decline and not the insufficient potential of the deep learning approach. Ad-744

ditionally, further studies will have to prove if the generated precipitation fields are suit-745

able, e.g. for simulating the characteristics of flood events under future climate condi-746

tions. This work should provide a solid basis for such future studies by not only present-747

ing a high performance downscaling model, but also the analytical framework for a com-748

prehensive analysis of the model performance.749
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Appendix A Supplementary Figure750

Figure A1. Detailed case study as in Figure 3 for a third event, with a mixture of convective

and stratiform rain.

Open Research751

The results and models can be reproduced by the publicly available RADKLIM-752

YW weather radar composite (Winterrath et al., 2018). The CNN and spateGANs were753

implemented and optimized in a Python framework using tensorflow (version: 2.6)754

(Developers, 2022). The data and spateGAN models, available in https://doi.org/755

10.5281/zenodo.7636929, provide further insight into the presented spatio-temporal756

downscaling approach.757
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Abstract15

Climate models face limitations in their ability to accurately represent highly variable16

atmospheric phenomena. To resolve fine-scale physical processes, allowing for local im-17

pact assessments, downscaling techniques are essential. We propose spateGAN, a novel18

approach for spatio-temporal downscaling of precipitation data using conditional gen-19

erative adversarial networks. Our method is based on a video super-resolution approach20

and trained on ten years of country wide radar observations for Germany. It simulta-21

neously increases the spatial and temporal resolution of coarsened precipitation obser-22

vations from 32 km to 2 km and from 1 hour to 10 minutes. Our experiments indicate23

that the ensembles of generated temporally consistent rainfall fields are in high agree-24

ment with the observational data. Spatial structures with plausible advection were ac-25

curately generated. Compared to trilinear interpolation and a classical convolutional neu-26

ral network, the generative model reconstructs the resolution-dependent extreme value27

distribution with high skill. It showed a high Fractions Skill Score of 0.73 for rainfall in-28

tensities over 15mmh−1 and a low BIAS of 3.55%. A power spectrum analysis confirmed29

that the probabilistic downscaling ability of our model further increased its skill. We ob-30

served that neural network predictions may be interspersed by recurrent structures not31

related to rainfall climatology, which should be a known issue for future studies. We were32

able to mitigate them by using an appropriate model architecture and model selection33

process. Our findings suggest that spateGAN offers the potential to complement and fur-34

ther advance the development of climate model downscaling techniques, due to its per-35

formance and computational efficiency.36

Plain Language Summary37

Natural disasters like floods, hail, or landslides originate from precipitation. Global38

climate models are an important tool to understand these hazards and derive expected39

changes in a future climate. However, they operate on spatial and temporal scales that40

limit the regional ability to reflect their small scale characteristics. This has led to the41

development of dynamical and statistical downscaling methods. Due to their computa-42

tional efficiency, machine learning algorithms recently get increased attention as method43

for improving the spatial resolution of climate data. Here, we describe a new deep learn-44

ing model that allows to simultaneously increase both the temporal and spatial resolu-45

tion of precipitation data. Our presented approach enhances the spatial resolution by46

a factor of 16 and the temporal resolution by factor of 6. The generated rain fields are47

hardly identifiable as artificial generated and exhibit the typical structure, movement and48

distribution of observed rain fields.49
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1 Introduction50

In the 2010s around 83% of all natural disasters were caused by weather and cli-51

mate extremes killing more than 410,000 people. Half of all disasters were a direct con-52

sequence of precipitation extremes like floods or landslides (IFRC, 2021). Rising aver-53

age temperatures are expected to further increase both mean and extreme precipitation54

(Seneviratne et al., 2021), a development that may even be underestimated in climate55

projections (Allan & Soden, 2008). In order to adapt to a changing climate, accurate lo-56

cal and global information about the current and future hydrological cycle is indispens-57

able. However, precipitation shows high spatial and temporal variability, exhibiting fluc-58

tuations on almost all spatial and temporal scales (Berg et al., 2013). Dynamical global59

climate models are restricted to larger scales by their high computational demand and60

for numerical stability criteria. With typical horizontal grid spacing of 30–80 km (Chen61

et al., 2021) and temporal resolutions of 1–24 hours, they are beyond of resolving fine-62

scale physical processes, extreme precipitation in particular. Due to subgrid-scale pa-63

rameterizations, conclusions about the development of small-scale processes under a chang-64

ing climate are not generally limited. However, for physically-based local climate impact65

studies, the characterization of high-resolution information about precipitation and its66

extremes is inevitable.67

68

Consequently, downscaling methods have been developed and applied to increase69

the resolution of climate model outputs. These methods include statistical and dynam-70

ical downscaling using regional climate models, as well as AI-based downscaling that lever-71

ages artificial neural networks (ANNs), which have become increasingly popular in re-72

cent years. The AI-based downscaling methods are based on the image ”super-resolution”73

approach which originates from computer science, precisely computer vision, where the74

resolution of optical images is increased (Dong et al., 2016; Kim et al., 2016; J. John-75

son et al., 2016). The logical extension of this approach to the temporal domain is called76

”video-super-resolution” (Lucas et al., 2018; X. Wang, Lucas, et al., 2019). While the77

original application of super-resolution is based on a clear understanding of the data-generating78

process, the processes of generating climate observations are less well understood, pre-79

senting both a challenge and an opportunity for the application of ANNs (Reichstein et80

al., 2019). Following the super-resolution approach, high-resolution observational, cli-81

mate model, or reanalysis data are first spatially coarsened to a lower resolution. The82

training objective of the ANN is to recover the original resolution. For example, in pre-83

cipitation downscaling, high-resolution weather radar observations enable the modeling84

of complex precipitation patterns using ANNs. An additional benefit of ANNs is a con-85

siderable reduction in computation time and energy compared to traditional dynami-86

cal models (Pathak et al., 2022).87

88

First approaches for spatial precipitation downscaling with ANNs used a determin-89

istic convolutional neural network (CNN) which does not account for potential biases90

between observations and global climate model data or cover uncertainties related to the91

highly underdetermined problem (Vandal et al., 2017; F. Wang et al., 2021). Recent stud-92

ies have extended the spatial super-resolution approach to the temporal domain and gen-93

erated a single image with a fourfold higher spatio-temporal resolution applied to rain-94

fall and temperature data (Serifi et al., 2021). CNNs have also shown their potential in95

downscaling low-resolution climate model outputs while outperforming other statistical96

approaches (Baño-Medina et al., 2020; Mu et al., 2020; Sun & Tang, 2020; Vaughan et97

al., 2022).98

Recently, conditional generative adversarial networks (cGANs) (Mirza & Osindero,99

