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Abstract

A machine-learning classifier for radiation waveforms of negative return strokes (RSs) is built and tested based on the Random

Forest classifier using a large dataset consisting of 14,898 negative RSs and 159,277 intracloud (IC) pulses with 3-D location

information. Eleven simple parameters including three parameters related with pulse characteristics and eight parameters

related with the relative strength of pulses are defined to build the classifier. Two parameters for the evaluation of the classifier

performance are also defined, including the classification accuracy, which is the percentage of true RSs in all classified RSs,

and the identification efficiency, which is the percentage of correctly classified RSs in all true RSs. The tradeoff between the

accuracy and the efficiency is examined and simple methods to tune the tradeoff are developed. The classifier achieved the

best overall performance with an accuracy of 98.84% and an efficiency of 98.81%. With the same technique, the classifier for

positive RSs is also built and tested using a dataset consisting of 8,700 positive RSs. The classifier has an accuracy of 99.04%

and an efficiency of 98.37%. We also demonstrate that our classifiers can be readily used in various lightning location systems.

By examining misclassified waveforms, we show evidence that some RSs and IC discharges produce special radiation waveforms

that are almost impossible to correctly classify without 3-D location information, resulting in a fundamental difficulty to achieve

very high accuracy and efficiency in the classification of lightning radiation waveforms.
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Key Points:5

• A machine-learning classifier for negative return strokes is built using a large dataset6

with 3-D location information7

• Both an accuracy and an efficiency of about 98.8% are achieved and the accuracy-efficiency8

tradeoff can be easily controlled9

• Some return strokes and IC discharges produce special waveforms that are fundamentally10

difficult to classify without 3-D location results11
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Abstract12

A machine-learning classifier for radiation waveforms of negative return strokes (RSs)13

is built and tested based on the Random Forest classifier using a large dataset consisting14

of 14,898 negative RSs and 159,277 intracloud (IC) pulses with 3-D location information.15

Eleven simple parameters including three parameters related with pulse characteristics16

and eight parameters related with the relative strength of pulses are defined to build the17

classifier. Two parameters for the evaluation of the classifier performance are also defined,18

including the classification accuracy, which is the percentage of true RSs in all classified19

RSs, and the identification efficiency, which is the percentage of correctly classified RSs20

in all true RSs. The tradeoff between the accuracy and the efficiency is examined and21

simple methods to tune the tradeoff are developed. The classifier achieved the best overall22

performance with an accuracy of 98.84% and an efficiency of 98.81%. With the same technique,23

the classifier for positive RSs is also built and tested using a dataset consisting of 8,70024

positive RSs. The classifier has an accuracy of 99.04% and an efficiency of 98.37%. We25

also demonstrate that our classifiers can be readily used in various lightning location systems.26

By examining misclassified waveforms, we show evidence that some RSs and IC discharges27

produce special radiation waveforms that are almost impossible to correctly classify without28

3-D location information, resulting in a fundamental difficulty to achieve very high accuracy29

and efficiency in the classification of lightning radiation waveforms.30

Plain Language Summary31

Lightning location systems are required to classify return strokes (RSs) from intracloud32

discharges accurately and efficiently because the RS is the main discharge component33

that poses direct threats to the human society. In this paper, we report a machine-learning34

classifier for negative RSs built using a large dataset with accurate 3-D location information.35

The classifier has an accuracy of 98.84% (98.84% of classified RSs are correct classifications)36

and an efficiency of 98.81% (98.81% of RSs can be correctly classified). With the same37

technique, we also built a classifier for positive RSs with similarly high accuracy and efficiency.38

Our classifiers only require some simple waveform parameters and can be readily used39

in various national and continental lightning location systems. A sample Python script40

to use the classifier is provided and readers are encouraged to test the classifier using their41

own dataset. We also demonstrate that some RSs and intracloud discharges produce abnormal42

waveforms, so 100% accuracy or efficiency is fundamentally difficult to realize using only43

waveform information.44

1 Introduction45

Ground-based lightning location systems (LLSs) are widely used to monitor lightning46

activities. A prominent feature of ground-based LLSs is that lightning activities in a wide47

area can be monitored in real time with only a limited number of sensors. Some famous48

national and continental LLSs include the National Lightning Detection Network (NLDN)49

covering the continental United States (e.g. Cummins & Murphy, 2009), the European50

Cooperation for Lightning Detection network (EUCLID) covering the European continent51

(e.g. Schulz et al., 2016), and the Earth Networks Total Lightning Network (ENTLN)52

(e.g. Zhu et al., 2022) with the aim of a global coverage.53

It is a basic requirement for LLSs to automatically and efficiently classify cloud-to-ground54

(CG) lightning flashes from intracloud (IC) flashes as the former consist of discharges55

with direct connections to the ground and thus pose a much larger threat to the human56

society. The fundamental difference between a CG flash and an IC flash is that a CG57

flash contains one or more return strokes (RSs), so the classification of CG flashes is basically58

realized by classifying RSs. Further, it is well known that RSs produce characteristic electric59

field radiation waveforms that are largely different from those of IC discharges (e.g. Lin60

et al., 1979), so most LLSs classify RSs based on their waveform characteristics.61
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However, RSs actually can produce radiation waveforms with a variety of special62

features under some special conditions. For example, some RSs in winter thunderstorms63

are known to produce abnormal radiation waveforms, some of which could not be correctly64

classified by LLSs (Wu, Wang, & Takagi, 2021; Wu, Wang, Huang, & Takagi, 2021). It65

is also well known that RSs striking tall objects produce much narrower radiation waveforms66

(Pavanello et al., 2007; Zhu et al., 2018). On the other hand, IC discharges include various67

discharge processes such as narrow bipolar events and recoil leaders, some of which may68

produce radiation waveforms with certain similar features as RS waveforms. As a result,69

for most LLSs, it is basically very difficult to achieve a very high classification accuracy70

of RSs. For example, Zhu et al. (2016) reported that out of 339 RSs in Florida in 201471

that were also recorded by the NLDN, 312 (92%) were correctly classified as RSs by the72

NLDN. Kohlmann et al. (2017) reported that the classification accuracy of EUCLID for73

RSs were generally around 90% based on ground-truth data in various regions of Europe.74

For some particular thunderstorms or some special types of discharges, misclassifications75

by LLSs can be more common. For example, Fleenor et al. (2009) found that 204 out76

of 376 (54%) of RSs reported by the NLDN during a field campaign in 2005 were actually77

IC discharges. Leal et al. (2019) found that compact intracloud discharges with estimated78

peak currents larger than 50 kA were all falsely classified as RSs by both NLDN and ENTLN.79

Paul et al. (2020) reported that out of 40 RSs detected at the Peissenberg Tower, 12 (30%)80

were falsely classified as IC discharges.81

In order to overcome the uncertainties in classifications based only on radiation waveforms,82

Betz et al. (2004) proposed a pseudo 3-D technique to assist the discrimination of RSs83

and IC discharges based on the fact that the elevation of IC discharges would have some84

contributions to the time delay. However, this technique also has some limitations. For85

example, IC discharges need to have significant elevations, the baseline of the LLS cannot86

be too long, and lightning discharges first need to be located accurately in 2-D. These87

limitations prevented the wide implementation of this technique.88

In recent years, machine-learning techniques have been developing rapidly, and these89

techniques seem to be promising in significantly increasing the classification accuracy of90

lightning radiation waveforms. Wang et al. (2020) developed a convolutional neural network91

to classify radiation waveforms of lightning discharges recorded by the Advanced Direction-time92

Lightning Detection System in China. They reported an accuracy of over 99%. However,93

they apparently did not have the height information of lightning discharges and thus could94

not unambiguously differentiate RSs and IC discharges, so the accuracy remains questionable.95

Zhu et al. (2021) used the Support Vector Machines (SVM) model to classify CG and96

IC flashes recorded by the Cordoba Marx Meter Array. The lightning data were in 3-D,97

so they could employ the discharge height information to build a dataset with accurate98

discharge types. They reported an overall accuracy of 97%. However, their proposed method99

requires full waveform information, while most LLSs only retrieve a few parameters of100

electric field waveforms of lightning discharges, making it somewhat difficult for existing101

systems to adopt the method.102

In this paper, we report a simple yet high-accuracy machine-learning technique based103

on the Random Forest classifier to classify RSs. We will use a large dataset containing104

about 15,000 negative RSs and many more IC discharges with accurate 3-D location information105

to train and test the classifier. As will be described in this paper, many of the recorded106

RSs and IC discharges produced atypical radiation waveforms that were challenging to107

be correctly classified. However, the accuracy of our classifier is close to 99% demonstrated108

by evaluations in various respects. Our classifier requires only some simple parameters109

of lightning radiation waveforms, so it can be readily used by most LLSs.110
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Figure 1. (a) Negative RSs (black dots) observed from July 19 to August 26 in 2017. (b)
Positive RSs observed from September 26, 2021 to September 3, 2022. Red squares represent
observation sites of FALMA.

