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Abstract

A machine-learning classifier for radiation waveforms of negative return strokes (RSs) is built and tested based on the Random
Forest classifier using a large dataset consisting of 14,898 negative RSs and 159,277 intracloud (IC) pulses with 3-D location
information. Eleven simple parameters including three parameters related with pulse characteristics and eight parameters
related with the relative strength of pulses are defined to build the classifier. Two parameters for the evaluation of the classifier
performance are also defined, including the classification accuracy, which is the percentage of true RSs in all classified RSs,
and the identification efficiency, which is the percentage of correctly classified RSs in all true RSs. The tradeoff between the
accuracy and the efficiency is examined and simple methods to tune the tradeoff are developed. The classifier achieved the
best overall performance with an accuracy of 98.84% and an efficiency of 98.81%. With the same technique, the classifier for
positive RSs is also built and tested using a dataset consisting of 8,700 positive RSs. The classifier has an accuracy of 99.04%
and an efficiency of 98.37%. We also demonstrate that our classifiers can be readily used in various lightning location systems.
By examining misclassified waveforms, we show evidence that some RSs and IC discharges produce special radiation waveforms
that are almost impossible to correctly classify without 3-D location information, resulting in a fundamental difficulty to achieve

very high accuracy and efficiency in the classification of lightning radiation waveforms.
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Key Points:

¢ A machine-learning classifier for negative return strokes is built using a large dataset
with 3-D location information

+ Both an accuracy and an efficiency of about 98.8% are achieved and the accuracy-efficiency
tradeoff can be easily controlled

¢ Some return strokes and IC discharges produce special waveforms that are fundamentally
difficult to classify without 3-D location results
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Abstract

A machine-learning classifier for radiation waveforms of negative return strokes (RSs)

is built and tested based on the Random Forest classifier using a large dataset consisting

of 14,898 negative RSs and 159,277 intracloud (IC) pulses with 3-D location information.
Eleven simple parameters including three parameters related with pulse characteristics

and eight parameters related with the relative strength of pulses are defined to build the
classifier. Two parameters for the evaluation of the classifier performance are also defined,
including the classification accuracy, which is the percentage of true RSs in all classified

RSs, and the identification efficiency, which is the percentage of correctly classified RSs

in all true RSs. The tradeoff between the accuracy and the efficiency is examined and

simple methods to tune the tradeoff are developed. The classifier achieved the best overall
performance with an accuracy of 98.84% and an efficiency of 98.81%. With the same technique,
the classifier for positive RSs is also built and tested using a dataset consisting of 8,700
positive RSs. The classifier has an accuracy of 99.04% and an efficiency of 98.37%. We

also demonstrate that our classifiers can be readily used in various lightning location systems.
By examining misclassified waveforms, we show evidence that some RSs and IC discharges
produce special radiation waveforms that are almost impossible to correctly classify without
3-D location information, resulting in a fundamental difficulty to achieve very high accuracy
and efficiency in the classification of lightning radiation waveforms.

Plain Language Summary

Lightning location systems are required to classify return strokes (RSs) from intracloud
discharges accurately and efficiently because the RS is the main discharge component
that poses direct threats to the human society. In this paper, we report a machine-learning
classifier for negative RSs built using a large dataset with accurate 3-D location information.
The classifier has an accuracy of 98.84% (98.84% of classified RSs are correct classifications)
and an efficiency of 98.81% (98.81% of RSs can be correctly classified). With the same
technique, we also built a classifier for positive RSs with similarly high accuracy and efficiency.
Our classifiers only require some simple waveform parameters and can be readily used
in various national and continental lightning location systems. A sample Python script
to use the classifier is provided and readers are encouraged to test the classifier using their
own dataset. We also demonstrate that some RSs and intracloud discharges produce abnormal
waveforms, so 100% accuracy or efficiency is fundamentally difficult to realize using only
waveform information.

1 Introduction

Ground-based lightning location systems (LLSs) are widely used to monitor lightning
activities. A prominent feature of ground-based LLSs is that lightning activities in a wide
area can be monitored in real time with only a limited number of sensors. Some famous
national and continental LLSs include the National Lightning Detection Network (NLDN)
covering the continental United States (e.g. Cummins & Murphy, 2009), the European
Cooperation for Lightning Detection network (EUCLID) covering the European continent
(e.g. Schulz et al., 2016), and the Earth Networks Total Lightning Network (ENTLN)

(e.g. Zhu et al., 2022) with the aim of a global coverage.

