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Abstract

Soils store the largest amount of carbon (C) in the biosphere, and the C pool in soil is critical to the global C balance.

Numerous microbial models have been developed over the last few decades to represent microbial processes that regulate the

responses of soil organic carbon (SOC) to climate change. However, the representation of microbial processes varies, and how

microbial processes are incorporated into SOC models has not been well explored. Here, we reviewed 70 microbial models

to characterize the microbial processes incorporated into SOC models and analyzed variations in mechanistic complexity. We

revealed that (1) four processes (microbial decomposition, mineral interaction, microbial mortality, and transition between

active and dormant microbial states) are commonly incorporated in microbial models, (2) ˜47% of models simulate only one

(i.e., microbial decomposition) and 33% simulated two microbial processes: microbial decomposition and mineral interaction, (3)

more than 80% microbial models use nonlinear mathematical equations, such as forward Michaelis-Menten kinetics, to represent

SOC decomposition, (4) the concept of persistence of SOC due to its intrinsic properties has been replaced by organo-mineral

interaction (˜39% of microbial models) that protects SOC from decomposition, and (5) various temperature and moisture

modifiers and pH effects have been used to explain the environmental effect on microbial processes. Finally, we propose a

roadmap for SOC model improvement. In the future, to realistically incorporate microbial processes into Earth System Models,

it is imperative to identify experimental evidence on rate limitation processes and firmly ground model structure on the field

and laboratory data.
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Abstract 22 

Soils store the largest amount of carbon (C) in the biosphere, and the C pool in soil is critical to 23 

the global C balance. Numerous microbial models have been developed over the last few 24 

decades to represent microbial processes that regulate the responses of soil organic carbon (SOC) 25 

to climate change. However, the representation of microbial processes varies, and how microbial 26 

processes are incorporated into SOC models has not been well explored. Here, we reviewed 70 27 

microbial models to characterize the microbial processes incorporated into SOC models and 28 

analyzed variations in mechanistic complexity. We revealed that (1) four processes (microbial 29 

decomposition, mineral interaction, microbial mortality, and transition between active and 30 

dormant microbial states) are commonly incorporated in microbial models, (2) ~47% of models 31 

simulate only one (i.e., microbial decomposition) and 33% simulated two microbial processes: 32 

microbial decomposition and mineral interaction, (3) more than 80% microbial models use 33 

nonlinear mathematical equations, such as forward Michaelis-Menten kinetics, to represent SOC 34 

decomposition, (4) the concept of persistence of SOC due to its intrinsic properties has been 35 

replaced by organo-mineral interaction (~39% of microbial models) that protects SOC from 36 

decomposition, and (5) various temperature and moisture modifiers and pH effects have been 37 

used to explain the environmental effect on microbial processes. Finally, we propose a roadmap 38 

for SOC model improvement. In the future, to realistically incorporate microbial processes into 39 

Earth System Models, it is imperative to identify experimental evidence on rate limitation 40 

processes and firmly ground model structure on the field and laboratory data.   41 

 42 

 43 
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1. Introduction 44 

Soils store the largest amount of organic carbon (C) in terrestrial ecosystems (Lehmann & 45 

Kleber, 2015). Thus, even a small change in soil C turnover could have significant consequences 46 

for atmospheric CO2 concentrations and the stability of the global climate system (Luo et al., 47 

2016; Schmidt et al., 2011). It is estimated that the global soil organic carbon (SOC) pool size at 48 

a depth of 1 m is 1417–1469 Pg C (Hiederer & Köchy, 2011), which is nearly three times the 49 

amount of C stored in plant biomass (Schlesinger & Bernhardt, 2013) and twice the amount of C 50 

in the atmosphere (Schmidt et al., 2011). Therefore, it is crucial to understand and simulate the 51 

critical processes underlying the dynamics of SOC to accurately forecast its responses to future 52 

changes in climate and land management (Amelung et al., 2020). However, the current process-53 

based models have very high uncertainty in estimating the response of global SOC to climate 54 

change (Fan et al., 2021; Todd-Brown et al., 2013; Wieder et al., 2013). These uncertainties 55 

result partly from inadequate representations of ecosystem processes that control the exchanges 56 

of water, energy, and C between land ecosystems and the atmosphere (Hao et al., 2015; Wieder 57 

et al., 2013) and partly from the uncertainties in estimating the SOC model parameters 58 

(Abramoff et al., 2022; Luo & Schuur, 2020; Luo et al., 2016). 59 

Developing models that accurately simulate belowground processes is challenging for soil, 60 

environmental, and earth sciences (Hinckley et al., 2014; Todd-Brown et al., 2013; Wieder et al., 61 

2015a). Currently, SOC dynamics in Earth System Models (ESMs) are mostly represented by 62 

conventional SOC models that do not explicitly simulate microbial activity or soil microbial 63 

communities. Instead, these models strongly emphasize the relationship between SOC chemical 64 

recalcitrance and soil C storage (Wieder et al., 2014; Zeng et al., 2006), assuming that respired 65 

CO2 is proportional to the soil C pool size (Davidson et al., 2014; Wieder et al., 2015a). These 66 
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conventional SOC models implicitly represent microbial activities under the assumptions that (1) 67 

microbes respond so quickly to changes in substrate availability that their abundance never limits 68 

the decomposition rate (Schimel, 2001), (2) microbial and other ecosystem properties as 69 

expressed by parameters in models are invariant across wide environmental and edaphic 70 

conditions and through time (Luo & Schuur, 2020), and (3) microbial communities have 71 

functional equivalence allowing them to optimally process the available SOC (Bradford & 72 

Fierer, 2012; Wieder et al., 2015a).  73 

Theoretically, it is known that microbial processes fundamentally regulate the decomposition and 74 

stabilization of SOC (Davidson et al., 2014). Therefore, in the past few decades, researchers have 75 

incorporated various microbial processes to improve the simulation of future C-cycle-climate 76 

feedback (Wieder et al., 2013) and as a result, numerous microbial models have been developed 77 

over the last few decades to simulate microbial regulation on the response of SOC to climate 78 

change. Here we define a microbial model as a soil biogeochemical model that simulates at least 79 

one discrete microbial biomass pool that controls the decomposition rate of SOC. Studies to date 80 

indicate large variations among microbial models in the capacity to simulate and predict SOC 81 

dynamics, possibly due to their variations in model structure and representations of various 82 

processes in models. Since the 1970s, many microbial models have been developed, for example, 83 

the Schimel model (Schimel & Weintraub, 2003), the enzyme-driven model (Allison et al., 84 

2010), ReSOM (Tang & Riley, 2015), and MIND (Fan et al., 2021). Several studies have 85 

reported contrasting findings when SOC dynamics were compared between conventional and 86 

microbial models. For example, one study compared a conventional SOC model (similar to the 87 

CENTURY model) with microbial models (EC1 and EC2) to simulate soil respiration from a 88 

laboratory-based pulsed drying-rewetting experiment, revealed that microbial controls on SOC 89 



Manuscript submitted to Journal of Geophysical Research-Biogeosciences 

 5

decomposition improved the model's ability to capture the observed pulsed soil respiration 90 

(Lawrence et al., 2009). However, other studies reported similar or amplified uncertainty in SOC 91 

responses to climate change when incorporating microbial control on SOC decomposition, which 92 

might be due to complex mechanisms in microbial processes and the challenges of 93 

parametrization (Shi et al., 2018; Sulman et al., 2018). For example, by selecting suitable 94 

environmental response functions and an improved parameterization method, conventional SOC 95 

models could also capture the pulse dynamics of soil heterotrophic respiration similarly well 96 

with microbial models (Zhou et al., 2021). In addition, the uncertainty of the MIMICS microbial 97 

model in projecting long-term SOC was >10 times greater than that in the conventional Century-98 

type model, possibly because the complex model structure and a large number of parameters 99 

increased uncertainty due to feedback in the model dynamics (Shi et al., 2018). 100 

Although several studies have reviewed SOC models (Chertov et al., 2007; Frissel & Van Veen, 101 

1981; McGill, 1996; Molina & Smith, 1997; Paustian, 1994; Paustian et al., 1997; Smith et al., 102 

1998; Wieder et al., 2015a; Xu et al., 2016), comprehensive synthesis and analysis of microbial 103 

processes incorporated into SOC models are lacking. Microbial models vary a lot in terms of 104 

representations of microbial processes and their incorporations into SOC models. To provide an 105 

overview of the status of microbial models, in this study, we reviewed 70 microbial models 106 

developed over the last few decades (Table 1). We first examine the history of microbial model 107 

development and the trend of the microbial processes incorporated. Then, we provide a 108 

comprehensive overview on each of the microbial processes that substantially overlap across 109 

microbial models and their mechanistic representations into SOC models. For each process, we 110 

include the mathematical equations adopted in the models and the environmental factors that 111 

influence them. We finish the review with the challenges associated with microbial models and 112 
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some recommendations that would be beneficial for better model development in estimating 113 

SOC dynamics. 114 
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Microbial Model Decomposition 
mechanism 

