
P
os
te
d
on

13
F
eb

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
63
24
45
.5
32
18
67
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Carbon storage in Earth’s deep interior implied by

carbonate-silicate-iron melt miscibility

Anne H. Davis1, Natalia Viatcheslavovna Solomatova2, Razvan Caracas3, and Andrew J.
Campbell4

1University of Oslo
2CNRS, ENS de Lyon
3French National Centre for Scientific Research (CNRS)
4University of Chicago

February 13, 2023

Abstract

Carbonate melts have been proposed to exist in the lower mantle, but their interaction with other lower mantle melt compositions

is poorly understood. To understand miscibility in the carbonate-silicate-metal melt system, we simulate endmember, binary,

and ternary melt mixtures and study how their Gibbs free energies of mixing evolve with pressure. We find that carbonate-

metal and carbonate-silicate melts have miscibility gaps that close with increasing pressure, while silicate-metal melts are

immiscible at all lower-mantle pressures. Extending this analysis to the core-mantle boundary, we suggest three miscible melt

fields near the endmember carbonate, silicate, and iron melt compositions. Analysis of the densities of these miscible melt

compositions indicates that some carbonate-rich and some silicate-rich melt compositions are gravitationally stable at the

core-mantle boundary and could be candidate compositions to explain ultra-low velocity zones. Additionally, we evaluate the

speciation of an example immiscible melt composition at various pressures throughout the mantle and identify reduced carbon

species that would be expected to form in the melt. Our analysis reveals that a majority of Earth’s carbon could have been

transported to the core during core-mantle differentiation and that much of Earth’s carbon may be stored in the deep interior

today.
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Key Points: 10 

• Carbonate-iron and carbonate-silicate melts have miscibility gaps that close with 11 
increasing pressure. 12 

• Carbonate-silicate-iron melts may contribute to the existence of ultra-low velocity zones 13 
at the core-mantle boundary. 14 

• Carbon’s affinity for iron indicates that much of Earth’s carbon could have been 15 
transported to the core during core-mantle differentiation. 16 

  17 
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Abstract 18 

Carbonate melts have been proposed to exist in the lower mantle, but their interaction 19 
with other lower mantle melt compositions is poorly understood. To understand miscibility in the 20 
carbonate-silicate-metal melt system, we simulate endmember, binary, and ternary melt mixtures 21 
and study how their Gibbs free energies of mixing evolve with pressure. We find that carbonate-22 
metal and carbonate-silicate melts have miscibility gaps that close with increasing pressure, 23 
while silicate-metal melts are immiscible at all lower-mantle pressures. Extending this analysis 24 
to the core-mantle boundary, we suggest three miscible melt fields near the endmember 25 
carbonate, silicate, and iron melt compositions. Analysis of the densities of these miscible melt 26 
compositions indicates that some carbonate-rich and some silicate-rich melt compositions are 27 
gravitationally stable at the core-mantle boundary and could be candidate compositions to 28 
explain ultra-low velocity zones. Additionally, we evaluate the speciation of an example 29 
immiscible melt composition at various pressures throughout the mantle and identify reduced 30 
carbon species that would be expected to form in the melt. Our analysis reveals that a majority of 31 
Earth’s carbon could have been transported to the core during core-mantle differentiation and 32 
that much of Earth’s carbon may be stored in the deep interior today. 33 

Plain Language Summary 34 

Understanding the storage and cycling of carbon in the Earth’s deep interior improves our 35 
knowledge of the Earth’s formation and evolution throughout geologic time. Carbon-bearing 36 
melts are candidate phases for carbon storage in the lower mantle and may react and mix with 37 
other melt phases at places like the core-mantle boundary. The extent of mixing upon reaction is 38 
dependent on the thermodynamic properties of the mixture components and determines the 39 
possible range of compositions, structures, and densities of multicomponent melt mixtures. To 40 
determine possible melt compositions that may arise from mixtures of carbonate, silicate, and 41 
iron melts in the lower mantle and their physical and chemical properties, we performed 42 
molecular simulations to determine whether a mixture will separate or stay mixed. We find that 43 
carbonate melts mix with silicate and iron melts at all lower mantle pressures, and that mixing in 44 
the carbonate-silicate-iron melt system increases with pressure. Additionally, we find that certain 45 
melt mixtures have densities at the core-mantle boundary that make them candidate compositions 46 
to explain ultra-low velocity zones. Finally, we find that carbon has an affinity for iron that leads 47 
to the formation of carbide-like structures that may have allowed carbon to become sequestered 48 
in the Earth’s core during core formation. 49 

