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Abstract

The impacts of renewable energy shifting, passenger car electrification, and lightweighting through 2050 on the atmospheric

concentrations of PM2.5 total mass, Fe, Cu, and Zn, and aerosol acidity in Japan were evaluated using a regional meteorology–

chemistry model. We focus on the changes in on-road exhaust/non-exhaust and upstream emissions. The domestic primary

emissions of PM2.5, Fe, Cu, and Zn were reduced by 9%, 19%, 18%, and 10%, and their surface concentrations in the urban

area decreased by 8%, 13%, 18%, and 5%, respectively. On a PM2.5 mass basis, battery electric vehicles (BEVs) have been

considered to have no advantage in non-exhaust PM emissions because the increased tire and road wear and resuspension due to

their heavy weight offset the benefit of brake wear reduction by regenerative brake. Indeed, passenger car electrification without

lightweighting also did not significantly reduce PM2.5 concentration in urban area in this study (-2%) but was highly effective in

reducing Fe and Cu concentrations owing to their high brake wear dependence (-8% and -13%, respectively). Furthermore, the

lightweigting of the drive battery and the body frame of BEVs reduced even tire and road wear and resuspension. Therefore,

vehicle electrification and lightweighting could effectively reduce the risks of respiratory inflammation. The reduction of SOx,

NOx, and NH3 emissions changed aerosol acidity in urban area (maximum pH ±0.2). However, changes in aerosol acidity only

slightly changed water-soluble metal concentrations (maximum +2% for Fe and +0.5% for Cu and Zn); therefore, it is important

to focus on reducing primary metal emissions.
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Key Points: 12 

• Vehicle electrification effectively reduced the concentrations of Fe and Cu, which are 13 
toxic to respiratory inflammation, in PM2.5. 14 

• The lightweighting of battery electric vehicles reduced all non-exhaust PM from tire, 15 
brake, road wear, and resuspension. 16 

• Changes in aerosol acidity due to gaseous pollutants reduction had little effect on the 17 
water-solubility of metals. 18 

19 
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Abstract 20 
The impacts of renewable energy shifting, passenger car electrification, and lightweighting through 2050 21 

on the atmospheric concentrations of PM2.5 total mass, Fe, Cu, and Zn, and aerosol acidity in Japan were 22 

evaluated using a regional meteorology–chemistry model. We focus on the changes in on-road 23 

exhaust/non-exhaust and upstream emissions. The domestic primary emissions of PM2.5, Fe, Cu, and Zn 24 

were reduced by 9%, 19%, 18%, and 10%, and their surface concentrations in the urban area decreased by 25 

8%, 13%, 18%, and 5%, respectively. On a PM2.5 mass basis, battery electric vehicles (BEVs) have been 26 

considered to have no advantage in non-exhaust PM emissions because the increased tire and road wear 27 

and resuspension due to their heavy weight offset the benefit of brake wear reduction by regenerative 28 

brake. Indeed, passenger car electrification without lightweighting also did not significantly reduce PM2.5 29 

concentration in urban area in this study (−2%) but was highly effective in reducing Fe and Cu 30 

concentrations owing to their high brake wear dependence (−8% and −13%, respectively). Furthermore, 31 

the lightweigting of the drive battery and the body frame of BEVs reduced even tire and road wear and 32 

resuspension. Therefore, vehicle electrification and lightweighting could effectively reduce the risks of 33 

respiratory inflammation. The reduction of SOx, NOx, and NH3 emissions changed aerosol acidity in 34 

urban area (maximum pH ±0.2). However, changes in aerosol acidity only slightly changed water-soluble 35 

metal concentrations (maximum +2% for Fe and +0.5% for Cu and Zn); therefore, it is important to focus 36 

on reducing primary metal emissions. 37 

 38 

Plain Language Summary 39 
Water-soluble transition metals in PM2.5 are redox active and induce respiratory inflammation. Gaseous 40 

pollutants increase the aerosol acidity and contribute to metal dissolution and hence redox activation. In 41 

this study, the effects of renewable energy shifting, passenger car electrification, and lightweighting by 42 

2050 on the atmospheric concentrations of PM2.5 total mass, Fe, Cu, and Zn and aerosol acidity in Japan 43 

were evaluated using atmospheric simulation. Since the regenerative braking systems of battery electric 44 

vehicles (BEVs) have lower brake wear emissions than those of conventional vehicles, the penetration of 45 

BEVs was effective in reducing the concentrations of Fe and Cu, which have high brake wear dependence 46 

(−13% and −18%, respectively, in urban area). Current BEVs increase tire and road wear and 47 

resuspension-derived PM emissions due to their heavy weight, which can be avoided by lightweighting 48 

technologies through 2050. The reduction of gaseous pollutants from thermal power plants and on-road 49 

slightly changed aerosol acidity, but the effect on water-soluble metal concentrations was small. 50 

Therefore, it was suggested that reducing primary metal emissions is more important than gaseous 51 

pollutants in decreasing concentration of water-soluble metals that are harmful to the respiratory system, 52 

and that vehicle electrification and lightweighting are effective means for that. 53 
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1. Introduction 54 

There is a strong association between the dry mass of particulate matter with a diameter of 2.5 µm or 55 

less (PM2.5)  and the development of cardiovascular and respiratory diseases (e.g. Pope and Dockery, 56 

2006; Valavanidis et al., 2008). Among the various PM components, transition metals and quinones 57 

possess redox activity and are catalytically active in promoting reactive oxidation species (ROS), such as 58 

O2
–, H2O2, HO2, and OH in the body, inducing oxidative stress (e.g. Lakey et al., 2016; Shiraiwa et al., 59 

2017; Bates et al., 2019). Kumagai et al. (2002) demonstrated that 9,10-phenanthraquinone, which has 60 

redox activity, effectively catalyzes the electron transfer from dithiothreitol (DTT) to oxygen and 61 

generates superoxide. Since then, the DTT assay has been widely used as a cell-free measure of the 62 

oxidative potential of particles. Among the metal components, Cu and Fe are especially important. Cu has 63 

the highest OPDTT (the rate of DTT consumption per unit time) among transition metals. Charrier and 64 

Anastasio (2012) measured the OPDTT of 10 soluble transition metals and 7 quinones and concluded that 65 

Cu(II) contributes to approximately 50% of the total DTT consumption on a typical urban air 66 

concentration basis. Fe(II) and Fe(Ⅲ) substantially produce OH, the most oxidizing and toxic of the ROS, 67 

through Fenton reactions in the body (Gutteridge, 1995; Valavanidis et al., 2000; 2008; Charrier and 68 

Anastasio, 2011). OPDTT is only correlated with H2O2 production associated with antioxidant consumption 69 

and not with OH production (Xiong et al., 2017; Jiang et al., 2019). Therefore, although the toxicity of Fe 70 

cannot be evaluated only by the OPDTT index, but Fe is important in inducing oxidative stress. It is 71 

necessary that the transition metals be solubilized for them to have redox activity. Increased aerosol 72 

acidity due to sulfuric and nitric acids and the formation of metal–ligand complexes with organic matters 73 

affect metal solubility (Meskhidze et al., 2003; Oakes et al., 2012; Paris and Desboeufs, 2013; Fang et al., 74 

2017; Shahpoury et al., 2021; Yang and Weber, 2022). Fang et al. (2017) showed a series of associations 75 

between low aerosol pH, transition metal solubilization, and OPDTT increase due to sulfuric acid. 76 

Zn, for example, is a redox inactive metal with no unpaired electrons in the d orbital and is not 77 

involved in a catalytic cycle like Fe and Cu. However, Zn can cause inflammation directly or indirectly 78 

because of biological mechanisms in the body (Samet et al., 2020; Wu et al., 2013; Gottipolu et al., 79 

2008); such as the inhibition of the ROS reduction circuit in mitochondria (binding sites for Zn2+ on 80 

cytochrome C oxidase) (Muramoto et al., 2007; Qin et al., 2007), the inhibition of tyrosine phosphatase 81 

(Inflammation inhibition enzyme) activity (Samet et al., 1999), and the induction of inflammatory 82 

mediator (IL-8) (Samet et al., 1998). Gottipolu et al., (2008) examined inflammatory markers (increased 83 

rate of macrophages and neutrophils) of metals, such as Zn, in tire particles in rat tracheas and found that 84 

inflammation did not occur when the water-soluble compartment was low. Furthermore, insoluble 85 

components were expelled by mucociliary clearance, whereas soluble metals are bioavailable, leached off 86 

in the lung lining, rapidly enter the circulatory system within 24 h, and migrate to extrapulmonary organs 87 
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such as the heart (Wallenborn et al., 2007). Therefore, the water-soluble fraction of redox-inactive metals 88 

is also an important factor in inducing inflammation in biological processes. 89 

The road transport and power generation sectors are both major sources of anthropogenic pollutant 90 

emissions. However, based on the Paris Agreement, many countries are promoting the spread of 91 

renewable energy and next-generation vehicles, such as battery electric vehicles (BEVs), to reduce 92 

pollutant emissions. In Japan, the government has set a green growth strategy that aims for carbon 93 

neutrality by 2050, targeting the production of 50%–60% of the total electricity demand from renewable 94 

energy sources and 30%–40% of it from nuclear power or thermal power using CO2 capture and storage 95 

(CCS) technologies. It is also aimed that next-generation vehicles will account for 50%–70% of new 96 

passenger car sales by 2030. The renewable energy shift will reduce the emissions of gaseous pollutants 97 

and metals derived from fly ash in thermal power plants. The penetration of BEVs will also reduce on-98 

road emissions, and if the electricity is clean (renewable and nuclear electricity), increased upstream 99 

emissions will be avoided. However, the case for metals emitted from vehicles is slightly more 100 

complicated. 101 

The contribution of “non-exhaust” PM emissions, such as brake, tire, and road wear, is becoming 102 

more significant as exhaust becomes cleaner (OECD, 2020; Vanherle et al., 2021; CEC, 2022). Brake 103 

wear is a major source of metal emissions from automobiles, and metal components (Fe, Cu, Zn, Ba, etc.) 104 

account for 35%–47% of the PM2.5 particle size wear suspended in the air (Hagino et al., 2016). The most 105 

abundant metal in tire treads is Zn, which is added as a vulcanizing agent and accounts for approximately 106 

1% of the PM2.5 size mass of tire wear particles (Smolders and Degryse, 2002; Blok, 2005; Grigoratos and 107 