2014) have been becoming increasingly popular for data generation problems. In com-100

parison to classical CNN approaches, their advantages are that they do not rely on a pre-101

defined expert metric, but instead utilize an evolving metric in the form of an individ-102

ual trained neural network. Furthermore, they have a stochastic design which enables103

them to generate an ensemble of solutions (Goodfellow et al., 2014). cGANs consist of104
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two networks: a generator and a discriminator. The generator, typically a CNN, gen-105

erates high-resolution images conditioned on low-resolution inputs, whereas the discrim-106

inator evaluates the quality of the generated images by distinguishing between real and107

artificial images. The generator´s task trying to trick the discriminator is defined by the108

model´s objective function (Ledig et al., 2017; X. Wang, Yu, et al., 2019). Both networks109

are simultaneously trained in an adversarial manner. This concept of a two-part archi-110

tecture and model training has increased the generative performance of neural networks111

significantly, which is illustrated by the creation of realistic human faces (Karras et al.,112

2019). In climate science, cGANs can learn to reconstruct high-resolution solutions from113

climate model outputs and random components. Leinonen et al. (2021) demonstrated114

the performance and capability of cGANs within a spatial super-resolution approach by115

downscaling coarsened precipitation data from a resolution of 16 km to 1 km. The same116

idea has also been applied to downscaling global precipitation forecasts (Price & Rasp,117

2022; L. Harris et al., 2022). Furthermore, cGANs outperformed traditional precipita-118

tion nowcasting algorithms (Ravuri et al., 2021).119

120

Mapping low- to high-resolution precipitation data is an underdetermined prob-121

lem due to fluctuations across scales. Resolving the temporal evolution of precipitation122

events in terms of intensity and advection, is necessary to obtain a complete picture of123

the high variability of precipitation and the expression of extreme events. Kashinath et124

al. (2021) refer to the generation of spatially and temporally coherent fields as the holy125

grail of downscaling. However, existing deep learning methods for spatio-temporal down-126

scaling using CNN based downscaling methods can not sufficiently represent the high127

variability of precipitation due to their deterministic nature. Even though cGANs have128

proven to be suitable to present a probabilistic solution for the problem, the focus so far129

has been on increasing spatial resolutions without temporal downscaling. Often, the super-130

resolution approaches also address spatial or temporal scales not directly transferable131

to global climate model data. Furthermore, ”recurrent structures” such as reappearing132

local biases in the generated fields can be an issue. This will also be addressed later in133

this manuscript.134

135

In this study we propose spateGAN, a cGAN for spatio-temporal downscaling of136

precipitation based on the video super-resolution approach. We compare a determinis-137

tic version of the model to a probabilistic version. Precisely, the objective of this study138

is:139

1. To evaluate the ability of a 3D fully-convolutional cGAN to simultaneously down-140

scale rainfall fields in space and time, from a spatial resolution of 32 km to 2 km141

and temporally from 1hr to 10min.142

2. To analyze the model results with respect to spatial structures, temporal consis-143

tency and extreme value statistics of the generated fields.144

2 Methods145

In the following we introduce a new spatio-temporal downscaling approach using146

a conditional generative adversarial network that learned to downscale spatially and tem-147

porally coarsened gridded precipitation observations from a weather radar network (Fig-148

ure 1). As an evaluation case study we applied the final trained models to the domain149

of whole Germany and a time period consisting of 12 weeks of data distributed over all150

seasons. We compared a deterministic and a probabilistic cGAN (spateGANdet and spateGANprob)151

to a classical CNN approach and trilinear interpolation.152
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Figure 1. Overview of the proposed spateGAN model for spatio-temporal downscaling of

precipitation data. The Figure illustrates the downscaling of a complex precipitation event in

Germany, with both stratiform and convective elements. (a) spateGAN downscales coarsened

data, derived from weather radar images, with arbitrary spatial and temporal dimensions from a

resolution of 32x32 km and 1 hour to a higher resolution of 2x2 km and 10 minutes. The model

is trained on smaller patches, represented by the colored boxes. (b) Schematic overview of the

model components and training process. (c) Detailed downscaling results from a). spateGANdet

is able to convert the hourly resolved coarsened data into a sequence of temporally consistent,

finely structured precipitation fields, while also reconstructing the original distribution with

higher precipitation intensities.
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2.1 Conditional Generative Adversarial Networks for Downscaling153

A conditional generative adversarial network comprises two neural networks, the154

generator G and the discriminator D, which are trained in an adversarial manner. G is155

a function156

G : Rt×n×m → Rdtt×dsn×dsm

x 7→ G(x)
(1)

that performs the actual spatio-temporal downscaling of the coarse input x by increas-157

ing the temporal resolution by a factor dt ∈ N and the spatial resolution by a factor158

ds ∈ N. In this study dt = 6 and ds = 16. The number of time steps t and grid cells159

n,m were fixed during training, but can be larger during inference. The discriminator160

D is a classifier161

D : Rt×n×m × Rdtt×dsn×dsm → R
(x, y) 7→ b

(2)

that distinguishes whether the sequence of high-resolution rainfall maps y has been ar-162

tificially generated from x (i.e. y = G(x)) or is the original high-resolution radar im-163

age corresponding to x (Figure 1, b). Both functions are defined as convolutional neu-164

ral networks (see Section 2.2) trained in a so called adversarial training process. G and165

D improve their abilities, the generation and discrimination of realistic rainfall time se-166

quences by alternatively minimizing and maximizing the objective function described167

in Section 2.3. The key point is the custom trainable objective function for G which does168

not require prior knowledge about the problem to be constructed, but is learned from169

the data itself via D. The data set and its preparation is explained in Section 2.5. The170

selection of an optimal model during training and its evaluation requires metrics that171

we introduce in Section 2.6.172

Opposed to the downscaling task is the coarsening operator that was used to syn-173

thetically produce coarsened data from high-resolution images. We can define it by174

C : Rdtt×dsn×dsm → Rt×n×m

y 7→ C(y),
(3)

where C(y)i,j,k := 1
dtd2

s

i+dt∑
i′=i

j+ds∑
j′=j

k+ds∑
k′=k

yi′,j′,k′ is the average over dt time steps and ds by175

ds grid cells. If not mentioned otherwise we will refer to y as the original high-resolution176

observation image that was used to produce x, i.e. x = C(y).177

2.2 Network Architecture178

G and D are convolutional neural networks with a model architecture (Figure 2179

a) built from three principal functional blocks (Figure 2 b). G is fully convolutional. The180

final architecture resulted from an iterative model optimization with special focus on spatio-181

temporal consistency and the absence of recurrent structures and artifacts. Due to the182

training time of several days, a full hyperparameter tuning routine and ablation study183

had to be omitted. For both networks we included 3D convolutional layers. For D these184

allow the extraction of spatio-temporal features of rain field structures for the decision185

making. For G they allow to account for spatial and temporal non-linear correlation em-186

bedded in the given conditions (Tran et al., 2015) and the reconstruction of temporally187

consistent high-resolution rainfall fields.188

189

Convolutional-Block190

The Convolutional-Block is intended to efficiently represent spatio-temporal struc-191

tures within a feature map. The first part processes the input data through a 3D con-192

volutional layer with kernel size 1× 1× 1. Depending of the previous layer, the feature193

dimensionality is decreased to save computational costs and allow for a deeper model (Szegedy194

et al., 2015). This is followed by a ReLU activation function, another 3D-convolutional195

layer with kernel size 3× 3× 3, a Batch Normalization layer and another ReLU activa-196

tion (Ioffe & Szegedy, 2015).197
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Figure 2. Detailed model architecture of spateGAN consisting of a generator and a discrimi-

nator. (a) The discriminator acts as a classification model, evaluating whether the high-resolution

time sequences it receives are real or artificial, taking into account their possible affiliation

with the coarsened input data provided as a condition. The generator spatially and tempo-

rally downscales the coarsened input data. For spateGANprob dropout layer within the first three

Upsampling-Blocks enable ensemble generation. (b) Architectures of Upsampling, Downsampling

and Convolutional Blocks, the main components of both networks.