1 Introduction 50 

Carbon plays a vital role at Earth’s surface in biological and atmospheric processes, but 51 
the role of carbon in the deep Earth is less well understood. Carbon and other volatiles in the 52 
lower mantle are thought to be remnants of an early magma ocean (Labrosse et al., 2007) or to 53 
derive from subducting slabs (Plank & Manning, 2019). However, reports vary on the carbon 54 
content of the Earth (Javoy, 1997; McDonough & Sun, 1995), the distribution of carbon between 55 
core and mantle (Dasgupta & Walker, 2008; Wood et al., 2013), the phase relations of carbon-56 
bearing phases at depth (Merlini et al., 2012; Oganov et al., 2008), and the reactivity of carbon-57 
bearing phases with the surrounding core and mantle. The existence and role of carbonates in the 58 
lower mantle is highly contested. Multiple studies show that carbonates undergo melting (Li et 59 
al., 2017), reduce to diamond or iron carbide (Rohrbach & Schmidt, 2011), or decarbonate 60 
(Drewitt et al., 2019) before they reach the lower mantle in subducting slabs. However, the 61 
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stability of carbonate phases depends on a host of thermodynamic variables, including pressure, 62 
temperature, and oxygen fugacity. Reports of carbonate melt inclusions in deep Earth diamonds 63 
(Korsakov & Hermann, 2006) as well as petrologic experiments on solid carbonates in lower 64 
mantle phase assemblages (Dorfman et al., 2018; Lv et al., 2021) indicate that carbonates and 65 
carbonate melts may be stable and present in the lower mantle, plausibly even in the core-mantle 66 
boundary region. However, few studies have examined carbonate melt interactions in the lower 67 
mantle. 68 

Previous ab initio studies have examined carbonate melts (Koura et al., 1996; Li et al., 69 
2017; Xu et al., 2020), carbon-bearing silicate melts (Bajgain & Mookherjee, 2021; Ghosh et al., 70 
2017; Ghosh & Karki, 2017), carbon and iron-bearing silicate melts (Karki et al., 2020; 71 
Solomatova & Caracas, 2021; Solomatova et al., 2019, 2020), and carbon partitioning between 72 
silicate and iron melts (Zhang & Yin, 2012). This work and Davis et al. (2022) represent the first 73 
ab initio studies with subequal amounts of carbon, silicon, and metal in a melt composition. In 74 
this study, we simulate seven total endmember, binary, and ternary melt compositions (Table 1) 75 
at pressures between 0-200 GPa and at a temperature of 4,000 K to estimate melt miscibility, 76 
structure, and density. With these results, we determine the degree of mixing in the carbonate-77 
silicate-iron ternary system, the buoyancies of the melts that form, and the chemical species that 78 
exist within the melt. We evaluate the viability of carbonate-silicate-metal melt compositions as 79 
contributors to ultra-low velocity zones (ULVZs) and the implications for carbon sequestration 80 
and distribution throughout Earth’s mantle and core. 81 

2 Methods 82 

Ab initio molecular dynamics simulations using the projector-augmented wave method 83 
(Kresse & Furthmuller, 1996) of density functional theory were performed with the Vienna ab 84 
initio simulation package (Blochl, 1994). We used the generalized gradient approximation in the 85 
Perdew-Burke-Ernzerhof form (Perdew et al., 1996) to treat electron exchange and correlation. 86 
The kinetic energy cutoffs for the plane-wave expansion of the wavefunctions were set to 600 87 
eV. We used the canonical ensemble (NVT) with a Nosé-Hoover thermostat (Hoover, 1985; 88 
Nosé, 1984) with a time step of 1-2 fs for 18-80 ps, depending on the density. The Brillouin zone 89 
was sampled at the gamma point. The calculations were spin-polarized at all pressures. A 90 
Hubbard Ueff (U-J) parameter of 4 eV was applied, which enhances the magnetic moment of the 91 
Fe atoms and corrects for their volume and coordination environment. The mean-square 92 
displacement as a function of time shows a ballistic regime below approximately 1,000 fs, after 93 
which the atoms reach a diffusive regime. For the carbonate-silicate-metal melt composition, 94 
calculations were run with a minimum of two starting configurations, and results were averaged. 95 
We employ the Universal Molecular Dynamics (UMD) package for the analysis of the results 96 
(Caracas et al., 2021). 97 