Martini, 2014). Several reports and review articles have pointed out the risk of non-exhaust PM-derived 108 

metals causing the above health effects (Grigoratos and Martini, 2014; Fussell et al, 2022). However, 109 

regulations for non-exhaust PM are currently limited to only a few regions (OECD, 2020) and are 110 

currently in the process of standardizing emission estimates (EMEP/EEA, 2019) and considering 111 

measures. 112 

Under this situation, several studies have estimated that BEV proliferation will not bring benefits in 113 

terms of non-exhaust PM emissions, which seems to be the consensus (Timmers and Achten, 2016; Alam 114 

et al., 2018; OECD, 2020; Beddows and Harrison, 2021; Fussell et al., 2022; Mehlig et al., 2021; Sisani et 115 

al., 2022). While the increase in vehicle weight due to the BEV's drive battery increases non-exhaust PM 116 

(Timmers and Achten, 2016), the regenerative braking system (RBS) reduces the frequency of friction 117 

brake operation and decreases brake wear. Although these changes are depend on additional weight and 118 

driving assumptions, an increase due to weight and a decrease due to RBS are estimated to cancel each 119 

other out, resulting in a small net change. For example, OECD (2020) estimated that, for lightweight 120 

BEVs (range of 100 miles), the benefits of the RBS would dominate the effect of vehicle weight increase, 121 
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reducing PM2.5 by approximately 11%–13%, while heavy BEVs (range of 300 miles) would increase 122 

PM2.5 by 3%–8% because the significant weight increase would mainly increase tire wear. Beddows and 123 

Harrison (2021) reported that the advantages of the RBS do not offset the disadvantages of vehicle weight 124 

increase in highway driving, although they are reduced in urban and rural areas where braking occurs 125 

more frequently than with internal combustion engine vehicles (ICEVs) (−26% and −12%, respectively). 126 

Alam et al. (2018) evaluated fleet-based CO2 and PM2.5 emission trends based on a BEV penetration 127 

scenario in Ireland through 2035. They estimated that PM2.5 emissions will decrease until about 2028 due 128 

to exhaust gas reductions, but then will begin to increase mainly due to the growing due to the increased 129 

contribution of non-exhaust PM. 130 

However, the relative weight ratios of BEVs to ICEVs in these studies were based on current 131 

assumptions. In reality, it is assumed that vehicle lightweighting technologies, including batteries for 132 

BEVs, will advance in the future (Moawad et al., 2011; Moawad et al., 2016; Kelly et al., 2015), but no 133 

quantitative evaluation of their effects on non-exhaust PM emissions has been conducted. Furthermore, 134 

all of the above studies were based on PM2.5 emissions, and none of them estimated changes in emissions 135 

or atmospheric concentrations of metal components with high oxidative stress risks. Several studies have 136 

conducted to evaluate the impacts of next-generation vehicle penetration on atmospheric PM2.5 137 

concentrations using 3-dimensional numerical modeling, but the primary emissions of non-exhaust PM 138 

were not considered (Tessum et al., 2014; Li et al., 2016; Ke et al., 2017) or assumed to be the same as for 139 

ICEVs (Soret et al., 2014; Pan et al., 2019; Schnell et al., 2019). Only Nopmongcol et al. (2017) assumed 140 

that the brake wear emissions from BEVs and plug-in hybrid electric vehicles (PHEVs) are 25% lower 141 

than those from conventional vehicles, but again, the evaluation was based on only the PM2.5 mass 142 

concentration. 143 

In this study, the impacts of changes in primary emissions associated with the renewable energy 144 

shift, passenger car electrification, and lightweighting through 2050 on not only the mass concentration of 145 

PM2.5 in the atmosphere, but also those of metal species (Fe, Cu, and Zn) and aerosol acidity that cause 146 

respiratory system oxidative stress and inflammation, were evaluated using chemical transport modeling 147 

(CTM). In Section 2, the methodology is explained, including an overview of the CTM, observational 148 

data for model evaluation, and assumptions for sensitivity experiments. In Section 3, the reproducibility 149 

of the model is verified first. Then, the impacts of renewable energy shifting, passenger car electrification, 150 

and lightweighting on the concentrations of the PM2.5 total mass, Fe, Cu, and Zn and aerosol pH are 151 

evaluated. By integrating these results, changes in water-soluble metal concentrations are discussed. In 152 

Section 4, we present conclusions and discuss future work. 153 

154 
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2. Materials and Methods 155 
2.1. Regional meteorology–chemistry model 156 

A regional-scale offline-coupled nonhydrostatic meteorology–chemistry model (NHM-Chem) (full 157 

chemistry version; Kajino et al., 2019a; 2021 and transition metal version; Kajino et al., 2020) was used 158 

in this study. Detail descriptions are summarized in Table S1. Figure 1 shows the model calculation 159 

domains. The mother domain (domain 01) covered the Northeast Asian region and was calculated with dx 160 

= 30 km. The nested domain (domain 02) covered Japan from Kyushu to Tohoku regions with dx = 6 km. 161 

The vertical layer involved 40 layers up to an altitude of approximately 20 km in both domains. Hereafter, 162 

the model simulation results were of the lowest level (approximately 15 m above the ground level) unless 163 

otherwise noted. The calculation period was from January 1, 2015, to December 31, 2015; the simulation 164 

began on December 26, 2014, with a spin-up period of 5 days. 165 

Figure 1. Model domains in this study. (a) Terrestrial elevations of domain 01 (Northeast Asia, dx = 30 166 
km) and (b) same as (a) but for domain 02 (Japan, dx = 6 km).  167 
 168 

First, the emission inventories used for gas and particle calculations for the full chemistry version 169 

model are described. For Northeast Asian anthropogenic emissions, REAS v3.2.1 (minor change in 170 

December 2021 from v3.2 (Kurokawa and Ohara, 2020), 0.25° × 0.25°, base year = 2015) and for Japan, 171 

PM2.5EI (Morikawa, 2017, 1 km × 1 km, base year = 2012) were used. NOx emissions were allocated 9:1 172 

to NO and NO2 for both REAS v3.2.1 and PM2.5EI. Taking chimney elevation into account, emissions 173 

from industries and power plants were distributed in this study from 0 m to 300 m above the ground level. 174 

We assumed the following for the original DB of PM2.5 EI in this study.  175 

 In the PM2.5EI, since there is no information on the mass fraction of “brake wear” in “road dust 176 

(including brake wear)”, it was assumed to be 0.35 based on the value calculated by EMEP/EEA 177 

Elevation (m)
Elevation (m)

(a) Domain 01 : N. E. Asia (dx = 30 km) (b) Domain 02 : Japan (dx = 6 km)

Tohoku

Kanto

Chubu

Kansai

Chugoku

Shikoku
Kyushu
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(2019). The EMEP/EEA air pollutant emissions inventory guidebook (2019) was published by 178 

the European Environment Agency (EEA) and supports the reporting of emissions data under 179 

the UNECE convention on long-range transboundary air pollution (CLRTAP) and the EU 180 

national emissions control directives. In this study, the remainder of “road dust (including brake 181 

wear)” minus “brake wear” is called “road wear and resuspension”. 182 

 In the PM2.5EI, non-exhaust PM emissions from automobiles are not classified by particle size 183 

(those from other sources are classified as PM2.5 or PM10). In this study, the PM2.5 /PM10 mass 184 

fraction of non-exhaust PM was assumed to be 0.35 based on hearing information from 185 

JCAP/JATOP and the estimated data of EMEP/EEA (2019). EMEP/EEA (2019) estimated the 186 

PM2.5 fraction for tire wear, brake wear and road surface wear to be 0.42, 0.39 and 0.27, 187 

respectively, their mean is approximately 0.35. NHM-Chem assumes a log-normal distribution 188 

for the PM particle size distribution at emission. By setting the parameter of number-equivalent 189 

geometric mean dry diameter = 0.80 μm (number-equivalent aerodynamic mean dry diameter = 190 

1.13  μm), and standard deviation = 1.8, the aerodynamic PM2.5 fraction is approximately 0.35. 191 

 Since our available PM2.5EI data do not provide information on the mass fractions of BC and 192 

OC in PM2.5 and PM10 emissions, we applied the corresponding REAS v3.2.1 mass fractions for 193 

each sector of PM2.5EI. The remaining primary PM emissions, excluding BC and OC, were 194 

defined as inert unidentified components (UIDs). 195 

 For domain 2 over Japan, the ship emissions from EAGrid (Fukui et al., 2014; Kannari et al., 196 

2007) were added because PM2.5EI does not provide ship emissions.  197 

GFED v4 (Giglio et al., 2013) was used for biomass burning emissions and JMA data was used for 198 

volcanic SO2 emissions for both domains. Biogenic nonmethane volatile organic compound (NMVOC) 199 

emissions were calculated inline based on MEGAN v2 (Guenther et al., 2006) as a function of 200 

temperature and solar radiation, simulated by the meteorological model. 201 

The transition metal version of the model simulated 10 metals (Cu, Mn, Co, V, Ni, Pb, Fe, Zn, Cd, 202 

and Cr) in three categories (anthropogenic PM2.5 metals, anthropogenic PM10 metals, and Asian mineral 203 

dust metals). The anthropogenic emission inventory used for the simulations of PM2.5 and PM10 metals 204 

was TMI-Asia/Japan v1.1, developed in this study. The previous version (v1.0; Kajino et al., 2020) 205 

contained considerable discrepancies between simulated and observed metal concentrations, especially 206 

for Cu and Zn, which were substantially improved in this revision. In addition, TMI-Asia v1.0 did not 207 

consider  metals from all non-exhaust PM (brake wear, tire wear, road wear and resuspension), but they 208 

were added in v1.1 (note that only Fe, Cu, and Zn were considered for road wear and resuspension). TMI-209 

Japan v1.0 considered brake and tire metal emissions but did not consider those from road wear and 210 

resuspension, which were added in v1.1. The details of the revisions from v1.0 to v1.1 are described in 211 
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Supporting Text S1, Figure S1–S4, and Table S1–S3.  TMI-Asia/Japan were developed by multiplying 212 

sector-specific PM2.5 or PM10 emission estimates from REAS v2 (Kurokawa et al., 2013, 0.25° × 0.25°, 213 

base year = 2008) and PM2.5EI by metal content, respectively. However, in TMI-Japan, brake, tire, and 214 

railway-derived metals were based on PM emission estimates from EAGrid (1 km × 1 km, base year = 215 