It is a basic requirement for LLSs to automatically and efficiently classify cloud-to-ground
(CG) lightning flashes from intracloud (IC) flashes as the former consist of discharges
with direct connections to the ground and thus pose a much larger threat to the human
society. The fundamental difference between a CG flash and an IC flash is that a CG
flash contains one or more return strokes (RSs), so the classification of CG flashes is basically
realized by classifying RSs. Further, it is well known that RSs produce characteristic electric
field radiation waveforms that are largely different from those of IC discharges (e.g. Lin
et al., 1979), so most LLSs classify RSs based on their waveform characteristics.



62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

926

97

98

299

However, RSs actually can produce radiation waveforms with a variety of special
features under some special conditions. For example, some RSs in winter thunderstorms
are known to produce abnormal radiation waveforms, some of which could not be correctly
classified by LLSs (Wu, Wang, & Takagi, 2021; Wu, Wang, Huang, & Takagi, 2021). It
is also well known that RSs striking tall objects produce much narrower radiation waveforms
(Pavanello et al., 2007; Zhu et al., 2018). On the other hand, IC discharges include various
discharge processes such as narrow bipolar events and recoil leaders, some of which may
produce radiation waveforms with certain similar features as RS waveforms. As a result,
for most LLSs, it is basically very difficult to achieve a very high classification accuracy
of RSs. For example, Zhu et al. (2016) reported that out of 339 RSs in Florida in 2014
that were also recorded by the NLDN, 312 (92%) were correctly classified as RSs by the
NLDN. Kohlmann et al. (2017) reported that the classification accuracy of EUCLID for
RSs were generally around 90% based on ground-truth data in various regions of Europe.
For some particular thunderstorms or some special types of discharges, misclassifications
by LLSs can be more common. For example, Fleenor et al. (2009) found that 204 out
of 376 (54%) of RSs reported by the NLDN during a field campaign in 2005 were actually
IC discharges. Leal et al. (2019) found that compact intracloud discharges with estimated
peak currents larger than 50 kA were all falsely classified as RSs by both NLDN and ENTLN.
Paul et al. (2020) reported that out of 40 RSs detected at the Peissenberg Tower, 12 (30%)
were falsely classified as IC discharges.

In order to overcome the uncertainties in classifications based only on radiation waveforms,
Betz et al. (2004) proposed a pseudo 3-D technique to assist the discrimination of RSs
and IC discharges based on the fact that the elevation of IC discharges would have some
contributions to the time delay. However, this technique also has some limitations. For
example, IC discharges need to have significant elevations, the baseline of the LLS cannot
be too long, and lightning discharges first need to be located accurately in 2-D. These
limitations prevented the wide implementation of this technique.

In recent years, machine-learning techniques have been developing rapidly, and these
techniques seem to be promising in significantly increasing the classification accuracy of
lightning radiation waveforms. Wang et al. (2020) developed a convolutional neural network
to classify radiation waveforms of lightning discharges recorded by the Advanced Direction-time
Lightning Detection System in China. They reported an accuracy of over 99%. However,
they apparently did not have the height information of lightning discharges and thus could
not unambiguously differentiate RSs and IC discharges, so the accuracy remains questionable.
Zhu et al. (2021) used the Support Vector Machines (SVM) model to classify CG and
IC flashes recorded by the Cordoba Marx Meter Array. The lightning data were in 3-D,
so they could employ the discharge height information to build a dataset with accurate
discharge types. They reported an overall accuracy of 97%. However, their proposed method
requires full waveform information, while most LLSs only retrieve a few parameters of
electric field waveforms of lightning discharges, making it somewhat difficult for existing
systems to adopt the method.

In this paper, we report a simple yet high-accuracy machine-learning technique based
on the Random Forest classifier to classify RSs. We will use a large dataset containing
about 15,000 negative RSs and many more IC discharges with accurate 3-D location information
to train and test the classifier. As will be described in this paper, many of the recorded
RSs and IC discharges produced atypical radiation waveforms that were challenging to
be correctly classified. However, the accuracy of our classifier is close to 99% demonstrated
by evaluations in various respects. Our classifier requires only some simple parameters
of lightning radiation waveforms, so it can be readily used by most LLSs.
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Figure 1. (a) Negative RSs (black dots) observed from July 19 to August 26 in 2017. (b)

Positive RSs observed from September 26, 2021 to September 3, 2022. Red squares represent
observation sites of FALMA.