We work with seven melts representing endmember (MgCO3, MgSiO3, and Fe), binary 98 
(Mg(C,Si)O3, MgCO3 + Fe, MgSiO3 + Fe), and ternary (Mg(C,Si)O3 + Fe) melt compositions 99 
(Table 1), with supercells ranging from 108-133 atoms. Simulations span a pressure range of 0-100 
200 GPa, and all calculations are performed at 4,000 K. Bond distances were determined from 101 
the pair distribution functions. The first peak in the pair distribution function marks the radius of 102 
the first coordination sphere for the reference atom, and the first minimum translates to the 103 
maximum acceptable bond distance for a bonding pair. The fitted minimum values were used in 104 
the speciation analysis to determine carbon clusters. 105 
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3 Melt miscibilities 106 

The Gibbs free energy of mixing, ΔGmix, determines whether a given solution of melt 107 
components will mix or unmix. Negative ΔGmix values indicate a mixture is energetically 108 
favorable and therefore miscible. Positive ΔGmix values indicate a mixture is energetically 109 
unfavorable and therefore immiscible. The Gibbs free energy of mixing was estimated using the 110 
following equation: 111 𝛥𝐺௠௜௫ =  𝛥𝐻௠௜௫ − 𝑇𝛥𝑆௠௜௫ + ׬ 𝑃𝛥𝑉௠௜௫    (1) 112 
where ΔHmix is the enthalpy of mixing, T is the temperature, ΔSmix is the entropy of mixing, P is 113 
the pressure, and ΔVmix is the mixing volume. An example of the contribution of each term to 114 ΔGmix on the carbonate-silicate binary is shown in Figure S1. We describe the calculation of each 115 
term in the equation in the following sections.  116 

 3.1 Enthalpy of mixing 117 

To calculate the enthalpy of mixing, we use the equation:  118 𝛥𝐻௠௜௫ = ∑ 𝛽௜௝𝑋௜𝑋௝௜ஷ௝     (2) 119 
where βij represents the binary parameter along the i-j binary, and Xi and Xj represent the mole 120 
fractions of the i and j components, respectively. To find appropriate values for β, we plot ΔGmix 121 
at 0 GPa along a binary and select β values that match the expected degree of mixing in each 122 
binary system (Figure S2). Reasonable degrees of mixing are determined from examining 123 
solubility experiments on binary systems in addition to our own simulation results at 0 GPa. A 124 
study of orthopyroxene solubility in carbonate melts reports that carbonate melts contain 4 125 
atomic percent silicate at 2 GPa and 1273 K (Kamenetsky & Yaxley, 2015). We select a value of 126 
95 kJ for β on the carbonate-silicate join, which leads to silicate solubility of 8 atomic percent in 127 
carbonate melts at 4,000 K. Silicate-metal melts are immiscible at 0 GPa (Fichtner et al., 2021), 128 
and our simulations show groupings of silicon and iron atoms that is suggestive of immiscibility. 129 
Thus, we select a β parameter of 135 kJ, which leads to limited miscibility (2 atomic percent Fe 130 
in silicate melt) at 0 GPa and 4,000 K. Experimental reports of carbonate solubility in iron melt 131 
are lacking, but our carbonate-metal simulation indicates less miscibility than the carbonate-132 
silicate simulation and more miscibility than the silicate-metal simulation at 0 GPa. We select a 133 
value of 115 kJ for the β parameter, which leads to 4 atomic percent Fe in carbonate melt.  134 