2 Observation and Data111

During the summer of 2017, we set up a low-frequency (LF) lightning mapping system112

called Fast Antenna Lightning Mapping Array (FALMA) in central Japan. The FALMA113

consisted of 12 sites covering an area of about 80×80 km2. Locations of these 12 sites114

are shown as red squares in Figure 1a. At every site, a fast antenna working in the frequency115

band of 500 Hz to 500 kHz was used to receive radiation signals from lightning discharges.116

The signals were recorded with a sampling rate of 25 MS/s. As described by Wu et al.117

(2018a), thanks to improvements made in both the hardware and the software, we realized118

high-quality 3-D lightning mapping with the FALMA. As can be seen from examples of119

lightning flashes in Wu et al. (2018a) and Wu et al. (2019), 3-D mapping results of FALMA120

have similar quality to those of very-high-frequency (VHF) systems such as the Lightning121

Mapping Array (Rison et al., 1999).122

Data obtained from July 19 to August 26 are used in this study for building and123

testing the classifier for negative RSs. All data are reprocessed for this study. The largest124

positive pulse (the same polarity as the negative RS, using the atmospheric electricity125

sign convention) in each 20-ms window is located in 3-D. Only discharges located in the126

region shown in Figure 1a, a 90×90 km2 area over the FALMA network, are used in order127

to ensure reliable 3-D locating. Pulses with source heights lower than 500 m are treated128

as candidates of RSs. Their waveforms are then confirmed manually, and for some ambiguous129

pulses, they are further manually located to determine their source heights. In this way,130

we can unambiguously determine that the selected pulses are truly RSs. The number131

of IC discharges are much larger than that of RSs, so we cannot manually confirm waveforms132

of all IC discharges, and we only use pulses with source heights larger than 3000 m as133

IC pulses. There are 14,898 pulses confirmed as negative RSs and 159,277 pulses as IC134

discharges. Locations of these RSs are shown as black dots in Figure 1a. It should be135

noted that we will build a classifier for negative RSs rather than negative CG flashes;136

a CG flash consists of at least one RS and also many IC discharges, both of which need137

to be correctly classified.138
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Using the high-quality dataset of 2017 summer, we will establish the technique for139

building the classifier as will be described in Sections 3.1 to 3.5. Further, using the same140

technique, we will also build a classifier for positive RSs as will be described in Section 3.6.141

However, positive RSs in central Japan in summer are quite rare (Wu et al., 2018b). In142

order to accumulate a large number of positive RSs, we will use the data collected during143

a long period, from September 26, 2021 to September 3, 2022. During this period, we144

set up a FALMA network covering a large area for 2-D locating of both summer and winter145

lightning. Observation sites are shown as red squares in Figure 1b. A total of 8700 positive146

RSs observed in an area with a radius of 300 km are identified and will be used for building147

and testing the classifier for positive RSs. Locations of these positive RSs are shown as148

black dots in Figure 1b. The procedure for the identification of these positive RSs will149

be further described in Section 3.6.150

Our classifiers will be built and tested mainly based on the Random Forest classifier,151

which is one of the most widely used machine-learning models for classification tasks.152

A brief comparison will also be made with the SVM classifier, another popular machine-learning153

model, in Section 3.4.154

3 Methods and Results155

3.1 Method to Evaluate the Performace of a Classifier156

Before building the classifier, first we need to define some parameters as indicators157

of the performance of a classifier. One obvious parameter to evaluate the performance158

is the classification accuracy, or simply accuracy, that is, the percentage of true RSs in159

the waveforms classified as RSs. However, only this parameter is apparently not enough,160

as it is always possible to build a classifier with very strict criteria so that it only identifies161

very typical RS waveforms. Another important parameter is the identification efficiency,162

or simply efficiency, that is, the percentage of correctly classified RSs in all RSs.163

Suppose the number of RSs is NR, and the number of IC discharges is NI . Of the164

NR RSs, NRc are correctly classified (the subscript c stands for “correct”), and the remaining165

NR−NRc are misclassified as IC discharges. Of the NI IC discharges, NIc are correctly166

classified, and the remaining NI−NIc are misclassified as RSs. The accuracy and the167

efficiency are defined as follows.168

Accuracy =
NRc

NRc + (NI −NIc)
(1)

169

Efficiency =
NRc

NR
(2)

During the process to build the classifier, we will experiment and tune various parameters170

of the classifier to make the accuracy and the efficiency as high as possible.171

Normally a dataset is split into a larger training set and a smaller test set, with172

the training set used to train a classifier and the test set used to test or evaluate the performance173

of the classifier. In this study, we use an improved approach. All RS and IC data are combined,174

shuffled and then divided into five equal parts. Each part is in turn used as the test set175

and the remaining four parts combined are used as the training set. In this way, a classifier176

is built and tested for five times and five results of accuracy and efficiency are calculated.177

The average values of five tests will be used as the final results. In this way, we can avoid178

any random biases in the test set. Moreover, as will be described in Section 4, in this179

way all data can be tested and we can find as many atypical waveforms as possible that180

are difficult to be correctly classified.181
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3.2 Waveform Paramaterization182

We will define some waveform parameters to be used for building the classifier. First183

we describe the procedure to calculate waveform parameters based on multiple-site records.184

As waveforms recorded at a close distance contain the electrostatic and induction field185

components (e.g. Thottappillil et al., 1997) that may significantly distort the waveforms,186

observation sites within 40 km from a discharge are first excluded. Waveforms recorded187

by the remaining sites are used to calculate the parameters, and for each parameter, the188

median value of the results calculated based on these sites are used as the final result189

of the parameter for the discharge.190

3.2.1 Parameters Related with Pulse Characteristics191

First we define three basic parameters related with pulse characteristics. Definitions192

of these parameters are illustrated using an RS pulse in Figure 2a and an IC pulse in Figure 2b193

(blue parameters).194

1. Trise: The rise time of a pulse (10% to peak).195

2. Tfall: The fall time of a pulse (peak to zero).196

3. Thalf : The pulse width at the half maximum.197

With only these three basic parameters, we trained and tested the Random Forest198

classifier using the negative RS and IC dataset obtained in 2017 summer. As described199

in Section 3.1, the dataset is divided into five parts and each part in turn is used as the200

test set, so the classifier is trained and tested for five times. The accuracy ranges from201

72.25% to 73.57% with an average of 72.82%, and the efficiency ranges from 70.80% to202

72.81% with an average of 71.59%. We also tried to add two related parameters, including203

the pulse width, which is the sum of the rise time and fall time, and the ratio of fall time204

to rise time, but the result has little difference (the average accuracy is 72.17% and the205

average efficiency is 70.86%).206

Indeed, with only these basic pulse parameters, it is difficult to accurately classify207

RSs.208

3.2.2 Parameters Related with Relative Strength209

An important feature of the RS waveform is that pulses right before and after an210

RS pulse is usually much weaker. The following parameters are defined to employ this211

feature. These parameters are also illustrated in Figures 2a and 2b.212

1. Rbp1: The ratio of A0 to Abp1, in which A0 is the peak amplitude of the target pulse,213

and Abp1 is the maximum amplitude of pulses right before the target pulse (from214

–100 µs to 10% peak) as illustrated in Figure 2. The subscript b stands for “before”,215

and the subscript p stands for “positive”.216

2. Rbn1, Rbp2, Rbn2, Rap1, Ran1, Rap2, Ran2: These parameters are defined in the217

same way as Rbp1, also illustrated in Figure 2. Note that the subscript a stands218

for “after”, and the subscript n stands for “negative”.219

The three parameters defined in Section 3.2.1 along with the eight new parameters220

defined above are used to train the Random Forest classifier. The accuracy of five tests221

ranges from 98.86% to 99.32% with an average of 99.02%, and the efficiency ranges from222