Microbial 
decomposition 

Transition between 
active and dormant 

microbial state

Mineral 
interaction 

Microbial 
mortality 

References 

Averill model RMM Yes No No No Averill (2014) 
Barot model FO Yes No No No Fontaine and Barot (2005) 
Blagodastsky model FO Yes No No No Blagodatsky et al. (2010) 
CLM-Microbe FMM Yes No No No Wieder et al. (2013) 
CMAX framework RMM Yes No No No Xu et al. (2014) 
COMISSION RMM Yes No Yes No Ahrens et al. (2015) 
CORPSE RMM Yes No Yes Yes Sulman et al. (2014) 
C-STABILITY Multiplicative Yes No No No Sainte-Marie et al. (2021) 
DAMM-MCNiP ECA Yes No No No Abramoff et al. (2017) 
DecoBio v1.0 FMM Yes No No No Xenakis and Williams (2014) 
DEMENT FMM Yes No No No Allison (2012) 
DNDC ZO No No No No Li et al. (1994) 
DORMANCY FMM Yes Yes No No He et al. (2015) 
DORMANCY 2.0 FMM Yes Yes No No Liu et al. (2019) 
EC1 RMM Yes No No No Lawrence et al. (2009) 
EC2 RMM Yes No No No Lawrence et al. (2009) 
EcoSMMARTS RMM Yes Yes No Yes Brangarí et al. (2020) 
Ecosys FMM Yes No No No Grant et al. (1993) 
EEZY RMM Yes No No No Moorhead et al. (2012) 
Enzyme driven model FMM Yes No No No Allison et al. (2010) 
Fatichi FMM Yes No No No Fatichi et al. (2019) 
FOND ZO No No Yes Yes Fan et al. (2021) 
GDM FMM Yes No No No Moorhead and Sinsabaugh (2006) 
GENDEC ZO No No No Yes Moorhead and Sinsabaugh (2000) 
German FMM Yes No No No German et al. (2012) 
Hagerty FMM Yes No No No Hagerty et al. (2018) 
He model FMM Yes No No No He et al. (2014) 
JSM RMM Yes No Yes Yes Yu et al. (2020) 
Kaiser FMM Yes No No Yes Kaiser et al. (2014) 
LIDEL ZO No No No No Campbell et al. (2016) 
Manzoni RMM Yes No No No Manzoni et al. (2021) 
MEMS v1.0 ZO No No Yes No Robertson et al. (2019) 
MEND FMM Yes No Yes No Wang et al. (2013) 
MEND_dor FMM Yes Yes Yes No Wang et al. (2015) 
MESDM FMM Yes Yes No No Zhang et al. (2022) 

Table 1: Microbial models for SOC decomposition and the four processes incorporated along with the decomposition formulation. ZO: Zero-order; 
FO: First-order; FMM: Forward Michaelis Menten; RMM: Reverse Michaelis-Menten (The names of the models are determined based on two 
criteria: (1) if the model has a name in the original publication, that name will be used to represent the model; (2) if the model has no name, the last 
name of the first author will be used to name the model, for example, Fatichi model.) 
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MiCNiT Multiplicative Yes No No No Blagodatsky et al. (2011) 
MIC-TEM_Hao FMM Yes No No No Hao et al. (2015) 
MIC-TEM_Zha FMM Yes No No No Zha and Zhuang (2018) 
MIC-TEM-dormancy FMM Yes Yes No No Zha and Zhuang (2020) 
MiFe Logistic Yes No Yes No Liao et al. (2022) 
Millennial model FMM Yes No Yes No Abramoff et al. (2018) 
Millennial V2.0 RMM Yes No Yes No Abramoff et al. (2022) 
MIMICS FMM Yes No Yes No Wieder et al. (2014) 
MIMICS_D FMM Yes No Yes No Zhang et al. (2020) 
MIMICS-CN v1.0 FMM Yes No Yes No Kyker-Snowman et al. (2020) 
MIMICS-DB FMM Yes No Yes No Zhang et al. (2020) 
MIMICS-DBT FMM Yes No Yes No Zhang et al. (2020) 
MIND FMM Yes No Yes Yes Fan et al. (2021) 
MOMOS ZO No No No Yes Pansu et al. (2010) 
MySCaN ZO No No No No Orwin et al. (2011) 
NCSOIL RMM Yes No No No Hadas et al. (1998) 
ORCHIMIC v1.0 ECA Yes Yes Yes Yes Huang et al. (2018) 
ORCHIMIC v2.0 FMM Yes Yes Yes Yes Huang et al. (2021) 
Parnas FMM Yes No No No Parnas (1975) 
Phoenix Density-

dependent 
Yes No Yes No McGill et al. (1981) 

Resat FMM Yes No No No Resat et al. (2012) 
RESOM ECA Yes No Yes No Tang and Riley (2015) 
ReSom vNN ECA Yes No Yes No Abramoff et al. (2019) 
ReSom vTD ECA Yes No Yes No Abramoff et al. (2019) 
ReSom vTI ECA Yes No Yes No Abramoff et al. (2019) 
ReSom vTN ECA Yes No Yes No Abramoff et al. (2019) 
RothC ZO No No No No Coleman and Jenkinson (1996) 
SCAMPS FMM Yes No No No Sistla et al. (2014) 
Schimel model RMM Yes No No No Schimel and Weintraub (2003) 
SOCRATES ZO No No No No Grace et al. (2006) 
SOMic v1.0 RMM Yes No Yes No Woolf and Lehmann (2019) 
SOMKO Density-

dependent 
Yes Yes No No Gignoux et al. (2001) 

SYMPHONY FO Yes No No No Perveen et al. (2014) 
TRIPLEX_MICROBE FMM Yes Yes Yes No Wang et al. (2017) 
VERBERNE ZO No No Yes No Verberne et al. (1990) 
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2. Historical Development of Microbial Models 115 

Studies on organic matter (OM) decomposition to 116 

environmental factors have a long history, starting 117 

in the early 1930s (Manzoni & Porporato, 2009; 118 

Wang & Allison, 2019), and SOC decomposition 119 

has been modeled as a first-order decay process 120 

since 1945 (Hénin & Dupuis, 1945). However, the 121 

integration of microbial biomass into the SOC 122 

model did not exist until the 1970s, and one of the 123 

first SOC microbial models was developed in 124 

1975 (Parnas, 1975) that calculated litter 125 

decomposition as an explicit function of microbial 126 

biomass under the assumption that the 127 

decomposition of SOC is proportional to the 128 

growth rate of the soil microbial community. This 129 

approach dynamically linked microbial and litter 130 

pools. The development of microbial models was 131 

slow during the late 20th century. Only 8 132 

microbial models were developed during the last 25 years of the 20th century (Fig 1b), and the 133 

treatment of microbial biomass was often indistinguishable from the active pool of conventional 134 

SOC models, such as VERBERNE, GENDEC, DNDC, and RothC microbial models. Microbial 135 

models started to receive more attention, mainly after Schimel and Weintraub (Schimel & 136 

Weintraub, 2003) proposed the Reverse Michaelis-Menten kinetics derived from the Langmuir 137 

sorption isotherm theory and explicitly represented the extracellular enzyme (ENZ) pool in their 138 
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model. Subsequently, several studies explored additional ecological interactions between 139 

microorganisms and SOC. For example, it was previously thought that the long-term persistence 140 

of SOC was because of the recalcitrant chemical property of SOC, such as humic substances that 141 

were considered large, complex macromolecules and the most stable component of SOC 142 

(Lützow et al., 2006). However, recent studies suggested that the recalcitrant components 143 

represent only a small fraction of total OM, and the molecular property alone does not control 144 

the persistence of SOC (Kleber & Johnson, 2010; Sutton & Sposito, 2005).  Rather, mineral 145 

surfaces predominantly influence the decomposition of SOC by altering SOC concentration and 146 

its mobilities (Greenland, 1965). Mineral particles in soil adsorb SOC onto its surfaces by 147 

forming various chemical bonds that prevent SOC accessibility from microbes (McGill et al., 148 

1981; McLaren & Peterson, 1965), resulting in explicit consideration of the mineral interaction 149 

process in the models. 150 

Likewise, relatively recent development in microbiology and genomics uncovered that under 151 

natural environmental conditions, soil microbes exist in three physiological states: dead, alive, 152 

and dormant microbes (Gignoux et al., 2001; Mason et al., 1986; Wang et al., 2014a). Thus, a 153 

significant increase in the trends of the number of microbial models (Fig. 1a and 1b) and 154 

consideration of microbial processes controlling SOC decomposition were observed (Fig 1c). For 155 

example, 22 and 35 microbial models were developed during the periods of 2007 to 2014 and 156 

2015 to 2022, respectively (Fig 1a). Microbial processes such as microbial mortality and 157 

dynamic active-dormant microbial states are relatively less studied than the microbial processes 158 

related to decomposition and mineral association because of our recent knowledge development 159 

of microbial physiological states and the limitation in their measurements in situ. 160 

 161 
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3. Model Representation of Microbial Processes 162 

Early on, empirical fitting of a first-order model to 163 

SOC decomposition required multiple pools so 164 

that fractions of SOC decayed with different 165 

turnover rates (Woolf & Lehmann, 2019). Such 166 

multi-pool models, derived from empirical results, 167 

reflect a conceptual paradigm that different types 168 

of SOC have different representative 169 

turnover rates. Although many microbial 170 

processes are suggested to be essential for 171 

controlling SOC cycling in the literature 172 

(Lehmann et al., 2020; Schmidt et al., 2011), 173 

there is less agreement about the best 174 

mathematical formulations to represent these 175 

processes (Table 2, (Sulman et al., 2018; Wieder 176 

et al., 2015a).  177 

Our review of the 70 microbial models revealed that four microbial processes are widely 178 

incorporated into SOC models: microbial decomposition, mineral interaction, microbial 179 

mortality, and transition between active and dormant microbial states (Fig 2a; Table 1). Among 180 

the 70 microbial models, almost 50% simulate two processes (i.e., microbial decomposition), and 181 

one-third of the microbial models simulate two processes in a single model. The combinations of 182 

the two processes are mostly between microbial decomposition and mineral interaction (Fig 2b; 183 
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Table 1). In this section, we focus on these four microbial processes that have been incorporated 184 

into most of the microbial models. 185 

3.1 Microbial Decomposition of SOC 186 

Microbial decomposition is a critical process 187 

in the soil C cycle because it is the primary 188 

pathway through which CO2 fixed by plants 189 

is returned to the atmosphere (Zhang et al., 190 

2022). Therefore, microbial models have 191 

taken diverse approaches to represent the 192 

decomposition process (Fig. 1c, Table 2). 193 

There is a consensus among microbial 194 

models that microbes produce ENZ to degrade 195 

complex SOC into dissolved organic carbon 196 

(DOC) through catalysis, take up DOC, convert the assimilated C into microbial biomass for 197 

growth, and release CO2 through respiration (Sinsabaugh et al., 2008; Zhang et al., 2022). Two 198 

pathways are used for the representation of the decomposition of SOC: enzymatic- and microbial 199 

biomass-mediated decomposition (Fig 2a). The major difference between these two pathways is 200 

that enzymatic-mediated decomposition models simulate an explicit ENZ pool, assuming ENZ 201 

production is controlled by both substrate concentration and microbial community structure 202 

