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Key Points:  12 

 13 
● Moisture transport in the Southern Pacific is enhanced during the El Niño, between a large-14 

scale tropical high and a subtropical low.   15 
● The frequency of atmospheric rivers maximize in a region at around 110ºW and 25ºS 16 

consistent with an increase in transient eddies.  17 
● The increased moisture transport is connected to longer-lasting and moister atmospheric 18 

rivers landfalling in Central Chile.  19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 



Abstract  33 

Interannual variability of precipitation in Central Chile has long been associated with changes 34 

in the dry atmospheric dynamics of the Southern Pacific. This is due to the interaction 35 

between the extratropical storm track and the polar anticyclonic circulations established by 36 

the Pacific South American (PSA) teleconnection mode, which results from changes in 37 

tropical convection. Here, we show that an enhanced subtropical moisture transport during 38 

the warm ENSO phase leads to an increase in the frequency of atmospheric rivers, larger 39 

values of precipitable water, and heightened zonal integrated water vapor transport. This 40 

occurs in a region of the Southern Pacific situated between the tropical high and the 41 

subtropical low of the PSA mode. These increases in zonal water vapor transport result in 42 

greater precipitation and moister, long-lived atmospheric rivers making landfall in Central 43 

Chile 44 

 45 
 46 
 47 

1. Introduction 48 

 49 

The interannual variability of precipitation along the coast of the southeastern Pacific has long been 50 

studied, mainly focusing on the relationship between precipitation and sea surface temperature (SST) 51 

in the central equatorial Pacific. For several decades, we have known that warm anomalies in the 52 

central Pacific are connected to wetter conditions in Central Chile during the austral winter (El Niño 53 

years) (Pittock, 1980), whereas below-normal rainfall occurs when the subtropical anticyclone 54 

intensifies and moves poleward during the positive phase of the Southern Oscillation, (La Niña years) 55 

(Aceituno, 1988; Rubin, 1955). Both the variability of the central equatorial Pacific SST and the 56 

intensity and location of the subtropical anticyclone, are driven by ENSO at the interannual scales, 57 

explaining about 40% of the variance of rainfall in Central Chile (Garreaud et al., 2017). 58 

 59 



Regarding the physical mechanism behind this relationship, literature has greatly emphasized the dry 60 

dynamic mechanisms. For instance, (Quinn & Neal, 1983) attributed the increase in precipitation to 61 

the increase in SST along the western coast of South America during positive ENSO years, thereby 62 

inducing a weakening of the subtropical anticyclone. However, as mentioned by (Rutllant, 2004), SST 63 

along the coast of Chile rarely gets over the lower threshold to trigger tropical deep convection in the 64 

present climate (27-28°C), as it is possible to observe on the coast of Peru during El Niño years. 65 

Therefore, the mechanism for the increase in precipitation in central Chile is not directly related to 66 

local sea surface warming. 67 

 68 

The main winter storms in Central and Southern Chile during the warm phase of ENSO are associated 69 

with blocking highs embedded in a hemispheric circulation pattern of high latitudes with wave 70 

numbers 3 and 4 (Rutllant & Fuenzalida, 1991). The presence of blocking highs over the Amundsen-71 

Bellingshausen Sea (90°W) during El Niño years occurs in association with a wave pattern extending 72 

from the equatorial Pacific poleward and eastward along the South Pacific, as a wave train of 73 

alternating highs and lows (Karoly, 1989; Montecinos & Aceituno, 2003; Rutllant & Fuenzalida, 74 

1991), as described for the Northern Hemisphere by (Horel & Wallace, 1981) and known loosely in 75 

the literature as the Pacific South American teleconnection mode (e.g. Mo & Higgins, 1998). 76 

 77 

Emphasis on the blocking high in the Amundsen-Bellingshausen region has resulted in the “dry-78 

dynamics” explanation for the relationship between the positive ENSO phase and the wet anomalies 79 

in the Central Chile region, which can be summarized as follows. Anomalous deep convection in the 80 