98.02% to 98.66% with an average of 98.34%. It is clear that these new parameters representing223

the relative strength are very effective in the classification of RSs.224
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Figure 2. Illustration of waveform parameters using (a) an RS pulse and (b) an IC pulse. (c)
Relative importance of waveform parameters.
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3.2.3 Parameter Importance225

The Random Forest classifier outputs a value indicating the relative importance226

of each parameter in contributing to the performance, from which we can evaluate the227

effectiveness of each parameter in the classification of RSs. The results are shown in Figure 2c.228

Values of the importance of all parameters combined equal to 1. We can see that parameters229

related with the pulse strength relative to previous pulses (red parameters in Figure 2)230

are generally more important than other parameters. This is easy to understand as an231

RS pulse is preceded by leader pulses which are usually much weaker than the RS pulse.232

By contrary, an IC pulse is usually preceded by other IC pulses with comparable amplitudes.233

Therefore, parameters related with the relative strength are very effective in the classification234

of RSs.235

We can also see that parameters related with pulse characteristics (blue parameters)236

have relatively low importance, which is why the classifier performance is very poor with237

only these parameters as described in Section 3.2.1. It also indicates that traditional RS238

classification methods based on pulse characteristics are not very reliable.239

3.3 Tradeoff Between Accuracy and Efficiency240

From the above result, we can see one feature of the classifier is that the accuracy241

is always higher than the efficiency. It is obvious that increasing the efficiency usually242

implies decreasing the accuracy. However, it is desirable if we can control the tradeoff243

between the accuracy and the efficiency. For example, in some situations, it may be required244

to identify as many RSs as possible, so a high efficiency is essential while a low accuracy245

is tolerable. Next we will investigate two factors that influence the tradeoff between the246

accuracy and the efficiency.247

3.3.1 Influence of Sample Size Imbalance248

One reason for the higher accuracy in the classifier built in the previous section is249

a much larger sample of IC discharges compared with the sample of RSs. With such a250

biased dataset, the classifier is more likely to misclassify RSs, as also noted by Zhu et251

al. (2021). We can simply duplicate the sample of RSs to make the classifier identify more252

RSs, though at the cost of more misclassifications of IC discharges. Note that the duplication253

should only be made for the training set.254

With the original dataset, 247 of 14,898 RSs (1.7%) are misclassified, but only 145255

of 159,277 IC pulses (0.091%) are misclassified. If we duplicate the dataset of RSs in the256

training set, the number of misclassified IC pulses increases to 162 while the number of257

misclassified RSs decreases to 199. We tried to make more duplications and tested the258

classifier, and the results of the accuracy and the efficiency are shown in Figure 3a. With259

one duplication of the RS training set, the accuracy decreases from 99.02% to 98.91%260

but the efficiency increases from 98.34% to 98.66%. With two duplications, the accuracy261

decreases to 98.84% but the efficiency increases to 98.76%, very close to the accuracy.262

With further duplications, we can see that both the accuracy and the efficiency are generally263

very similar, changing between 98.75% and 98.85%, indicating that the sample size imbalance264

does not have a significant effect any more.265

If we use the average value of the accuracy and the efficiency as the indicator of266

the overall performance of a classifier, we can see from Figure 3a that with four duplications267

of the RS training set, the classifier has the highest performance with an accuracy of 98.84%268

and an efficiency of 98.81%. We treat this as the best performance of the classifier for269

negative RSs and this classifier will be used for further evaluations in the following section.270
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Figure 3. Variations of the accuracy and the efficiency with (a) different times of duplications
of RS training set and (b) different thresholds of probability to classify RSs.
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Table 1. Comparison of the Random Forest classifier and the SVM classifier

Eleven Parameters (Section 3.2.2)

Classifier Accuracy (%) Efficiency (%) Time Cost (seconds)

Random Forest 99.02 98.34 20
SVM 98.43 97.42 96

Duplicating RS Training Set (Section 3.3.1)

Classifier Accuracy (%) Efficiency (%) Time Cost (seconds)

Random Forest 98.84 98.81 28
SVM 97.98 98.09 108

3.3.2 Influence of Probability Thresholds271

When classifying a pulse, the Random Forest classifier can output the probability272

that the pulse is a true RS. By default, the classifier determines a pulse as an RS when273

the probability is larger than 50%. By changing the probability threshold, we can conveniently274

tune the accuracy-efficiency tradeoff.275

Figure 3b shows variations of the accuracy and the efficiency related with the probability276

threshold. We can see that as the probability threshold increases, the accuracy increases277

while the efficiency decreases. This is easy to understand; a higher probability threshold278

represents stricter criteria to classify RSs, so naturally the identified RSs are more likely279

true RSs (higher accuracy), but at the same time fewer RSs can be identified (lower efficiency).280

In practice, when using the classifier we can set a customized probability threshold that281

fits the specific requirements of an application to achieve desired accuracy or efficiency.282

3.4 Comparison of Different Machine-learning Models283

Apart from the Random Forest classifier, another popular machine-learning model284

for classification is the SVM classifier, which was used by Zhu et al. (2021) for the classification285

of lightning pulses. Here we make a brief comparison of the Random Forest and the SVM286

classifiers. First we use the scheme described in Section 3.2.2 (using 11 parameters illustrated287

in Figure 2) to train the classifiers, and the results are shown in Table 3.4 (upper part).288

We can see the SVM classifier has slightly lower accuracy and efficiency than the Random289

Forest classifier. Further, we use the scheme described in Section 3.3.1 (duplicating the290

RS training dataset) to train the classifiers, and again, the SVM classifier has slightly291

lower accuracy and efficiency. Another difference is in the time needed to train a classifier;292

it takes less than 30 seconds to train an Random Forest classifier while the time needed293

to train an SVM classifier is around 100 seconds. A significantly shorter time to build294

a classifier is potentially very useful as it would be more convenient to experiment various295

combinations of parameters in order to boost the performance of the classifier.296

3.5 Testing Using Remote Lightning Discharges297

Lightning discharges used for training and evaluating classifiers described above298

are all very close to most of FALMA sites in order to ensure the 3-D location accuracy.299

However, many LLSs, especially national and continental LLSs, have long baselines of300

a few hundred kilometers, so lightning discharges observed by these systems are generally301

very far away from most observation sites. Therefore, it is desirable to evaluate the performance302

of a classifier for remote lightning discharges.303
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We use lightning discharges located more than 150 km away from the center of the304

FALMA network in 2017 summer (the origin in Figure 1a) for this investigation. At such305

a large distance, only a small number of discharges can be located with sufficient accuracy,306

and we can only make 2-D locating, so we cannot classify RSs using the height information.307

Therefore, we manually inspected waveforms of all located events and determine their308

types.309

There are a total of 594 located pulses. The classifier described in Section 3.3.1 (the310

training set duplicated for four times) are used to classify these pulses. A total of 361311

pulses were classified as RSs, and there was no clear misclassification. The remaining 233312

pulses were classified as IC discharges, and four of them were likely RSs. However, it should313

be noted that as there is no height information for these pulses, it is sometimes difficult314

to determine the true discharge type, so it is possible that there were actually more misclassifications.315

Assuming there are only four RSs misclassified as IC discharges, from Equations 1 and316

2, we can get an accuracy of 100% and an efficiency of 98.9%. Note that when detecting317

remote lightning discharges, as in the case of long-baseline LLSs, only a small portion318

of IC discharges that are relatively strong can be located, so the chance of misclassifying319

an IC pulse as an RS is relatively low, which may be one reason for the 100% accuracy320

in this evaluation.321

The above results demonstrated that our classifier also has good performance when322

classifying remote RSs, so the classifier can also be used in long-baseline LLSs.323

3.6 Classification of Positive Return Strokes324

The methods described above can also be used to build a classifier for the classification325

of positive RSs. However, positive CG flashes are very rare in summer thunderstorms326

in central Japan. As reported by Wu et al. (2018b), only 46 positive CG flashes consisting327

of 53 positive RSs were observed and could be located in 3-D during the summer observation328

of 2017. Therefore, here we also include the data obtained in other periods. First we use329

the 690 positive RSs observed during the winter of 2018 (Wu et al., 2022) to build a preliminary330

classifier for the identification of positive RSs. Then we use this classifier to search the331

data recorded in about one year from September of 2021 for possible positive RSs. As332

described in Section 2, during this period, we set up a FALMA network with long baselines333

for 2-D locating of both summer and winter lightning. Waveforms of the identified positive334

RSs by the preliminary classifier are manually confirmed to exclude obvious false classifications.335