2 Observation and Data

During the summer of 2017, we set up a low-frequency (LF) lightning mapping system
called Fast Antenna Lightning Mapping Array (FALMA) in central Japan. The FALMA
consisted of 12 sites covering an area of about 80x80 km?. Locations of these 12 sites
are shown as red squares in Figure la. At every site, a fast antenna working in the frequency
band of 500 Hz to 500 kHz was used to receive radiation signals from lightning discharges.
The signals were recorded with a sampling rate of 25 MS/s. As described by Wu et al.
(2018a), thanks to improvements made in both the hardware and the software, we realized
high-quality 3-D lightning mapping with the FALMA. As can be seen from examples of
lightning flashes in Wu et al. (2018a) and Wu et al. (2019), 3-D mapping results of FALMA
have similar quality to those of very-high-frequency (VHF) systems such as the Lightning
Mapping Array (Rison et al., 1999).

Data obtained from July 19 to August 26 are used in this study for building and
testing the classifier for negative RSs. All data are reprocessed for this study. The largest
positive pulse (the same polarity as the negative RS, using the atmospheric electricity
sign convention) in each 20-ms window is located in 3-D. Only discharges located in the
region shown in Figure 1a, a 90x90 km? area over the FALMA network, are used in order
to ensure reliable 3-D locating. Pulses with source heights lower than 500 m are treated
as candidates of RSs. Their waveforms are then confirmed manually, and for some ambiguous
pulses, they are further manually located to determine their source heights. In this way,
we can unambiguously determine that the selected pulses are truly RSs. The number
of IC discharges are much larger than that of RSs, so we cannot manually confirm waveforms
of all IC discharges, and we only use pulses with source heights larger than 3000 m as
IC pulses. There are 14,898 pulses confirmed as negative RSs and 159,277 pulses as IC
discharges. Locations of these RSs are shown as black dots in Figure la. It should be
noted that we will build a classifier for negative RSs rather than negative CG flashes;

a CG flash consists of at least one RS and also many IC discharges, both of which need
to be correctly classified.
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Using the high-quality dataset of 2017 summer, we will establish the technique for
building the classifier as will be described in Sections 3.1 to 3.5. Further, using the same
technique, we will also build a classifier for positive RSs as will be described in Section 3.6.
However, positive RSs in central Japan in summer are quite rare (Wu et al., 2018b). In
order to accumulate a large number of positive RSs, we will use the data collected during
a long period, from September 26, 2021 to September 3, 2022. During this period, we
set up a FALMA network covering a large area for 2-D locating of both summer and winter
lightning. Observation sites are shown as red squares in Figure 1b. A total of 8700 positive
RSs observed in an area with a radius of 300 km are identified and will be used for building
and testing the classifier for positive RSs. Locations of these positive RSs are shown as
black dots in Figure 1b. The procedure for the identification of these positive RSs will
be further described in Section 3.6.

Our classifiers will be built and tested mainly based on the Random Forest classifier,
which is one of the most widely used machine-learning models for classification tasks.
A brief comparison will also be made with the SVM classifier, another popular machine-learning
model, in Section 3.4.

3 Methods and Results
3.1 Method to Evaluate the Performace of a Classifier

Before building the classifier, first we need to define some parameters as indicators
of the performance of a classifier. One obvious parameter to evaluate the performance
is the classification accuracy, or simply accuracy, that is, the percentage of true RSs in
the waveforms classified as RSs. However, only this parameter is apparently not enough,
as it is always possible to build a classifier with very strict criteria so that it only identifies
very typical RS waveforms. Another important parameter is the identification efficiency,
or simply efficiency, that is, the percentage of correctly classified RSs in all RSs.

Suppose the number of RSs is Ng, and the number of IC discharges is N;. Of the
Ng RSs, Ng. are correctly classified (the subscript ¢ stands for “correct”), and the remaining
Npr—Npg. are misclassified as IC discharges. Of the Ny IC discharges, Ny, are correctly
classified, and the remaining Ny— Nj. are misclassified as RSs. The accuracy and the
efficiency are defined as follows.