2010). The metal content of PM by sector is an average of several literature values registered in 216 

SPECIATE v4.4 provided by the USEPA. The list of metal content by sector used in TMI-Asia/Japan 217 

v1.1 is shown in the Supporting excel data. The metals in Asian mineral dust particles were diagnosed 218 

from the simulated dust mass concentration and the metal profiles of the Certified Reference Material of 219 

the National Institute for Environmental Studies (NIES CRM No. 30; Gobi Kosa) (Nishikawa et al., 220 

2013). 221 

For the initial and boundary conditions for the NHM (meteorological model part of NHM-Chem), we 222 

used a 6-hourly JRA-55 global reanalysis dataset (Kobayashi et al., 2015) for domain 01 and 3-hourly 223 

JMA’s Meso-Regional Objective Analysis (MA) for domain 02 (available at  224 

https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm,  last accessed: 20 January 2023). For 225 

the large-wave components of horizontal momentum and potential temperature (wavelengths >1,000 km), 226 

spectral nudges above a 7-km altitude were applied, and the weighting factor was set to 0.06. For the 227 

chemical transport model (CTM) part of NHM-Chem, monthly climatological values (10-year averages 228 

for the global models MRI-CCM2 and MASINGAR-mk2 from 2003 to 2013) were used for the initial 229 

and boundary concentrations in domain 01, and the results of domain 01 were used for domain 02. The 230 

input/output time interval of CTM was 1 h.  231 

 232 
2.2. Aerosol pH calculation 233 

The aerosol pH discussed in Section 3.2.2 was derived using ISORROPIA-II (Fountoukis and Nenes, 234 

2007). ISORROPIA-II can simulate the thermodynamic equilibrium of water-soluble inorganic ions and 235 

calculate the pH of aerosol particles in the equilibrium state. ISORROPIA-II was implemented in NHM-236 

Chem for the calculation of the condensation of HNO3, NH3, HCl, and H2O (Kajino et al., 2021), but 237 

aerosol pH was not dynamically solved. In addition, ISORROPIA-II in NHM-Chem solves the aerosol 238 

thermodynamics of each aerosol category but does not solve the aerosol pH of bulk submicron aerosols 239 

discussed in the study. Thus, a standalone ISORROPIA-II model was used to diagnose the aerosol pH 240 

after the NHM-Chem simulation. In addition, sensitivity tests of Equations (5)–(7) were only feasible 241 

using this standalone model.  242 

The PM2.5 particle size aerosol pH was derived as follows. First, the forward mode of ISORROPIA-243 

II was run using hourly NHM-Chem calculation results as input data; the mass concentrations (mol m−3) 244 

of K+, Ca2+, Mg2+, NH4+, Na+, SO4
2−, NO3

−, and Cl− in the submicron category (aitken, soot-free 245 
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accumulation, and soot containing accumulation modes), relative humidity (RH), and temperature. The 246 

output of the 1-hour aerosol liquid water content (LWC) and hydronium ion concentration data for each 247 

model grid were monthly averaged and applied to the following equation (1) for defining monthly 248 

averaged aerosol pH: 249 𝑝𝐻 = −logଵ଴൫𝛾ுశ ∙ 𝐻௔௤ା ൯ = −logଵ଴ ቆ1000𝛾ுశ ∙ 𝐻௔௜௥ା𝐿𝑊𝐶 ቇ                      (1) 

 250 

where 𝛾ுశ is the activity coefficient of hydronium ions (assumed =1), 𝐻௔௤ା  is the concentration of 251 

hydronium ions in the aerosol water phase (mol L−1), 𝐻௔௜௥ା  (μg m−3) is the concentration of hydronium 252 

ions per air volume, and 𝐿𝑊𝐶 (μg m−3) is the water concentration of aerosol particles. However, only 1-h 253 

data corresponding to 20% < RH < 95% were used for the monthly average. Data with RH < 20% were 254 

excluded because the aerosol was unlikely to be in a liquid state and the activity coefficient of hydronium 255 

ions in the aerosol water phase was highly uncertain at the case of high concentrations under low RH 256 

conditions (Fountoukis et al., 2009; Guo et al., 2016). The 𝐿𝑊𝐶 increases exponentially with increasing 257 

RH due to the hygroscopicity of NH4NO3 and (NH4)2SO4 (Kitamori et al., 2009). Data with RH >95% 258 

were excluded because the uncertainty in RH could significantly increase the uncertainty in 𝐿𝑊𝐶 and 259 

aerosol pH (Guo et al., 2015; Guo et al., 2016). The 𝐿𝑊𝐶 mainly depends on hygroscopic inorganic 260 

species, such as sulfate. Organics have relatively low hygroscopicity, so their effect on aerosol pH is 261 

small and can be neglected (Guo et al., 2015; Vasilakos et al., 2018 ; Pye et al., 2018). Similar to many 262 

other studies (Lawal et al., 2018; Ding et al., 2019; Paglione et al., 2021), this study did not consider the 263 

impact of organic matter on aerosol pH. Instead, the uncertainty in aerosol pH due to unaccounted for 264 

organic matter is described in Supporting Text S2 and Figure S5. 265 

 266 
2.3. Model experiment cases and parameter setting 267 

2.3.1. Model experiment cases 268 

A base experiment and the following three sensitivity experiments were conducted in this study. The 269 

emissions for each sensitivity experiment were determined by scaling the base experiment by the 270 

coefficients shown in Table 1. Our previous study (Kayaba and Kajino, 2022), which estimated the 271 

impact of the BEV shift of all passenger vehicles on surface O3 concentration, did not consider scenarios 272 

of changes in vehicle type mix or power supply mix over time. However, we developed detailed future 273 

scenarios based on the aims of the Japanese government in this study. The coefficients were derived 274 

based on the estimated trends in vehicle exhaust and non-exhaust emissions, and gasoline and electricity 275 

demands through 2050. The details of the process of derivation are described in Sections 2.3.2–2.3.4. 276 

(1) BASE experiment. 277 
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The simulation period was the whole year 2015, and the emission amounts of the base year (2010–278 

2015) values were used for the simulation (Table S1). 279 

(2) 2050R experiment; assumption of the penetration of renewable energy through 2050. 280 

This scenario assumed the penetration of renewable energy, taking into account changes in the power 281 

supply mix through 2050. The emissions from power plants were reduced considering the decrease in 282 

thermal power generation. 283 

(3) 2050R&E experiment; assumption of the penetration of renewable energy and passenger car 284 

electrification through 2050. 285 

This scenario assumed passenger car electrification (without lightweighting) through 2050 in addition 286 

to (2). Changes in exhaust/non-exhaust emissions due to changes in vehicle type mix (ICEV, hybrid 287 

electric vehicle (HEV), PHEV, and BEV) were considered. To assess the impact of passenger car 288 

electrification, the assumptions for heavy-duty vehicles were not changed. Also, the total number of 289 

vehicles owned and the volume of traffic were not changed to evaluate the sensitivity of changes in 290 

emission factors. The additional electricity demand for charging BEVs and PHEVs was estimated to 291 

be mostly covered by solar surpluses, although not completely, resulting in a slight increase in power 292 

plant emissions of 1% from (2). NMVOC emissions from gas stations were reduced due to the 293 

reduced demand for gasoline. 294 

(4) 2050R&E&L experiment ; assumption of the penetration of renewable energy and passenger car 295 

electrification and light-weighting through 2050. 296 

This scenario considered passenger car lightweighting through 2050 in addition to (3). Non-exhaust 297 

emissions were reduced from (3) due to vehicle weight reduction. It was assumed that exhaust 298 

performance would not change due to lightweighting. No increase in power plant emissions was 299 

assumed (same as (2)), because the additional electricity demand for charging BEVs and PHEVs was 300 

estimated to be lower than that in (2) because of the lower electricity consumption due to 301 

lightweighting, which can be covered by the surplus of solar power. NMVOC emissions from gas 302 

stations were further reduced compared to that in (3) due to the improved of energy consumption by 303 

vehicle lightweighting. 304 

305 
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Table 1. Ratios of emission factors for the sensitivity experiments (2050R, 2050R&E, and 2050R&E&L) 306 
to BASE experiment. 307 

Emission source 
species 

BASE 2050R 2050R&E 2050R&E&L 
particle pollutants gaseous pollutants 

Passenger car exhaust PM2.5, Fe, Cu, Zn 
SOx, NOx, NH3, NMVOCa, 

CO 
1 1 0.31b 0.31b 

Passenger car evaporative  - NMVOCa 1 1 0.31b 0.31b 

Passenger car tire wear PM2.5, Zn - 1 1 1.09c 0.89c 

Passenger car road wear & resuspension PM2.5, Fe, Cu, Zn - 1 1 1.09c 0.89c 

Passenger car Brake wear PM2.5, Fe, Cu, Zn - 1 1 0.67d 0.55d 

Thermal power plant PM2.5, Fe, Cu, Zn 
SOx, NOx, NH3, NMVOCa, 

CO 
1 0.18e 0.19e 0.18e 

Gas station - NMVOCa 1 1 0.41f 0.33f 

a. SOA formation was not included in the simulations. Therefore, changes in NMVOC emissions only 308 
affected changes in oxidant concentrations such as O3, OH, and H2O2, and the associated changes in 309 
secondary inorganic aerosol formation. 310 

b. Passenger car electrification was considered (Figure 4d) 311 
c. Passenger car electrification and lightweighting were considered (Figure 4b) 312 
d. Passenger car electrification,  lightweighting, and effect of BEV’s RBS were considered (Figure 4c) 313 
e. The reduction of thermal power plants was considered (see Figure S1b). No increase in thermal 314 

power plant emissions was assumed because it was assumed that  the additional electricity demand 315 
for charging BEVs and PHEVs (Figure 4e) could be covered by the surplus electricity obtained solar 316 
power generation.  317 

f. The reduction of gasoline consumption was assumed (Figure 4f). 318 
 319 

Table 2 shows the assumptions that were changed and unchanged from the BESE experiment. 320 

 321 

Table 2. Assumptions that were changed or unchanged in the 2050R&E&L experiment compared to the 322 
BASE experiment. 323 

Sector Changed Unchanged 

Vehicle transport 

 Vehicle type mix (passenger car) 

 Vehicle lightweighting (passenger car) 

 Energy consumption (passenger car) 