Indeed, the preliminary classifier identified many pulses that were clearly IC pulses and336

we painstakingly excluded all apparent IC pulses by manual inspections. In this way, we337

collected the data of 8700 positive RSs, locations of which are shown in Figure 1b. Note338

that there is no height information for these positive RSs, so this dataset is not as accurate339

as the negative RS dataset in 2017 summer used in previous sections.340

For IC data, we also use the data of summer observation of 2017 as these data have341

accurate 3-D location results. However, different from the IC dataset for the negative342

RS classifier, IC pulses for building positive RS classifier should have the same polarity343

as positive RSs. So we located IC pulses having the same polarity as positive RSs and344

selected those with heights larger than 3 km, the same treatment as that in building the345

negative RS classifier. On the other hand, as the size of positive RS dataset is relatively346

small, we do not need too many IC data, so for simplicity, we only located one IC pulse347

in every 50-ms window. Finally, we collected a total of 113,922 IC pulses.348

Using these datasets, and with the same scheme for building negative RS classifier349

described in Section 3.3.1, we built and tested the classifier for positive RSs. It is found350

that with the RS training set duplicated for one time, the classifier has the best overall351

performance. It has an accuracy of 99.04% and an efficiency of 98.37%, generally similar352

to the performance of the negative RS classifier. This result demonstrated that as long353
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as there are enough data of positive RSs, we can also build a high-accuracy classifier for354

positive RSs in the same way as building the negative RS classifier.355

Although the dataset of positive RSs does not have 3-D location information and356

thus is not as accurate as the negative RS dataset, as positive RSs are much rarer than357

negative RSs and it is very difficult to collect a large and reliable sample, we believe our358

classifier is very valuable for future observations and researches. Moreover, as all waveforms359

of identified positive RSs have been manually confirmed, the classifier likely has an accuracy360

similar to that of the manual classification.361

4 Atypical Intracloud and Return Stroke Waveforms362

As described in Section 3.1, the whole dataset of 2017 summer is divided into five363

parts, with each part in turn used as the testing set and the remaining four parts combined364

used as the training set. In this way, all pulses can be tested and we can identify as many365

pulses as possible that are potentially difficult to classify. Using the classifier built in Section 3.3.1366

with the RS training set duplicated for four times, all pulses are classified. Of the 14,898367

RSs, 178 were misclassified as IC discharges, and of the 159,277 IC pulses, 173 were misclassified368

as RSs. Waveform figures of all these misclassified pulses are provided in the data repository.369

There are several common reasons for misclassifications of RS pulses as IC pulses.370

Waveforms of four examples are shown in Figures 4a-d, all of which are misclassified as371

IC discharges and whose source heights have been confirmed to be close to the ground.372

First, it is well known that RSs striking tall grounded objects usually produce very narrow373

pulses (Araki et al., 2018; Cai et al., 2022; Pavanello et al., 2007; Zhu et al., 2018), making374

it easy to misclassify them as IC discharges. One example is shown in Figure 4a. This375

pulse is located near a transmission tower, and its pulse width is only about 6 µs, indicating376

that it is likely produced by an RS striking the tower. Second, two RSs sometimes occur377

sequentially with a very small time difference of a few tens of microseconds, and if the378

second RS has a larger peak than the first one, the second RS may be misclassified as379

an IC pulse. One example is shown in Figure 4b. Such RSs are likely the so-called “multiple-termination380

strokes” (Kong et al., 2009; Sun et al., 2016) or “forked strokes” (Ballarotti et al., 2005),381

with two RSs induced by two branches of the same leader. Third, an RS may occur almost382

simultaneously with IC discharges of other lightning flashes, resulting in a peculiar waveform383

and thus misclassified as an IC discharge. One example is shown in Figure 4c. While the384

positive pulse is confirmed to be produced by an RS, the two negative pulses labeled as385

“IC” are produced by IC discharges in an independent lightning flash and are located about386

87 km away from the RS. The resultant waveform appears to be abnormal and is difficult387

to be identified as an RS. Finally, some RSs apparently produce waveforms that are largely388

different from typical RS waveforms but the reason is not yet clear. One example is shown389

in Figure 4d. The pulse has a rise time of about 18 µs while its fall time is only about390

9 µs.391

Another example of an RS producing abnormal waveform is shown in Figure 5 along392

with location results of the preceding leader. This RS is a subsequent RS. We can see393

from the location results in Figure 5a a dart leader with a speed of about 4×106 m/s394

preceding the RS, and the RS is located very close to the ground as indicated by the cross395

sign. From Figure 5c, we can see details of the RS waveform. It contains two peaks with396

the second peak much larger than the first one, resulting in a much larger rise time than397

the fall time. Without the 3-D location results, it is very difficult to determine that the398

waveform is produced by an RS.399

The major reason for IC discharges misclassified as RSs is that waveforms of some400

IC discharges have some similar features as those of RSs. Four examples are shown in401

Figures 4e-h. All of these waveforms appear very similar to those of RSs. However, their402

source heights range from 5.9 to 15.1 km, indicating that they are produced by IC discharges.403
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Figure 4. (a)-(d) Atypical E-change waveforms produced by RSs but misclassified as IC
discharges. (e)-(h) Atypical E-change waveforms produced by IC discharges but misclassified
as RSs. The value of d represents the distance between the discharge and the observation site
recording the waveform. The value of h represents the source height of the IC discharge.
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Figure 5. Location result and E-change waveforms of an RS misclassified as an IC discharge.
(a) Height-time location results of the dart leader preceding the RS. The cross sign represents the
RS. (b) E-change waveform of the RS and preceding discharges. (c) E-change waveform of the
RS. The value of d represents the distance between the RS and the observation site recording the
waveform.
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We also manually located these pulses to make sure that there were no large errors in404

the source height results. We can see that these pulses have relatively short rise times405

and much longer fall times. Pulses in Figures 4e-g also have fine structures superimposed406

on the falling part, similar to waveforms of first RSs, and the pulse in Figure 4h resembles407

the waveform of a subsequent RS. These similar features as RS waveforms make it almost408

impossible to correctly classify them as IC discharges without the 3-D location results.409

Another example of an IC pulse appearing similar to RS pulses is shown in Figure 6410

along with location results of preceding discharges. From the height-time location results411

in Figure 6a, we can see that a leader first propagated above 6.5 km and then descended412

to a height of about 5.5 km, and then the large IC pulse is produced, represented by the413

cross sign. From the E-change waveform in Figure 6c, we can see that the large IC pulse414

is very similar to an RS pulse, with preceding pulses resembling stepped leader pulses.415

With the help of the 3-D location results, we can be sure that this RS-like pulse is produced416

by IC discharges. We are not aware of any study reporting such RS-like IC pulses. In417

our future studies, we will explore the mechanism responsible for these special IC pulses.418

These examples of special RS and IC waveforms illustrate the fact that some RSs419

and IC discharges produce atypical radiation waveforms from which the discharge types420

cannot be accurately determined, resulting in a fundamental difficulty to achieve very421

high accuracy and efficiency using only waveform information. This result also illustrates422

the importance of accurate 3-D location results in scientific investigations of lightning423

phenomena.424

5 Conclusions425

Using a large dataset with 3-D location results, we built a classifier for radiation426

waveforms of negative RSs based on the Random Forest classifier. Eleven simple parameters427

are defined for building the classifier, including three parameters related with pulse characteristics428

and eight parameters related with relative strength of pulses. A classification accuracy429

of 98.84% and an identification efficiency of 98.81% are achieved. We also demonstrated430

methods to tune the tradeoff between the accuracy and the efficiency so the classifier can431

be used in applications with different requirements of the accuracy or the efficiency. Although432

the classifier is built based on the observation of a compact lightning mapping system,433

we demonstrated that the classifier also has high accuracy and efficiency for remote lightning434

discharges and can be readily used in long-baseline LLSs. With the same methods, we435

also built a classifier for positive RSs which has similarly high accuracy and efficiency436

as the classifier for negative RSs.437

Misclassified RS and IC waveforms are examined and some common reasons for misclassifications438

are analyzed. We demonstrated that RSs sometimes produce radiation waveforms that439

are largely different from normal RS waveforms, and IC discharges sometimes produce440

waveforms that appear very similar to RS waveforms. Therefore, some RS and IC waveforms441

are fundamentally difficult to be correctly classified without 3-D location information,442

and it is likely that such misclassifications commonly exist in most LLSs. The results443

also imply the importance of 3-D location results in detailed analyses of lightning phenomena.444