(Sistla et al., 2014) and directly couple SOC decomposition to the ENZ activity instead of 203 

microbial biomass (Table 2). For example, microbial models such as the Averill model, DAMM-204 

MCNiP, DEMENT, DORMANCY, EC1, EC2, EcoSMMARTS, EEZY, Enzyme driven model, 205 

Fatichi, German, Hagerty, HE model, Kaiser, MEND_dor, MESDM, MIC-TEM_Hao, MIC-206 
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TEM_Zha, MIC-TEM-dormancy, MEND, ORCHIMIC (v1.0, v2.0), Resat, RESOM (v1, v2, v3, 207 

v3, v4, v5), SCAMPS, Schimel model, and TRIPLEX_MICROBE (Table 1) consider a separate 208 

ENZ pool in addition to microbial biomass pool (Table 2). In contrast, microbial biomass-209 

mediated decomposition models (e.g., Barot model, Blagodastsky model, C-Stability, CLM-210 

Microbe, CMAX framework, COMISSION, CORPSE, DecoBio v1.0, DORMANCY 2.0, 211 

Ecosys, GDM, JSM, Manzoni, MiCNiT, MiFe, Millennial model, Millennial v2.0, MIMICS, 212 

MIMICS (v1, v2, v3, v4), MIND, NCSOIL, Parnas, SOMic v1.0, SOMKO, and SYMPHONY 213 

(Table 1) do not explicitly simulate the pool of ENZ. Instead, they implicitly assume the 214 

enzymatic catalysis of SOC to drive the rate of SOC decomposition. We consider these pathways 215 

to be separate processes in our analyses to preserve the uniqueness of their model structures and 216 

their process representations (Table 2).  217 

Further, we classified the microbial decomposition of SOC into six types based on the equations 218 

used: 1) zero-order, 2) first-order,  3) forward Michaelis-Menten (FMM), 4) Reverse Michaelis-219 

Menten (RMM), 5) Equilibrium Chemistry Approximation (ECA), or 6) Other (Fig 3a). Types 1 220 

and 2 are linear-type whereas types 3-6 are nonlinear models. These formulations differ 221 

functionally with different fundamental assumptions on whether the decomposition of SOC is 222 

limited by substrate availability, microbial biomass (or ENZ), or both, and on how these 223 

components are linked with decomposition. For example, formulations 1 (i.e., zero-order) and 2 224 

(i.e., first-order) are represented by simple mathematical equations (consisting of only one 225 

parameter). In contrast, the nonlinear microbial model family (i.e., formulations 3-6)  is 226 

represented by various complex mathematical equations with a large number of parameters. It is 227 

worth to note that more than 80% of the microbial models used nonlinear kinetics (formulations 228 

3-6) to represent SOC decomposition (Fig 3b; Table 1). 229 
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3.1.1  Zero-Order Microbial Model (ZO) 230 

The zero-order microbial model is not a function of microbial biomass although the model 231 

simulates a discrete microbial biomass pool. Such a model may be a function of substrate as: 232 

Dc = kS     (1) 233 

where Dc is the rate of decomposition of C, S is the substrate of SOC, and k is the coefficient of 234 

the decomposition rate. 235 

Of the 70 models we reviewed, 10 models simulated microbial biomass as one (e.g., FOND, 236 

GENDEC, LIDEL, MEMS v1.0, MOMOS, RothC, VERBERNE) or more components (e.g., 237 

bacteria and fungi pools in MySCaN, protected and unprotected microbial C in SOCRATES, 238 

labile and resistant microbial C in the DNDC model) of the SOC pool  (Fig 3a). However, the 239 

microbial component was only taken as a substrate of decomposition rather than as a decomposer 240 

that could modify the rates of decomposition in these models. Thus, the SOC decomposition 241 

reaction rate becomes zero-order with respect to microbial biomass (Eq 1). This formulation is 242 

similar to the conventional SOC models in which each substrate with specific quality has its own 243 

microbial community associated with it, and the microbial community is presumably in 244 

equilibrium with the substrate most of the time. Therefore, decomposition is only limited by 245 

substrate (S) (McGill & Myers, 1987; Wutzler & Reichstein, 2008). Furthermore, the 246 

contribution of soil microbes to SOC decomposition is implicitly included in the apparent 247 

decomposition rate coefficients of different C pools (McGill, 1996; Paustian, 1994) when a 248 

model is parameterized. Due to this treatment of soil microbes, models are independent of 249 

temporal and spatial variations in the soil microbial community and may lack the flexibility to 250 
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simulate the effects of land-use or climate change that impact soil microbial biomass and 251 

activities on SOC decomposition (Fang et al., 2005). 252 

3.1.2 First-Order Microbial Model (FO) 253 

In the first-order microbial models, the decomposition of SOC depends linearly on the size of the 254 

microbial biomass pool (Eq. 1 in Table 2). Only 3 (Barot, Blagodastsky, and SYMPHONY 255 

models) out of the 70 microbial models used first-order kinetics for microbial biomass (Fig 3a), 256 

as the assumption of this type of model, that is, the substrate is the only limiting factor for SOC 257 

decomposition was questioned in the Barot model and later was adopted in Blagodastsky and 258 

SYMPHONY models (Blagodatsky et al., 2010; Fontaine & Barot, 2005; Perveen et al., 2014). 259 

These models considered that the decomposition of recalcitrant SOC was limited by the 260 

extracellular enzymes instead of the quantity of substrate and assumed that the quantity of ENZ 261 

is proportional to the size of the microbial biomass pool. The SOC decomposition increases 262 

linearly with the size of the microbial pool (Eq. 1 in Table 2), resulting in first-order kinetics 263 

with respect to the microbial biomass. 264 

3.1.3 Forward Michaelis-Menten (FMM) 265 

The first-order (linear) models have been challenged on the grounds that SOC breakdown 266 

depends on the amount of SOC as well as on microbial components (Fang et al., 2005; Schimel 267 

& Weintraub, 2003), thus resulting in nonlinear decomposition rates. This tight coupling 268 

between the substrate and biological processes is necessary, in particular, while modeling short-269 

term C and nitrogen (N) dynamics (Blagodatsky et al., 1998), while it might also be relevant in 270 

medium- (Whitmore, 1996) and long-term analyses (Smith et al., 1998). Based on the 271 

assumption that the decomposition rate of SOC is limited by the substrate or the microbial pool 272 
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(or the enzyme pool), various mathematical equations were used to describe the decomposition 273 

of SOC (Table 2).  274 

The FMM kinetics assumes that substrate availability is the rate-limiting factor in 275 

decomposition, i.e., the decomposition rate saturates as the substrate available for decomposition 276 

rises (Wieder et al., 2015a). In FMM kinetics, the SOC decomposition rate varies linearly with 277 

the microbial biomass (or enzyme pool) and nonlinearly with the substrate. The representation of 278 

SOC decomposition in microbial models was dominated by FMM kinetics: 31 out of 70 279 

microbial models (~44%) used the FMM kinetics for SOC decomposition (Eqs. 2-6 in Table 2).  280 

3.1.4 Reverse Michaelis-Menten (RMM) 281 

In contrast to FMM kinetics, in RMM kinetics, the decomposition reaction rate changes linearly 282 

with the amount of substrate and saturates with the enzyme pool (or microbial biomass) (Schimel 283 

& Weintraub, 2003). The assumptions underlying the RMM kinetics are (1) the size of SOC pool 284 

is sufficiently large enough such that the amount of ENZ (or microbial biomass), rather than the 285 

substrate, is the rate-limiting factor for SOC decomposition, (2) the maximum binding capacity 286 

of enzymes is proportional to the concentration of the substrate, and (3) the resulting 287 

decomposition rate is proportional to the amount of bound enzyme (Moorhead & Weintraub, 288 

2018; Schimel & Weintraub, 2003). The Averill model, CMAX framework, COMISSION, 289 

CORPSE, EC1, EC2, EcoSMMARTS, EEZY, JSM, Manzoni, NCSOIL, Schimel model, and 290 

SOMic v1.0 models have all adopted RMM kinetics for the SOC decomposition (Eqs. 7-12 in 291 

Tables 2). However, some of these models, such as the CMAX framework, COMISSION, 292 

CORPSE, JSM, Manzoni, NCSOIL, and SOMic v1.0, do not separately simulate ENZ pools but 293 

instead assume that ENZ production linearly depends on microbial biomass because it is 294 
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challenging to measure ENZ production and these models focus on simulating C pools that are 295 

measurable. 296 

3.1.5 Equilibrium Chemistry Approximation (ECA) 297 

ECA is a relatively new decomposition mechanism proposed by Tang and Riley (2013). It was 298 

derived from the first-order approximation of the full equilibrium chemistry formulation of a 299 

consumer-substrate network that can account for multiple consumers (i.e., microbes and 300 

minerals) and multiple substrates as: 301 

Dc= ௏೘ೌೣ∗ௌ∗ா௞೘ାௌାா       (2) 302 

where Vmax is the maximum decomposition rate, km is the half-saturation constant, and E is the 303 

extracellular enzyme 304 

The assumptions underlying the ECA kinetics are (1) there is no binding between substrates or 305 

between consumers, and (2) once an enzyme-substrate complex is formed, it will not bind with 306 

another substrate or consumer to form new complexes (Tang & Riley, 2013). Eq. 2 demonstrates 307 

a reaction that has only one enzyme interacting with one substrate. 308 

It should be noted that the decomposition rate becomes FMM when the substrate changes 309 

significantly while the enzyme concentration is much lower than the substrate, such that km + E 310 

is almost constant. On the other hand, when the substrate concentration is much higher than the 311 

enzyme concentration, such that the microbial process barely changes the total substrate 312 

concentration in the temporal window of interest, km + S is almost constant, and eq. 2 is reduced 313 

to RMM (Tang & Riley, 2013). ReSOM and its subsequent versions, DAMM-MCNiP and 314 