198

Upsampling-Block199

The upsampling part of the network intends to increase the resolution of the in-200

put data by refining the grid size using bilinear interpolation in the spatial dimensions201

and linear interpolation for the time dimension. Each interpolation step is followed by202

a Convolutional-Block using a leaky ReLU activation to prevent the complete inactiv-203

ity of these layers.204

205

Downsampling-Block206

The Downsampling-Blocks are only used within the discriminator. They are based207

on the presented Convolutional-Blocks, but with a kernel size of 4× 4× 4 within the sec-208

ond 3D convolutional layer combined with strided convolution and leaky ReLU as sec-209

ond activation function. The approach is similar to Isola et al. (2017) and uses the spa-210

tial and temporal stride operation to reduce dimensionality of extracted features.211

212

Generator213

The generator initially consists of two Convolutional-Blocks without Batch Nor-214

malization. Subsequently, the spatial and temporal resolution of the hidden represen-215

tation is increased using six Upsampling-Blocks to achieve the factors dt = 6 and ds =216

16 to increase the temporal resolution of 1 hr to 10 min and the spatial resolution from217

32 km to 2 km. Each interpolation step is followed by a Convolutional-Block to adjust218

spatio-temporal structures. There are two final Convolutional-Blocks, where the second219

block has no Batch Normalization. The model output is determined by a final convo-220
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lutional layer to reduce the filter dimension. A softplus activation function limits the dis-221

tribution of the output to positive values, which can be directly interpreted as rainfall222

intensity in mm/10 min. For each convolutional layer within G with a kernel size > 1223

we applied a reflection padding strategy to reduce boundary errors.224

Since downscaling is in general an underdetermined problem, the model uncertainty225

is closely related to the possible valid realizations of the high-resolution image. The ca-226

pability of ensemble generation can provide additional valuable information. Leinonen227

et al. (2021) have shown that for pure spatial downscaling noise, passed as an additional228

generator feature, is suitable for ensemble generation. We compared a deterministic cGAN229

approach (spateGANdet) to an alternative probabilistic approach (spateGANprob) for en-230

semble generation, exploiting dropout layers (Isola et al., 2017) within the first three gen-231

erator Upsampling-Blocks during model training and inference. The dropout rate was232

set to 0.2 with temporal constant selected neurons for each individual ensemble mem-233

ber.234

235

Discriminator236

One challenge in training the discriminator is that the given data should be dis-237

tinguished solely based on the temporal and spatial structures and the distribution. As238

a first model layer we add noise following a Gaussian distribution (mean=0, stddev=0.05)239

to the high- and coarse-resolution data to counteract a decision making based on a po-240

tential numerical inexactness of the generator while the real images are quantized and241

a perfect match for the coarse data.242

There are two input branches to the network. The high-resolution data is processed243

by a series of four Downsampling-Blocks. The first one has no batch normalization layer.244

The extracted features are concatenated with the coarsened model input data, that passed245

through one 3D convolutional layer and a leaky ReLU activation function. After another246

3D convolutional layer, Batch Normalization and a leaky ReLU activation function, the247

filter dimension is reduced using a last 3D convolutional layer. The resulting output is248

flattend and passed to a single dense layer using a linear activation function allowing for249

binary classification similar to Ravuri et al. (2021). We observed that Batch Normaliza-250

tion would not be required in all downsampling blocks to get to a similar model perfor-251

mance. However, they lead to a faster desirable model state during training (Ioffe & Szegedy,252

2015).253

2.3 Objective Function254

We express the objective functions for spateGAN following Isola et al. (2017) com-255

bining Binary Cross Entropy with a L1 loss term. The L1 loss term or mean absolute256

error is a pixel-wise error that is only applied to the generator objective. It ensures that257

the generated rain fields remain close to the ground truth. However, the distribution of258

rainfall deviates strongly from prominent ANN image data sets. Common methods to259

achieve a well-performing model and a stable training in spite of this, are data logarith-260

mization and normalization routines (L. Harris et al., 2022; Leinonen et al., 2021; Price261

& Rasp, 2022).262

This, however, can amplify the generation of unrealistically high rainfall intensi-263

ties in case of a model overestimation during inference or training and a potential ne-264

cessity of a limitation of the value range in form of an activation function like sigmoid265

or tanh, or by a fixed allowed maximum value. In our opinion such a constraint would266

limit the model to perform well in a non-stationary system. Therefore, we present a new267

alternative approach using an updated objective function. We logarithmized and nor-268

malized data that enter the discriminator or were considered for the calculation of the269

L1 loss according to270

λ(v) =
log(v + ε)− log(ȳ + ε)

log(ȳ + ε)
, (4)271
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where ȳ is the maximum of the high-resolution pixel values of the training data set (see272

Section 2.5.2) and ε = 10−3.273

The generator, on the other hand, as visualized in Figure 1 b), was provided un-274

modified input data and also produced output values that follow the original distribu-275

tion of the radar data set. The final objective function is276

LcGAN (G,D) = Ex,y[logD(λ(x), λ(y))] +277

Ex[log(1−D(λ(x), λ(G(x))))] +278

αEx,y[||λ(y)− λ(G(x))||1] (5)279

where G tries to minimize this objective and the adversarial D tries to maximize it. We280

set α to 20, to align the loss terms to a comparable range. For spateGANprob we con-281

sulted one random ensemble member per training step during model training for loss cal-282

culation to save computational resources.283

2.4 Comparison Models: Trilinear Interpolation and Convolutional Neu-284

ral Network285

As a baseline model we refined the grid size of the coarsened validation data cor-286

respondingly by a spatial factor of ds = 16 and temporal dt = 6 using trilinear inter-287

polation. In addition, we compared the performance of the spateGANs with a classical288

neural network approach. For this purpose, we trained a CNN with the exact same ar-289

chitecture as the generator of spateGANdet (see Section 2.2) only applying L1 loss from290