Open Research Section445

Datasets for building and testing the classifiers as well as waveform figures of all446

positive and negative RSs can be found at https://doi.org/10.5281/zenodo.7641792. Sample447

Python scripts for using the classifiers will be made publicly available after the acceptance448

of this paper.449
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Figure 6. Location result and E-change waveforms of an IC pulse misclassified as an RS
pulse. (a) Height-time location results of the IC pulse and preceding discharges. The cross sign
represents the location of the IC pulse. (b) E-change waveform of the IC pulse and preceding
discharges. (c) E-change waveform of the IC pulse. The value of d represents the distance
between the IC discharge and the observation site recording the waveform.
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Key Points:5

• A machine-learning classifier for negative return strokes is built using a large dataset6

with 3-D location information7

• Both an accuracy and an efficiency of about 98.8% are achieved and the accuracy-efficiency8

tradeoff can be easily controlled9

• Some return strokes and IC discharges produce special waveforms that are fundamentally10

difficult to classify without 3-D location results11
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Abstract12

A machine-learning classifier for radiation waveforms of negative return strokes (RSs)13

is built and tested based on the Random Forest classifier using a large dataset consisting14

of 14,898 negative RSs and 159,277 intracloud (IC) pulses with 3-D location information.15

Eleven simple parameters including three parameters related with pulse characteristics16

and eight parameters related with the relative strength of pulses are defined to build the17

classifier. Two parameters for the evaluation of the classifier performance are also defined,18

including the classification accuracy, which is the percentage of true RSs in all classified19

RSs, and the identification efficiency, which is the percentage of correctly classified RSs20

in all true RSs. The tradeoff between the accuracy and the efficiency is examined and21

simple methods to tune the tradeoff are developed. The classifier achieved the best overall22

performance with an accuracy of 98.84% and an efficiency of 98.81%. With the same technique,23

the classifier for positive RSs is also built and tested using a dataset consisting of 8,70024

positive RSs. The classifier has an accuracy of 99.04% and an efficiency of 98.37%. We25

also demonstrate that our classifiers can be readily used in various lightning location systems.26

By examining misclassified waveforms, we show evidence that some RSs and IC discharges27

produce special radiation waveforms that are almost impossible to correctly classify without28

3-D location information, resulting in a fundamental difficulty to achieve very high accuracy29

and efficiency in the classification of lightning radiation waveforms.30

Plain Language Summary31

Lightning location systems are required to classify return strokes (RSs) from intracloud32

discharges accurately and efficiently because the RS is the main discharge component33

that poses direct threats to the human society. In this paper, we report a machine-learning34

classifier for negative RSs built using a large dataset with accurate 3-D location information.35

The classifier has an accuracy of 98.84% (98.84% of classified RSs are correct classifications)36

and an efficiency of 98.81% (98.81% of RSs can be correctly classified). With the same37

technique, we also built a classifier for positive RSs with similarly high accuracy and efficiency.38

Our classifiers only require some simple waveform parameters and can be readily used39

in various national and continental lightning location systems. A sample Python script40

to use the classifier is provided and readers are encouraged to test the classifier using their41

own dataset. We also demonstrate that some RSs and intracloud discharges produce abnormal42

waveforms, so 100% accuracy or efficiency is fundamentally difficult to realize using only43

waveform information.44

1 Introduction45

Ground-based lightning location systems (LLSs) are widely used to monitor lightning46

activities. A prominent feature of ground-based LLSs is that lightning activities in a wide47

area can be monitored in real time with only a limited number of sensors. Some famous48

national and continental LLSs include the National Lightning Detection Network (NLDN)49

covering the continental United States (e.g. Cummins & Murphy, 2009), the European50

Cooperation for Lightning Detection network (EUCLID) covering the European continent51

(e.g. Schulz et al., 2016), and the Earth Networks Total Lightning Network (ENTLN)52

(e.g. Zhu et al., 2022) with the aim of a global coverage.53

It is a basic requirement for LLSs to automatically and efficiently classify cloud-to-ground54

(CG) lightning flashes from intracloud (IC) flashes as the former consist of discharges55

with direct connections to the ground and thus pose a much larger threat to the human56

society. The fundamental difference between a CG flash and an IC flash is that a CG57

flash contains one or more return strokes (RSs), so the classification of CG flashes is basically58

realized by classifying RSs. Further, it is well known that RSs produce characteristic electric59

field radiation waveforms that are largely different from those of IC discharges (e.g. Lin60

et al., 1979), so most LLSs classify RSs based on their waveform characteristics.61
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However, RSs actually can produce radiation waveforms with a variety of special62

features under some special conditions. For example, some RSs in winter thunderstorms63

are known to produce abnormal radiation waveforms, some of which could not be correctly64

classified by LLSs (Wu, Wang, & Takagi, 2021; Wu, Wang, Huang, & Takagi, 2021). It65

is also well known that RSs striking tall objects produce much narrower radiation waveforms66

(Pavanello et al., 2007; Zhu et al., 2018). On the other hand, IC discharges include various67

discharge processes such as narrow bipolar events and recoil leaders, some of which may68

produce radiation waveforms with certain similar features as RS waveforms. As a result,69

for most LLSs, it is basically very difficult to achieve a very high classification accuracy70

of RSs. For example, Zhu et al. (2016) reported that out of 339 RSs in Florida in 201471

that were also recorded by the NLDN, 312 (92%) were correctly classified as RSs by the72

NLDN. Kohlmann et al. (2017) reported that the classification accuracy of EUCLID for73

RSs were generally around 90% based on ground-truth data in various regions of Europe.74

For some particular thunderstorms or some special types of discharges, misclassifications75

by LLSs can be more common. For example, Fleenor et al. (2009) found that 204 out76

of 376 (54%) of RSs reported by the NLDN during a field campaign in 2005 were actually77

IC discharges. Leal et al. (2019) found that compact intracloud discharges with estimated78

peak currents larger than 50 kA were all falsely classified as RSs by both NLDN and ENTLN.79

Paul et al. (2020) reported that out of 40 RSs detected at the Peissenberg Tower, 12 (30%)80

were falsely classified as IC discharges.81

In order to overcome the uncertainties in classifications based only on radiation waveforms,82

Betz et al. (2004) proposed a pseudo 3-D technique to assist the discrimination of RSs83

and IC discharges based on the fact that the elevation of IC discharges would have some84

contributions to the time delay. However, this technique also has some limitations. For85

example, IC discharges need to have significant elevations, the baseline of the LLS cannot86

be too long, and lightning discharges first need to be located accurately in 2-D. These87

limitations prevented the wide implementation of this technique.88

In recent years, machine-learning techniques have been developing rapidly, and these89

techniques seem to be promising in significantly increasing the classification accuracy of90

lightning radiation waveforms. Wang et al. (2020) developed a convolutional neural network91

to classify radiation waveforms of lightning discharges recorded by the Advanced Direction-time92

Lightning Detection System in China. They reported an accuracy of over 99%. However,93

they apparently did not have the height information of lightning discharges and thus could94

not unambiguously differentiate RSs and IC discharges, so the accuracy remains questionable.95

Zhu et al. (2021) used the Support Vector Machines (SVM) model to classify CG and96

IC flashes recorded by the Cordoba Marx Meter Array. The lightning data were in 3-D,97

so they could employ the discharge height information to build a dataset with accurate98

discharge types. They reported an overall accuracy of 97%. However, their proposed method99

requires full waveform information, while most LLSs only retrieve a few parameters of100

electric field waveforms of lightning discharges, making it somewhat difficult for existing101

systems to adopt the method.102

In this paper, we report a simple yet high-accuracy machine-learning technique based103

on the Random Forest classifier to classify RSs. We will use a large dataset containing104

about 15,000 negative RSs and many more IC discharges with accurate 3-D location information105

to train and test the classifier. As will be described in this paper, many of the recorded106

RSs and IC discharges produced atypical radiation waveforms that were challenging to107

be correctly classified. However, the accuracy of our classifier is close to 99% demonstrated108

by evaluations in various respects. Our classifier requires only some simple parameters109

of lightning radiation waveforms, so it can be readily used by most LLSs.110
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Figure 1. (a) Negative RSs (black dots) observed from July 19 to August 26 in 2017. (b)
Positive RSs observed from September 26, 2021 to September 3, 2022. Red squares represent
observation sites of FALMA.