ORCHIMIC v1.0, used the ECA mechanism (Eqs. 7, 13-14 in Table 2). 315 

 316 

 317 
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3.1.6 Other Mechanisms 318 

Although the mechanisms mentioned above were the most commonly used in microbial models, 319 

other mechanisms have been used in some instances. For example, Phoenix and SOMKO models 320 

use microbial density-dependent SOC decomposition and assume that the increase in the ratio of 321 

microbial C to structural C slows down the activity of microbes because of increased competition 322 

among microbes for nutrients and space (Eqs. 15-16 in Table 2). Subsequently, to avoid such a 323 

heavy nonlinear model parameterization and also assuming the low concentrations of SOC, some 324 

models (e.g., C-Stability and MiCNiT) use a multiplicative expression that still couples microbes 325 

and SOC, but the decomposition of SOC varies linearly with microbial biomass and substrate 326 

(Eqs. 17, Table 2) (Manzoni & Porporato, 2007). Furthermore, a recent study (Liao et al., 2022) 327 

was conducted to understand the most probable mechanisms behind the observed nonlinear 328 

patterns of lignin decomposition. The study reported that neither the conventional nor FMM 329 

nonlinear models could simulate the observed nonlinear patterns of lignin decomposition (Huang 330 

et al., 2019). Instead, the data-driven approach revealed that time-dependent growth and 331 

mortality functions expressed by logistic equations in the microbial-iron (MiFe) model better 332 

represented observed CO2 release from lignin decomposition than models assuming either first-333 

order or FMM (Eq. 18 in Table 2). 334 

3.2 Mineral Interaction 335 

SOC interaction with mineral surfaces is a critical process for the stabilization of SOC because 336 

plant- and microbially-derived SOC can be protected from decomposition through the formation 337 

of complex organo-mineral interactions (Abramoff et al., 2019). Sorption and desorption are the 338 

two processes that regulate the amount of DOC available to microbes for decomposition (Huang 339 

et al., 2018). The majority of SOC models simulate the mineral interaction implicitly by 340 

modifying the SOC decomposition rate with an empirical factor based on the clay fraction 341 
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(Abramoff et al., 2019; Coleman & Jenkinson, 1996; Sulman et al., 2014; Wieder et al., 2013). 342 

However, it is becoming increasingly clear that the persistence and decomposition of SOC are 343 

interconnected with the physical environment, organic–mineral interactions, and both local biotic 344 

and abiotic factors (Newcomb et al., 2017). In addition, a significant proportion of stable SOC is 345 

derived from simple C rather than chemically resistant compounds (Cotrufo et al., 2013), 346 

suggesting molecular structure alone does not control the long-term stability of SOC (Schmidt et 347 

al., 2011). Sorption is a rapid process that occurs within seconds to minutes and thus occurs more 348 

rapidly than microbial decomposition (Kothawala et al., 2008; Qualls & Haines, 1992). 349 

Therefore, the long residence time or the stabilization of SOC are commonly attributed to an 350 

interaction between DOC, microbially derived C, or intact plant compounds with mineral 351 

surfaces, which provide reactive sites for physical and chemical stabilization, thus preventing 352 

degradation of SOC by microbes (Grant et al., 2022; Kleber et al., 2015; Kleber et al., 2007; 353 

Lehmann & Kleber, 2015; Schmidt et al., 2011). Factors influencing the formation and stability 354 

of protected C include the chemistry of OM, texture, and structure of soils, physicochemical 355 

properties and abundance of soil minerals, pH, the ionic strength of the soil water, temperature, 356 

and moisture (Abramoff et al., 2018; Feng et al., 2016). 357 

In our analysis, 27 out of 70 microbial models explicitly represented the mineral interaction with 358 

SOC (Fig 2a; Table 1). However, not all of these 27 models explicitly simulate the sorption and 359 

desorption processes simultaneously. For example, CORPSE, FOND, MEMS, MIND, and 360 

VERBERNE do not explicitly represent desorption; instead, they simulate the net sorption of C 361 

to mineral surfaces, meaning that when the mineral-associated organic matter (MAOM) pool 362 

reaches saturation, the net transfer of C from DOC to MAOM can be negative, i.e., C is 363 

transferred from MAOM to DOC (Eqs. 20, 21, 23, 30 in Table 2).  364 
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Environmental and biotic controls on sorption varied greatly among models. Factors considered 365 

that could influence the sorption process include DOC (or SOC), MAOM, maximum sorption 366 

capacity (Qmax, depending on clay and silt content), soil temperature and moisture, and microbial 367 

necromass (i.e., mass from microbial death and subsequent lysis and fragmentation of microbes). 368 

In most microbial models, the maximum sorption of SOC depended on the amount of DOC 369 

available, the availability of sorption sites, and the sorption capacity (Eqs. 19-33 in Table 2). 370 

Thus, the rate of SOC sorption increases when the DOC content is higher, and the sorption sites 371 

are unoccupied. In addition, models such as JSM, Millennial v1.0, and ORCHIMIC (v1.0 and 372 

v2.0) introduced temperature rate modifiers for the sorption process (Eq. 22, 26, 31 in Table 2). 373 

Only JSM and Millennial (v1.0 and v2.0) models simulated the effect of soil moisture on the 374 

sorption process (Eqs. 22, 25-26 in Table 2). In most microbial models, particulate organic 375 

carbon (POC) and DOC were competing for the mineral surfaces. However, in some microbial 376 

models, such as FOND, Millennial (v1.0 and v2.0), MIMICS (v1-4), and MIND, microbial 377 

necromass was also competing for the mineral surfaces (Eqs. 21, 25-30 in Table 2).   378 

Environmental and biotic controls on desorption also varied among models but in less complex 379 

ways than their controls on sorption. Microbial models such as COMISSION, JSM, MEND, 380 

MEND_dor, Millennial (v1.0 and v2.0), MIMICS(v1-v5), MIND, ORCHIMIC (v1.0 and v2.0) 381 

and SOMic v1.0 explicitly represented the desorption process (Eq. 19, 22, 24-29, 31, 33 in Table 382 

2). The desorption mostly depended on the amount of C sorbed to the mineral surfaces and Qmax. 383 

However, some models modulated the desorption process by adding temperature (JSM, 384 

Millennial (v1.0), and ORCHIMIC (v1.0 and v2.0) or moisture functions (JSM, Millennial v1.0, 385 

and v2.0).  386 

 387 
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3.3 Microbial Mortality 388 

Although the microbial models reviewed in this study consider the carbon pool of microbial 389 

biomass separately, most microbial models did not explicitly represent the microbial necromass 390 

pool with a different decomposition rate from plant residue. For example, in the Millennial 391 

model, a fraction of microbial necromass and plant residues (such as root exudates and leaf 392 

leachate) enter into the same C pool, i.e., low molecular weight carbon, which follows the same 393 

decomposition pattern (Abramoff et al., 2018). The microbial necromass pool mainly consists of 394 

microbially derived SOC, such as dead microbes and extracellular compounds released from the 395 

dead microbes, that have a faster decomposition rate than the plant residues (Huang et al., 2018). 396 

Several studies reported that soil microbes have different structural and chemical compositions 397 

from plant litter, which could result in their different decomposition rates (Kögel-Knabner, 2002; 398 

Liang et al., 2017). For example, the global mean C:N ratio of microbial biomass (~7) (Xu et al., 399 

2013) is much lower than that of plant litter (~53) (Yuan & Chen, 2009), which may cause 400 

decoupling of C and N if microbes prioritize SOC with high N content to meet their demands. 401 

Consequently, the microbial assimilation of high N-containing SOC for the growth of microbial 402 

biomass may lead to different decomposition rates between microbial necromass and plant 403 

residues because of varying chemical structures and characteristics of microbially- and plant-404 

derived SOC (Kögel-Knabner, 2002; Liang et al., 2017). For example, in the GENDEC model, 405 

the decomposition rate of microbial necromass is higher than that of the plant residues because 406 

the N-content of microbial necromass is relatively higher than that of the plant residues 407 

(Moorhead & Reynolds, 1991). 408 

Although the C pool size of active microbial biomass in the soil is minimal (<2% of total SOC, 409 

(Dalal, 1998), microbial necromass may accumulate over a long period of time, and it can 410 
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contribute to a significant proportion of SOC if (1) the turnover rate of microbial biomass is 411 

higher than the input rate of plant litter (Liang et al., 2011; Simpson et al., 2007; Zhu et al., 412 

2020), (2) the chemical composition of microbial necromass is not labile, (3) mineral matrix of 413 

the soil protects microbially derived SOC (Dwivedi et al., 2017; Mikutta et al., 2006; Miltner et 414 

al., 2012; Torn et al., 1997). According to the previous studies, the contribution of microbial 415 

necromass to SOC can range from 24-80% of SOC (Khan et al., 2016; Liang et al., 2019; Liang 416 

& Balser, 2011; Miltner et al., 2012). Therefore, the role of microbial necromass in the formation 417 

of SOC cannot be ignored when considering microbial biomass as a decomposer in microbial 418 

models (Fan et al., 2021; Kögel-Knabner, 2002). 419 

It is widely known that different microbial groups differ in their chemical composition. For 420 

instance, the cell walls of fungi are composed of a high proportion of recalcitrant polymers (e.g., 421 

protein and melanin), whereas bacterial cell walls are made up of carbohydrates (Kögel-Knabner, 422 