Central Pacific, near the 3.4 El Niño region, triggers a Pacific South American teleconnection in the 81 

form of a Rossby wave train consisting of a tropical high, a subtropical low, and a blocking high 82 

located in the Amundsen-Bellingshausen region. This blocking high produces a split in the 83 

extratropical circulation near South America, generating cyclonic anomalies in the band between 84 

30ºS-40ºS, diverting the extratropical storm track towards the subtropics, thereby increasing the 85 

frequency of storms in Central and Southern Chile. Examples of the “dry-dynamics” explanation of 86 

the influence of ENSO in Central Chile rainfall prevail in the literature. For instance, (Marques & 87 



Rao, 1999) wrote about a case study during the winter of 1986: “The increase of precipitation to the 88 

north of the blocking high was associated with the deflection of transient eddies to the north of the 89 

block.” (Rutllant, 2004) writes about the indirect mechanism that controls the increase in precipitation 90 

during El Niño years in Central Chile: “blocking highs around 120ºW force the separation of the 91 

westerlies into two branches, one towards the subtropics and one towards the subpolar region, 92 

dragging with them the trajectories of the extratropical depressions and associated frontal systems”.  93 

A recent example of the dry dynamics view can be found in the review chapter by (Aceituno et al., 94 

2021): “El Niño leads to anticyclonic circulation anomalies over the Amundsen-Bellingshausen Sea. 95 

The stationary and quasi-barotropic nature of these high-pressure systems blocks the westerlies and 96 

associated polar-front jet stream, diverting the storm track toward subtropical latitudes”.  97 

 98 

Here, we argue that this leading dry dynamical explanation is not entirely satisfactory, as it neglects 99 

the major role of moisture transport in explaining precipitation along the coast of Southwestern South 100 

America. Fig. 1a shows the distribution of precipitable water in the South Pacific during the winter 101 

months. The white solid line shows the mean position of the South Pacific Convergence Zone (e.g. 102 

Vincent, 1994), which can be seen as an extension of the large values of precipitable water typical of 103 

the warm pool region (60 to 30 mm at the southeastern tip of the region). One could extend the axis of 104 

the South Pacific convergence region towards South America, where values of precipitable water are 105 

relatively low —ranging from about 10 to 15 mm—. Despite the relatively low mean climatological 106 

values of PW, precipitation along Chile ranges from zero at about 20ºS to 1500 mm at around 40°S in 107 

the JJA period, as seen in Fig. 1b. South of 40ºS, in the Patagonian Ice fields, annual precipitation can 108 

reach extreme values, even higher than 10000 mm/year according to numerical models (Carrasco-109 

Escaff et al., 2022).  110 

 111 

Southern Patagonia, and in general, the western coast of South America, is a region with cold surface 112 

temperatures and, therefore, relatively low local availability of water vapor. How can these large 113 

precipitation accumulations —similar to the largest accumulations found within the tropics— arise in 114 

these relatively dry extratropical regions? On the one hand, the interaction between topography and a 115 



quasi-stationary westerly storm track induces frequent precipitation from extratropical storms. 116 

However, a major role is played by the transport of water along thousands of kilometers provided by 117 

atmospheric rivers (Guan & Waliser, 2015; Langhamer et al., 2018; Saavedra et al., 2020; Viale et al., 118 

2018). Water vapor is transported from the Northwest towards Central and Southern Chile, which 119 

produces a water vapor “ridge” in the precipitable water vapor field, which is marked as a white 120 

dashed line in Fig. 1a. One could consider this dashed line as the natural extension of the South 121 

Pacific Convergence Zone towards South America, which manifests itself episodically through these 122 

water vapor transport events.  123 

 124 

Although the importance of atmospheric rivers in precipitation in Central and Northern Chile during 125 