2 Observation and Data111

During the summer of 2017, we set up a low-frequency (LF) lightning mapping system112

called Fast Antenna Lightning Mapping Array (FALMA) in central Japan. The FALMA113

consisted of 12 sites covering an area of about 80×80 km2. Locations of these 12 sites114

are shown as red squares in Figure 1a. At every site, a fast antenna working in the frequency115

band of 500 Hz to 500 kHz was used to receive radiation signals from lightning discharges.116

The signals were recorded with a sampling rate of 25 MS/s. As described by Wu et al.117

(2018a), thanks to improvements made in both the hardware and the software, we realized118

high-quality 3-D lightning mapping with the FALMA. As can be seen from examples of119

lightning flashes in Wu et al. (2018a) and Wu et al. (2019), 3-D mapping results of FALMA120

have similar quality to those of very-high-frequency (VHF) systems such as the Lightning121

Mapping Array (Rison et al., 1999).122

Data obtained from July 19 to August 26 are used in this study for building and123

testing the classifier for negative RSs. All data are reprocessed for this study. The largest124

positive pulse (the same polarity as the negative RS, using the atmospheric electricity125

sign convention) in each 20-ms window is located in 3-D. Only discharges located in the126

region shown in Figure 1a, a 90×90 km2 area over the FALMA network, are used in order127

to ensure reliable 3-D locating. Pulses with source heights lower than 500 m are treated128

as candidates of RSs. Their waveforms are then confirmed manually, and for some ambiguous129

pulses, they are further manually located to determine their source heights. In this way,130

we can unambiguously determine that the selected pulses are truly RSs. The number131

of IC discharges are much larger than that of RSs, so we cannot manually confirm waveforms132

of all IC discharges, and we only use pulses with source heights larger than 3000 m as133

IC pulses. There are 14,898 pulses confirmed as negative RSs and 159,277 pulses as IC134

discharges. Locations of these RSs are shown as black dots in Figure 1a. It should be135

noted that we will build a classifier for negative RSs rather than negative CG flashes;136

a CG flash consists of at least one RS and also many IC discharges, both of which need137

to be correctly classified.138
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Using the high-quality dataset of 2017 summer, we will establish the technique for139

building the classifier as will be described in Sections 3.1 to 3.5. Further, using the same140

technique, we will also build a classifier for positive RSs as will be described in Section 3.6.141

However, positive RSs in central Japan in summer are quite rare (Wu et al., 2018b). In142

order to accumulate a large number of positive RSs, we will use the data collected during143

a long period, from September 26, 2021 to September 3, 2022. During this period, we144

set up a FALMA network covering a large area for 2-D locating of both summer and winter145

lightning. Observation sites are shown as red squares in Figure 1b. A total of 8700 positive146

RSs observed in an area with a radius of 300 km are identified and will be used for building147

and testing the classifier for positive RSs. Locations of these positive RSs are shown as148

black dots in Figure 1b. The procedure for the identification of these positive RSs will149

be further described in Section 3.6.150

Our classifiers will be built and tested mainly based on the Random Forest classifier,151

which is one of the most widely used machine-learning models for classification tasks.152

A brief comparison will also be made with the SVM classifier, another popular machine-learning153

model, in Section 3.4.154

3 Methods and Results155

3.1 Method to Evaluate the Performace of a Classifier156

Before building the classifier, first we need to define some parameters as indicators157

of the performance of a classifier. One obvious parameter to evaluate the performance158

is the classification accuracy, or simply accuracy, that is, the percentage of true RSs in159

the waveforms classified as RSs. However, only this parameter is apparently not enough,160

as it is always possible to build a classifier with very strict criteria so that it only identifies161

very typical RS waveforms. Another important parameter is the identification efficiency,162

or simply efficiency, that is, the percentage of correctly classified RSs in all RSs.163

Suppose the number of RSs is NR, and the number of IC discharges is NI . Of the164

NR RSs, NRc are correctly classified (the subscript c stands for “correct”), and the remaining165

NR−NRc are misclassified as IC discharges. Of the NI IC discharges, NIc are correctly166

classified, and the remaining NI−NIc are misclassified as RSs. The accuracy and the167

efficiency are defined as follows.168

Accuracy =
NRc

NRc + (NI −NIc)
(1)

169

Efficiency =
NRc

NR
(2)

During the process to build the classifier, we will experiment and tune various parameters170

of the classifier to make the accuracy and the efficiency as high as possible.171

Normally a dataset is split into a larger training set and a smaller test set, with172

the training set used to train a classifier and the test set used to test or evaluate the performance173

of the classifier. In this study, we use an improved approach. All RS and IC data are combined,174

shuffled and then divided into five equal parts. Each part is in turn used as the test set175

and the remaining four parts combined are used as the training set. In this way, a classifier176

is built and tested for five times and five results of accuracy and efficiency are calculated.177

The average values of five tests will be used as the final results. In this way, we can avoid178

any random biases in the test set. Moreover, as will be described in Section 4, in this179

way all data can be tested and we can find as many atypical waveforms as possible that180

are difficult to be correctly classified.181
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3.2 Waveform Paramaterization182

We will define some waveform parameters to be used for building the classifier. First183

we describe the procedure to calculate waveform parameters based on multiple-site records.184

As waveforms recorded at a close distance contain the electrostatic and induction field185

components (e.g. Thottappillil et al., 1997) that may significantly distort the waveforms,186

observation sites within 40 km from a discharge are first excluded. Waveforms recorded187

by the remaining sites are used to calculate the parameters, and for each parameter, the188

median value of the results calculated based on these sites are used as the final result189

of the parameter for the discharge.190

3.2.1 Parameters Related with Pulse Characteristics191

First we define three basic parameters related with pulse characteristics. Definitions192

of these parameters are illustrated using an RS pulse in Figure 2a and an IC pulse in Figure 2b193

(blue parameters).194

1. Trise: The rise time of a pulse (10% to peak).195

2. Tfall: The fall time of a pulse (peak to zero).196

3. Thalf : The pulse width at the half maximum.197

With only these three basic parameters, we trained and tested the Random Forest198

classifier using the negative RS and IC dataset obtained in 2017 summer. As described199

in Section 3.1, the dataset is divided into five parts and each part in turn is used as the200

test set, so the classifier is trained and tested for five times. The accuracy ranges from201

72.25% to 73.57% with an average of 72.82%, and the efficiency ranges from 70.80% to202

72.81% with an average of 71.59%. We also tried to add two related parameters, including203

the pulse width, which is the sum of the rise time and fall time, and the ratio of fall time204

to rise time, but the result has little difference (the average accuracy is 72.17% and the205

average efficiency is 70.86%).206

Indeed, with only these basic pulse parameters, it is difficult to accurately classify207

RSs.208

3.2.2 Parameters Related with Relative Strength209

An important feature of the RS waveform is that pulses right before and after an210

RS pulse is usually much weaker. The following parameters are defined to employ this211

feature. These parameters are also illustrated in Figures 2a and 2b.212

1. Rbp1: The ratio of A0 to Abp1, in which A0 is the peak amplitude of the target pulse,213

and Abp1 is the maximum amplitude of pulses right before the target pulse (from214

–100 µs to 10% peak) as illustrated in Figure 2. The subscript b stands for “before”,215

and the subscript p stands for “positive”.216

2. Rbn1, Rbp2, Rbn2, Rap1, Ran1, Rap2, Ran2: These parameters are defined in the217

same way as Rbp1, also illustrated in Figure 2. Note that the subscript a stands218

for “after”, and the subscript n stands for “negative”.219

The three parameters defined in Section 3.2.1 along with the eight new parameters220

defined above are used to train the Random Forest classifier. The accuracy of five tests221

ranges from 98.86% to 99.32% with an average of 99.02%, and the efficiency ranges from222

98.02% to 98.66% with an average of 98.34%. It is clear that these new parameters representing223

the relative strength are very effective in the classification of RSs.224
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Figure 2. Illustration of waveform parameters using (a) an RS pulse and (b) an IC pulse. (c)
Relative importance of waveform parameters.
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3.2.3 Parameter Importance225

The Random Forest classifier outputs a value indicating the relative importance226

of each parameter in contributing to the performance, from which we can evaluate the227

effectiveness of each parameter in the classification of RSs. The results are shown in Figure 2c.228

Values of the importance of all parameters combined equal to 1. We can see that parameters229

related with the pulse strength relative to previous pulses (red parameters in Figure 2)230

are generally more important than other parameters. This is easy to understand as an231