2002). However, despite the differences in the cell wall composition of microbial groups, the 423 

decomposition rates of necromass of different microbial groups in the soil have been found to be 424 

similar (Throckmorton et al., 2012). In our review, we found 10 out of 70 microbial models, 425 

including CORPSE, EcoSMMARTS, FOND, GENDEC, JSM, Kaiser, MIND, MOMOS, and 426 

ORCHIMIC (v1.0 & v2.0) explicitly represented a separate microbial necromass pool under the 427 

assumption that decomposition of microbial necromass is 1) similar among different microbial 428 

groups, but 2) different from that of plant residues. However, the mechanistic representation of 429 

microbial necromass in a microbial model still poses some challenges that is discussed in section 430 

5.2. 431 

 432 

 433 
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3.4 Active and Dormant Microbial Dynamics 434 

In a given environment, at any given time, microorganisms can be in any of the physiological 435 

states: active, dormant, or dead (Mason et al., 1986). Therefore, distinguishing these states in the 436 

microbial models may be important to modeling SOC accurately. The active fraction of 437 

microbial communities play a significant role in ecologically important processes like SOC 438 

decomposition and nutrient cycling (Blagodatsky et al., 2000). However, when environmental 439 

conditions are unfavorable for growth, for example, when there is not enough substrate, microbes 440 

may reduce metabolic activities from low to zero to prevent biomass loss and may enter into 441 

dormant states (Lennon & Jones, 2011; Stolpovsky et al., 2011). The dormant microbes do not 442 

play the same roles as those active microbes, and dormancy is considered an evolutionary 443 

strategy that preserves genotypes until conditions improve to allow replication (Price & Sowers, 444 

2004). The maintenance cost of C in dormant microbes can be two to three orders of magnitude 445 

lower than that of metabolically active microorganisms (Anderson & Domsch, 1985a; Anderson 446 

& Domsch, 1985b).  447 

It is important to represent active versus dormant microbes in microbial models to accurately 448 

simulate SOC dynamics, given the variations in substrate and environmental conditions over 449 

time and space. With seasonal variations in substrate availability, temperature, and moisture, 450 

many soils have slow SOC turnover rates. Even when some resources are abundant at a time, the 451 

spatial and temporal complexity of soils may lead to disproportionate distributions of other 452 

potentially limited resources, which can dramatically increase the dormancy rates. High 453 

dormancy rates may be a defining characteristic of soil systems when spatial and temporal 454 

complexity is paired with various resource distributions across species within a community. 455 

Therefore, an understanding of dormancy could improve the prediction on how active microbes 456 
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contribute to ecosystem processes like decomposition and nutrient cycling (Blagodatsky et al., 457 

2000; Wang et al., 2014a). 458 

Despite the potential importance, it is challenging to study microbial dormancy because there is 459 

no single method available to measure individual microbial physiological states: active, dormant, 460 

or dead simultaneously; instead, a combination of various techniques has been used to quantify 461 

microbial states (Wang et al., 2014a). In microbial models, generally, there are two methods used 462 

to depict physiological states (Wang et al., 2014a): one is to separate total live microbial biomass 463 

into two pools: active and dormant (Table 1); and another is to directly regard the active fraction 464 

(i.e., a ratio of active to total live microbial biomass) as a state variable (Blagodatsky et al., 465 

1998). However, despite the limited ability to distinguish between active, dormant, and dead 466 

microbial biomass, a wealth of studies suggest that in a given microbial community, the majority 467 

of microbes may be dormant under natural circumstances (Blagodatsky et al., 2000; Yarwood et 468 

al., 2013). For example, in a Typic Argiudoll soil from Argentinean Pampa, only 3.8–9.7 % of 469 

total microbial biomass is in the active state (Alvarez et al., 1998); however, 0.02–19.1 %  and 470 

9.2–24.2 % of total microbial biomass are in active states in the subkurgan paleosoils of different 471 

ages and modern background soils, respectively (Khomutova et al., 2004). Other studies reported 472 

that under natural soil conditions, the fraction of active microbial biomass is usually below 50% 473 

of total live microbial biomass (Lennon & Jones, 2011; Stenstrom et al., 2001; Van de Werf & 474 

Verstraete, 1987). Thus, not including dormancy from the microbially-driven ecosystem 475 

processes could result in incorrect estimates of total live microbial biomass, leading to 476 

inaccuracies in model parameterization and forecasts of SOC (Wang et al., 2014a). 477 

In our review, only 10 out of 70 models explicitly simulated microbial transformation between 478 

active and dormant states  (Brangarí et al., 2020; Gignoux et al., 2001; He et al., 2015; Huang et 479 
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al., 2018; Huang et al., 2021; Liu et al., 2019; Wang et al., 2015; Wang et al., 2017; Zha & 480 

Zhuang, 2020; Zhang et al., 2022), (Table 1). SOMKO was one of the first microbial models that 481 

distinguish active and dormant microbial biomass (Gignoux et al., 2001). In SOMKO, the 482 

direction of net flux from the active to the dormant state depends on the maintenance 483 

requirement relative to substrate availability. If the substrate availability is less than the 484 

maintenance requirement, there is a positive net flux from the active to the dormant pool and 485 

vice versa. Later, MEND_dor introduced the rates of dormancy and reactivation of microbial 486 

biomass (Wang et al., 2014a) into the MEND model (Wang et al., 2013). Following Wang et al. 487 

(2013), a few more microbial models were developed by adopting the MEND_dor dormancy 488 

framework to simulate SOC decomposition. For example, ORCHIMIC (v1.0 and v2.0) and 489 

TRIPLEX_Microbe microbial models have incorporated the MEND_dor dormancy framework 490 

along with the following assumptions: (1) the dormancy (𝐵௔→ௗ) and reactivation rates (𝐵ௗ→௔) are 491 

proportional to the active and dormant biomass pool sizes, respectively; (2) when substrate 492 

concentration is very high,  𝐵௔→ௗ → 0 and 𝐵ௗ→௔  ≥ 0; (3) when substrate concentration is very 493 

low, 𝐵௔→ௗ  ≥ 0 and  𝐵ௗ→௔ → 0; (4) both transformation processes are governed by the maximum 494 

specific maintenance rate for active microbes since the maintenance energy cost is the critical 495 

factor determining the dormancy strategy (Lennon & Jones, 2011; Wang et al., 2014a). Unlike 496 

the above-mentioned microbial models that consider the substrate dependence of dormancy, the 497 

microbial dormancy in the microbial models DORMANCY 2.0, EcoSMMARTS, and MESDM 498 

is also affected by soil moisture content (Table 2). Such microbial models were developed to 499 

simulate the soil respiration in soil moisture-limited conditions to capture the drying-rewetting 500 

effect (i.e., Birch effect) under the assumptions that the soil water content determines the overall 501 
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microbial performance and changes in soil water content can alter the physiological state of a 502 

portion of the microbes (Brangarí et al., 2020; Zhang et al., 2022). 503 
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Table 2: Mathematical formulations of the four processes: Microbial Decomposition (Eqs. 1-18), Mineral Interaction (Eqs. 19-33), Microbial Mortality (Eqs. 34-504 
37), and Transition between Active and Dormant States (Eqs. 38-42) 505 

Equations Ecological description Models 
1. Dc = k*M A function of microbial biomass (M) Barot model; BLAGODATSKY; SYMPHONY  
2. Dc = Vmax*M* 𝑺𝑲𝒎ା𝑺 
 

The function of microbial biomass (M) and substrate(S) Parnas; MIND; GDM; German; CLM-Microbe; 
MIMICS; MIMICS-CN v1.0; MIMICS-D, MIMICS-
DB, MIMICS-DBT; Ecosys; DecoBio v1.0 

3. Dc = Vmax*E* 𝑺𝑲𝒎ା𝑺 
 

Function of Extracellular enzyme (E) and substrate(S) Enzyme-driven model; Fatichi; Hagerty; He model; 
Kaiser; MEND_dor; MESDM; MEND; MIC-TEM; 
Resat; SCAMPS; TRIPLEX_Microbe; DEMENT; 
ORCHIMIC v2.0  

4. Dc = Vmax*𝑸𝟏𝟎𝑬𝒕𝒆𝒎𝒑ష𝟏𝟓𝟏𝟎 *E* 𝑺𝑲𝒎ା𝑺*(120 – CNsoil) 
 DORMANCY; 

MIC-TEM-dormancy  
5. Dc = Vmax*

𝑺𝑲𝒔ା𝑺* 𝑴𝑲𝒎ା𝑴*f (T, W) Double Michaelis-Menten kinetics  Millennial model  

6. Dc = k*M* 𝑪(𝑲𝑪ା  𝑪 )* 𝑶𝟐(𝑲𝑶𝟐ା 𝑶𝟐) Function of DOC and O2 (dissolved oxygen concentration 
in water) 

DORMANCY v2.0; DAMM; MIC-TEM_Hao  

7. Dc = Vmax * S* 𝑬𝑲𝒎∗𝒇(𝑻)ା𝑺ା𝑬 * f(pH, W, T, clay) Function of S, E, clay content, soil pH, temperature (T), 
and moisture (W) 

ORCHIMIC v1.0    

8. Dc = k*S* 𝑴𝑲𝒎ା𝑴 Reverse Michaelis-Menten. 
Millennial V2 includes moisture modifier function, f(W) 

CMAX framework; NCSOIL; COMISSION; Millennial 
V2 

9. Dc = Vmax*S* 𝑬𝑲𝒎ା𝑬 A function of S and E JSM; Schimel model; EEZY; Averill model; Manzoni; 
SOMic v1.0  

10. Dc = Vmax*S* 𝑬𝑲𝒎ା𝑬*f(T, W) A function of S and E, T, and W EC1, EC2  

11. Dc = V*S* 𝑬𝑲𝒎ା𝑬*f(W)  EcoSMMARTS  

12. Dc =  k*S* 𝑴/𝑺𝑲𝒎ା 𝑴𝑺 *f(W) Function of S and ratio of M and S CORPSE  

13. Dc = Vmax*
𝑺∗𝑬𝑲𝒎ା 𝑺 ା𝑬 ECA DAMM-MCNiP  

14. Dc = 𝑽𝒎𝒂𝒙 ∗ 𝑺 ∗ 𝑬𝑲𝒆𝒔(𝟏ା 𝑺𝑲𝒆𝒔ା 𝑬𝑲𝒆𝒔ା 𝑴𝒊𝒏𝑲𝒎𝒆) A function of S, E, and mineral particle (Min) ReSOM; ReSOM vNN, ReSOM vTN , ReSOM vTD, 
ReSOM vTI  

15. Dc= k* 𝟏𝟏ା 𝑲𝟏(𝑴𝑺 )𝑲𝟐 ∗ 𝑴 ∗ 𝒇(𝑻, 𝑾) Microbial density-dependent SOC decomposition Phoenix  

16. Dc = (1-𝒆ି𝒌𝑴𝑺 )S Exponentially related to microbial biomass (M) SOMKO  
17. Dc = k*M*S  C-STABILITY; MiCNiT  
18. Dc = 𝜽𝟏𝟏ା 𝒆ష𝜽𝟐(𝒕ష 𝜽𝟑) 𝜃ଵ , 𝜃ଶ, 𝜃ଷ are maximum rate, growth rate and lag phase MiFe  

19. Sorption = Kads*DOC *(qmax-CMAOM) 
Desorption = Kdes*CMAOM 

The availability of sorption sites limits the sorption rate 
Langmuir isotherm 

COMISSION  

20. 𝑪𝒏𝒆𝒕_𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏 = SOC*f(clay) - 𝑪𝒑


 The rate of protected C formation is proportional to the 
amount of unprotected C pool. τ is the residence time of 
protected C. 