Table 1 
Melt Compositions Simulated 
Melt Mg Si C O Fe Total 
MgCO3 24 0 24 72 0 120 
MgSiO3 24 24 0 72 0 120 
Fe 0 0 0 0 108 108 
Mg(C,Si)O3 24 12 12 72 0 120 
MgCO3 + Fe 24 0 24 72 13 133 
MgSiO3 + Fe 24 24 0 72 13 133 
Mg(C,Si)O3 + Fe 24 12 12 72 13 133 
Note. The numbers refer to the number of atoms included in the simulation.  
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 3.2 Entropy of mixing 135 

To calculate the entropy of mixing, we use the ideal entropy of mixing: 136 𝛥𝑆௠௜௫ = −𝑅(𝑋௜𝑙𝑛𝑋௜ + 𝑋௝𝑙𝑛𝑋௝ +  𝑋௞𝑙𝑛𝑋௞)    (3) 137 
where R is the gas constant and Xi, Xj, and Xk are the mole fractions of the i, j, and k 138 
components, respectively.  139 

 3.3 Mixing volumes 140 

Mixing volumes are calculated by taking weighted averages of molar volumes of 141 
individual melt components. To calculate molar volumes, we first fit either second or third order 142 
Birch-Murnaghan equations of state for our simulated melt compositions (Figure 1a). We also 143 
include the pyrolite and pyrolite+8CO compositions from Solomatova et al. (2019) for 144 
comparison. Equation of state fit parameters are reported in Table S8. The fit parameters reveal 145 
that melts with a carbonate component are highly compressible, which is in agreement with 146 
previous studies of carbon-bearing melts (Ghosh & Karki, 2017; Ghosh et al., 2007; Sakamaki et 147 
al., 2011). There is significant covariance between K0’, K0, and V0 values for all melts, which is 148 
common in finite strain equations of state. One continuous equation of state was fit across 149 
multiple structural transitions, which stem from gradual coordination changes in the melt. 150 
However, the majority of coordination changes occur between 0 and 20 GPa, below the pressure 151 
regime of interest. In the pressure regime of the lower mantle, the fits closely match the data. 152 
Using the Birch-Murnaghan equation of state fits, we calculate molar volumes of the melts at 153 
pressures from 0 to 200 GPa (Figure 1b). Due to the non-stoichiometric nature of the melt 154 
mixtures, we calculate volumes per mole of atoms instead of per formula unit, allowing the 155 
molar volumes to be directly compared. Iron and iron-bearing melts have the largest molar 156 
volumes, while pyrolite melts have the smallest. The densities and molar volumes of each melt 157 
composition are reported in Tables S1-S7. 158 
 To calculate the mixing volumes, we compare the molar volume of our simulated mixture 159 
with the weighted average of the molar volumes of the mixture components. The magnitude of 160 
the mixing volume indicates the nonideality of a melt mixture and the degree of interaction 161 
between melt components. As the pressure derivative of ΔGmix, the mixing volume is the 162 
tendency of a mixture to become more or less energetically favorable with changing pressure. 163 
Thus, the sign of the mixing volume is suggestive of miscibility in multicomponent mixtures. 164 
This is especially true at high pressures, where the mixing volume term dominates the 165 
contribution to ΔGmix. For instance, a composition that is 50% MgSiO3 and 50% Fe has a ΔGmix 166 
value of 58 kJ at 136 GPa and 4,000 K (see Figure 3). Of the 58 kJ, 47 kJ is from the mixing 167 
volume component, accounting for 82% of the contribution to ΔGmix. Mixtures with positive 168 
mixing volumes become larger upon mixing and become less stable with increasing pressure, 169 
enforcing immiscibility. The mixing volumes for the four multicomponent melts in this study are 170 
plotted as a function of pressure in Figure 1c. Over the range of the lower mantle, Mg(C,Si)O3 171 
and MgCO3 + Fe have negative mixing volumes. MgSiO3 + Fe and Mg(C,Si)O3 + Fe have 172 
positive mixing volumes.  173 
 To expand our analysis to any composition in the MgCO3-MgSiO3-Fe ternary system, the 174 
mixing volume data is fit to the following power series multicomponent mixing model (Ganguly, 175 
2001; Wohl, 1946, 1953):  176 𝛥𝑉௠௜௫ =  ∑ 𝑋௜𝑋௝(𝑊௜௝ீ 𝑋௝௜ +  𝑊௝௜ீ 𝑋௜௝)௜ஷ௝ + ∑ 𝑋௜𝑋௝𝑋௞𝐶௜௝௞௜ஷ௝,ஷ௞   (4)  177 
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are negative at all lower mantle conditions, and become more negative with increasing pressure, 193 
suggesting continuous solubility. Along the silicate-metal join, mixing volumes are positive 194 
across all lower mantle pressure conditions, and decrease with pressure. At pressures beyond 195 
those of the Earth’s mantle, we would expect silicate and metal melts to become miscible. Along 196 
the carbonate-metal join, mixing volumes are always negative, but become less negative with 197 
increasing pressure, suggesting potential immiscibility beyond the core-mantle boundary 198 
pressure. Additionally, the magnitude of the mixing volumes represents the degree of interaction 199 
between the melts. Generally, silicate-metal melts have the most interaction, followed by 200 
carbonate-metal melts, and carbonate-silicate melts. Carbonate-silicate melt interaction terms are 201 
very small, even at their most negative point at 136 GPa, indicating that this mixture is close to 202 
ideal.  203 
 Figure 2d-f shows calculated mixing volumes for ternary compositions. At 24 GPa, melts 204 
with greater than 50% carbonate have negative mixing volumes. For melts less than 50% 205 
carbonate, mixing volumes are more negative with increasing iron percentage and more positive 206 
with increasing silicate percentage. With increasing pressure, the negative mixing volume regime 207 
shrinks and the positive mixing volume regime grows to cover more iron and carbonate-rich 208 
parts of the ternary plot. By 136 GPa, only compositions that are greater than 70% carbonate and 209 
compositions close to the carbonate-metal and carbonate-silicate binaries have negative mixing 210 
volumes. Additionally, mixing volume magnitudes decrease with increasing pressure, indicating 211 
that these melts tend to become more ideal with increasing pressure. This conclusion is 212 
supported by the trends in the binary and ternary interaction parameters (Figure S3 and Table 213 
S9). With increasing pressure, the interaction parameters trend towards 0, indicating that the 214 
interaction between melt components becomes increasingly less important with depth. 215 
 3.4 Gibbs free energy of mixing 216 