RS pulse is preceded by leader pulses which are usually much weaker than the RS pulse.232

By contrary, an IC pulse is usually preceded by other IC pulses with comparable amplitudes.233

Therefore, parameters related with the relative strength are very effective in the classification234

of RSs.235

We can also see that parameters related with pulse characteristics (blue parameters)236

have relatively low importance, which is why the classifier performance is very poor with237

only these parameters as described in Section 3.2.1. It also indicates that traditional RS238

classification methods based on pulse characteristics are not very reliable.239

3.3 Tradeoff Between Accuracy and Efficiency240

From the above result, we can see one feature of the classifier is that the accuracy241

is always higher than the efficiency. It is obvious that increasing the efficiency usually242

implies decreasing the accuracy. However, it is desirable if we can control the tradeoff243

between the accuracy and the efficiency. For example, in some situations, it may be required244

to identify as many RSs as possible, so a high efficiency is essential while a low accuracy245

is tolerable. Next we will investigate two factors that influence the tradeoff between the246

accuracy and the efficiency.247

3.3.1 Influence of Sample Size Imbalance248

One reason for the higher accuracy in the classifier built in the previous section is249

a much larger sample of IC discharges compared with the sample of RSs. With such a250

biased dataset, the classifier is more likely to misclassify RSs, as also noted by Zhu et251

al. (2021). We can simply duplicate the sample of RSs to make the classifier identify more252

RSs, though at the cost of more misclassifications of IC discharges. Note that the duplication253

should only be made for the training set.254

With the original dataset, 247 of 14,898 RSs (1.7%) are misclassified, but only 145255

of 159,277 IC pulses (0.091%) are misclassified. If we duplicate the dataset of RSs in the256

training set, the number of misclassified IC pulses increases to 162 while the number of257

misclassified RSs decreases to 199. We tried to make more duplications and tested the258

classifier, and the results of the accuracy and the efficiency are shown in Figure 3a. With259

one duplication of the RS training set, the accuracy decreases from 99.02% to 98.91%260

but the efficiency increases from 98.34% to 98.66%. With two duplications, the accuracy261

decreases to 98.84% but the efficiency increases to 98.76%, very close to the accuracy.262

With further duplications, we can see that both the accuracy and the efficiency are generally263

very similar, changing between 98.75% and 98.85%, indicating that the sample size imbalance264

does not have a significant effect any more.265

If we use the average value of the accuracy and the efficiency as the indicator of266

the overall performance of a classifier, we can see from Figure 3a that with four duplications267

of the RS training set, the classifier has the highest performance with an accuracy of 98.84%268

and an efficiency of 98.81%. We treat this as the best performance of the classifier for269

negative RSs and this classifier will be used for further evaluations in the following section.270
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of RS training set and (b) different thresholds of probability to classify RSs.
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Table 1. Comparison of the Random Forest classifier and the SVM classifier

Eleven Parameters (Section 3.2.2)

Classifier Accuracy (%) Efficiency (%) Time Cost (seconds)

Random Forest 99.02 98.34 20
SVM 98.43 97.42 96

Duplicating RS Training Set (Section 3.3.1)

Classifier Accuracy (%) Efficiency (%) Time Cost (seconds)

Random Forest 98.84 98.81 28
SVM 97.98 98.09 108

3.3.2 Influence of Probability Thresholds271

When classifying a pulse, the Random Forest classifier can output the probability272

that the pulse is a true RS. By default, the classifier determines a pulse as an RS when273

the probability is larger than 50%. By changing the probability threshold, we can conveniently274

tune the accuracy-efficiency tradeoff.275

Figure 3b shows variations of the accuracy and the efficiency related with the probability276

threshold. We can see that as the probability threshold increases, the accuracy increases277

while the efficiency decreases. This is easy to understand; a higher probability threshold278

represents stricter criteria to classify RSs, so naturally the identified RSs are more likely279

true RSs (higher accuracy), but at the same time fewer RSs can be identified (lower efficiency).280

In practice, when using the classifier we can set a customized probability threshold that281

fits the specific requirements of an application to achieve desired accuracy or efficiency.282

3.4 Comparison of Different Machine-learning Models283

Apart from the Random Forest classifier, another popular machine-learning model284

for classification is the SVM classifier, which was used by Zhu et al. (2021) for the classification285

of lightning pulses. Here we make a brief comparison of the Random Forest and the SVM286

classifiers. First we use the scheme described in Section 3.2.2 (using 11 parameters illustrated287

in Figure 2) to train the classifiers, and the results are shown in Table 3.4 (upper part).288

We can see the SVM classifier has slightly lower accuracy and efficiency than the Random289

Forest classifier. Further, we use the scheme described in Section 3.3.1 (duplicating the290

RS training dataset) to train the classifiers, and again, the SVM classifier has slightly291

lower accuracy and efficiency. Another difference is in the time needed to train a classifier;292

it takes less than 30 seconds to train an Random Forest classifier while the time needed293

to train an SVM classifier is around 100 seconds. A significantly shorter time to build294

a classifier is potentially very useful as it would be more convenient to experiment various295

combinations of parameters in order to boost the performance of the classifier.296

3.5 Testing Using Remote Lightning Discharges297

Lightning discharges used for training and evaluating classifiers described above298

are all very close to most of FALMA sites in order to ensure the 3-D location accuracy.299

However, many LLSs, especially national and continental LLSs, have long baselines of300

a few hundred kilometers, so lightning discharges observed by these systems are generally301

very far away from most observation sites. Therefore, it is desirable to evaluate the performance302

of a classifier for remote lightning discharges.303
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We use lightning discharges located more than 150 km away from the center of the304

FALMA network in 2017 summer (the origin in Figure 1a) for this investigation. At such305

a large distance, only a small number of discharges can be located with sufficient accuracy,306

and we can only make 2-D locating, so we cannot classify RSs using the height information.307

Therefore, we manually inspected waveforms of all located events and determine their308

types.309

There are a total of 594 located pulses. The classifier described in Section 3.3.1 (the310

training set duplicated for four times) are used to classify these pulses. A total of 361311

pulses were classified as RSs, and there was no clear misclassification. The remaining 233312

pulses were classified as IC discharges, and four of them were likely RSs. However, it should313

be noted that as there is no height information for these pulses, it is sometimes difficult314

to determine the true discharge type, so it is possible that there were actually more misclassifications.315

Assuming there are only four RSs misclassified as IC discharges, from Equations 1 and316

2, we can get an accuracy of 100% and an efficiency of 98.9%. Note that when detecting317

remote lightning discharges, as in the case of long-baseline LLSs, only a small portion318

of IC discharges that are relatively strong can be located, so the chance of misclassifying319

an IC pulse as an RS is relatively low, which may be one reason for the 100% accuracy320

in this evaluation.321

The above results demonstrated that our classifier also has good performance when322

classifying remote RSs, so the classifier can also be used in long-baseline LLSs.323

3.6 Classification of Positive Return Strokes324

The methods described above can also be used to build a classifier for the classification325

of positive RSs. However, positive CG flashes are very rare in summer thunderstorms326

in central Japan. As reported by Wu et al. (2018b), only 46 positive CG flashes consisting327

of 53 positive RSs were observed and could be located in 3-D during the summer observation328

of 2017. Therefore, here we also include the data obtained in other periods. First we use329

the 690 positive RSs observed during the winter of 2018 (Wu et al., 2022) to build a preliminary330

classifier for the identification of positive RSs. Then we use this classifier to search the331

data recorded in about one year from September of 2021 for possible positive RSs. As332

described in Section 2, during this period, we set up a FALMA network with long baselines333

for 2-D locating of both summer and winter lightning. Waveforms of the identified positive334

RSs by the preliminary classifier are manually confirmed to exclude obvious false classifications.335

Indeed, the preliminary classifier identified many pulses that were clearly IC pulses and336

we painstakingly excluded all apparent IC pulses by manual inspections. In this way, we337

collected the data of 8700 positive RSs, locations of which are shown in Figure 1b. Note338

that there is no height information for these positive RSs, so this dataset is not as accurate339

as the negative RS dataset in 2017 summer used in previous sections.340

For IC data, we also use the data of summer observation of 2017 as these data have341

accurate 3-D location results. However, different from the IC dataset for the negative342