NRC
Accuracy = 1
Y Nge + (Nr — Npc) W)
Nre
Efficiency = —2< (2)

Ngr

During the process to build the classifier, we will experiment and tune various parameters
of the classifier to make the accuracy and the efficiency as high as possible.

Normally a dataset is split into a larger training set and a smaller test set, with
the training set used to train a classifier and the test set used to test or evaluate the performance
of the classifier. In this study, we use an improved approach. All RS and IC data are combined,
shuffled and then divided into five equal parts. Each part is in turn used as the test set
and the remaining four parts combined are used as the training set. In this way, a classifier
is built and tested for five times and five results of accuracy and efficiency are calculated.
The average values of five tests will be used as the final results. In this way, we can avoid
any random biases in the test set. Moreover, as will be described in Section 4, in this
way all data can be tested and we can find as many atypical waveforms as possible that
are difficult to be correctly classified.
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3.2 Waveform Paramaterization

We will define some waveform parameters to be used for building the classifier. First
we describe the procedure to calculate waveform parameters based on multiple-site records.
As waveforms recorded at a close distance contain the electrostatic and induction field
components (e.g. Thottappillil et al., 1997) that may significantly distort the waveforms,
observation sites within 40 km from a discharge are first excluded. Waveforms recorded
by the remaining sites are used to calculate the parameters, and for each parameter, the
median value of the results calculated based on these sites are used as the final result
of the parameter for the discharge.

3.2.1 Parameters Related with Pulse Characteristics

First we define three basic parameters related with pulse characteristics. Definitions
of these parameters are illustrated using an RS pulse in Figure 2a and an IC pulse in Figure 2b
(blue parameters).

1. Tyise: The rise time of a pulse (10% to peak).
2. Ttau: The fall time of a pulse (peak to zero).
3. Thaiy: The pulse width at the half maximum.

With only these three basic parameters, we trained and tested the Random Forest
classifier using the negative RS and IC dataset obtained in 2017 summer. As described
in Section 3.1, the dataset is divided into five parts and each part in turn is used as the
test set, so the classifier is trained and tested for five times. The accuracy ranges from
72.25% to 73.57% with an average of 72.82%, and the efficiency ranges from 70.80% to
72.81% with an average of 71.59%. We also tried to add two related parameters, including
the pulse width, which is the sum of the rise time and fall time, and the ratio of fall time
to rise time, but the result has little difference (the average accuracy is 72.17% and the
average efficiency is 70.86%).

Indeed, with only these basic pulse parameters, it is difficult to accurately classify

RSs.

3.2.2 Parameters Related with Relative Strength

An important feature of the RS waveform is that pulses right before and after an
RS pulse is usually much weaker. The following parameters are defined to employ this
feature. These parameters are also illustrated in Figures 2a and 2b.

1. Rppi: The ratio of Ag to App1, in which Ay is the peak amplitude of the target pulse,
and App is the maximum amplitude of pulses right before the target pulse (from
—100 us to 10% peak) as illustrated in Figure 2. The subscript b stands for “before”,
and the subscript p stands for “positive”.

2. Rin1, Rup2, Ron2, Rap1, Rani, Rap2, Ran2: These parameters are defined in the
same way as Rypp1, also illustrated in Figure 2. Note that the subscript a stands
for “after”, and the subscript n stands for “negative”.

The three parameters defined in Section 3.2.1 along with the eight new parameters
defined above are used to train the Random Forest classifier. The accuracy of five tests
ranges from 98.86% to 99.32% with an average of 99.02%, and the efficiency ranges from
98.02% to 98.66% with an average of 98.34%. It is clear that these new parameters representing
the relative strength are very effective in the classification of RSs.
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Figure 2. Illustration of waveform parameters using (a) an RS pulse and (b) an IC pulse. (c)

Relative importance of waveform parameters.
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3.2.3 Parameter Importance

The Random Forest classifier outputs a value indicating the relative importance
of each parameter in contributing to the performance, from which we can evaluate the
effectiveness of each parameter in the classification of RSs. The results are shown in Figure 2c.
Values of the importance of all parameters combined equal to 1. We can see that parameters
related with the pulse strength relative to previous pulses (red parameters in Figure 2)
are generally more important than other parameters. This is easy to understand as an
RS pulse is preceded by leader pulses which are usually much weaker than the RS pulse.
By contrary, an IC pulse is usually preceded by other IC pulses with comparable amplitudes.
Therefore, parameters related with the relative strength are very effective in the classification
of RSs.