CORPSE  

21. CMAOM = (1- fBNF)*kB*M + k*CDN -R*KNF*CMAOM k is the decomposition rate of microbes derived DOC (CDN) FOND 
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 R is the ratio of decomposition rate of 𝐶ெ஺ைெ to fast pool 
of microbial necromass  

22. Sorption = Kads*DOC*𝒆ష𝑬𝒂𝑹 ቆ𝟏𝑻ି 𝟏𝑻𝒓𝒆𝒇ቇ∗𝑾𝒅𝒛*𝑸𝒎𝒂𝒙 
 

Desorption = Kdes*𝒆ష𝑬𝒂𝑹 ቆ𝟏𝑻ି 𝟏𝑻𝒓𝒆𝒇ቇ∗𝑾𝒅𝒛*CMAOM 

dz is soil depth 
Langmuir isotherm 

JSM  

23. Net Sorption = DOC*(
(𝑲∗𝑸𝒎𝒂𝒙∗𝑫𝑶𝑪)𝟏శ(𝑲∗𝑫𝑶𝑪) )ି𝑪𝑴𝑨𝑶𝑴𝑸𝒎𝒂𝒙 ) 

Sorption and desorption are not simulated separately, 𝑄௠௔௫ maximum sorption capacity, 
Langmuir isotherm 

MEMS v1.0  

24. Sorption = Kads*(1- 𝑸𝑸𝒎𝒂𝒙) ∗ 𝑫𝑶𝑪 

Desorption = Kdes*( 𝑸𝑸𝒎𝒂𝒙) 

Q is adsorbed phase of DOC 
Kads and Kdes are sorption and desorption rate 

MEND; MEND_dor;  
TRIPLEX_Microbe  

25. Sorption = DOC*(
𝑲𝒍𝒎∗𝑸𝒎𝒂𝒙∗𝑫𝑶𝑪𝟏శ(𝑲𝒍𝒎∗𝑫𝑶𝑪) ି𝑪𝑴𝑨𝑶𝑴𝑸𝒎𝒂𝒙 )f(T, W) + km*M*f(T, 

W) + kb*f(T, W)(1-pa)*𝑪𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆 
 

Desorption =  Vma*
𝑪𝑴𝑨𝑶𝑴𝑲ା𝑪𝑴𝑨𝑶𝑴(1- 𝑪𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆𝑨𝒎𝒂𝒙 )f(T, W) 

Klm = 𝟏𝟎(ି𝟎.𝟏𝟖𝟔𝒑𝑯ି𝟎.𝟐𝟏𝟔) 
Qmax = BD𝟏𝟎(𝒄𝟏 𝐥𝐨𝐠(%𝒍𝒐𝒈𝒄𝒍𝒂𝒚)ା𝒄𝟐) 

Klm is binding affinity 
Qmax is maximum sorption capacity 
BD is bulk density 
L is LMWC 
Amax is the maximum capacity of C in soil aggregates 
km is sorption rate of microbial biomass 
kb is rate of breakdown 
Langmuir isotherm 

Millennial  

26. Sorption = 𝑲𝒍𝒎 ∗ 𝑫𝑶𝑪 ∗ ቀ𝟏 − 𝑪𝑴𝑨𝑶𝑴𝑸𝒎𝒂𝒙 ቁ 𝒇(𝑾) +  𝒑𝒃𝒌𝒃𝒅 ∗ 𝑴𝟐 
+ (1 - 𝒑𝒂)𝒌𝒃 ∗ 𝑪𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆 ∗ 𝑭(𝑾) 

 
Desorption = Kld

𝑪𝑴𝑨𝑶𝑴𝑸𝒎𝒂𝒙  + (1-pa)𝒌𝒎𝒂𝑪𝑴𝑨𝑶𝑴𝒇(𝑾) 
Klm = 𝒆ି𝒑𝟏𝒑𝑯ି𝒑𝟐𝑲𝒍𝒅 
Qmax = depth*BD %claysilt*pc 

Klm is the binding affinity 
%claysilt is the clay and silt content in percent and a 
coefficient (pc) 
Kld is desorption coefficient 
Depth is site-level sampling depth in m 
kma is the aggregate formation rate from MAOM 
pa is the proportion of aggregate C allocated to POM 
Langmuir isotherm 

Millennial V2  

27. Sorption = f1*Input + f2*M 
Desorption = 1.5*𝟏𝟎ି𝟓*kd*𝒆ି𝟏.𝟓∗𝒇𝒄𝒍𝒂𝒚  

kd is the coefficient of desorption rate MIMICS 
MIMICS-CN v1.0 

28. Sorption = f1*Input + f2*M 
Desorption = 1.5*𝟏𝟎ି𝟓*kd*𝒆ି𝟏.𝟓∗𝒇𝒄𝒍𝒂𝒚*𝒆𝒌𝒅𝒑∗𝑪𝑴𝑨𝑶𝑴  

Kdp iss the coefficient for tuning the relationship between 
the desorption and Cp pool. 

MIMICS-D (Kyker-Snowman et al., 2020) 

29. Sorption = f1*Input + f2*M 
Desorption = 1.5*𝟏𝟎ି𝟓*kd*𝒆ି𝟏.𝟓∗𝒇𝒄𝒍𝒂𝒚*𝒆𝒌𝒅𝒑∗𝑪𝑴𝑨𝑶𝑴*𝒆𝒌𝒃𝒔∗𝑩𝑺 

kbs is the coefficient of soil base saturation impact on 
desorption 

MIMICS-DB  

30. Cnet_sorption = (1- fBNF)*kB*M – R*𝑽𝒎𝒂𝒙∗𝑴∗𝑪𝑴𝑨𝑶𝑴𝑲𝑴ା𝑪𝑴𝑨𝑶𝑴  
 

fBNF is proportion of fast pool in microbial biomass, kB is 
average mortality rate, M is microbial biomass 
R is the ratio of decomposition rate of 𝐶ெ஺ைெ to fast pool 
of microbial necromass 

MIND (Fan et al., 2021) 

31. Sorption = Kads *DOC * 𝒆ష𝑬𝒂𝒂𝒅𝒔𝑹 ቆ𝟏𝑻ି 𝟏𝑻𝒓𝒆𝒇ቇ
* (𝟏 − 𝑪𝑴𝑨𝑶𝑴𝑸𝒎𝒂𝒙 ) 

Desorption = Kdes * 𝒆ష𝑬𝒂𝒅𝒆𝒔𝑹 ቆ𝟏𝑻ି 𝟏𝑻𝒓𝒆𝒇ቇ
* (𝑪𝑴𝑨𝑶𝑴𝑸𝒎𝒂𝒙 ) 

Function of temperature 
Arrhenius equation 
 

ORCHIMIC v1.0; ORCHIMIC v2.0  
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32. Qmax = 𝒙𝒎= k*𝑪𝟏/𝒏 X is grams of OM adsorbed, m is weight of soil, k is 

sorption constant, C is DOC 
Phoenix  

33. Sorption = fsorb * k*DOC 
Desorption = fdesorb*CMAOM 

fsorb is the sorption coefficient, k is the rate constant for the 
combined processes of microbial uptake and sorption 

SOMic v1.0  

34. D* Ba Death rate of microbes is fraction (D) of their active 
biomass (Ba) 

ORCHIMIC v1.0; ORCHIMIC v2.0  

35. CN = D*M Function of mortality rate, and microbial biomass CORPSE; MIND; FOND; EcoSMMARTS  
36. (k1+k3)*M + k2*γ  k1, k2, k3, and γ are the minimum microbial death rate, 

growth-related microbial death rate, and mortality 
associated with the change in soil water potential, and 
microbial growth, respectively. 

GENDEC  

37. m = 𝟏𝑴𝑪𝑺*mf MCS is the maximum cell size of a microbe, mf is a factor 
relating mortality rate to the inverse of maximum microbial 
biomass 

Kaiser  

38. Ra-d = ktran*1/(1+(𝑺𝒆𝒔𝒂𝒎𝒑𝒍𝒆𝑺𝒆𝒉𝒂𝒍𝒇 )𝒃)*Ba 

Rd-a = ktran*1/(1+a*( 𝑺𝒆𝒉𝒂𝒍𝒇𝑺𝒆𝒔𝒂𝒎𝒑𝒍𝒆)𝒃)*Bd 

ktran is the maximum transition rate constant, Sesample is 
effective moisture saturation of sample, Sehalf is the 
saturation at which R equals 0.5*Ktran. Ba and Bd are active 
and dormant microbes, respectively. 