[5] without D. The remaining training routine was unchanged.291

2.5 Radar Data292

For model training, testing and validation we used RADKLIM-YW, a publicly avail-293

able gauge-adjusted and climatologically-corrected weather radar product provided by294

the German Meteorologic Service (DWD) that can be retrieved from Winterrath et al.295

(2018) . The radar composite contains information of 16 weather radars adjusted by ap-296

prox. 1000 rain gauges homogeneously distributed throughout Germany. A detailed de-297

scription of the radar data processing and correction can be found in Winterrath et al.298

(2017).299

The grid extent is 900 km× 1100 km with a resolution of 1 km× 1 km. The tem-300

poral resolution is 5 minutes, where each grid cell represents a 5 minute rainfall sum. Re-301

gions not covered by the 150 km measurement radii of the radars or missing measured302

values are marked with ”NaNs”. For our investigation we used data from 1 January 2010303

until 31 December 2021. After downloading we transformed the binary data to a NetCDF304

format following Chwala and Polz (2021) to be able to easily handle the large amounts305

of data (1Tb/year).306

To prevent information leakage and to validate the model’s ability to generalize out-307

side the training distribution, the data was split into three sets: 2010–2019 for training,308

2020 for testing, and 2021 for validation. All presented results stem from the validation309

data set.310

2.5.1 Data Preprocessing311

Before network training, testing and validation, suitable data was selected, the down-312

scaling factor was defined and the high-resolution samples were coarsened. The spatial313

resolution should increase 16-fold from 32× 32 km to 2× 2 km and the temporal reso-314

lution 6-folded from 1 hour to 10 minutes. The chosen scales are sufficient to simulate315

the downscaling of global climate model data, which can be provided with similar res-316

olution and to be fine enough to reveal the high temporal and spatial variability of pre-317

cipitation. A further increase of the resolution towards the original RADKLIM-YW data318

(1× 1 km and 5min) would have exceeded our currently available computational resources319
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in terms of GPU memory. Consequently, as a first preprocessing step, the data was spa-320

tially averaged and temporal aggregated to a 2 km and 10 minute resolution.321

2.5.2 Training and Testing Sample Preparation322

GPU memory limitation did not allow the usage of longer time series of whole maps323

of Germany for model training and testing. Therefore, we randomly selected samples with324

a spatio-temporal extent of 160× 160 pixels and 36 time steps, i.e. 320 km× 320 km× 6 hr.325

This approach also reduces the risk of the model memorizing spatial dependencies and326

patterns in the data.327

The rain intensity in the data follows a near-lognormal distribution and only about328

5% of the pixels of the radar composite contain precipitation, leading to a high imbal-329

anced and skewed distribution which is difficult for training neural networks. The main330

issue is learning reasonable predictions for the minority class (J. M. Johnson & Khosh-331

goftaar, 2019). For rainfall this refers to rarely occurring events and high precipitation332

intensities. To overcome this problem a simple data augmentation routine was applied.333

This routine balances the distribution of the train and test samples, increasing the num-334

ber of wet pixels and total amount of precipitation, and allowing the model to focus on335

relevant rain events. The data augmentation process selected only samples free of miss-336

ing values, total precipitation (of all time steps and pixels) exceeding 1000 kg and with337

at least 100 kg/ 10min per time step for 2/3 of all time steps. To avoid a systematic bias338

due to the prevailing westerly wind flow influence in Germany, half of the chosen sam-339

ples were rotated (90° or 270°) or mirrored (vertically or horizontally).340

In total, 112,500 samples were randomly drawn for model training (ytrain) and 1000341

samples ytest for model testing during training. The test data was also used for model342

selection (see Section 2.8). As a final preprocessing step, coarsened versions C(ytrain)343

and C(ytest) were calculated, resulting in a final model input shape during training (t×n×m)344

of 6 time steps and 10× 10 pixels.345

2.5.3 Validation Data346

To validate the model performance, we utilized the fully convolutional architecture347

of G to downscale entire maps of Germany. This entails a future possible application of348

downscaling global climate model outputs over a larger domain than the training sam-349

ples dimension, and the model’s ability to generalize for this. To include all seasons and350

connected temporal sequences, while reducing data volume, we selected the first week351

of each month of 2021 for validation, resulting in 12,096 validation time steps.352

We applied C(yval) to derive the coarse validation data, ignoring missing values353

and setting completely empty coarsened pixels to zero. After model prediction, we masked354

the downscaled data to exclude pixels with NaN values in yval and areas of coarsened355

pixels that were not entirely within the radar network coverage, but intersect with it.356

Additionally we excluded the first and last hour of individually predicted time steps to357

avoid temporal boundary errors. We applied this procedure to contain all available in-358

formation in the coarsened data, but derive valid predictions only for those areas where359

no data is missing. Evaluation metrics were calculated for a cropped area of 370× 560 km360

(highlighted in Figure 6) to further mitigate boundary effects.361

The length of time sequences downscaled by G is mutable and only limited by GPU362

memory. Using a NVIDIA Tesla V100, G is able to predict 66 time steps of high-resolution363

maps (66× 480× 480) from 11 coarse precipitation maps (11× 30× 30) in one single pro-364

cessing step, taking 0.1 seconds. Successive predictions were made for contiguous time365

sequences of this size, resulting in 11,652 images. For spateGANprob we calculated, ac-366

cording to Section 2.2, 5 ensemble members (spateGANprob01,02etc.) using fixed drop-out367

neurons for each member and a sixth member, spateGANprob06, in which the selected368

neurons were randomly changed for every prediction step, i.e. 6 hours. The aggregation369

of this mixed ensemble member represents the accumulated ensemble mean in this study.370
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2.6 Metrics371

The high temporal and spatial complexity of precipitation makes it difficult to val-372

idate the results using a single metric. In addition, different users and decision makers373

have different requirements on the capabilities of a downscaling model. Thus, the eval-374

uation of the results was carried out with a set of metrics considering different spatial375

scales and temporal aggregations. Additionally, a qualitative analysis was performed.376

For calculating the following metrics and for all shown results, we set observed (Rref )377

and generated (Rgen) rain rates below 0.01mmh−1 to zero.378

2.6.1 Fractions Skill Score379

The Fractions Skill Score (FSS) is a spatial verification method to evaluate the per-380

formance of precipitation forecasts. It is a measure of the rainfall misplacement error with381

respect to a given spatial and temporal scale (N. Roberts, 2008; N. M. Roberts & Lean,382

2008). A neighborhood of a pixel P contains all grid cells in a r by r square centered at383