El Niño years has been previously recognized (Rutllant et al., 2023; e.g. Saavedra et al., 2020), there 126 

has been no attempt to describe the large-scale mechanisms that explain this relation, and in particular 127 

to reconcile the dry dynamical explanation with the apparent increase in frequency, intensity, and 128 

duration of ARs during the warm ENSO phase. Here, we show how ENSO modulates this moisture 129 

transport at the interannual scale, which is an essential —and mostly neglected— part of the 130 

explanation for the increase in rainfall in Central Chile during El Niño years.  131 
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smaller than -0.5. Using these criteria, 5 El Niño and 5 La Niña years were obtained over the 36-year 148 

period (see Figure 1c). 149 

 150 

Monthly precipitation, geopotential height, zonal and meridional wind, and specific humidity data 151 

were obtained from the ERA-Interim reanalysis (Dee et al., 2011). A monthly database of precipitable 152 

water PW (kg m-2) and integrated transport of water vapor, IVT (kg m-1 s-1), was built using the 153 

monthly values of wind and specific humidity integrated from 1000 hPa up to 100 hPa. Additionally, 154 

monthly outgoing longwave radiation data, OLR, were obtained from the NOAA Interpolated OLR 155 

database (Liebmann & Smith, 1996), and monthly streamfunction (at 300 hPa) was derived from 156 

monthly u and v data.  157 

 158 

An ERA-Interim-derived global catalog was used to obtain the frequency of atmospheric rivers (Guan 159 

& Waliser, 2015). Seasonal frequencies for the JJA period were obtained from the sub-daily data, and 160 

climatological values were calculated using the 1981-2010 period. Daily frequencies of AR in central 161 

Chile were calculated by looking at the existence of conditions of ARs in each of the boxes (see 162 

Figure 1b) uninterrupted during a certain length of time using the sub-daily data and expressed in 163 

percentage of the time. 164 

 165 

Daily and monthly data from 35 rain gauge stations covering continental Chile were obtained from 166 

Dirección Meteorológica de Chile (DMC) and Dirección General de Aguas (DGA). Three climatic 167 

zones were defined following (Montecinos & Aceituno, 2003): central-north (CN), central-south 168 

(CS), and south (S) (see Figure 1b). A wintertime (JJA) standardized precipitation index for each zone 169 

was calculated and presented in Figure 1c. 170 

 171 

In order to obtain PW and IVT daily observations for the study period (1979-2014), data for the entire 172 

tropospheric column from regular 12 UTC radiosondes launches in Santo Domingo, Easter Island, and 173 

Tahiti was obtained from the University of Wyoming website 174 



(https://weather.uwyo.edu/upperair/sounding.html). For the case of Santo Domingo, prior to 1999, 175 

data from Quintero were used. See Figure 1a for locations. 176 

 177 

3. Results 178 

 179 

To illustrate the year-to-year covariance between precipitation in central-southern Chile and water 180 

vapor content and transport, we applied the linear correlation between the precipitation series for the 181 

CS zone and the data from ERA-Interim between 1979 and 2014 (data were detrended). Precipitation 182 

strongly correlates with IVT's zonal component (uIVT, zonal water vapor transport). A maximum 183 

positive correlation (~0.8) at the coast is slightly displaced to the north of the CS zone extending 184 

diagonally towards the Western Pacific, slowly decreasing in magnitude. A band of negative 185 

correlations centered is found at about 50 ºS with a maximum amplitude of ~ -0.8 (Fig. 2a). 186 

Precipitation and meridional water vapor transport (vIVT) are negatively correlated (r ~ -0.7), 187 

showing a more local pattern than the one observed for uIVT (Fig. 2b), that is, northerly flow along 188 

the coast is correlated with positive precipitation. Correlations between PW and rainfall, and 189 

especially between AR frequency and rainfall, are quite similar to the uIVT-rainfall, with slightly 190 

weaker correlations. The AR frequency and precipitation exhibit a maximum correlation of ~0.7 at the 191 

coast, and the PW-precipitation correlation shows two local maxima of  ~ 0.6 at around 90ºW and 192 