DORMANCY 2.0  

39. Ra-d = ki*(1-χaξc)*Ba 
Rd-a = kd*Γm*ξc *Bd 

ki and kd are the maximum specific cell activation and 
deactivation rates. χa is the coefficient of water stress, ξc is 
the saturation coefficient of DOC, Γm is the coefficient of 
drought-legacy on microbes. 

EcoSMMARTS  

40. ቐ𝑺𝑴𝑩𝑪 = 𝑩𝒅. 𝒅𝑾𝒅𝒕                   𝒘𝒉𝒆𝒏 𝒅𝑾𝒅𝒕 > 𝟎 𝑺𝑴𝑩𝑪ୀ൫𝑩𝒂ା 𝑩𝑴𝑩𝑪𝑾𝑷൯.𝒅𝒘𝒅𝒕        𝒘𝒉𝒆𝒏 𝒅𝑾𝒅𝒕 < 𝟎  
SMBC is microbial biomass transformation rate due to water 
content, 𝐶ெ஻஼ೈು  is potential active microbial biomass, 
respectively. 

MESDM  

41.  Ra-d = [1 - 𝑫𝑶𝑪(𝑲𝑫ା𝑫𝑶𝑪)]*mR*Ba 

Rd-a = 𝑫𝑶𝑪(𝑲𝑫ା𝑫𝑶𝑪)]* mR*Bd 

mR is the specific maintenance rate of Ba ORCHIMIC v1.0; ORCHIMIC v2.0; MEND_dor; 
TRIPLEX_Microbe  

42. Ra-d = (1 - φ)*mR*𝑸𝟏𝟎𝑴𝒕𝒆𝒎𝒑ష𝟏𝟓𝟏𝟎 *Ba 

Rd-a = φ*mR*𝑸𝟏𝟎𝑴𝒕𝒆𝒎𝒑ష𝟏𝟓𝟏𝟎 *Bd 

φ is the directly accessible substrate for microbial 
assimilation 

DORMANCY; 
MIC-TEM-dormancy  
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4. Environmental Control on Microbial Processes 506 

Many environmental factors affect microbial processes, including soil temperature, moisture, pH, 507 

redox potential, and oxygen availability. This review mainly focuses on soil temperature, 508 

moisture, and pH because they are commonly incorporated into microbial models (Table 3). 509 

Among the 70 models we reviewed, 38 included temperature, 12 included soil moisture, and 7 510 

included pH. 511 

Temperature. In the microbial models, the temperature dependency of microbial 512 

processes was simulated using four mathematical functions: (1) 𝑄ଵ଴ functions, (2) Arrhenius 513 

functions, (3) Generalized Poisson function, and (4) Arctangent function. Of these functions, the 514 

Arrhenius function is most widely used among most microbial models, followed by the 𝑄ଵ଴ 515 

function. The Arrhenius function represents an increase in SOC decomposition with temperature 516 

and dependence on substrate quality through the activation energy (Zhang et al., 2014). Only the 517 

SOMic v1.0 model was found to use a Generalized Poisson function, determined by fitting data 518 

from an incubation experiment conducted in the laboratory in which cellulose was labeled and 519 

decomposed at three different temperatures (Burke et al., 2003; Parton et al., 1987; Sorensen, 520 

1981). Similarly, only the Millennial model was found to use the arctangent function, which 521 

predicts a decline in temperature sensitivity with increasing temperature (Abramoff et al., 2018). 522 

These two temperature response functions were taken from CENTURY and DAYCENT, 523 

respectively (Burke et al., 2003). 524 

Moisture. Modeling the response of microbial communities to pulse moisture dynamics is 525 

challenging because moisture controls complex physical and biological interactions in soil and 526 

has significant direct and indirect impacts on the decomposition rates (Lawrence et al., 2009). 527 

Soil moisture is a critical factor controlling SOC decomposition because, at high water content, 528 
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O2 becomes a limiting factor, whereas, at low water content, diffusion is constrained by thin and 529 

discontinuous water films (Abramoff et al., 2017; Abs & Ferrière, 2020; Sihi et al., 2018). 530 

Various mathematical functions were used to represent the responses of microbial processes to 531 

soil moisture; for example, the moisture response variables vary widely by including the function 532 

of soil water potential, water holding capacity, or soil water content (Table 3).  533 

pH. A small number of microbial models considered the effect of soil pH on microbial 534 

processes (7 out of 70 models). Soil pH has a significant impact on mineral surfaces and SOC 535 

availability to microbes. At high pH, the sorption capacity of mineral surfaces is reduced 536 

drastically, which means that less SOC will be sorbed on the mineral surfaces, and most of the 537 

SOC will be available to microbes for decomposition (Abramoff et al., 2022).  538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 
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Table 3: Environmental Control on Microbial Processes 552 
Model Temperature Moisture pH Note 

MEMS v1.0 Q10=2, Tref = 13.5 C    
GENDEC 2< Q10>3 

Tref = 25 C 
SM= α - µlog(-Ψ) N/A α and µ are intercept and slope of soil moisture 

effect on decay rate, 
Ψ is soil water potential 

MOMOS Q10=2.2 
Tref =28 C 

f(θ) = a + b θ/WHC N/A Moisture correction factor (f(θ)) 
WHC is water holding capacity, 
a and b range between 0 and 1 

MIND; ORCHIMIC v1.0; ORCHIMIC 
v2.0; MEND; TRIPLEX-Microbe (f(T) & 
pH only); Microbial-Enzyme model 
(f(T) only) 

f(T)=𝑒షಶೌೃ (భ೅ି భ೅ೝ೐೑) 
Tref = 285.15 K 

f(θ)= 
max[0.25, min(1, -1.1*θ2 
+ 2.4*θ -0.29)] 

f(pH)= 𝑒ష(೛ಹష ೛ಹ೚೛೟)మ೛ಹೞ೐೙మ  
pHopt = 6 
pHsen= 1.66 

R is ideal gas constant, 
Θ is soil moisture (%), 
pHopt is optimal pH for substrate decomposition 
pHsen is the sensitivity parameter of substrate 
decomposition 

SOCRATES Q10 
Temp factor, TF= 0.177𝑒(଴.଴଺ଽ୘) 

Moisture factor, MF= 
0.0598*MAP0.279 

N/A T is mean annual air temperature (C) 

MySCaN 𝑒൬ଷ.ଷ଺∗ (்ିସ଴)(்ାଷଵ.଻ଽ)൰ N/A N/A Temperature response: Arrhenius function 

ReSOM 
KEQ(T)= K(T0) 𝑒[ష∆ಸಶೂೃ (భ೅ ି భ೅బ)] 
 

KNEQ(T)= KNEQ(T0) ்்బ 𝑒[ష∆ಸಶೂೃ (భ೅ ି భ೅బ)] 
 
fact= ଵଵା௘൬ష೙∆ಸಶೃ೅ ൰ 

N/A N/A KEQ is temperature-dependent equilibrium 
reactions; KNEQ is temperature dependent non-
equilibrium reactions; fact temperature 
dependent fraction of active enzyme 
ReSOM vTN: KEQ=0 
ReSOM vTD: In eq KEQ(T), ∆𝐺ாொ = -20 kJ/mol 
ReSOM vTI: In eq KEQ(T), ∆𝐺ாொ = 20 kJ/mol 

DAMM-MCNiP; DEMENT; Ecosys; 
CORPSE 𝑒ିா௔ோ்  N/A N/A Arrhenius equation 

Millennial 𝑡ଶ + 𝑡ଷ𝜋 atan[𝜋(𝑇 − 𝑡ଵ)]𝑡ଶ +  𝑡ଷ𝜋 atan [𝜋𝑡ସ൫𝑇௥௘௙ − 𝑡ଵ൯] 
11 + 𝑤ଵ𝑒(ି௪మோௐ஼) 10(-0.186pH-0.216) t1 and t2 are x-axis and y-axis locations of the 

inflection point (℃), respectively 
t3 is the distance from maximum to minimum 
point and t4 is the slop of the line at the inflection 
point 
w1 and w2 are empirical parameters 
RWC relative water content 𝑇௥௘௙ is the reference temperature (30 ℃) 

Millennial v2.0 𝑎௫𝑒ି ா௔ோ(்ାଶ଻ଷ.ଵହ) (ఏఝ)0.5 Klm= 𝑒ି௣ଵ௣ுି௣ଶ Kld 

Klm and Kld are binding affinity and desorption 
coefficient, p1 and p2 are sorption coefficient, θ 
is volumetric water content, ϕ is matric potential, 
Arrhenius equation 

CMAX framework 𝑓(𝑇) = ൝ 0, 𝑇 ≤ 𝑇𝑠௠௜௡𝑄ଵ଴௦்ି ்௦ೝ೐೑ଵ଴ , 𝑇 > 𝑇𝑠௠௜௡ f(M) = 
୪୭୥(ಾ೘೔೙ಾ )୪୭୥(ಾ೘೔೙ಾ೘ೌೣ) N/A 𝑇𝑠௠௜௡ and 𝑇𝑠௥௘௙ are minimum and reference 

temperatures for the substrate decomposition 𝑀௠௜௡ and 𝑀௠௔௫ are the minimum and maximum 
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when, 𝑀௠௜௡ ≤ 𝑀 ≤ 𝑀௠௔௫ moisture for substrate decomposition 

CLM-Microbe; Enzyme-driven model; 
German; He model; MIC-TEM-Hao; 
MIC-TEM-Zha; Hagerty; MESDM; 
DAMM; SCAMPS 

Vmax = Vmax0*𝑒(ି ಶೌೃ∗(೟೐೘೛శమళయ)) 
Km = Kmslope*temp +Km0 

N/A N/A  
Arrhenius equation 

MIMICS-CN v1.0; MIMICS-D; MIMICS-
DB; MIMICS-DBT 

Vmax = 𝑒(௏ೞ೗೚೛೐∗்ା௏೔೙೟)*𝑎௩*Vmod 

K = 𝑒(௄ೞ೗೚೛೐∗்ା௏೔೙೟)*𝑎௞*kmod 
N/A N/A Arrhenius equation 

JSM f(T, 𝑊)=𝑒షಶೌೃ (భ೅ି భ೅ೝ೐೑)* ௐ௦௢௜௟೏೐೛೟೓ 

 