With the equations and approximations describing ΔHmix, ΔSmix, and ΔVmix, we determine 217 
how ΔGmix evolves along binary and ternary joins. ΔGmix is plotted along the carbonate-silicate, 218 
carbonate-metal, and silicate-metal binaries in Figure 3a-c. MgCO3 and MgSiO3 melts 219 
demonstrate limited miscibility at all lower mantle pressures, with a large miscibility gap. In the 220 
immiscible region, two melt compositions coexist, and these compositions are determined by the 221 
common tangent of the ΔGmix curves. These tangents are quasi-horizontal and have support 222 
points that are very close to the minima of the free energy. The shared tangents of the curves are 223 
plotted in Figure 4 and are at ~9 and ~91 mole percent MgCO3 at all pressures examined for the 224 
carbonate-silicate binary. ΔGmix decreases with pressure, suggesting eventual closing of the 225 
miscibility gap at higher pressures than those reached by Earth’s mantle. MgSiO3 and Fe are 226 
immiscible at all lower mantle pressures. The metallic character of the pure Fe melt makes it 227 
incompatible with the insulating character of the molten silicate melts, and any iron that is 228 
dissolved in the silicate is always incorporated an an ionic phase, FeO or Fe2O3. Similar to the 229 
MgSiO3 and MgCO3 binary, the MgCO3 and Fe binary also has a miscibility gap that begins to 230 
close with increasing pressure. At 24 GPa, the two coexisting melt compositions are at 6 and 94 231 
mole percent MgCO3, but by 136 GPa, the two coexisting melt compositions are at 38 and 62 232 
MgCO3 mole percent (Figure 4). 233 
 The ternary diagrams (Figure 3d-f) show a range of miscibilities that expand with 234 
increasing pressure. Miscible melt fields, outlined by solid gold lines, are estimated from ΔGmix 235 
values along each of the binaries. There are three miscibility fields, and each is located near an 236 
endmember composition. As the carbonate-metal and the carbonate-silicate miscibility gaps 237 
close with pressure, the miscibility fields grow to accommodate more mixing. In between the 238 
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preference for the bonding element. In our cluster analysis, we classify carbon clusters with C-O 279 
bond abundances greater than 67% as carbonates and carbon clusters with C-Fe bond 280 
abundances greater than 12% as carbides. Clusters with less C-O and C-Fe abundances than 281 
expected from statistical sampling are classified as carbon polymers. The abundances of the 282 
different types of clusters at 1, 74, and 148 GPa are plotted in Figure 5d. At all three pressures, 283 
clusters of each type are formed, but the relative abundances of the cluster types evolve with 284 
pressure.  Carbonates are the most abundant cluster type at 1 GPa and account for 49% of the 285 
total clusters, but that number drops to 31% at 74 GPa and 30% at 148 GPa. Carbides almost 286 
match the number of carbonate clusters at 1 GPa, at 48% of the total, and are the most abundant 287 
cluster type at 74 and 148 GPa, at 55% and 64% of the total, respectively. Polymers are always 288 
the least abundant cluster type. They increase in abundance from 3% to 14% from 1 to 74 GPa, 289 
and then decrease in abundance to 5% at 148 GPa. In Davis et al. (2022), we noticed that the 290 
majority of changes in C-O and C-C bond abundances occur in the first 25 GPa. Thus, we expect 291 
diamond formation to peak around 25 GPa, and this expectation is reflected in the relative 292 
increase in polymer formation between 1 and 74 GPa. Similarly, we expect carbonate cluster 293 
abundance to decrease rapidly in the first 25 GPa, before plateauing, and this result is also 294 
observed. Finally, the large and linearly increasing number of carbide clusters matches the 295 
speciation results in both Davis et al. (2022) and Solomatova et al. (2019), which report linear 296 
increases in C-Fe bond abundances with increasing pressure.  297 