P and T previous and following time steps. Let fref be the fraction of grid values larger384

than δ contained in a neighborhood averaged over all possible neighborhoods in an ob-385

served image. We define fgen in the same way using the generated image. Then the FSS386

for δ, r and T is defined by387

FSS =
(fgen − fref )2

f2
gen + f2

ref

, (6)

where f denotes the average over all images in the data set. For ensemble predictions388

the fraction is given by the average fraction over all ensemble members. We computed389

the FSS for various combinations of thresholds δ and scales, r and T .390

2.6.2 Radially Averaged Logarithmic Power Spectrum Density391

We computed the radially averaged power spectral density (RAPSD) and tempo-392

ral power spectrum density PSDt to analyze spatial and temporal patterns independent393

of their location (D. Harris et al., 2001; Sinclair & Pegram, 2005). The RAPSD of a sin-394

gle image was obtained through transforming its 2D power spectrum into a 1D power395

spectrum by radial averaging, as implemented in pysteps (Pulkkinen et al., 2019). The396

pixel wise power spectrum along the time dimension is referred to as PSDt. We calcu-397

lated the RAPSD for single images (RAPSD10), hourly aggregated images (RAPSD60)398

and the accumulation of the entire evaluation data set RAPSDaggr.399

We compared the power spectrum density of the artificially generated rain fields400

with the analog measure derived from the observation data. First, we used RAPSD10401

to evaluate spatial patterns in terms of their frequency and amplitude. Second, we used402

PSDt and RAPSD60 to quantify the ability to generate temporally consistent fields. And403

third, we used RAPSDaggr to reveal if models produce recurrent structures (local bi-404

ases) that sum up over time and are distinct from recurrent local structures in the ref-405

erence data. An example of such structures is given in Figure 6.406

2.6.3 Point Wise and Distribution Error407

As a point wise error we computed the mean absolute error (MAE) given by408

MAE = |Rref −Rgen|. (7)

The continuous ranked probability score (CRPS) is a generalization of the mean abso-409

lute error and evaluates a probabilistic models predictive distribution against observed410

values (Gneiting & Raftery, 2007).411
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The relative BIAS measures the average model error as a percentage of the mean412

observed rainfall and is given by413

BIAS =
Rgen −Rref

Rref

∗ 100 (8)

The Kolmogorov-Smirnov (KS) test measures the maximal distance between the414

cumulative distribution of observed and generated rainfall. It evaluates the modelled dis-415

tribution independent of the spatial distribution of values. Because of the skewed dis-416

tribution of rainfall this maximal distance is most often located at low rainfall intensi-417

ties which limits conclusions about extreme values.418

2.7 Model Training419

Each model was trained for three days resulting in about 3 × 105 training steps420

using mixed precision. The optimization of the spateGANs followed a standard approach421

by alternating between one gradient descent step for D, followed by one step for G (Goodfellow422

et al., 2014) and counted as one training step of the spateGAN. We trained on randomly423

selected samples from the training data set on one Nvidia Tesla V100 GPU limiting batch424

size to 7. For gradient descent, Adam optimizer was chosen with a learning rate of 1×425

10−4 for G (momentum parameters: β1 = 0.0, β2 = 0.999) and 2 × 10−4 for D (β1 =426

0.5, β2 = 0.999). Models were saved after every 500th training step to later select the427

best performing state. We implemented the ANNs and model optimization in a Python428

framework using tensorflow (version: 2.6) (Developers, 2022).429

2.8 Model Selection430

We selected the best performing models (i.e. the optimal state of either CNN, spateGANdet431

and spateGANprob during training) by downscaling the test data. We took the structural432

error of all generated images into account using both RAPSDaggr and the average RAPSD10.433

We represent the RAPSD deviation by a single value by calculating the mean absolute434

error of the logarithmized RAPSDs of predicted and real images:435

σ =
1

n

n∑
i=1

|10 ∗ log10(RAPSDreal)− 10 ∗ log10(RAPSDpredicted)| (9)436

Based on RAPSDaggr, σaggr considers potential model artefacts in the form of recur-437

rent structures and the model ability to reconstruct adequate rain sums for a longer time438

period. Based on RAPSD10, σ10min takes the models ability to generate rain fields with439

spatial structures of the right amplitudes and frequencies into account. To avoid too strong440

influence of boundary errors in this selection we excluded the outermost edge, correspond-441

ing to one coarse resolution pixel, for this calculation. Finally, the model minimizing σaggr+442

σ10min was selected.443

3 Results444

To evaluate the spatio-temporal downscaling performance we considered the mod-445

els capability to reconstruct the target distribution from spatially and temporally coars-446

ened input data and to generate rain fields that closely resemble the observations regard-447

ing spatial structure and temporal consistency.448

3.1 Qualitative Analysis449

We start with a qualitative analysis examining a detailed visualization of the se-450

quences generated for three rain events. One is a convective case study scenario and the451

other two show a stratiform and a mixed type rain event. The observation data, their452
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Figure 3. Detailed case study of the spatio-temporal downscaling performance for a con-

vective precipitation event for central Germany. Shown are a temporal sequence of coarsened

model input data, associated RADKLIM-YW observations, and model predictions. Hourly and

two-hourly aggregated images highlight specific advection structures.
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associated coarsened representation and the respective models are shown in Figures 3,453

4 and A1. The predictions from the probabilistic generative approach stem from a sin-454

gle ensemble member (spateGANprob01). Additionally, the preceding and subsequent time455

steps of the coarsened images are presented to provide a better understanding of what456

information is available to the model to generate the high-resolution images. A more com-457

plete picture is given by the attached animations visualizing the full time sequences of458

different events (https://doi.org/10.5281/zenodo.7636929).459

Case Study: Convective Rain Events460

Figure 3 shows the temporal evolution of a convective rainfall event. The challenge461

for the downscaling models was to determine that the connected rainfall field in the coars-462

ened input data represents disconnected convective cells and to localize them correctly463

with plausible advection.464

Both spateGAN approaches effectively generated small convective rain cells from465

the low-resolution data which cannot be easily identified as artificially generated. The466

spatial structures, localization and advection were in good agreement with the observa-467

tion data. However, there are differences in certain regions. For example, a more con-468

nected rain field in the north was represented as smaller separated cells. The observed469

small rain event in the southeast at t+20min with a rain rate > 20mmh−1 was gen-470

erated as a larger event with lower rain rates. Despite these small scale dissimilarities,471

spateGAN was able to construct plausible local extremes like in the northern part of the472

images. In addition to the individual time steps, the 1-hour aggregations revealed ad-473

vection structures that are very similar to the observation data in large parts of the im-474

ages. This supports the hypothesis that the model is able to reproduce spatio-temporally475

consistent small-scale rainfall structures with plausible advection.476

The CNN could generate rain fields with reasonable position and timing, but the477

cells lacked fine-scaled spatial structure and local extremes. Especially the gradients were478

very smooth. The model was not able to separate individual convective cells, however479

by comparing the presented time steps in chronological order, a plausible movement and480

temporal consistency became apparent.481

The trilinear interpolation created a blurry version of the low-resolution data lack-482

ing local gradients, extreme values or advection.483

Case Study: Stratiform Rain Events and Embedded Convection484

Figure 4 presents the one hour time sequence of a stratiform rain event. The chal-485

lenge for the models was to reconstruct the evolution of this larger rain field including486

areas with no precipitation and a smaller separated cell in the north, from contiguous487