We can also see that parameters related with pulse characteristics (blue parameters)
have relatively low importance, which is why the classifier performance is very poor with
only these parameters as described in Section 3.2.1. It also indicates that traditional RS
classification methods based on pulse characteristics are not very reliable.

3.3 Tradeoff Between Accuracy and Efficiency

From the above result, we can see one feature of the classifier is that the accuracy
is always higher than the efficiency. It is obvious that increasing the efficiency usually
implies decreasing the accuracy. However, it is desirable if we can control the tradeoff
between the accuracy and the efficiency. For example, in some situations, it may be required
to identify as many RSs as possible, so a high efficiency is essential while a low accuracy
is tolerable. Next we will investigate two factors that influence the tradeoff between the
accuracy and the efficiency.

3.3.1 Influence of Sample Size Imbalance

One reason for the higher accuracy in the classifier built in the previous section is
a much larger sample of IC discharges compared with the sample of RSs. With such a
biased dataset, the classifier is more likely to misclassify RSs, as also noted by Zhu et
al. (2021). We can simply duplicate the sample of RSs to make the classifier identify more
RSs, though at the cost of more misclassifications of IC discharges. Note that the duplication
should only be made for the training set.

With the original dataset, 247 of 14,898 RSs (1.7%) are misclassified, but only 145
of 159,277 IC pulses (0.091%) are misclassified. If we duplicate the dataset of RSs in the
training set, the number of misclassified IC pulses increases to 162 while the number of
misclassified RSs decreases to 199. We tried to make more duplications and tested the
classifier, and the results of the accuracy and the efficiency are shown in Figure 3a. With
one duplication of the RS training set, the accuracy decreases from 99.02% to 98.91%
but the efficiency increases from 98.34% to 98.66%. With two duplications, the accuracy
decreases to 98.84% but the efficiency increases to 98.76%, very close to the accuracy.
With further duplications, we can see that both the accuracy and the efficiency are generally
very similar, changing between 98.75% and 98.85%, indicating that the sample size imbalance
does not have a significant effect any more.

If we use the average value of the accuracy and the efficiency as the indicator of
the overall performance of a classifier, we can see from Figure 3a that with four duplications
of the RS training set, the classifier has the highest performance with an accuracy of 98.84%
and an efficiency of 98.81%. We treat this as the best performance of the classifier for
negative RSs and this classifier will be used for further evaluations in the following section.
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Table 1. Comparison of the Random Forest classifier and the SVM classifier

Eleven Parameters (Section 3.2.2)

Classifier Accuracy (%) Efficiency (%) Time Cost (seconds)
Random Forest 99.02 98.34 20
SVM 98.43 97.42 96

Duplicating RS Training Set (Section 3.3.1)

Classifier Accuracy (%) Efficiency (%) Time Cost (seconds)
Random Forest 98.84 98.81 28
SVM 97.98 98.09 108

3.3.2 Influence of Probability Thresholds

When classifying a pulse, the Random Forest classifier can output the probability
that the pulse is a true RS. By default, the classifier determines a pulse as an RS when
the probability is larger than 50%. By changing the probability threshold, we can conveniently
tune the accuracy-efficiency tradeoff.

Figure 3b shows variations of the accuracy and the efficiency related with the probability
threshold. We can see that as the probability threshold increases, the accuracy increases
while the efficiency decreases. This is easy to understand; a higher probability threshold
represents stricter criteria to classify RSs, so naturally the identified RSs are more likely
true RSs (higher accuracy), but at the same time fewer RSs can be identified (lower efficiency).
In practice, when using the classifier we can set a customized probability threshold that
fits the specific requirements of an application to achieve desired accuracy or efficiency.