70ºW (Fig. 2c,d). Similar results are observed for CN and S zones (see Fig. S1 and S2). 193 

 194 

 195 

 196 
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Figure 3: Composite of the interannual correlation (1979-2014) between the ONI index and (a) zonal 231 

integrated water vapor transport uIVT, (b) meridional integrated water vapor transport vIVT, (c) PW, 232 

and (d) ARs frequency. Shaded area shows statistically significant correlations at the 95% level, 233 

according to a Monte Carlo test (n = 10000). Box over the map shows the location of El Niño 3.4 234 

region. 235 

 236 

The uIVT and the AR-frequency are more linearly correlated with ONI than with the local (point to 237 

point) SST in the subtropical Pacific, between 20-30°S and 180-100°W (Figure S3), which could 238 

indicate moisture transport in the South Pacific is controlled by changes in the central equatorial 239 

Pacific SST, rather than by local changes of SST. The above suggests that ENSO plays a key role in 240 

the variability of moisture transport from the South Pacific to the western coast of South America on 241 

an interannual timescale. 242 

 243 

During El Niño years, a pattern of upper-level tropospheric anomalies has been associated with the 244 

propagation of a quasi-barotropic Rossby wave arising from the shift of anomalous convection in the 245 

equatorial Pacific: an anomalous high in the central equatorial Pacific, an anomalous subtropical low, 246 

and an anomalous high near the Amundsen-Bellingshausen Sea (black contours in Fig. 4a), consistent 247 

with the large-scale teleconnection patterns described as the PSA mode (Karoly, 1989; Mo & Higgins, 248 

1998; Rutllant & Fuenzalida, 1991; Trenberth et al., 1998). In La Niña years, the pattern of anomalies 249 

has almost the exact opposite sign (Fig. 7b). 250 

 251 

IVT anomalies in the subtropical Southern Pacific tend to follow the circulation of the anomalous 252 

subtropical high (centered at around 15°S and 150ºW) and the anomalous subtropical low (centered at 253 

around 35°S and 130ºW, Fig. 4a ). The maximum IVT anomalies, mainly in its zonal component, 254 

occur at the northeastern quadrant of the anomalous subtropical low, with values between 60 and 80 255 

kg m-1s-1 of uIVT between 15-30°S and 170°-100°W. Downstream of this maximum in IVT, 256 

following the anomalous low-level wind, these significant eastward IVT anomalies (~20 kg m-1s-1) 257 

reach the South American coast with a slight northerly component. 258 



 259 

Horizontal convergence at the 700 hPa surface is observed at the equatorial edge of the subtropical 260 

anomalous low, mainly in the exit region of the strengthened jet stream, between 20°-30°S and 120°-261 

90°W. Simultaneously, a maximum of positive PW anomalies (~ 3 kg m-2) associated with a 262 

maximum of positive AR frequency anomalies (~ 8-9% of the time) is observed extending towards 263 

southern South America, following the IVT flow and favoring a local maximum of significant 264 

positive anomalies of PW (~ 1.5 to 2 kg m-2, Fig 4a) and AR-frequency (~ 3-5% of the time, Fig. 4b), 265 

in the coast of central-northern Chile. 266 

 267 

On the other hand, the ERA-Interim precipitation data show positive anomalies around the subtropical 268 

low and negative anomalies in the anomalous polar high; however, the maximum precipitation 269 

anomaly (~ +1.5 sigma, in standardized anomalies) occurs off the coast of north-central Chile, 270 

coinciding with the maximum of AR-frequency and a minimum of OLR anomalies (~ -10 Wm-2, Fig. 271 

4c), which suggests an increase in cloudiness and enhanced precipitation due orographic processes. 272 