pixels in the coarsened input data. The results from the spateGANs appear very sim-488

ilar to the observational data, including the size and positioning of the generated rain489

fields. The artificially generated events show plausible structures with a slight underes-490

timation of the maximum rainfall intensity in, e.g., image t+20min. Higher rainfall in-491

tensities in the southeast corner and correctly positioned holes were created. The small492

detached rain events in the north are also depicted and are hardly distinguishable from493

the observation data. The generated structures exhibit a plausible temporal and spatial494

development, even though the rain field is moving slowly. spateGANs ability to gener-495

ate both small and large rain events in a single image is further demonstrated for a com-496

plex precipitation event in Figure A1.497

As within Figure 3, the trilinear interpolation and CNN results were blurry and498

lacked spatial structure. The CNN was more accurate in terms of the spatial extent of499

the rain field, while the trilinear interpolation produced fields that exceeded the spatial500

extent of the reference.501
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Figure 4. As Figure 3 for a stratiform event.
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Figure 5. Evaluation of the downscaling methods (spateGANs, CNN, and trilinear interpola-

tion) for a cropped area of the 2021 validation data set for Germany. (a) presents the Fractions

Skill Score (FSS) for different thresholds and spatial and temporal scales, with the ensemble FSS

of multiple members for spateGANprob. Part (b) evaluates the generated spatial and temporal

structures using power spectra analysis. spateGANprob refers not to multiple ensemble mem-

bers, but to the mixed ensemble member as described in Section 2.5.3. The temporal consistency

of the generated fields is evaluated using RAPSD60 and the average PSDt. All ANN models

show peaks in RAPSDaggr. at different wavelengths and intensities, indicating the presence of

recurrent patterns in the predictions.

3.2 Quantitative Investigation502

The quantitative analysis is divided into two parts. First we investigated the mod-503

els regarding their capability to generate detailed spatio-temporal rain field structures504

by analyzing the power spectrum. Then, we examined the pixel accuracy and the abil-505

ity to reconstruct a skillful distribution in time and space by calculating the FSS, CRPS,506

MAE, KS statistics and BIAS.507

3.2.1 Structural Analysis508

We calculated the average RAPSD10 and RAPSD60 of the high-resolution obser-509

vation images and the associated model predictions to investigate whether the models510

are able to represent the structural variability and advection of precipitation across spa-511

tial and temporal scales. The same analysis was performed for the accumulated precip-512

itation of all 11652 validation images (RAPSDaggr.) to visualize potential undesirable513

model characteristics such as the generation of recurrent structures that would manifest514

as peaks at certain wavelengths.515

Figure 5 b) shows that the generated images from spateGANdet and spateGANprob516

have a high structural similarity to the observations for both, single images and hourly517

aggregations on all considered scales. A small underestimation occurred between wave-518

lengths of 128 to 64 and < 6 km for spateGANdet. Respectively a slight overestimation519

occurred for spateGANprob. The same was observable in the temporal power spectrum520

PSDt for wavelengths between 30 min. and 4 hours. For higher frequencies spateGANprob521

showed a slight overestimation. The RAPSDaggr was close to the observation data. How-522
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Figure 6. Aggregated observed and predicted rainfall of the validation data set for Germany

for the year 2021. The accumulation shows the models ability to maintain the total rainfall

amount and reveals recurrent structures within the predictions that contradict the physical prin-

ciple of developing rain fields. spateGANprob represents an ensemble mean as described in Section

2.5.3 and the rectangle defines the area considered for the quantitative analysis.

ever, peaks mainly prominent at a wavelength of 8 and 6 km could be observed. Recur-523

rent structures with this frequency were also visible in the accumulated rainfall maps from524

Germany in Figure 6. Predictions of spateGANdet also exhibited this conspicuity at a525

wavelength of 32 km. At shorter aggregations (e.g. individual predictions, RAPSD10 or526

RAPSD60) these structures were not detectable.527

For the CNN, RAPSD10, 60 and aggr. showed an underestimation, especially for528

higher frequencies. This results from the missing model ability to generate small scale529

structures and to reconstruct the original high-resolution distribution. Recurrent struc-530

tures could be also observed at wavelength of 32 km.531

Trilinear interpolation was in general not capable to generate small scale spatio-532

temporal structures that were similar to the observation data. A high RAPSD and PSDt533

underestimation could be shown for wavelength smaller 128 km or 8 hours. Within the534

whole accumulated validation data set no recurrent structures could be observed con-535

sidering RAPSDaggr or Figure 6.536

3.2.2 Distribution Reconstruction Skill537

The coarse resolution provided as model input compresses the distribution of rain-538

fall intensities towards lower values. The decisive factor of a skilful downscaling model539

is therefore not only the generation of realistic spatial structures, but rather the abil-540

ity to reconstruct the correct distribution of rainfall intensities with accurate spatial and541

temporal placement of the rain events. We measured this downscaling skill by consid-542

ering the FFS for the spatial and temporal precision of reconstructing high intensities543

using thresholds δ of 0.1mmh−1, 1mmh−1, 5mmh−1 and 15mmh−1. These thresh-544

olds represent the 0.9, 0.97, 0.997 and 0.9998 quantiles of the validation data set. The545

spatial scales r were between 0 and 128 km and the temporal scales T were 0 and 60 min-546

utes. The results are shown in Figure 5 a). The generative models demonstrated a high547

skill for small to moderate rainfall (0.1 and 1mmh−1) with FSS exceeding 0.9 at a spa-548

tial scale of 32 km. They also performed well for high and strong rainfall intensities, with549

FSS values over 0.8 and 0.7 for a threshold of 5 and 15mmh−1. The score of spateGANprob550

increased further, especially for small rain rates and scales, when multiple ensemble mem-551

bers were considered and the ensemble FSS was calculated. The CNN showed the best552

performance for small and moderate rainfall rates, but the accuracy decreased for strong553

rainfall intensities with a maximum FSS of 0.06 for 15mmh−1. Trilinear interpolation554

performed well for moderate precipitation (1mmh−1) but had the lowest overall skill.555

Additionally, we calculated pixel accuracy metrics CRPS, or MAE for determin-556

istic models, and the BIAS, as well as the distribution error as the KS statistics shown557

in Table 1. In terms of MAE, KS statistics, and BIAS the spateGAN models achieved558
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Table 1. Set of downscaling skill metrics computed for the validation data set. The FSS

refers to the maximum score of Figure 5 a) each model achieved for different thresholds. For

spateGANprob multiple ensembles were considered for CRPS and FSS, a single member for MAE,

KS statistic, power spectra deviation σ10min [9] and BIAS.