The composition and the volume of the carbon clusters determines their relative density 298 
within the mantle. Using the Bader charge analysis algorithm (Henkelman et al, 2006; Sanville et 299 
al., 2007; Tang et al., 2009; Yu & Trinkle, 2011), we calculate the volumes of individual atoms 300 
within carbon clusters to determine cluster densities. Densities of example carbon clusters 301 
isolated at 74 and 148 GPa are plotted in Figure 6. The selected clusters are grouped according to 302 
their classification as a carbonate, carbide, or polymer. We directly compare the density of the 303 
cluster to the calculated density of MgSiO3 melt at the same conditions. Carbide clusters are 304 
much denser than MgSiO3 melt, and with enough time and aggregation, we expect these clusters 305 
to segregate from the multicomponent melt and sink to the core. Similarly, polymers are slightly 306 

 
Figure 6: Carbon clusters identified from three separate snapshots at a) 74 GPa and b) 148 
GPa and plotted by fraction of bonds that are C-O and fraction of bonds that are C-Fe. Points 
circled with a dotted line correspond to carbonates, with a solid line correspond to carbide, 
and with a dashed line correspond to polymers. Data points are colored by density of the 
cluster. Clusters denser than MgSiO3 (blue) will sink and clusters less dense than MgSiO3 
(red) will float.  
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compared to the density of MgSiO3 melt, which is used as a proxy for the lower mantle 322 
composition. Three groups of miscible compositions emerge. Compositions outlined in red are 323 
iron-rich and denser than MgSiO3. We expect these compositions to sink into the outer core, 324 
dragging carbon and silicon out of the mantle and enriching the outer core with light elements 325 
over time. Compositions outlined in blue are carbonate-rich and buoyant. These compositions are 326 
anticipated to rise through the mantle and return carbon to shallower depths. Finally, the green 327 
compositions are neutrally buoyant and thus, gravitationally stable at the core-mantle boundary. 328 
These compositions could serve as possible contributors to ultra-low velocity zones (ULVZs).  329 
ULVZs have multiple proposed explanations, including FeSi formed through core-mantle 330 
reactions (Mergner et al., 2021), hydrous phases such as (Al,Fe)OOH (Thompson et al., 2021), 331 
Fe-rich post perovskite (Garnero & McNamara, 2008), Fe-rich (Mg,Fe)O (Solomatova et al., 332 
2016; Wicks et al., 2010), and patches of partial melt (Williams & Garnero, 1996). Partial melt is 333 
a likely explanation for ULVZs due to the 3:1 ratio of S-to-P wave velocity reduction (Garnero 334 
& McNamara, 2008; Williams & Garnero, 1996). Therefore, buoyantly neutral melt 335 
compositions, such as the carbonate-silicate-metal melt compositions calculated in this study, 336 
could serve as one possible explanation and contributor to the ULVZs.  337 