 273 
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displacement is shown. During the warm phase of ENSO, days with values of PW comparable with 286 

those at the tropical Pacific Islands (> 20 kg m-2) become more likely at the coast of Central Chile 287 

(Fig. 5a). On the other hand, the daily uIVT probability density function exhibits similar behavior; the 288 

warm phase of ENSO favors an increase in the probability of high values of positive uIVT in all 289 

stations (Fig. 5b-d), consistent with the moisture transport from the equatorial-central Pacific along 290 

the “extended” SPCZ towards South America. 291 

 292 

In terms of the daily precipitation intensity, the days with precipitation associated with ARs are more 293 

intense than those not associated with ARs, especially in the CS and S zones (also documented by 294 

Valenzuela & Garreaud, 2019). The probability of exceeding the 75th percentile (p75) of daily 295 

precipitation increases from 35% to 44% from north to south during days associated with ARs (figure 296 

6). In the CN zone, a significant increase in the daily precipitation associated with AR is observed 297 

during El Niño years —the probability of exceeding the 75th percentile of the daily precipitation 298 

distribution increases to 52%. Not only do high values of daily precipitation increase, but rainfall of 299 

any amount becomes more likely in El Niño years; the probability function of El Niño-AR is 300 

significantly different from La Niña-AR (according to the k-s test with p = 0.0045) and significantly 301 

different from the curve of all ARs (p = 0.0069). In the CS and S zones, El Niño does not have the 302 

same impact on the intensity of precipitation associated with AR during wintertime, and the 303 

distribution curve changes are not significant (Fig. 6b and 6c). 304 

 305 
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Table 1: Seasonal (JJA) means and standard deviations for the CN zone. In bold, values significantly 327 

different from climatology, according to a Monte Carlo experiment. 328 

 

Variable 

CN Zone 

Climatology El Niño La Niña 

AR frequency (% of the time) 9.1 +/- 4.8 13.5 +/- 6.8 5.6 +/- 2.8 

AR events (#) 8 +/- 3 8 +/- 4 6 +/- 2 

AR duration (days) 2.0 +/- 0.7 2.8 +/- 1.1 1.6 +/- 0.5 

Days with AR (days) 15.6 +/- 7.2 22.2 +/- 9.8 10.7 +/- 4.9 

AR precipitation (mm/day) 8.2 +/- 5.0 14.1 +/- 5.3 5.7 +/- 3.6 

AR-precipitation days (days) 8.2 +/- 4 13.8 +/- 6 5.5 +/- 2 

Accumulated AR-precipitation (mm) 110 +/- 100 250 +/- 130 60 +/- 50 

 329 

During El Niño winters in the CN zone, AR-frequency increases; however, the number of 330 

independent AR events does not necessarily increase, so the  significant increase in the number of 331 

days with AR is produced by an increase in the duration of the events (Table 1). This increase in the 332 

number of days is accompanied by a significant increase in the daily precipitation rate and in the 333 

number of days with precipitation associated with ARs, which causes a significant increase in winter 334 

AR-associated precipitation. In La Niña winters, the opposite occurs, a decrease in the number of days 335 

with ARs, which produce lower daily amounts of precipitation, resulting in a decrease in seasonal 336 

precipitation associated with ARs. 337 

 338 

The differences between El Niño winters and climatology in the CS and S zones are smaller and less 339 

significant than those observed in the CN zone. During La Niña winters in the CS zone, the number of 340 

days with ARs decreases, with a slight decrease in individual events. The lower number of days with 341 



ARs produces a lower number of AR-precipitation days, which ultimately implies a decrease in the 342 

total seasonal AR-associated precipitation. During El Niño years, higher AR-associated precipitation 343 

is observed; however, the differences are not significant. In the S zone, the differences between the El 344 

Niño and La Niña years with respect to climatology are less than what was observed in the CN and 345 