 Assumption of truck, bus and motorcycle 

 Total traffic volume 

 Total vehicle stock 

Power plant 

 Power supply mix 

 Additional electricity demand for BEV and 

PHEV charging 

 Electricity demand excluding BEV and 

PHEV charging 

Stationary VOC  Gasoline fuel demand at gas stations  Assumption of other stationary VOC source 

Other sectorsa -  All assumptions 

a. Industry, domestic, aviation, navigation, railway, off-road vehicle, and field-burning 324 
325 
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2.3.2. Passenger car lightweighting through 2050 326 

Figure 2 shows the change in vehicle weight for each vehicle type through 2050. For each of the four 327 

vehicle types (ICEV, HEV, PHEV, and BEV), the weights of six components (body frame, tire, engine, 328 

transmission, motor/generator, fuel tank, and drive battery) are combined. Each component weight was 329 

referenced to calculations conducted by Autonomie, a vehicle simulation tool developed by the Argonne 330 

National Laboratory (ANL) of the U.S. Department of Energy (Moawad et al., 2016; Islam et al., 2020). 331 

Autonomie can evaluate vehicle weight, fuel consumption, performance, and cost for various vehicle 332 

classes (mini, medium, small sport utility vehicles (SUV), medium SUV, and pickup truck) and vehicle 333 

types (ICEV, HEV, PHEV, BEV, and fuel-cell electric vehicle (FCV)). In this study, only the body frame 334 

and  the drive battery were assumed to be lightweight through 2050 (their reduction rates are shown in 335 

Table S4 and Table S5, respectively). The lightweighting of body frames can be achieved by alternative 336 

materials, such as high-strength low-alloy steels and aluminum and will be relatively early in the future. 337 

Compared to 2020, approximately –10% will be achieved by 2025, followed by a gradual decrease, with a 338 

lightweighting of approximately 20% in 2050 (Table S4). As the energy density of the battery increases, 339 

the weight per unit capacity decreases for the fixed driving range. Approximately 43% lighter body 340 

frames were expected in 2050 than in 2020 (Table S5). The battery weight of the PHEV was assumed to 341 

be 1/3 of that of the BEV in this study. The weights of other components such as the engine and 342 

motor/generator were assumed to be unchanged. Until 2020, BEVs were net 14% heavier than ICEVs due 343 

to their batteries. By 2050, ICEVs and HEVs will be 15% lighter compared to those in 2020 due to the 344 

lightweighting of the body frame. PHEVs and BEVs have a larger lightweight ratio than ICEVs and 345 

HEVs because of the reduction in battery weight in addition to the reduction in body frame. After 2030, 346 

BEVs and PHEVs will be lighter than ICEVs produced in 2015. By 2050, the weight difference between 347 

vehicle types will be smaller, with a +5% relative weight difference for BEVs compared to ICEVs. 348 

349 
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Figure 2. Vehicle weight transition of each vehicle type through 2050 due to lightweighting. The 350 
numbers shown along with the bars represent the values relative to ICEVs produced until 2020. The error 351 
bars indicate the uncertainty in the degree of the technological progress of lightweighting (low and high). 352 
The weight of each component in the base year (until 2020) was based on literature values derived using 353 
Autonomie (Moawad et al., 2016). Only the glider and the drive battery were assumed to be lightweight 354 
(weight reduction rates are shown in Tables S4 and Table S5, respectively), while the weights of other 355 
components remained unchanged.  356 

357 
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2.3.3. Vehicle type mix through 2050 358 

It is necessary to estimate fractions of each vehicle type and its production year at the same time in 359 

the passenger car fleet in 2050 since the year of vehicle production affects fuel economy and vehicle 360 

weight. In this study, the vehicle turnover was estimated as a function of scrapping rate according to 361 

vehicle age, and the trend in the vehicle ownership share was predicted, as shown in Figure 3a. Figure S6 362 

shows the vehicle type mix of new passenger car sales through 2050. This was estimated based on Sato 363 

and Nakata (2020) (based on data published by the METI, JAMA, and the Next-Generation Vehicle 364 

Promotion Center (NGVP)). Although FCVs are expected to account for approximately 5% of the total 365 

sale share in 2050, FCVs were excluded from this study since they are not majors. Figure S7 shows the 366 

scrap and residual rates as a function of vehicle age, derived by the Weibull functions shown in Equations 367 

(2) and (3). The Weibull function was first proposed by Weibull (1951), and it statistically represents the 368 

phenomenon of machine deterioration. It is widely used in the field of reliability engineering and has been 369 

used for modeling vehicle survivability (Hao et al., 2011). 370 𝑅(𝑡) = exp ቆ− ൬𝑡𝜂൰௠ቇ ,         　　　　　　　　　　　(2) 𝑓(𝑡) = 𝑚 ∙ 𝑡௠ିଵ𝜂௠ ∙ 𝑒𝑥𝑝 ൜− ൬𝑡𝜂൰௠ൠ ,　　　　　　　　　(3) 

 371 

where 𝑅(𝑡) is the survival ratio at age t (years), and 𝑓(𝑡) is the scrap ratio at age t (years). 𝜂 is called 372 

scaling parameter and is defined as the average vehicle lifetime. Assuming 𝑡 = 𝜂 and substituting it into 373 

Equation (2), we obtain the residual 𝑅(𝑡) = 1/𝑒. 𝑚 is called Weibull coefficient. In this study, 𝜂 = 12.7 374 

and 𝑚 = 4.0 were used to reflect the residual pattern of ordinary vehicles in Japan (Lu et al., 2018). 375 

These values were derived by Lu et al (2018) through regression against the patterns of residual rates 376 

derived from data on the numbers of registered and scrapped ordinary vehicles in Japan reported by Huo 377 

and Wang (2012). Figure 3a shows the vehicle type mix by production year for the total passenger car 378 

fleet in Japan through 2050. It was derived by assuming that cars are replenished by the share of new car 379 

sales in that year (Figure S6) for the number of scrapped cars in each year derived in Equation (2). The 380 

estimated vehicle ownership share in 2050 was 11% for ICEVs, 14% for HEVs, 20% for PHEVs, and 381 

55% for BEVs (Figure 3a). 382 

383 
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2.3.4. Change in emissions through 2050 392 
2.3.4.1. Non-exhaust PM emissions from passenger car 393 

The emissions of “tire and road wear and resuspension” and “brake wear” in the 2050R&E&L 394 

experiment were estimated to be 89% and 55% of those in the BASE experiment, respectively (Figure 3b 395 

and 3c solid line). Figure 3b and 3c were derived by weighting the vehicle type mix by production year in 396 

Figure 3a by the vehicle weight in Figure 2 since both non-exhaust PM emissions are proportional to 397 

vehicle weight (Simons, 2016). The brake wear was then further multiplied by 0.33 to take into account 398 

the effect of regenerative braking for BEVs only. In the friction brake system (FBS) used in conventional 399 

vehicles, excess kinetic energy during braking is discarded as heat. In contrast, the RBS in BEVs can 400 

recover braking force by converting it into electrical energy. In BEVs, the combined use of the FBS and 401 

the RBS can reduce brake disc wear. Various values have been reported in the literature regarding the 402 

effectiveness of the RBS in reducing brake wear (Table 3). The value indicated by Hagino (2019), −67%, 403 

was adopted of these literature values in this study. This is because PM emissions are directly measured 404 

by the Particle Measurement Program (PMP) test cycle, an expert working group for brake wear 405 

measurement, and non-asbestos organic (NAO) brake pad material, which is the most common material 406 

used in Japan (accounts for approximately 70% share of passenger cars), is used. The brake wear 407 

reduction effect of the RBS was assumed to be −67%, even if the vehicle weight changed.  408 

Primary emissions from tire and road wear and resuspension will be reduced to approximately 10% 409 

by around 2035 because of the body frame lightweighting of ICEVs and HEVs, but the reduction will 410 

stall after that (Figure 3b solid line) because BEVs will not be relatively lighter than ICEVs, HEVs, and 411 

PHEVs even in the future. As mentioned in Section 2.3.2, BEVs have a large rate of lightweighting and 412 

will be lighter than ICEVs produced in 2015 by 2030, so it was estimated that tire and road dust 413 

emissions will not increase in the future from the 2015 level. 414 

In the case of the 2050R&E experiment, PHEVs are 8% heavier and BEVs are 14% heavier than 415 

ICEVs without considering future weight reductions (Figure 2). Therefore, the increase in the share of 416 

PHEVs and BEVs is estimated to increase tire and road wear and resuspension by 9% in 2050 relative to 417 

the reference experiment (Figure 3b dashed line). This is a disadvantage of BEVs, as mentioned in the 418 

Introduction. However, our estimation suggests that the disadvantages can be suppressed by 419 

lightweighting the body frame and battery (Figure 3b solid line).  420 

Brake wear emissions will be reduced by 33% in 2050 compared to that in 2015 due to the 421 

penetration of BEVs even without considering vehicle lightweighting (Figure 3c dashed line) but can be 422 

reduced by 44% with lightweighting (Figure 3c solid line). 423 

424 



manuscript submitted to GeoHealth 

 

Table 3. Literature values for brake dust reduction owing to the regenerative braking of BEVs. Much of 425 
this information is summarized in OECD (2020). 426 

Sector Reported 
reduction  ratio Unchanged 

Barlow, 2014 almost −100%  Visual confirmation (Brake components look new after 22,000 miles) 

Hooftman et al., 2016 −40% 
Replacement interval of brake pads (BEV’s brake pad last 
approximately two-thirds longer than that of diesel/petrol vehicles, in 
case of Tesla BMW i3 and LEAF) 

Platform for Electro-
mobility, 2016 −25 – −50% Information provided by company (Brake pad reduction ratio in case of 

Renault ZOE) 
Kendrick and Kulkarni, 
2019 −50% Laboratory test  (WLTPa driving cycle and semi-metallic brake pad) 

Hagino., 2019 −67% Laboratory test  (PMPb   driving cycle and NAOc brake pad) 

Hall, 2017 −88% 
Los Angeles city traffic test (LACTT)d 
(The frequency of friction braking for BEVs was 1/8 of that for ICEVs 
of the same vehicle class.) 

a. Worldwide-harmonized light vehicles test procedure 427 
b. Particulate measurement program 428 
c. Non-asbestos organic 429 
d. LACTT is an established procedure used almost universally for generations by vehicle manufacturers 430 

to evaluate and validate braking systems (Hall, 2017). 431 
 432 

2.3.4.2. Exhaust gas and PM emissions from passenger car 433 

The emissions of gaseous pollutants such as NOx from passenger car exhaust will decrease as the 434 

fractions of BEVs and PHEVs increase. The emissions of exhaust gas pollutants in the 2050R&E and 435 