N/A N/A Arrhenius equation 

DecoBio v1.0; DORMANCY; MIC-TEM-
DORMANCY 𝑄ଵ଴்ି ଵହଵ଴  

N/A N/A  

SOMic v1.0 f(T)= 

ft൬ ೘்ೌೣି்೘்ೌೣି ೚்೛೟൰2𝑒 బ.మమ.లయቆଵି൬ ೅೘ೌೣష೅೅೘ೌೣష ೅೚೛೟൰మ.లయቇ 

 
ft =4.99 
Tmax=45 ℃ 
Topt= 35℃ 
 

If amd>0.444max_md, 𝜃=1.0 
 
If amd ≤0.444max_md 𝜃=0.2 +0.8୫ୟ୶೘೏ ି௔௠ௗ଴.ହହ଺୫ୟ୶ _௠ௗ 
 

N/A Max_md is maximum possible soil moisture 
deficit 
Generalized Poisson function for temperature 
modifier 

EC1, EC2 N/A 𝑊𝐻𝐶60%  N/A Water Holding Capacity (WHC) 
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5. Challenges and Recommendations 553 

Despite the diverse representations of microbial processes and appropriate simulations of the 554 

microbial responses to perturbations by microbial models, conventional SOC models remain the 555 

backbone of SOC modeling in most applications, including ESMs, partly because microbial 556 

models have not yet demonstrated their reliability to provide robust predictions over varying 557 

environmental conditions and long-time scales (Wieder et al., 2013; Woolf & Lehmann, 2019).  558 

Moreover, the microbial models were intended to represent the SOC dynamics better than the 559 

conventional SOC model (Wang et al., 2014b) with the belief that microbial models may be 560 

appropriate to describe the C cycling under variable environmental conditions (Schimel, 2001; 561 

Schimel & Weintraub, 2003). However, it poses several challenges, including (1) the lack of 562 

experimental evidence for the rate-limitation processes, (2) the lack of observational data to 563 

constrain model parameters, and (3) model complexity due to a large number of parameters.  564 

5.1 Experimental Evidence for Rate-Limitation Processes in Microbial Models 565 

It is known that SOC is decomposed mainly as a result of ENZ produced by microbes, and it has 566 

been demonstrated that microbes can degrade almost all SOC, irrespective of the chemical 567 

composition of SOC, if it is physically accessible to microbes (Kleber, 2010; Lützow et al., 568 

2006; Woolf & Lehmann, 2019). Microbial models are mainly based on the assumption that the 569 

SOC decomposition rate is limited by either microbial biomass or ENZ or both (Allison et al., 570 

2010). However, a few studies report that in soil, microbial activities do not limit the rate of SOC 571 

decomposition; instead, abiotic processes are rate-limiting (Kemmitt et al., 2008). A common 572 

way for abiotic processes to control SOC decomposition is through physical protection that 573 

limits microbial access to substrates (Dungait et al., 2012; Kemmitt et al., 2008; Schimel & 574 

Schaeffer, 2012). In contrast, a core assumption of conventional SOC models is that the biomass 575 
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of microbes and their enzyme production never limits microbial processes, and microbial 576 

communities will always rapidly adapt to the available substrate and subsidence of 577 

environmental stress (Schimel, 2001). Thus, it is imperative to conduct experimental studies to 578 

examine the assumption on the rate limitation processes by microbial biomass or enzyme 579 

activity. 580 

5.2 The Lack of Observational Data to Estimate Model Parameters 581 

A lack of observational data is one of the most significant constraints to the validation of 582 

mechanistic descriptions of microbial processes and the parameterization of microbial models. 583 

Model development and data collection are generally separate activities, and their integration is 584 

critical for the advancement of science (De Kauwe et al., 2014; Luo et al., 2012; Peng et al., 585 

2011; Xu et al., 2016). In addition, the performance of a model is usually assessed by comparing 586 

simulations against a set of empirical observations derived from independent experiments 587 

(Moorhead & Sinsabaugh, 2006). When processes are made explicit rather than implicit, it is 588 

essential to test the validity of those assumptions against the reality provided by data (Schimel, 589 

2001). However, the incorporation of microbial processes increases the complexity of models 590 

and enlarges the number of model parameters, which can be challenging to empirically measure. 591 

For example, FMM, RMM, and ECA kinetics use two kinetic parameters, the maximum specific 592 

reaction rate (Vmax) and half saturation constant (Km). There are very few estimates of the Km  for 593 

enzyme pools in explicitly enzyme-represented microbial models (Lawrence et al., 2009; 594 

Moorhead & Sinsabaugh, 2006) or of the Vmax  or Km  for substrates (Wang et al., 2013). In 595 

addition, observational data of pool size is critical to constrain rate processes (Xu et al., 2006). 596 

However, the inability to measure active, dormant, and dead microbial biomass in situ 597 

simultaneously (see section 3.4) and difficulty in differentiating microbial necromass C from 598 
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nonmicrobial C (Liang et al., 2019) present challenges in validating these processes. Similarly, 599 

the measurement and evaluation of the stability of various SOC-mineral interactions in different 600 

soils are challenging due to difficulty with the fractionation of SOC bound to different minerals 601 

in situ (Lützow et al., 2006).  Therefore, most of the parameter values used by microbial models 602 

are primarily laboratory-based (Sulman et al., 2014; Wieder et al., 2015a; Wieder et al., 2013; 603 

Wieder et al., 2015b) or assumed by the researchers (Wang et al., 2013), which may not reflect 604 

the actual conditions in the field. As model parameterization is one of the three elements towards 605 

realistic model predictions (Luo & Schuur, 2020), the research community needs to collect 606 

observational data for estimating model parameters. When extensive SOC data were used to 607 

estimate spatially varying parameters, the conventional Community Land Model (CLM4.5) can 608 

well simulate spatial and vertical patterns of SOC storage over the US continent (Tao & Luo, 609 

2022; Tao et al., 2020).  610 

5.3 Potential Improvements of Microbial Models 611 

While the incorporation of microbial processes increases model complexity, several strategies 612 

can reduce the mismatch between model complexity and observational data. First, we need 613 

targeted, precise data collection strategies because more data does not necessarily produce a 614 

better-constrained model. Coordinated efforts between modelers and empiricists can return data 615 

maximally useful to constrain a model (Keenan et al., 2013; Richardson et al., 2010). Second, 616 

inaccurate parameterization is emerging as one of the major causes of mismatches between 617 

models and data (Luo & Schuur, 2020). Therefore, model improvements should include 618 

optimization algorithms that calibrate model parameters with data, such as data assimilation 619 

techniques (Luo et al., 2016; Wang & Chen, 2013). Third, an alternative approach is model 620 

reduction techniques that can simplify complex models without the loss of key model processes 621 
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or the ability to integrate real data. Some commonly used model complexity reduction techniques 622 

include conversation analysis, nondimensionalisation, model decomposition (Snowden et al., 623 

2017), and Manifold Boundary Approximation Method (MBAM) (Transtrum & Qiu, 2014). For 624 

example, a recent study applied the MBAM technique to a highly complex microbial model to 625 

demonstrate the systematic reduction of model complexity to match the information content of 626 

different datasets and thereby could explain fundamental controlling mechanisms in each dataset 627 

(Marschmann et al., 2019).   628 

6. Summary 629 

During the past three decades, SOC models have increasingly considered microbial controls on C 630 

cycling to identify mechanisms that govern C fluxes. Although the first model was developed in 631 

the 1970s, our review of 70 microbial models revealed that the majority of microbial models 632 

were developed since 2000, likely in sync with the acceleration of molecular methods to study 633 

soil microbes. Most of the microbial models incorporated one or more of four microbial 634 

processes: microbial decomposition, mineral interactions, microbial mortality, or transition 635 

between active and dormant microbial states. Among the four processes, microbial mortality and 636 

dormancy were the least studied. 637 

Our analysis synthesized a diverse suite of mathematical formulations used to represent 638 

microbial processes across the 70 models. For example, 18 types of mathematical expressions 639 

are used to describe the decomposition of SOC across the 70 microbial models. The majority of 640 

models used nonlinear equations, especially forward Michaelis-Menten kinetics. Similarly, 15 641 

types of mathematical expressions were devised to explain mineral interactions. Most microbial 642 

models simulated sorption and desorption processes separately, while a few simulated net 643 

sorption. The numerical expressions for microbial mortality were similar across models, with 644 
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mortality proportional to microbial biomass. The 10 models that simulated dormancy used one of 645 

5 equations to describe the dynamics of active and dormant microbial states as a function of the 646 

environmental stresses of soil temperature and moisture. 647 

We identified the three major environmental factors incorporated in the microbial processes: soil 648 

temperature,  soil moisture, and the effect of soil pH on the sorption capacity of minerals and/or 649 

SOC availability to microbes. We propose that future model structures could benefit from the 650 

following considerations: (1) focusing on measurable soil pools so that model performance can 651 

be evaluated against observational data, for example, (2) utilizing model-data integration 652 

approaches to help identify the most probable mechanisms underlying system behavior, and (3) 653 

employing a rigorous statistical method, such as data assimilation, that helps improve the model 654 

performance by optimizing the model parameters. 655 

In conclusion, advancements in microbial genomics and computational sciences have improved 656 

our understanding of the microbial processes governing SOC dynamics, and microbial models 657 

bloomed in the past few decades to incorporate such advanced understandings. However, the 658 

diversity in mathematical equations used to incorporate microbial processes and the lack of 659 

observational data to validate these processes limit the translation of the current knowledge on 660 

SOC processes into models. Thus, to realistically incorporate microbial processes into ESMs, a 661 

significant challenge for future research is to design experiments that could quantify the key 662 

processes involved in the formation of various SOC pools in different soils.  663 

 664 

 665 

 666 
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