CRPS/MAE KS FSS0.1 FSS1 FSS5 FSS15 σ10min BIAS

spateGANdet: -/0.018 0.010 0.98 0.97 0.87 0.73 1.36 3.35
spateGANprob: 0.012/0.018 0.014 0.98 0.97 0.89 0.71 0.31 -3.55

CNN: -/0.012 0.008 0.98 0.98 0.81 0.06 16.1 -22.22
Trilinear: -/0.016 0.20 0.81 0.91 0.23 0 18.6 -0.25

overall good scores, compared to CNN and trilinear interpolation. The BIAS of spateGANdet559

showed a slight overestimation and an underestimation for spateGANprob. The CNN had560

the best KS score and MAE, but a negative BIAS of -22.28% indicated a strong under-561

estimation (see Figure 6). Trilinear interpolation showed the best BIAS with -0.28% .562

3.3 Ensemble Downscaling563

The generation of multiple ensemble members is crucial to quantify uncertainties564

in the downscaling process like the likelihood of extreme events (Pathak et al., 2022).565

By comparing the probabilistic generative approach to the deterministic, it could566

be shown that the predictions of an individual ensemble member, like spateGANprob01,567

looked similarly realistic as the predictions of spateGANdet (see Figure 3, 4 and A1). Re-568

garding the RAPSD10, RAPSD60 and PSDt the predictions where even closer to the ob-569

servation data as can be seen in Figure 5. The downscaling skill of spateGANprob01 was570

only minimally reduced with lower FSS for the thresholds 0.1, 1 and 15mmh−1, but higher571

scores for 5mmh−1. The potential of a probabilistic approach which considers multi-572

ple spateGANprob ensemble members was investigated by calculating the CRPS and en-573

semble FSS (see Table 1). The CRPS showed an improvement with a value of 0.012 com-574

pared to the MAE of SpateGANdet and SpateGANprob01. Furthermore, the FSS indi-575

cated a better downscaling performance compared to SpateGANdet and SpateGANprob01,576

particularly for small scales and low rainfall amounts. The probabilistic model was also577

able to well represent the precipitation sum of the validation reference considering the578

aggregated ensemble mean, as can be seen in Figure 6.579

However, Figure 5 shows that the aggregation of a single ensemble member (RAPSDaggr580

for spateGANprob01) showed an overestimation from scales between 8 and 128 km. We581

assume that this model characteristic was due to the chosen dropout routine. For one582

ensemble member selected drop out neurons were fixed for all time steps. The behaviour583

was not visible in single predictions and could only be revealed via the aggregation and584

analysis of multiple thousand images. To address this constraint, we emphasize to al-585

ways consider multiple ensemble members, when applying this approach for longer time586

series.587

Furthermore, we experimented to change the drop out rate after model training,588

which lead to an increased variance of the ensemble members. However, the downscal-589

ing skill was not further improved. Additionally, we trained a model applying random590

drop out neurons for each time step, which could generate temporal consistent rain fields591

without issues when aggregating single ensemble members. However, it frequently pro-592

duced low rain rates during dry time steps and regions. Overall this exemplifies that var-593

ious approaches for ensemble generation are feasible, but the creation of ensembles that594

reflect the physical plausible solutions and the stochasticity of the target data set is chal-595

lenging and therefore subject to further research.596
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4 Discussion597

In this study we proposed spateGAN, a novel approach for spatio-temporal down-598

scaling of precipitation data combining cGANs, 3D convolution and interpolation tech-599

niques. It effectively increases the spatial resolution of coarsened weather radar data from600

32 km x 32 km and 1 hour to 2 km x 2 km and 10 minutes. In the following we will dis-601

cuss the models ability to accurately reconstruct spatial structures with temporal con-602

sistency and correct extreme value statistics. Additionally, we present the models lim-603

itations and additional unexpected findings.604

Spatial Structures605

The qualitative investigation (see Section 3.1) and the presented animation prove606

the ability of spateGAN to generate plausible precipitation fields from coarsened input607

data that are hardly classifiable as artificially generated. This is supported by the power608

spectrum analysis using RAPSD and PSD, which are in highest agreement with the609

observation data for all scales when compared to CNN and interpolation. The FSS con-610

firms that unlike trilinear interpolation and a classical CNN approach, the cGAN approach611

accurately produces structures with higher rainfall intensities. spateGAN is the only model612

that is able to generate rain cells of small spatial extent (see Figure 3). Besides the spa-613

tial extent and the rainfall intensity, the number of generated cells has a similar order614

of magnitude compared to the observations. Only the precise location of these cells de-615

viates due to the stochastic nature of the model. spateGAN also tends to produce slightly616

smoother structures than the observed ones for large scale rain events like shown in Fig-617

ure 4. We assume that an increase of the training sample dimensions could improve the618

structural quality of such large rain events. Overall, the results emphasize the necessity619

of a generative network downscaling approach for modeling realistic rain fields, since tri-620

linear interpolation and CNN lack higher frequencies in the power spectrum. Trilinear621

interpolation approximates the low-resolution data providing limited additional infor-622

mation, while the CNN generates more detailed, but still too blurry events (Larsen et623

al., 2016).624

Temporal Consistency625

The animations of downscaled rain fields illustrate temporal consistency as a key626

property of spateGAN. The generated fields exhibit plausible advection, showing that627

rain cells are not randomly appearing and disappearing between time steps. This is sup-628

ported by the 1 hour and 2 hour aggregations (see case study Figures 3, 4, A1), where629

the sum of individual time steps leads to smooth, connected cells elongated in the di-630

rection of advection. Furthermore, RAPSD60 and PSDt are in high agreement with the631

observation data. The visual evaluation of the CNN predictions and its improved PSDt632

compared to trilinear interpolation also indicate the CNN’s ability to generate tempo-633

rally consistent events. This leads us to conclude that 3D convolutions are suitable for634

creating temporally coherent downscaled images (Vondrick et al., 2016; Tran et al., 2015).635

In combination with linear temporal interpolation within G, 3D convolutions are a cru-636

cial factor for the generation of these consistently evolving rain fields. 3D convolutional637

layers in D may also contribute to spateGANs high temporal consistency, which is sup-638

ported by a similar application for precipitation nowcasting (Ravuri et al., 2021). How-639

ever, in our use case their impact on structural precision, that is, the localization of rain640

cells, might be more significant.641

Model Limitations642

Despite its potential, 3D convolution has certain limitations and its usefulness for643

video generation is still a matter of debate (Saito et al., 2017). The main challenge is644

that the possible amount of exploitable large-scale and long-term spatio-temporal cor-645
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relations is not arbitrarily expandable. It depends on the model architecture and model646

depth which define the receptive field size. Furthermore, also the spatial and temporal647

dimensions of the training samples are important, since model extrapolation capabili-648

ties beyond this dimension might be highly limited. Overall, the potential is therefore649

tied to the available GPU resources, while the memory requirements of 3D convolution650

are substantial. On the other hand, fully convolutional networks allow for arbitrary in-651

put dimensions and we found that spateGANs architecture and depth is sufficient to achieve652

high performance within the super-resolution downscaling approach. While the model653

predictions are already spatially and temporally consistent beyond the training sample654