CS zones during winter but exhibit the same behavior (see Table. S1). 346 

 347 

4. Discussion 348 

In the previous sections we have discussed the effect of the teleconnection pattern on the moisture 349 

transport in the Southern Pacific and the possible role that this transport plays in the increase in 350 

precipitation during the warm phase of ENSO in Central Chile (~ 30ºS-38ºS). The anomalies of IVT 351 

closely follow the contours of streamfunction along the large-scale Rossby wave train in the Southern 352 

Pacific; that is, the  maximum IVT along the anomalous subtropical low (identified as an L in Fig. 7a) 353 

is also the location of the maximum anomaly of AR frequency during this warm phase. Although we 354 

show streamfunction contours to highlight the Rossby wave train in upper levels, anomalies of  IVT, 355 

mean sea level pressure, and wind at 700 hPa (see Fig. 4d) are nearly colocated, which confirms the 356 

quasi-barotropic nature of the Rossby wave response outside the tropics. Therefore, the increased 357 

transport of IVT along the corridor between the tropical high and the subtropical low occurs 358 

coherently across the depth of the troposphere. This climatological feature has been observed 359 

previously associated with an eastward shift of the SPCZ and, simultaneously, a poleward shift of the 360 

Pacific ITCZ during the warm phase of ENSO (Garreaud & Battisti, 1999). Even though the SPCZ is 361 

not as prominent in the Austral winter as it is in the Austral summer, during the warm phase of ENSO, 362 

an eastward extension of the SPCZ (approximately 1000 km) is observed. This is accompanied by a 363 

slight reduction in the southeastward inclination when compared to the climatology. During La Niña, 364 

the opposite is true; the wintertime SPCZ retracts to the west and becomes less organized (see Figs. 7a 365 

and 7b).  366 

 367 



 From a synoptic scale perspective, during El Niño years, the patterning of water vapor and formation 368 

of ARs is enhanced, following the southwesterly flow in between the poleward region of the tropical 369 

high and the equatorward region of the subtropical low. The chain of events is likely modulated by the 370 

synoptic and intraseasonal forcing, as water vapor is transported episodically through ARs along this 371 

moisture corridor. The anomalies weaken as they approach South America, presumably due to the 372 

“erosion” of the precipitable water as moisture travels towards the continent, which by necessity 373 

implies a reduction in moisture in the marine boundary layer in equilibrium with the colder upwelling 374 

waters. Above the boundary layer, where tropical temperatures are homogeneously warmer during El 375 

Niño, the decrease in moisture is not as significant. On the other hand, fronts usually display a 376 

meridional orientation in part due to the barrier flow near the Andes (Barrett et al., 2009) or even 377 

sometimes rotate along the coast, usually progressing toward lower latitudes as the colder and drier air 378 

pushes the atmospheric river equatorward. The cold air behind the surface front is a region of 379 

extremely dry air, also explaining the decrease of PW near the continent in the climatological sense. 380 

Some individual storms can even produce precipitation without the need for the atmospheric river to 381 

land over the continent, for instance, in the recent case of 2021, where most of the precipitation 382 

occurred after the IVT maximum near the coast, where water vapor was organized by convective 383 

instability (Valenzuela et al., 2022). In many cases, water vapor is transported near the continent and 384 

further organized by a system that could be different from the original atmospheric river (a cut-off 385 

low, for example). Nevertheless, trajectory analyses such as the ones conducted by Langhamer et al. 386 

(2018) for Patagonia could clarify fine details of the moisture transport to the continent. In fact, 387 

Rutllant et al. (2023) show that for extreme events that lead to landslides in Northern Chile, many of 388 

the trajectories originate in the Central Pacific about four days before an AR landfall, near the region 389 

identified here as the region of a major increase in westerly IVT between the tropical high and the 390 

subtropical low.  391 

     392 

Under warmer equatorial central Pacific, enhanced moisture is available for atmospheric rivers 393 

reaching the Southern and Central coast of Chile, in fact, ARs do show higher intensities than during 394 



the cold phase of ENSO. Given that processes such as convergence and condensation along the 395 

atmospheric river are also important, we do not expect water vapor reaching the continent to come 396 

entirely from the tropical region (e.g. Dacre et al., 2015). We observe that during the warm phase of 397 