2050R&E&L experiments were assumed to be 31% of those in the BASE experiment (Figure 3d). It was 436 

assumed that the emission factors of exhaust pollutants would not change even if fuel consumption was 437 

improved due to lightweighting. In addition, the emission factors for exhaust pollutants from gasoline 438 

driven HEVs and PHEVs were assumed to be the same as those for ICEVs. This is because while 439 

improved fuel consumption reduces CO2 emissions, but this is not true to trace pollutants such as NOx. 440 

HEVs are often driven by a motor using electricity generated by running the engine at low load and low 441 

speed. The low power operation of the engine may reduce exhaust emissions, but it may also increase 442 

emissions as the aftertreatment system takes longer to warm up and the catalyst stays at a lower 443 

temperature (Zhao and Wang, 2016). 444 

For PHEVs, the ratio of electric driving to gasoline driving was assumed to be 7/3. The PHEV runs 445 

by externally charged electric power for a certain distance from the start of driving with a small drive 446 

battery of approximately 10 kWh and switches to engine-driven hybrid running when the battery's state of 447 

charge (SOC) decreases to a certain value. The ratio of electric drive to the total daily driving distance is 448 

called the utility factor (UF) (Society of Automotive Engineers J2841 standard). Since the UF varies by 449 

person and by day, previous studies have derived the average UF of PHEVs in Japan based on the 450 
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statistical data of the daily distance traveled by PHEV users. It is estimated that the UF = 0.7 when 451 

assuming a PHEV with an electric driving range of 60 km, as represented by the Prius PHV (Hori and 452 

Kaneda, 2012). Therefore, the electric driving ratio of PHEVs was assumed to be 70% in this study as 453 

well. 454 

 455 
2.3.4.3. Upper-stream emissions (thermal power plant and gas station) 456 

The Japanese government expects an increase in renewable energy and a decrease in thermal power 457 

generation in the future in order to decarbonization. The emissions from power plants in the 2050 458 

R&E&L experiment were assumed to be 18% of those obtained from the BASE experiment. 459 

• The power supply mix in 2050 was estimated to be 50% renewable energy, 34% nuclear, and 460 

16% thermal, provided that the government targets would be achieved (Figure S8b). 461 

• Thermal power generation, which provided 89% of the total electricity demand in 2012 (the 462 

PM2.5 EI base year) (Figure S8a) (METI, 2019) would decrease by 82% by 2050. 463 

The change in air pollutant emissions due to the introduction of CCUS in thermal power plants 464 

strongly depends on the type of CO2 capture technology employed (EEA, 2011) (Supporting Text S4).  465 

Furthermore, there are many uncertainties, including future innovations in denitrification and 466 

desulfurization technologies and regulatory changes, so estimating the changes in emission factors of 467 

thermal power plants is difficult. Therefore, the emission factors for pollutants from thermal power plants 468 

were assumed to remain the same in 2050 as in the base year. 469 

No increase in power plant emissions was assumed for charging BEVs and PHEVs since it will be 470 

met by solar surplus electricity in 2050 (Supporting Text S5). Figure 3e shows the electricity demand for 471 

external charging for passenger cars considering the improvement of fuel and electricity consumption 472 

(Table S6) due to electrification and lightweighting in 2050. The external charging electricity demand 473 

was negligible in 2015, as the share of BEVs and PHEVs in the total passenger car fleet was very small, 474 

approximately 0.2% (NGVP’s website: https://www.cev-pc.or.jp/tokei/hanbaidaisu.html; Automobile 475 

Inspection & Registration Information Association (AIRIA)’s website: 476 

https://www.airia.or.jp/publish/statistics/trend.html, both in Japanese, last accessed: 22 January 2023). 477 

The additional electricity demand was only 0.02% of the total annual domestic electricity generation 478 

(107.78 billion kWh year−1; METI, 2019), assuming a total annual passenger car fleet of 420 billion 479 

km/year (MLIT, 2010) and an electricity consumption of 0.17 kWh km−1 for BEVs and PHEVs. In 2050, 480 

the demand for externally charged electricity will increase by 260 times (Figure 3e solid line) due to the 481 

penetration of BEVs and PHEVs, which increase the total electricity demand by 4% in Japan. However, it 482 

was estimated that this additional electricity demand could be met by surplus PV power (even in winter 483 

when solar radiation is low) (Figure S8b). Without considering the improvement of electricity 484 



manuscript submitted to GeoHealth 

 

consumption due to lightweighting (2050R&E experiment), more electricity would be required for 485 

charging (395 times more than that in 2012 (Figure 3e dashed line), and 6% increase in the total demand). 486 

This may not be covered by some surplus power in the winter, but the increase in thermal generation 487 

would be approximately 1% at worst (Supporting Text S5). 488 

The electrification and lightweighting of passenger cars will also reduce gasoline consumption. The 489 

decreasing refueling frequency will reduce fuel evaporation VOCs at gas stations. Figure 3f shows the 490 

gasoline demand by passenger cars. Gasoline consumption by passenger cars accounts for 80% of the 491 

total gasoline consumption (MLIT, 2012). With (without) vehicle lightweighting, it was estimated that 492 

electrification would reduce gasoline consumption in passenger cars by 84% (74%) (Figure 3f, solid 493 

(dashed) line) and VOC evaporation from gas stations by 0.33 (0.41) times compared to those in the 494 

BASE experiment. 495 

 496 

2.4. Observation data for model validation 497 

To validate the simulation results, nationwide seasonal observation data of Ministry of Environment 498 

(MOE), Japan, were used (available at http://www.env.go.jp/air/osen/pm/monitoring.html, last accessed: 499 

January 25, 2023)). The survey was conducted at 192 stations in Japan in 2015 (158 public, 44 roadside, 500 

and 15 background sites). During a period of 2 weeks × 4 seasons for a total of 56 days, daily 501 

concentrations of 32 inorganic elemental components (Cu, Fe, Mn, Ni, Pb, V, Zn, etc.), and 9 ionic 502 

components  (NO3
−, SO4

2−, NH4
+, Na+, K+, Mg2+, Cl−, Ca2+, and C2O4

2−) were analyzed. The 503 

meteorological fields (temperature, pressure, wind speed, and solar radiation) were also measured. The 504 

inorganic elemental components other than Si were mainly measured using inductively coupled plasma-505 

mass spectrometry (ICP-MS) after acid decomposition with nitric acid, hydrofluoric acid, hydrogen 506 

peroxide, etc. The ionic components were analyzed using ion chromatography. In this study, simulated 507 

values from four model grids adjacent to the observation point were weighted inversely proportional to 508 

the square of distances and used for comparison with the observations. 509 

 510 
511 
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3. Result and Discussion 512 
3.1. Model evaluation 513 

First, the reproducibility of metal concentrations is discussed. The scatter plots and comparative 514 

statistics of the simulation results and observations for Fe, Cu, and Zn in PM2.5 are shown in Figure S1 515 

and Table S2, respectively. The biases for Cu and Zn were significantly improved by the revision of the 516 

transition metal emission inventory TMI-Asia/Japan from v1.0 to v1.1 in this study (Figure S1, Table S2). 517 

In v1.0, the NMB of Cu ranged from 130% (roadside site) to 680% (background site) but improved to 518 

approximately 30% after the revision. In addition, the NMB at the Zn at the background site improved 519 

from approximately 100% to –5% (Table S2). Therefore, the metal bias is within approximately 30% for 520 

Fe, Cu, and Zn (refer to Supporting Text S1 for details). The correlation coefficients are R = 0.37, 0.20, 521 

and 0.25 for Fe, Cu, and Zn, respectively, and these were relatively high at the background site, R = 0.51, 522 

0.35, and 0.50, respectively (Table S2), indicating that the model well reproduces the temporal 523 

concentration variations caused by advection from the continent. On the other hand, values were lower at 524 

the roadside sites, R = 0.28, 0.14, and 0.30. One possible cause is the dissociation between inventory and 525 

daily actual emissions. Therefore, this study is discussed on a monthly or annual average concentration 526 

basis. 527 

Next, PM2.5 concentrations and their ionic components in full chemistry simulations are described. 528 

The scatter plots and comparative statistics of the simulated and observed PM2.5 total mass concentrations 529 

and ionic components (SO4
2−, NO3

−, NH4
+, Cl−, Na+, Ca2+, and Mg2+) are shown in Figure S9 and Table 530 

S7, respectively. The model overestimated PM2.5 mass concentrations by approximately 60% throughout 531 

the year (Table S7). As for the main ionic components, the NMBs of SO4
2− and NH4

+ are –13% and –9%, 532 

respectively, but NO3
− is overestimated at 247% (Table S7). The overestimation of NO3

− is significant in 533 

summer (NMB = 94%, 199%, 2008%, and 234% in winter, spring, summer, and fall, respectively) (Table 534 

S7, Figure S9c). The counter ions of NO3
− are considered to be predominantly Na+ derived from sea salt 535 

particles. NHM-Chem defines Cl−, Na+, and Mg2+ concentrations as the ratios of sea salt particle 536 

concentrations and Na+, Mg2+, and Ca2+ as the ratios of Asian mineral dust particle concentrations, and 537 

these ionic components are not simulated separately. The bias for Ca2+ only from mineral dust was within 538 

a factor of 2, but the sea salt particle components, Na+, Cl−, and Mg2+, were overestimated by a factor of 539 

10 or more (Table S7, Figure S9e–S9h). Therefore, the main cause of the PM2.5 overestimation is thought 540 

to be the excess of NaCl, mainly due to the uncertainty in the model's sea salt particle generation rate, and 541 

the associated excess production of NaNO3 due to chlorine loss (NaCl + HNO3 → NaNO3 + HCl). Other 542 

factors such as uncertainties in anthropogenic NOx and NH3 emissions and HNO3 dry deposition rates are 543 

also possible.  544 
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The model also slightly underestimated the temperature (NMB = −10%) (Figure S10a) and 545 

overestimated the RH (NMB = 16%) (Figure S10b). The uncertainties in NO3
− and RH affect the 546 

sensitivity of aerosol pH and thus metal solubility. In this study, when calculating aerosol pH in 547 