RS classifier, IC pulses for building positive RS classifier should have the same polarity343

as positive RSs. So we located IC pulses having the same polarity as positive RSs and344

selected those with heights larger than 3 km, the same treatment as that in building the345

negative RS classifier. On the other hand, as the size of positive RS dataset is relatively346

small, we do not need too many IC data, so for simplicity, we only located one IC pulse347

in every 50-ms window. Finally, we collected a total of 113,922 IC pulses.348

Using these datasets, and with the same scheme for building negative RS classifier349

described in Section 3.3.1, we built and tested the classifier for positive RSs. It is found350

that with the RS training set duplicated for one time, the classifier has the best overall351

performance. It has an accuracy of 99.04% and an efficiency of 98.37%, generally similar352

to the performance of the negative RS classifier. This result demonstrated that as long353
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as there are enough data of positive RSs, we can also build a high-accuracy classifier for354

positive RSs in the same way as building the negative RS classifier.355

Although the dataset of positive RSs does not have 3-D location information and356

thus is not as accurate as the negative RS dataset, as positive RSs are much rarer than357

negative RSs and it is very difficult to collect a large and reliable sample, we believe our358

classifier is very valuable for future observations and researches. Moreover, as all waveforms359

of identified positive RSs have been manually confirmed, the classifier likely has an accuracy360

similar to that of the manual classification.361

4 Atypical Intracloud and Return Stroke Waveforms362

As described in Section 3.1, the whole dataset of 2017 summer is divided into five363

parts, with each part in turn used as the testing set and the remaining four parts combined364

used as the training set. In this way, all pulses can be tested and we can identify as many365

pulses as possible that are potentially difficult to classify. Using the classifier built in Section 3.3.1366

with the RS training set duplicated for four times, all pulses are classified. Of the 14,898367

RSs, 178 were misclassified as IC discharges, and of the 159,277 IC pulses, 173 were misclassified368

as RSs. Waveform figures of all these misclassified pulses are provided in the data repository.369

There are several common reasons for misclassifications of RS pulses as IC pulses.370

Waveforms of four examples are shown in Figures 4a-d, all of which are misclassified as371

IC discharges and whose source heights have been confirmed to be close to the ground.372

First, it is well known that RSs striking tall grounded objects usually produce very narrow373

pulses (Araki et al., 2018; Cai et al., 2022; Pavanello et al., 2007; Zhu et al., 2018), making374

it easy to misclassify them as IC discharges. One example is shown in Figure 4a. This375

pulse is located near a transmission tower, and its pulse width is only about 6 µs, indicating376

that it is likely produced by an RS striking the tower. Second, two RSs sometimes occur377

sequentially with a very small time difference of a few tens of microseconds, and if the378

second RS has a larger peak than the first one, the second RS may be misclassified as379

an IC pulse. One example is shown in Figure 4b. Such RSs are likely the so-called “multiple-termination380

strokes” (Kong et al., 2009; Sun et al., 2016) or “forked strokes” (Ballarotti et al., 2005),381

with two RSs induced by two branches of the same leader. Third, an RS may occur almost382

simultaneously with IC discharges of other lightning flashes, resulting in a peculiar waveform383

and thus misclassified as an IC discharge. One example is shown in Figure 4c. While the384

positive pulse is confirmed to be produced by an RS, the two negative pulses labeled as385

“IC” are produced by IC discharges in an independent lightning flash and are located about386

87 km away from the RS. The resultant waveform appears to be abnormal and is difficult387

to be identified as an RS. Finally, some RSs apparently produce waveforms that are largely388

different from typical RS waveforms but the reason is not yet clear. One example is shown389

in Figure 4d. The pulse has a rise time of about 18 µs while its fall time is only about390

9 µs.391

Another example of an RS producing abnormal waveform is shown in Figure 5 along392

with location results of the preceding leader. This RS is a subsequent RS. We can see393

from the location results in Figure 5a a dart leader with a speed of about 4×106 m/s394

preceding the RS, and the RS is located very close to the ground as indicated by the cross395

sign. From Figure 5c, we can see details of the RS waveform. It contains two peaks with396

the second peak much larger than the first one, resulting in a much larger rise time than397

the fall time. Without the 3-D location results, it is very difficult to determine that the398

waveform is produced by an RS.399

The major reason for IC discharges misclassified as RSs is that waveforms of some400

IC discharges have some similar features as those of RSs. Four examples are shown in401

Figures 4e-h. All of these waveforms appear very similar to those of RSs. However, their402

source heights range from 5.9 to 15.1 km, indicating that they are produced by IC discharges.403
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Figure 4. (a)-(d) Atypical E-change waveforms produced by RSs but misclassified as IC
discharges. (e)-(h) Atypical E-change waveforms produced by IC discharges but misclassified
as RSs. The value of d represents the distance between the discharge and the observation site
recording the waveform. The value of h represents the source height of the IC discharge.
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Figure 5. Location result and E-change waveforms of an RS misclassified as an IC discharge.
(a) Height-time location results of the dart leader preceding the RS. The cross sign represents the
RS. (b) E-change waveform of the RS and preceding discharges. (c) E-change waveform of the
RS. The value of d represents the distance between the RS and the observation site recording the
waveform.
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We also manually located these pulses to make sure that there were no large errors in404

the source height results. We can see that these pulses have relatively short rise times405

and much longer fall times. Pulses in Figures 4e-g also have fine structures superimposed406

on the falling part, similar to waveforms of first RSs, and the pulse in Figure 4h resembles407

the waveform of a subsequent RS. These similar features as RS waveforms make it almost408

impossible to correctly classify them as IC discharges without the 3-D location results.409

Another example of an IC pulse appearing similar to RS pulses is shown in Figure 6410

along with location results of preceding discharges. From the height-time location results411

in Figure 6a, we can see that a leader first propagated above 6.5 km and then descended412

to a height of about 5.5 km, and then the large IC pulse is produced, represented by the413

cross sign. From the E-change waveform in Figure 6c, we can see that the large IC pulse414

is very similar to an RS pulse, with preceding pulses resembling stepped leader pulses.415

With the help of the 3-D location results, we can be sure that this RS-like pulse is produced416

by IC discharges. We are not aware of any study reporting such RS-like IC pulses. In417

our future studies, we will explore the mechanism responsible for these special IC pulses.418

These examples of special RS and IC waveforms illustrate the fact that some RSs419

and IC discharges produce atypical radiation waveforms from which the discharge types420

cannot be accurately determined, resulting in a fundamental difficulty to achieve very421

high accuracy and efficiency using only waveform information. This result also illustrates422

the importance of accurate 3-D location results in scientific investigations of lightning423

phenomena.424

5 Conclusions425

Using a large dataset with 3-D location results, we built a classifier for radiation426

waveforms of negative RSs based on the Random Forest classifier. Eleven simple parameters427

are defined for building the classifier, including three parameters related with pulse characteristics428

and eight parameters related with relative strength of pulses. A classification accuracy429

of 98.84% and an identification efficiency of 98.81% are achieved. We also demonstrated430

methods to tune the tradeoff between the accuracy and the efficiency so the classifier can431

be used in applications with different requirements of the accuracy or the efficiency. Although432

the classifier is built based on the observation of a compact lightning mapping system,433

we demonstrated that the classifier also has high accuracy and efficiency for remote lightning434

discharges and can be readily used in long-baseline LLSs. With the same methods, we435

also built a classifier for positive RSs which has similarly high accuracy and efficiency436

as the classifier for negative RSs.437

Misclassified RS and IC waveforms are examined and some common reasons for misclassifications438

are analyzed. We demonstrated that RSs sometimes produce radiation waveforms that439

are largely different from normal RS waveforms, and IC discharges sometimes produce440

waveforms that appear very similar to RS waveforms. Therefore, some RS and IC waveforms441

are fundamentally difficult to be correctly classified without 3-D location information,442

and it is likely that such misclassifications commonly exist in most LLSs. The results443

also imply the importance of 3-D location results in detailed analyses of lightning phenomena.444

Open Research Section445

Datasets for building and testing the classifiers as well as waveform figures of all446

positive and negative RSs can be found at https://doi.org/10.5281/zenodo.7641792. Sample447

Python scripts for using the classifiers will be made publicly available after the acceptance448

of this paper.449
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Figure 6. Location result and E-change waveforms of an IC pulse misclassified as an RS
pulse. (a) Height-time location results of the IC pulse and preceding discharges. The cross sign
represents the location of the IC pulse. (b) E-change waveform of the IC pulse and preceding
discharges. (c) E-change waveform of the IC pulse. The value of d represents the distance
between the IC discharge and the observation site recording the waveform.
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