3.4 Comparison of Different Machine-learning Models

Apart from the Random Forest classifier, another popular machine-learning model
for classification is the SVM classifier, which was used by Zhu et al. (2021) for the classification
of lightning pulses. Here we make a brief comparison of the Random Forest and the SVM
classifiers. First we use the scheme described in Section 3.2.2 (using 11 parameters illustrated
in Figure 2) to train the classifiers, and the results are shown in Table 3.4 (upper part).
We can see the SVM classifier has slightly lower accuracy and efficiency than the Random
Forest classifier. Further, we use the scheme described in Section 3.3.1 (duplicating the
RS training dataset) to train the classifiers, and again, the SVM classifier has slightly
lower accuracy and efficiency. Another difference is in the time needed to train a classifier;
it takes less than 30 seconds to train an Random Forest classifier while the time needed
to train an SVM classifier is around 100 seconds. A significantly shorter time to build
a classifier is potentially very useful as it would be more convenient to experiment various
combinations of parameters in order to boost the performance of the classifier.

3.5 Testing Using Remote Lightning Discharges

Lightning discharges used for training and evaluating classifiers described above
are all very close to most of FALMA sites in order to ensure the 3-D location accuracy.
However, many LLSs, especially national and continental LLSs, have long baselines of
a few hundred kilometers, so lightning discharges observed by these systems are generally
very far away from most observation sites. Therefore, it is desirable to evaluate the performance
of a classifier for remote lightning discharges.

—10-



We use lightning discharges located more than 150 km away from the center of the
FALMA network in 2017 summer (the origin in Figure 1a) for this investigation. At such
a large distance, only a small number of discharges can be located with sufficient accuracy,
and we can only make 2-D locating, so we cannot classify RSs using the height information.
Therefore, we manually inspected waveforms of all located events and determine their

types.

There are a total of 594 located pulses. The classifier described in Section 3.3.1 (the
training set duplicated for four times) are used to classify these pulses. A total of 361
pulses were classified as RSs, and there was no clear misclassification. The remaining 233
pulses were classified as IC discharges, and four of them were likely RSs. However, it should
be noted that as there is no height information for these pulses, it is sometimes difficult

to determine the true discharge type, so it is possible that there were actually more misclassifications.

Assuming there are only four RSs misclassified as IC discharges, from Equations 1 and
2, we can get an accuracy of 100% and an efficiency of 98.9%. Note that when detecting
remote lightning discharges, as in the case of long-baseline LLSs, only a small portion

of IC discharges that are relatively strong can be located, so the chance of misclassifying
an IC pulse as an RS is relatively low, which may be one reason for the 100% accuracy
in this evaluation.

The above results demonstrated that our classifier also has good performance when
classifying remote RSs, so the classifier can also be used in long-baseline LLSs.

3.6 Classification of Positive Return Strokes

The methods described above can also be used to build a classifier for the classification
of positive RSs. However, positive CG flashes are very rare in summer thunderstorms
in central Japan. As reported by Wu et al. (2018b), only 46 positive CG flashes consisting
of 53 positive RSs were observed and could be located in 3-D during the summer observation
of 2017. Therefore, here we also include the data obtained in other periods. First we use
the 690 positive RSs observed during the winter of 2018 (Wu et al., 2022) to build a preliminary
classifier for the identification of positive RSs. Then we use this classifier to search the
data recorded in about one year from September of 2021 for possible positive RSs. As
described in Section 2, during this period, we set up a FALMA network with long baselines
for 2-D locating of both summer and winter lightning. Waveforms of the identified positive
RSs by the preliminary classifier are manually confirmed to exclude obvious false classifications.
Indeed, the preliminary classifier identified many pulses that were clearly IC pulses and
we painstakingly excluded all apparent IC pulses by manual inspections. In this way, we
collected the data of 8700 positive RSs, locations of which are shown in Figure 1b. Note
that there is no height information for these positive RSs, so this dataset is not as accurate
as the negative RS dataset in 2017 summer used in previous sections.

For IC data, we also use the data of summer observation of 2017 as these data have
accurate 3-D location results. However, different from the IC dataset for the negative
RS classifier, IC pulses for building positive RS classifier should have the same polarity
as positive RSs. So we located IC pulses having the same polarity as positive RSs and
selected those with heights larger than 3 km, the same treatment as that in building the
negative RS classifier. On the other hand, as the size of positive RS dataset is relatively
small, we do not need too many IC data, so for simplicity, we only locat