ISORROPIA-II, the range of uncertainty in aerosol acidity was considered by also inputting the case 548 

corrected for bias from observations for the NO3
− concentration and RH, respectively. And the range of 549 

metal solubility due to NO3
− and RH uncertainties is described in Section 2.3.4. 550 

 551 
3.2. Impacts of renewable energy shifting, passenger car electrification, and 552 

lightweighting 553 
3.2.1. Impact on primary emissions 554 

3.2.1.1. PM2.5 and PM2.5-metals 555 

First, the metal content assumptions in PM2.5 in TMI-Asia/Japan v1.1 are explained for estimating 556 

the primary emissions of metals. Power plants, automobile exhaust, brake and tire wear, and resuspension 557 

are shown in Table 4 (for other sectors, see supporting information of Kajino et al., 2020).  558 

The PM of fly ash from coal-fired power plants contains 1.0%–10% Fe, 0.01%–0.1% Cu, and 0.01–559 

0.1% Zn approximately, respectively, in both PM2.5 and PM10 particle sizes (Chow et al., 2004). In this 560 

study, the assumptions for the Fe, Cu, and Zn content in thermal power plant exhaust PM2.5 were 4.2%, 561 

0.07%, and 0.3%, respectively. 562 

The gasoline and diesel exhaust gases contain approximately 0.1%–1.0% Fe and Zn and 0.01%–563 

0.1% Cu (Chow et al., 2004). Zn is included because zinc dithiophosphate is added to lubricants as an 564 

antiwear and antioxidant (Lough et al., 2005; Cadle et al., 1997). Fe and Cu are included mainly due to 565 

bearing wear and other component wear mixing (Cadle et al., 1997). The assumptions for the Fe, Cu, and 566 

Zn contents in vehicle exhaust PM2.5 in this study were 0.5%–0.7%, 0.03%–0.06%, and 0.2%–0.4%, 567 

respectively. 568 

The metal content in brake wear varies widely depending on the brake pad material. NAO, the most 569 

major brake pad material in Japan, contains almost no steel material. However, because of the cast iron 570 

component of the rotor (mating material), Fe is the most abundant metal in brake wear PM2.5 (Hagino et 571 

al., 2016; Hagino, 2020). The assumptions for Fe, Cu, and Zn contents in brake wear PM2.5 were 22%, 572 

1.5%, and 1.3%, respectively, in this study (Table S3). 573 

The composition of tire wear is mostly organic matter and carbon. Zn, added as a vulcanizing agent, 574 

is the most abundant heavy metal in tire wear, accounting for approximately 1% (Smolders and Degryse, 575 

2002; Blok, 2005; Grigoratos and Martini, 2014). 576 

It is nearly impossible to separate primary road wear from other mineral dust deposited on roads 577 

(Denier van der Gon et al., 2013). Concrete and asphalt, the main components of road surfaces, are 578 

mineral aggregates comprising the crustal components Si, Ca, K, Fe, and Al, whose compositional ratios 579 
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vary based on the geological source (Harrison et al., 2021). Resuspended particles consist of all non-580 

exhaust particles (brake, tire, and road wear) and particles from other sources deposited on the road 581 

surface (e.g., exhaust gas particles, particles from deicing and gritting, wind-blown dust, and biogenic 582 

particles) (Harrison et al., 2021). The road dust sampling on asphalted roads in Portugal contained 583 

approximately 2%–5% PM10-Fe and 0.03%-0.3% PM10-Cu and PM10-Zn (Alves et al., 2018). In this 584 

study, the assumptions for Fe, Cu, and Zn contents in road wear and resuspension PM were 3%, 0.03%, 585 

and 0.1%, respectively (Table S3). 586 

 587 

Table 4. Assumptions of the metal content ratio in PM2.5 from power plant, vehicle exhaust, brake wear, 588 
tire wear, road wear and resuspension used in TMI-Asia/Japan v1.1 development. 589 
g-metal/g-PM2.5 in % Fe Cu Zn 
Thermal power plant 4.2 0.07 0.3 
Vehicle exhaust 0.5 – 0.7a 0.03 – 0.06a 0.2 – 0.4a 
Brake wear 22.2 1.5 1.3 
Tire wear 0 0 1.0 
Road wear and resuspension 3.0 0.03 0.1 
a. The values used for different vehicle types (mini passenger car, passenger car, light duty truck, 590 

heavy-duty truck, bus, and motorcycle) and subsectors by fuel (gasoline, diesel, and LPG) are 591 
indicated. 592 

 593 
Figure 4 shows the total annual emissions of the anthropogenic PM2.5 total mass, Fe, Cu, and Zn in 594 

domain 02 Japan region and reductions by 2050 due to the renewable energy shifting, vehicle 595 

electrification, and lightweighting. To summarize, in the 2050R&E&L experiment, Fe and Cu were 596 

estimated to be reduced by approximately 19%, Zn by 10%, and PM2.5 total mass by 9%. The decisive 597 

factor in the difference in these reduction rates is the difference in the brake wear-derived contribution to 598 

total emissions. In the 2050R&E&L experiment, brake wear has the largest reduction rate in emission 599 

factors than tire and road wear and resuspension due to the double effect of the regenerative brake and 600 

lightweighting of BEVs. Therefore, the emissions of Fe and Cu, which heavily depend on brake wear, 601 

were most significantly reduced. 602 

Renewable energy shifting contributed the most to the reduction of primary PM2.5 emissions (−5.8%) 603 

(Figure 4a). With the electrification of passenger cars without lightweighting (2050R&E−2050R), the 604 

decrease in PM2.5 from brake wear and exhaust gas would be partially offset by the increase in PM2.5 from 605 

tire wear, road wear, and resuspension. As a result, the net reduction in PM2.5 emissions was −1.4%, 606 

although it did not increase. Lightweighting prevents the increase in tire wear, road wear, and 607 

resuspension, further reducing PM2.5 emissions by 1.9%. However, passenger car exhaust/non-emission 608 

PM2.5 accounts for approximately only 10% of total emissions, and in any case, the PM2.5 reduction effect 609 

of electrification and lightweighting is limited (−3.2%). 610 
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The largest sources of Fe emissions in Japan are brake wear and the steel industry (included in 611 

Industry and others). When PM2.5 from brake wear is reduced by 45% by passenger car electrification and 612 

lightweighting (Table 1), it contributes to a 9.7% reduction in total Fe emissions. When PM2.5 from 613 

thermal power plants is reduced by 82% by renewable energy shifting (Table 1), it contributes to an 8.2% 614 

reduction in total Fe emissions. As a result, reductions in brake wear and thermal power plants 615 

contributed roughly equal to the reduction in Fe emissions (−18.7 ± 1.4%) in 2050 (Figure 4b). 616 

Cu emissions from power plants and other sources are relatively low.  Brake wear is the largest 617 

source of Cu emissions, accounting for 60% of total emissions. Therefore, the reduction in Cu emissions 618 

in 2050R&E&L (−18.9 ± 1.8%) is mostly due to the reduced brake wear (−15.4%) due to passenger car 619 

electrification and lightweighting (Figure 4c). 620 

Zn is characterized by having a tire wear-derived source. In the case of passenger car electrification 621 

without lightweighting (2050R&E−2050R), Zn emissions increase from tire and road wear and 622 

resuspension (+0.3%) but decrease more from brake wear (−4.0%), resulting in a net decrease (−3.5%) 623 

(Figure 4d). 624 

The error bars in Figure 4 show the range of lightweight technology progress. The uncertainties are 625 

estimated to be ±0.6%, ±1.4%, ±1.8%, and ±0.7% of the PM2.5 total mass, Fe, Cu, and Zn emissions in the 626 

2050 R&E&L experiment, respectively, which are relatively small.  Therefore, from now on, the 627 

lightweight technology progress is discussed in terms of low and high averages. 628 

629 
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Figure 4. Total annual anthropogenic emissions of (a) PM2.5 total mass, (b) PM2.5-Fe, (b) PM2.5-Cu, and 630 
(c) PM2.5-Zn in domain 02 Japan region. Comparison between the BASE experiment and each sensitivity 631 
experiment. The contributions of sectors to the reduction ratio in the 2050R&E&L case are indicated as a 632 
pie chart. The error bars indicate the uncertainty due to the degree of the technological progress of 633 
lightweighting; high and low (Figure 2). The reduction ratio shown for each sensitivity experiment 634 
represent is based on the BASE experiment. (a) PM2.5 emission is based on the PM2.5EI inventory. In this 635 
study, the “road dust (including brake wear)” of the original PM2.5EI was allocated to “brake wear” and 636 
“road wear and resuspension” in the ratio of 0.35/0.65 (Section 2.1). (b–d) PM2.5 metal emissions are 637 
based on TMI-Japan, but it does not consider “road wear and resuspension”. “Industry and others” sector 638 
include aviation, navigation, railway, domestic, cooking, incineration, and field burning.  639 

640 
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3.2.1.2. Gaseous pollutants 641 

Figure 5 shows the primary emissions of SOx, NOx, and NH3 in domain 02 Japan region. In the 642 

2050R&E&L experiment, they were reduced by 7%, 16%, and 7%, respectively, in comparison to the 643 

base experiment. 644 

The reduction in SOx emissions is almost entirely due to the reduction in thermal power generation 645 

(Figure 5a). The limit of sulfur content in fuel is lower than 0.001% in Japan (CEC, 2003) to maintain the 646 

performance of diesel particulate filters (DPFs), so there is originally almost no emission from vehicles. 647 

Both passenger cars and thermal power plants contribute to the reduction of NOx emissions, while 648 

the latter contributes more (−9.8%). The domestic NOx emissions would only be reduced by −6.1% 649 

(Figure 5b), even in the case of a 70% emission reduction due to the passenger car electrification in 2050 650 

(Table 1), because of the high contribution of heavy-duty diesel vehicles. 651 

NH3 emission reductions were mainly brought by vehicles. NH3 is generated in power plants during 652 

the denitration process and from vehicles as a byproduct of selective catalytic reduction in diesel vehicles 653 

and three-way catalysts in gasoline vehicles. The change in energy and vehicles contributed to 1.1% and 654 

5.5% NH3 emission reductions from the base year in 2050, respectively (Figure 5c). 655 

NMVOC is a precursor of O3, and O3 and OH radicals originating from O3 contribute to the oxidation of 656 

NOx and SOx to HNO3 and H2SO4, and O3 and H2O2 oxidize SO2 to produce SO4
2− in liquid water 657 

droplets. NMVOC emission decreased by 2% in July and 7% in December due to lower vehicle exhaust 658 

emissions and fuel evaporation at fueling stations (figure omitted).  659 

660 
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3.2.2. Impact on atmospheric PM2.5 and PM2.5-metals concentration 668 