ENSO, there is an equatorward shift of the maximum frequency of AR landfall, similar to changes in 398 

the frequency of landfall with ENSO for wintertime on the west coast of North America (Mundhenk 399 

et al., 2016; Payne & Magnusdottir, 2014).  400 

 401 

As we discussed in the introduction, the alternative hypothesis for the increase in precipitation during 402 

wintertime in El Niño years is the increase of baroclinic perturbations along the subtropics due to the 403 

blocked extratropical flow (Rutllant & Fuenzalida, 1991) and the larger intensity of the subtropical 404 

jet, which produces an increase in baroclinic perturbations along subtropical latitudes (Montecinos & 405 

Aceituno, 2003). Here, we calculated a simple climatology of such perturbations using the anomalies 406 

of daily meridional wind at 500 hPa. A perturbation occurrence in each grid point is defined whenever 407 

the northerly daily wind anomaly is higher than 10 m s-1. The resulting climatology of these so-408 

defined perturbations  (see Fig. S5) depicts very closely the mean position of both the polar and the 409 

subtropical storm tracks compared to other methods available in the literature (Hoskins & Hodges, 410 

2005; Trenberth, 1991).  In Fig. 7a and 7b. the colors show anomalies over the 1979-2014 period for 411 

El Niño and La Niña.  412 

 413 



 414 
 415 
Figure 7: Anomaly composites for the JJA period of 500 hPa perturbations in colors (% of time), 300 416 

hPa streamfunction in contours (in m2 s-1), IVT in vectors (kg m-1 s-1) and AR frequency in colored 417 

contours (% of time) in (a) El Niño years (positive contours in red) and (b) La Niña years (negative 418 

contours in blue). The location of the SPCZ from GPCP rainfall data is indicated by a solid black line, 419 

a red dashed line for the SPCZ during El Niño in panel (a), and a blue dashed line for the SPCZ 420 

during La Niña in panel (b). L and H in the figure represent low and high pressure, respectively. 421 

 422 
 423 
Figure 7a shows that there is indeed an equatorward shift of the subtropical stormtrack during El Niño 424 

years and, conversely, a poleward shift during La Niña years. The lower perturbation activity over the 425 

Amundsen-Bellingshausen Sea is consistent with the anomalous blocking high during the ENSO 426 

warm phase  (Rutllant & Fuenzalida, 1991), as described by the “dry-dynamics” explanation The 427 

eastern shift of the SPCZ, associated with an increase in moisture transport towards the southeast, 428 

seems to favor the increase in ARs in the northeastern quadrant of the subtropical low. We can see 429 

that the positive anomalies of perturbations in 500 hPa closely match the positive anomalies in ARs 430 

frequency, with a maximum at ~ 30ºS and 105ºW. Local low-level convergence, produced by 431 

enhanced baroclinicity in this region, could be the cause of the formation and enhancement of ARs, 432 

following the conceptual model described, for instance, by Dacre et al. (2015).  433 



Regarding the relationship between moisture transport and precipitation, we have shown that there is a 434 

high correlation at the seasonal scale between IVT and precipitation. The location of the maximum 435 

correlation between IVT and precipitation to the north of each of the defined regions is in accordance 436 

with previous work that shows the northwest direction of IVT transport is the most favorable to 437 

precipitation in Central and Southern Chile. We have also observed an increased frequency, intensity, 438 

and duration of Atmospheric Rivers (ARs) during El Niño periods, contrasted with a corresponding 439 

decrease during La Niña phases. This aligns with earlier findings of an increase in storm duration 440 

during El Niño, irrespective of frequency, as documented by Hernández et al., (2022).  441 