Within the immiscible melt compositions, carbon, carbon-iron, and carbon-oxygen 338 
clusters form (Figure 5). Given enough time and aggregation, we expect the carbon and carbon-339 
iron clusters to exsolve from the melt, as has been previously suggested (Dasgupta & 340 
Hirschmann, 2010; Karki et al., 2020; Mysen et al., 2011; Stagno et al., 2013). In our example 341 
ternary melt composition, the majority of the clusters formed at 148 GPa are carbide (64%), and 342 
the propensity for carbon to bond with iron indicates carbon’s high siderophility under these 343 
thermodynamic conditions. Carbide clusters are denser than the surrounding mantle (Figure 6). 344 
Thus, a significant amount of Earth’s carbon contained in the lower mantle may bond with iron 345 
and sink to the core, matching previous ab initio predictions of carbon’s fate under reduced 346 
conditions in the lower mantle (Karki et al., 2020; Rohrbach & Schmidt, 2011). This not only 347 
prevents carbon from being recycled back to the Earth’s surface, but also changes the evolution 348 
of the core composition. An increasingly carbon-rich core composition would evolve to have 349 
density, sound velocities, and electrical and thermal conductivity more similar to the carbon-rich 350 
alloys Fe3C and Fe7C3 (Fiquet et al., 2009; Ghosh & Karki, 2017; Wood et al., 2013).  Moreover, 351 
given the chemical preference of carbon to be bonded to iron, we propose that during core 352 
formation, iron droplets that segregate from the magma ocean and fall downwards would 353 
constitute strong attraction basins for carbon. In this way the magma ocean would be leached of 354 
its carbon. After the Moon-forming impact, metal and silicate melts would be well-mixed and 355 
siderophile elements like carbon would be segregated with iron into the core, supporting the idea 356 
that carbon is a candidate element to explain the density deficit in the core (Prescher et al., 2015; 357 
Solomatova et al., 2019).  358 
 In addition to carbide clusters, we observe the formation of carbon polymers in our 359 
simulated ternary melt composition, which could be precursors for diamonds. Our simulations 360 
reveal a possible mechanism for diamond formation, where carbon polymers exsolve from a 361 
silicate melt. Previously, this formation mechanism was observed in oxygen-deficient carbon-362 
bearing silicate melts (Ghosh et al., 2017), and the addition of iron in our simulations may 363 
actually increase carbon polymerization (Belonoshko et al., 2015). Our previous speciation 364 
analysis of this melt composition (Davis et al., 2022) indicates that carbon-carbon bond 365 
formation reaches a peak around 25 GPa, beyond which it plateaus. C-Fe bonding, however, 366 
increases linearly and with increasing depth, the percentage of polymers decreases as carbide 367 
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clusters are preferentially formed. Thus, our analysis indicates a diamond formation zone around 368 
25 GPa. This depth in the Earth matches reports of diamonds with a deep Earth origin, which are 369 
returned from either the transition zone or the top of the lower mantle (Smith et al., 2016; Stachel 370 
et al., 2005). However, our cluster analysis (Figure 5) indicates that polymers are formed even at 371 
the core-mantle boundary, and if these polymers aggregate to form diamonds, these diamonds 372 
may be brought to the surface by deep mantle plumes. Diamonds with a lowermost mantle origin 373 
may be identified through compositional analysis of fluid inclusions. Diamonds containing 374 
silicate-poor metal-rich carbonate melt compositions that fall into the miscible melt regions 375 
indicated in Figure 3f would indicate a core-mantle boundary origin and would provide evidence 376 
for carbon-silicate-metal melt reactions in the lowermost mantle. 377 
 Finally, we examine the carbon distribution at pressure and temperature conditions of the 378 
core-mantle boundary to provide some insight for possible carbon distributions between core and 379 
mantle phases. We examine an equimolar composition (i.e. 1/3 Fe, 1/3 MgCO3, and 1/3 380 
MgSiO3), which falls into the three-melt region at the center of the ternary plot (Figure 3f). Of 381 
the three melts that exsolve from this composition, 31% is a carbonate-rich melt, 37% is an iron-382 
rich melt, and 32% is a silicate-rich melt, where the melt compositions that exsolve are given by 383 
the corners of the miscible melt fields in Figure 3f. From mass balance calculations, we 384 
determine that for this case, 90% of the carbon is contained in outer-core compositions 385 
(carbonate-rich and iron-rich melts) and 10% is contained in a potential ULVZ composition 386 
(silicate-rich melt). In fact, carbon is distributed to varying degrees between outer-core and 387 
ULVZ-type compositions for the majority of compositions in this ternary system, and buoyant 388 
carbonate-rich melt phases only form when there is less than ~5% Fe in the system. At the core-389 
mantle boundary where iron melt is abundant, we anticipate that carbon is preferentially stored in 390 
lower-mantle and core phases, indicating that the ultimate fate of Earth’s carbon may be storage 391 
in the deep interior.  392 
 393 