dimensions it remains unclear if the performance could be further increased by leverag-655

ing longer time scales and a larger spatial extent during training. We assume that in the656

case of downscaling global climate data, an increase in the model’s receptive field might657

be crucial to realize the full potential.658

Distribution of Downscaled Rainfall659

A main objective of a spatio-temporal downscaling model is the ability to accurately660

reconstruct the distribution of rainfall at a higher spatial and temporal resolution, which661

is typically characterized by increased variability and extremes. As expected, the FSS662

of all models declines towards heavier rainfall, which is harder to model due to its rare663

occurrence and higher spatio-temporal gradients.664

Among the evaluated models, spateGAN stands out as the only model that suc-665

cessfully reconstructed rainfall intensities greater than 5mmh−1 or 15mmh−1, while666

maintaining a low BIAS (< 3.6%). This is a crucial feature that is not provided by the667

comparison models. Trilinear interpolation shows the lowest BIAS, however, also the low-668

est downscaling skill in terms of FSS and RAPSD. The CNN predictions show high skill669

regarding pixel accuracy metrics, distribution error or downscaling skill for small and670

moderate rain rates. However, the model is not able to skilfully reconstruct strong pre-671

cipitation intensities. Furthermore, the model fails to preserve the overall rain sum, main-672

tained within the coarsened input data showing a strong negative BIAS (-22.22%). We673

therefore emphasize, as also described in Leinonen et al. (2021), that MAE and KS statis-674

tics should be interpreted with caution, as the results could be highly affected by the large675

amount of small values within the skewed rainfall distribution. They are therefore not676

suitable to account for the model’s ability to recover the target rain distribution contain-677

ing also extreme values. Furthermore, they can lead to poor metrics, even if models are678

able to generate rain cells with correct structure and intensity, since these rain cells might679

be slightly off positioned within the underdetermined downscaling problem and the stochas-680

ticity of the solution.681

Unexpected Findings682

Our analysis of long aggregations (several thousand time steps) of generated rain683

fields revealed the presence of local biases in the form of recurrent structures. With vary-684

ing intensity and frequency, they could be observed within the predictions of all ANN685

models. It is known that GANs can produce artefacts (Karras et al., 2019). However,686

in our case they were not detectable in single images, e.g., by calculating the power spec-687

trum density. Preliminary results indicate that such model behavior is not unique to the688

models used in this study, as other prominent ANN downscaling models might also be689

affected by this behaviour.690

While the training images for our models are selected at random locations, reduc-691

ing the influence of topography, the generated structures are not completely random. In-692

stead, they might follow a spatial or even geometric regularity which is contradictory to693

the physical principle of emerging rain fields. This does not imply that the downscal-694

ing performance of the models is reduced, but can be a seen as a limitation and should695

be a known feature to be tested. In an effort to minimize the occurrence of these struc-696
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tures, we presented a model with a sophisticated architecture and interpolation technique.697

Furthermore, we also considered the appearance of these structures in the selection pro-698

cess of the final models (see Section 2.8). Despite this, we were unable to completely elim-699

inate them. Our analysis revealed that a discriminator with many parameters (e.g. G :700

2 million., D: 10 million) might lead to an earlier and more intense occurrence of these701

phenomena. Additionally, we assume that the combination of up and down-sampling lay-702

ers and their kernel sizes also have an influence. To fully understand the underlying mech-703

anisms responsible for the observed structures, a comprehensive investigation involving704

the comparison of various hyper-parameterizations would be required. Given the com-705

putational effort for training one model, this investigation is beyond the scope of this study706

and will be left for future research. In the geosciences not only single instances, but also707

the aggregation of many instances is of importance. Therefore, we emphasize that it is708

not sufficient to only analyze single predictions, but also the models abilities to fulfill global709

properties like the climatology of the modeled target variable.710

5 Conclusion711

Downscaling the output of global climate models is a long-standing problem for pro-712

viding high-resolution information which is needed to develop adaptation and mitiga-713

tion strategies in a changing climate. We presented spateGAN, a deep generative model,714

for simultaneous spatio-temporal downscaling of low-resolution precipitation data. The715

model was trained using ten years of high-resolution country-wide weather radar rain-716

fall observations in Germany. Our results demonstrated that 3D convolution in combi-717

nation with conditional generative adversarial networks is an effective tool for leverag-718

ing spatio-temporal structures embedded in the low-resolution domain to generate tem-719

porally consistent high-resolution rainfall fields and reconstruct the scale dependent ex-720

treme value distribution with high skill. This confirms that super-resolution deep learn-721

ing approaches can be extended to the time dimension to map, in addition to the spa-722

tial variability, also the temporal evolution of atmospheric variables.723

While a visual inspection leads to the conclusion that generated rain cells look re-724

alistic, we found the power spectrum analysis and the Fractions Skill Score to be use-725

ful metrics for quantifying this property. Pixel accuracy metrics like the mean absolute726

error were unable to distinguish between models with high or low skill in generating re-727

alistic rain fields. Especially our findings about recurrent structures in downscaled rain-728

fall fields show that a structural analysis is very important in order to mitigate these is-729

sues. Overall, the chosen analysis was able to prove that models like spateGAN show great730

potential to complement and even outperform the capabilities of traditional downscal-731

ing methods due to their high performance, computational efficiency and the ability to732

process arbitrary spatial and temporal input dimensions.733

One of the primary purposes of spateGAN is the application for downscaling global734

climate model outputs. We envision that the approach for this task will have to extend735

the presented video super-resolution approach, since model outputs are biased with re-736

spect to the observed precipitation. Therefore, requirements for the downscaling model737

would include an additional bias correction step. The potential for bias correction and738

spatial downscaling of weather forecast data using generative networks has in been demon-739

strated in L. Harris et al. (2022) and Price and Rasp (2022) and resulted in a performance740

reduction compared to downscaling coarsened observations. A similar result should be741

expected for spatio-temporal downscaling. However, we assume that with increased lead742

time a decoupling of model projections from real observations is the reason for the per-743

formance decline and not the insufficient potential of the deep learning approach. Ad-744

ditionally, further studies will have to prove if the generated precipitation fields are suit-745

able, e.g. for simulating the characteristics of flood events under future climate condi-746

tions. This work should provide a solid basis for such future studies by not only present-747

ing a high performance downscaling model, but also the analytical framework for a com-748

prehensive analysis of the model performance.749
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Appendix A Supplementary Figure750

Figure A1. Detailed case study as in Figure 3 for a third event, with a mixture of convective

and stratiform rain.

Open Research751

The results and models can be reproduced by the publicly available RADKLIM-752

YW weather radar composite (Winterrath et al., 2018). The CNN and spateGANs were753

implemented and optimized in a Python framework using tensorflow (version: 2.6)754

(Developers, 2022). The data and spateGAN models, available in https://doi.org/755

10.5281/zenodo.7636929, provide further insight into the presented spatio-temporal756

downscaling approach.757
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