Figure 6a shows the annual average PM2.5 total mass concentration in the BASE experiment, and 669 

Figure 6b shows the sensitivity in the 2050 R&E&L experiment. Figure 6c shows the breakdown of PM2.5 670 

components in area A (urban area including Tokyo; Figures 6a and 6b black boxes) for each sensitivity 671 

experiment. In the 2050R&E&L experiment, the PM2.5 concentration was reduced by 8.3% in area A 672 

(Figure 6b and 6c). 673 

In area A, renewable energy shifting (2050R–BASE) reduced secondary-formed PM2.5 (nitrate and 674 

sulfate) more than primary emission-derived PM2.5 (i.e., UID, BC, and OC) (Figure 6c). The reduction of 675 

SOx from the thermal power plant freed cations (NH4
+, Na+, and Mg2+) in sulfate, which reacted with 676 

HNO3 to form nitrate, thus increasing Na+ (i.e., the reduction of NO3
− was probably partially offset). The 677 

electrification of passenger cars (2050R&E–2050R) reduced exhaust-derived nitrate and non-exhaust-678 

derived UID by about the same amount (Figure 6c). While the reduction of the PM2.5 concentration by the 679 

electrification of passenger cars alone is –2.3%, the reduction in non-exhaust PM due to lightweighting 680 

(2050R&E&L–2050R&E) increased the effect by more than twice (–5.8%). 681 

Figure 6. (a) Annual mean concentration of PM2.5 total mass in the BASE experiment and (b) sensitivity 682 
of the PM2.5 concentration in the 2050R&E&L experiment. (c) shows the breakdown of PM2.5 683 
components in area A (139–140°E, 35–36°N; urban area including Tokyo). 684 
 685 

Figure 7a–7c shows the annual mean concentrations of Fe, Cu, and Zn in PM2.5 in the BASE 686 

experiment. The concentrations are high in urban areas in the Kanto, Kansai, and Chubu regions, which 687 

are major emission sources. For Fe and Zn, the concentration gradient between the Japan Sea and the 688 

Japanese Islands is more gradual than that for Cu, suggesting a relatively higher contribution from 689 

continental transport. As a result of source–receptor analysis, the contribution of the emissions from the 690 

Asian continent was high for Zn, Fe, and Cu in that order, and the seasonal variations associated with 691 

continental advection (high concentrations in winter and spring, low concentrations in summer) were 692 
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process). The net pH sensitivity (Δ𝑝𝐻ோ்) is equal to the sum of the pH sensitivity of the H+
air process 729 

alone (Δ𝑝𝐻ுశ) and that of the LWC process alone (Δ𝑝𝐻௅ௐ஼).  730 

The respective sensitivities can be derived by Equations (5)–(7): 731 Δ𝑝𝐻ோ் = −logଵ଴ ቆ1000𝛾ுశ ∙ 𝐻௔௜௥ା ௦௘௡௦𝐿𝑊𝐶௦௘௡௦ ቇ +  logଵ଴ ቆ1000𝛾ுశ ∙ 𝐻௔௜௥ା ௖௡௧௥௟𝐿𝑊𝐶௖௡௧௥௟ ቇ                     (5) 
Δ𝑝𝐻ுశ  = −logଵ଴ ቆ1000𝛾ுశ ∙ 𝐻௔௜௥ା ௦௘௡௦𝐿𝑊𝐶௖௡௧௥௟ ቇ +  logଵ଴ ቆ1000𝛾ுశ ∙ 𝐻௔௜௥ା ௖௡௧௥௟𝐿𝑊𝐶௖௡௧௥௟ ቇ                     (6) 

Δ𝑝𝐻௅ௐ஼ = −logଵ଴ ቆ1000𝛾ுశ ∙ 𝐻௔௜௥ା ௖௡௧௥௟𝐿𝑊𝐶௦௘௡௦ ቇ +  logଵ଴ ቆ1000𝛾ுశ ∙ 𝐻௔௜௥ା ௖௡௧௥௟𝐿𝑊𝐶௖௡௧௥௟ ቇ                     (7) 
 732 

where 𝐻௔௜௥ା ௖௡௧௥௟  and 𝐿𝑊𝐶௖௡௧௥௟  are the reference H+
air and LWC concentrations (μg m–3), and 𝐻௔௜௥ା ௦௘௡௦ and 733 𝐿𝑊𝐶௦௘௡௦ are those of sensitivity. The renewable energy shifting decreased aerosol acidity (maximum pH 734 

+0.2) in areas near power plants (Figure 9b), and the passenger car electrification increased aerosol 735 

acidity (maximum pH –0.2) in urban areas (Figure 9e). The aerosol acidity increased slightly net in urban 736 

areas in 2050 (maximum pH –0.1) (Figure 9a).  737 

The explanation of the sensitivity of pH due to renewable energy shifting is relatively simple. 738 

Renewable energy shifting mainly reduces SOx and NOx emissions from power plants but has a small 739 

effect on NH3 reduction. Also, because SO4
2− is nonvolatile, the effect on pH due to the SOx emission 740 

control is not affected by gas–aerosol distribution, contrary to the case of NOx and NH3 emission control. 741 

Therefore, Δ𝑝𝐻ுశ increased (Figure 9c). Although the LWC decreases as SO4
2− decreases, the freed 742 

cations (such as NH4
+ and Na+) form nitrate with HNO3 (Seinfeld and Pandis, 2016), which may partially 743 

offset the LWC decrease. Despite the reduction in power plant NOx emissions, increases in nitrate 744 

partially occurred in this study as well, but the effect of sulfate reduction was larger, resulting in a net 745 

decrease in LWC (Δ𝑝𝐻௅ௐ஼ decrease) (Figure 9d). Finally, the effect of H+ reduction (pH increase) (Figure 746 

9c) was greater than the effect of concentration by LWC reduction (pH decrease) (Figure 9d), resulting in 747 

a net pH increase (Figure 9b). 748 

The vehicle electrification contributed to the pH decrease (Figure 9e). The reduction of on-road NOx 749 

and NH3 resulted in an increase in H+ (Δ𝑝𝐻ுశ decreased) in urban areas in July as a result of the acid–750 

base balance (Figure 9f). However, in December, unlike the trend in July, the distribution of Δ𝑝𝐻ுశ was 751 

random with mixed positive and negative values (Figure S17f). These differences in sensitivity trends are 752 

due to seasonal differences in aerosol pH. The aerosol pH was lower in summer, and NH4
+ tended to be 753 

more present in the particle phase than NO3
−, so NH3 emission reduction was effective in reducing NH4

+ 754 

(i.e., increasing H+) in the particle phase. This mechanism of seasonal differences in aerosol pH 755 

sensitivity due to NOx and NH3 emission controls is discussed in detail in Appendix A. The effect of 756 Δ𝑝𝐻௅ௐ஼ was small in both summer and winter (Figure 9g). 757 
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The vehicle lightweighting had little effect on either the H+ or LWC process (Figure 9i and 9j). Note 758 

that the impact of light-weighting alone is due only to reduced fuel evaporative NMVOC emissions at the 759 

gas station and not to any change in on-road emissions (Table 1).  760 

761 
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3.2.4. Impact on water-soluble metals 770 

Finally, the sensitivity of water-soluble metal concentrations is discussed, considering the water 771 

solubility of metals depending on aerosol pH. Figure S18 shows the relationship between aerosol pH and 772 

the water solubility of Fe and Cu indicated by Fang et al. (2017). The solubility of metals increases 773 

significantly below pH 2–3 (Fang et al., 2017; Wong et al., 2020). Fang et al. (2017) did not measure Zn, 774 

but Zn was reported to have a higher water-soluble fraction under the same pH conditions than Cu 775 

(Shahpoury et al., 2021), and in this study we assumed that the water-soluble fraction of Zn is the same as 776 

that of Cu.  777 

The change in metal solubility due to emission changes in 2050 (2050R&E&L–BASE) was 778 

estimated to be negligible (<1%). Note that the uncertainties in the NO3
− concentration and RH of the 779 

model simulations may result in biases less than ±1% and ±3%  for changes in the water-soluble fractions 780 

of Fe and Cu, respectively. In addition, water-soluble fractions may be affected by history in past 781 

transport pathways (Wong et al., 2020), but this effect was not considered. In addition, the solubility of 782 

metals is promoted by not only changes in aerosol pH (i.e., proton-driven) but also by complex formation 783 

with organic materials and their photoinduced dissolution. The solubility of Fe at pH 2 with oxalate under 784 

dark conditions was found to be  four times greater than that of proton-promoted dissolution, and 785 

photoinduced dissolution was twice greater than that found under dark conditions based on laboratory 786 

experiments (Chen and Grassian, 2013; Ito, 2015). The effects of such ligand-drive and photoinduced 787 

dissolution were not considered in this analysis. Compared to the ranges of these uncertainties and the 788 

seasonal variation of aerosol pH, the sensitivity of metal solubility in the 2050R&E&L experiment was 789 

estimated to be very small. 790 

Table 5 summarizes the total metal concentrations, water-soluble fractions of metals, and water-soluble 791 

metal concentrations in area A. Their respective spatial distributions are shown in Figure S19. The 792 

sensitivity of water-soluble metal concentrations in the 2050R&E&L experiment depends on (1) changes 793 

in primary metal emissions and (2) changes in aerosol acidity, and sensitivity due to each alone is also 794 

shown. As described above, aerosol acidity is largely determined by seasonality. The sensitivity of water-795 

soluble metal concentrations depends on (1) changes in primary metal emissions and is barely by (2) 796 

changes in aerosol acidity (maximum +2% for Fe and maximum +0.5% for Cu and Zn). Therefore, the 797 

primary emission control of metals is more important than gaseous pollutants in reducing water-soluble 798 

metal concentrations. 799 

800 
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Table 5. Total metal concentrations, water-soluble fractionss of metals and water-soluble metal 801 
concentrations in area A (139–140°E, 35–36°N). Comparison of the BASE and 2050R&E&L experiments 802 
for water-soluble metal concentrations and the contribution to these from (1) changes in primary metal 803 
emissions and (2) changes in aerosol acidity alone, respectively. 804 

 total metal 
concentration 

(ng m−3) 

water-
soluble 

fraction of 
metalsa (%) 

water-soluble metal concentration (ng m-3) water-soluble metal sensitivity (ng m-3) 
BASE 2050R&E&L 