6 Conclusions 394 

 Carbonates are important compounds in the crust and upper mantle and may play a role 395 
in the lower mantle as well. Carbonate melts in the deep Earth may react with silicates and 396 
metals, especially at the core-mantle boundary where these phases are abundant. The chemical 397 
and physical properties of the melts that form from these reactions have important consequences 398 
for the distribution and storage of carbon in the deep Earth. Ab initio molecular dynamics 399 
simulations of carbonate-silicate-iron melt compositions allow for the examination of melt 400 
miscibilities, densities, and speciation. We find that carbonate-silicate and carbonate-iron melts 401 
have miscibility gaps that close with increasing pressure, and that carbonate-iron melts have the 402 
highest affinity for mixing. Silicate-iron melts are immiscible at all lower mantle pressures. By 403 
expanding our analysis to the ternary carbonate-silicate-iron system, we find that three miscible 404 
melt fields exist near each of the endmember compositions (Fe-rich, carbonate-rich, and silicate-405 
rich melts). Iron-rich melts are dense and sink into the core, providing a mechanism to enrich the 406 
outer core in light elements such as carbon, oxygen, and silicon. Silicate-rich melts are neutrally 407 
buoyant and sit at the core-mantle boundary, providing one possible explanation for the existence 408 
of ultra-low velocity zones. Carbonate-rich melts, depending on their iron content, may sink into 409 
the core, remain at the core-mantle boundary, or rise through the mantle. Thus, depending on the 410 
composition that forms through reaction of carbonate, silicate, and iron phases, carbon may be 411 
stored in the deep Earth in core- or ULVZ-type compositions or may return to shallower depths. 412 
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The majority of melt compositions have densities that classify them as core- or ULVZ-type 413 
compositions, indicating that the fate of carbon may be to be stored in the Earth’s deep interior. 414 
Finally, the speciation of carbonate-silicate-iron melts indicates that carbon polymers, iron 415 
carbides, and carbonate clusters are formed in the melt, and the relative proportions of these 416 
clusters at various pressures indicate carbon’s changing affinity for the other elements. Iron 417 
carbides, which are favorably formed at higher pressure, indicate carbon’s increasingly 418 
siderophile nature with depth. Carbon polymers, when aggregated, could form diamonds, and are 419 
abundant at transition zone pressures, indicating a propensity for diamond formation in and 420 
around the transition zone. The distribution of carbon throughout the Earth’s interior is a 421 
complicated topic, affected by many thermodynamic variables, including pressure, temperature, 422 
composition, and oxygen fugacity. More experimental and computational studies of carbonate 423 
melts and their interactions with other phases at lower-mantle and especially core-mantle 424 
boundary conditions will help elucidate the role of carbon in the Earth’s deep interior. 425 
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