 442 

In addition to the diversity within ENSO itself (e.g. Johnson, 2013), non-tropical sources of variability 443 

on interannual and longer time scales could interfere with ENSO’s precipitation response. For 444 

instance, the past decade has seen a sea level pressure dipole with positive anomalies across the 445 

subtropical Pacific and negative anomalies at mid-latitudes, similar to a La Niña pattern. This dipole 446 

pattern has been linked to the mega-drought in south-central Chile and to a persistent warm SST 447 

anomaly in the Southwestern Pacific, known as the 'Southern Blob' (Garreaud et al., 2020, 2021). This 448 

interference with the PSA mode, through the Southern Blob, could potentially reduce the correlation 449 

between equatorial Pacific SST and precipitation in Central Chile, masking ENSO's influence. 450 

Similarly, an emerging signal from global warming has been documented in Central Chile's 451 

precipitation patterns over the last few decades (Boisier et al., 2016). Further research is required to 452 

understand the interactions between ENSO and these emerging modes of variability. This will help 453 

clarify the potential changes that may alter the responses in moisture transport and AR frequency, 454 

which we are currently documenting 455 

 456 

Finally, we present in Fig. 8 a summary of our understanding of the relation between ENSO and 457 

precipitation in Central Chile during wintertime. During the warm phase of ENSO, deep tropical 458 

convection shifts towards the Central Pacific from the Western Pacific warm pool. This convection 459 

anomaly generates upper-level anomalous divergence and a large-scale Rossby wave response, 460 

usually identified as the PSA mode, with a tropical anticyclone southwest of the maximum anomalous 461 
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Figure 8: Schematic of the South Pacific response to anomalous heating in the Central Pacific during 478 
the wintertime for a positive ENSO phase. 479 
 480 

How much water vapor is transported to the continent by the atmospheric rivers in the moist corridor 481 

between the tropical high and the subtropical low? This question cannot be answered with the present 482 

analysis. A quantitative budget would require calculations of the transport, condensation, evaporation, 483 

and convergence of water along each of the atmospheric rivers that occurred over each ENSO phase, 484 

or alternatively using a water vapor tracer technique to isolate the tropical/subtropical contribution 485 

from the local sources. However, the role of water vapor transported along the atmospheric rivers 486 

goes beyond the actual budget of water. For instance, a moister free-troposphere provides a better 487 

environment for precipitation than the usually dry free-troposphere  associated with the subsidence in 488 

the South Eastern Pacific Anticyclone. We could hypothesize that moister systems during the warm 489 

ENSO phase, due to larger release of latent heat in the warmer region of the cold front, can be more 490 

vigorous and therefore produce stronger cyclogenesis and  local convergence of water vapor. These 491 

indirect effects can be more important in our region than in other regions of the planet,  given the 492 

relatively low availability of water vapor due to the cold ocean and the semi-permanent dry free-493 

troposphere warranted by strong subsidence due to the descending Hadley circulation.  494 

 495 
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 507 

Data Availability Statement 508 

 509 

The Oceanic El Niño Index can be obtained from the CPC-NOAA website: 510 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. ERA-Interim 511 

data can be downloaded from the NCAR Research Data Archive: 512 

https://rda.ucar.edu/datasets/ds627.0/dataaccess/. The atmospheric river catalog can be obtained from:  513 

https://ucla.app.box.com/v/arcatalog/. OLR data can be downloaded from the NOAA Interpolated 514 

OLR database: https://psl.noaa.gov/data/gridded/data.olrcdr.interp.html. Weather station data is 515 

available from the Dirección Meteorológica de Chile website: https://climatologia.meteochile.gob.cl/. 516 

Data from the radiosondes launches can be found at the Wyoming University website: 517 

https://weather.uwyo.edu/upperair/sounding.html.  518 
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