(sensitivity from BASE in %) 
(1) 

by metal emission 
change 

(2) 
by aerosol acidity 

change 
July Fe 147.0 34 49.5 43.8 (–12%) –6.8 (–14%) +1.0 (+2%) 

Cu 6.1 100 6.1 5.0 (–18%) –1.1 (–18%) ±0.0 (±0%) 
Zn 19.8 100 19.8 19.0 (–6%) –1.2 (–6%) ±0.0 (±0%) 

Dece
mber 

Fe 169.3 12 20.0 20.1 (–9%) –2.4 (–11%) +0.5 (+2%) 
Cu 7.3 52 3.7 3.2 (–17%) –6.0 (–17.5%) +0.02 (+0.5%) 
Zn 30.3 52 15.8 15.5 (–4%) –0.7 (–4.5%) +0.1 (+0.5%) 

a. The water-soluble fraction of metals was derived from the calculated aerosol pH and Figure S18 805 
(relationship between aerosol pH and the water-soluble fraction of metals indicated by Fang et al. 806 
(2017)). Since there is no information on the water-soluble fraction of Zn, it was assumed to be the 807 
same as that of Cu. 808 

 809 
 810 
4. Conclusions and Future issue 811 

The impacts of renewable energy shifting, passenger car electrification, and lightweighting on the 812 

atmospheric concentrations of the PM2.5 total mass, Fe, Cu, and Zn and aerosol acidity in Japan through 813 

2050 were evaluated using a regional meteorology–chemistry model. 814 

The domestic primary emissions of PM2.5, Fe, Cu, and Zn reduced by 9%, 19%, 18%, and 10%, and 815 

their surface concentrations in the urban area decreased by 8%, 13%, 18%, and 5%, respectively. On a 816 

PM2.5 mass basis, BEVs have been considered to have no advantage in non-exhaust PM emissions 817 

because the increased tire and road wear and resuspension due to their heavy weight offset the benefit of 818 

brake wear reduction by the regenerative brake. Indeed, passenger car electrification without 819 

lightweighting also did not significantly reduce the PM2.5 concentration in the urban area in this study (–820 

2%) but was highly effective in reducing Fe and Cu concentrations owing to high brake wear-derived 821 

contributions (–8% and –13%, respectively). In addition, this study estimated that the lightweighting of 822 

the drive battery and the body frame would reduce even tire and road wear and resuspension. Therefore, 823 

vehicle electrification (mainly BEVs) and lightweighting could be one of the effective means of reducing 824 

the risk of respiratory inflammation. 825 

Renewable energy shifting reduced SOx and NOx emissions from thermal power plants and 826 

decreased aerosol acidity near power plants (maximum pH +0.2), while the passenger car electrification 827 

reduced NOx and NH3 emissions and slightly increased aerosol acidity in the urban are as a result of acid–828 

base balance (maximum pH –0.2). It is because that, in summer, NH4
+ tends to be more present in the 829 

particle phase than NO3
− due to the low pH of the aerosol and NH3 emission reductions were more 830 

effective than NOx reductions on aerosol acidity. In winter, their effects were comparable. However, 831 
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anyway, changes in aerosol acidity little changed water-soluble metal concentrations (maximum +2% for 832 

Fe, +0.5% for Cu, and Zn); therefore, it is important to reduce primary metal emissions. 833 

Finally, we present four major future issues for the model prediction of the risk of respiratory 834 

inflammation due to air pollutants. 835 

1. Consideration of PAHs and PAH quinones in the model. PAH quinones catalytically consume DTT 836 

in the redox cycle (Kumagai et al., 2002; Jiang et al., 2019;  McWhinney et al., 2013; Charrier and 837 

Anastasio, 2012) and also have noncatalytic DTT-consuming effects through direct addition with 838 

DTT (Gant et al. al., 1988;  Katritzky et al., 2008). PAHs are also reduced to quinones in the body by 839 

reductases such as cytochrome P-450 (Kumagai et al., 2012; Jiang et al., 2019). 840 

2. Consideration of the source-dependent solubility of metals. The Fe solubility of pyrogenic aerosols 841 

such as biomass burning and fossil fuel combustion varies greatly depending on the source and can be 842 

one to two orders of magnitude higher than that of lithogenic aerosols (as low as 0.5%) (Ito et al, 843 

2021). Oakes et al. (2012) estimated Fe solubility in automobile exhaust and biomass burning to be 844 

51–75% and 46%, respectively. The solubility of aerosol Fe in coal fly ash (present as glassy Fe 845 

(oxyhydroxide aggregates)) was reported to be less than 1%, while the that of oil fly ash (present as 846 

ferric sulfate salt) was as high as 36% (Desboeufs et al., 2005) and even approximately 80 % (Schroth 847 

et al., 2009). In metal modeling, it is ideal to be able to set the initial solubility rate at primary 848 

emissions linked to emission inventories, in addition to the atmospheric process of changing 849 

solubility due to protons and ligands. 850 

3. Consideration of organic matter in the model. Water-soluble organic compounds (WSOCs) such as 851 

HULIS and transition metals have synergistic, additive, or antagonistic effects on OPDTT (Xiong et al., 852 

2017; Yu et al., 2018; Lin and Yu, 2020). WSOCs also contain atmospheric ROS (H2O2, ROOH), 853 

which decompose in the body to bring OH radicals (Tong et al., 2016). Furthermore, the complex 854 

formation of metals with the organic ligands of oxalates solubilizes the metals (Chen and Grassian, 855 

2013; Zhou et al., 2015; Wong et al., 2020). Ligand-driven iron dissolution may play an important 856 

role, especially under low-pH conditions, compared to proton-driven dissolution (Chen and Grassian, 857 

2013). This is because under high pH conditions, the Fe particle surface loses its positive charge, 858 

while the acid dissociates and becomes more negatively charged, resulting in a repulsive electrostatic 859 

action that makes it less likely for the acid to approach and bind to the surface (Chen and Grassian, 860 

2013; Miller et al., 1986). Therefore, it is important to consider the organic matter in terms of its own 861 

ROS-producing capacity and metal solubilization. 862 

4. Consideration of differences in metal solubility between the atmosphere and the body. Because the 863 

respiratory tract is water-saturated and the alveolar epithelial lining fluid is weakly basic, the 864 
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solubility of metals that affects ROS production may be different between the atmosphere and the 865 

body, requiring further investigation. 866 

5. Improvement of the reproducibility of nitrate concentration by NHM-Chem. The current NHM-Chem 867 

was found to overestimate NO3
− especially in the summer, due probably to the overestimation of the 868 

PM2.5 fraction of sea salt particles (to produce NaNO3). This overestimation does not substantially 869 

affect the main results of this study, but should be resolved in the future using size-resolved 870 

measurements of inorganic compounds.  871 

872 
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Figure A3 shows the ratio of the particle phase in TNO3 or TNH4 (εNO3 = NO3
−/( NO3

− + HNO3), 902 

εNH4 = NH4
+/( NH4

+ + NH3), respectively) to ambient aerosol pH conditions. The dots are scatter plots of 903 

aerosol pH and εNO3 and εNH4 from the simulation results (2050R experiment). In July, NH4 is clearly 904 

partitioned into the particle phase and NO3 into the gas phase, and the two are almost completely 905 

separated (Figure A3a), whereas, in December, the same trend as described above was observed in the 906 

relatively low-pH region (<0.5), but the gas–aerosol partitioning of NO3 and NH4 was comparable in most 907 

cases, ranging from approximately 0.4 to 0.9 (Figure A3b). 908 

Guo et al. (2017) proposed that 𝜀𝑁𝑂ଷି  and 𝜀𝑁𝐻ସା can be expressed as sigmoid functions with respect 909 

to pH by the following Equations (A1) and (A2), depending on the ambient aerosol pH, LWC, and T 910 

conditions. 911 𝜀𝑁𝑂ଷି = 𝐾௡ଵ 𝐻ுேைయ 𝐶ｗ 𝑅 𝑇𝛾ுశ𝛾ேைయష 𝐻௔௤ା + 𝐾௡ଵ 𝐻ுேைయ𝐶ｗ 𝑅 𝑇                                  (𝐴1) 

𝜀𝑁𝐻ସା =  𝛾ுశ𝛾ேுరశ
 𝐻ேுయ𝐾௔ 𝐻௔௤ା  𝐶ｗ 𝑅 𝑇 1 + 𝛾ுశ𝛾ேுరశ

 𝐻ேுయ𝐾௔ 𝐻௔௤ା  𝐶ｗ 𝑅 𝑇                                             (𝐴2) 

 912 

where 𝐻௔௤ା  is the concentration of hydronium ions in the aerosol aqueous phase (mol L–1), Cw is the LWC 913 

in air (μg m–3), 𝐾௡ଵ and 𝐾௔ are the acid dissociation constants for HNO3 and NH4
+, respectively (𝐾௡ଵ =914 12, 𝐾௔ = 5.69 × 10ିଵ଴), 𝑅 is the gas constant, and 𝑇 is the temperature (K). 𝐻ுேைయ  and  𝐻ேுయ are 915 

Henry's Law constants for HNO3 and NH3, which are functions of temperature. 𝛾ுశ , 𝛾ேைయష , 𝛾ேுరశ are the 916 

ion activity coefficients of H+, NO3
 –, and NH4

+ respectively. 𝛾ுశ 𝛾ேைయష = 0.324 and 𝛾ேுరశ 𝛾ேைయష = 0.017, 917 

in this study.  918 

The S-curves in Figure A3 are 𝜀𝑁𝑂ଷି  and 𝜀𝑁𝐻ସା derived from theoretical Equations (A1) and (A2). 919 𝜀𝑁𝑂ଷି  increases with higher ambient aerosol pH due to promoted particulation. The S-curve of 𝜀𝑁𝑂ଷି  920 

shifts to the right as gasification is promoted at higher temperatures and lower humidity, even under the 921 

same pH conditions. 𝜀𝑁𝐻ସା, contrary to 𝜀𝑁𝑂ଷି , tends to be higher at lower pH and tends to shift to the left 922 

at higher temperatures and lower humidity. The gas–aerosol partitioning of the simulation results is 923 

consistent with the function derived in the theoretical equation; that is, it can be approximately explained 924 

by aerosol pH, LWC, and temperature. 925 

926 
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