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Abstract

This commentary discusses new advances in the predictability of east African rains and highlights the potential for improved early

warning systems (EWS), humanitarian relief efforts, and agricultural decision-making. Following an unprecedented sequence of

five droughts, in 2022 23 million east Africans faced starvation, requiring >$2 billion in aid. Here, we update climate attribution

studies showing that these droughts resulted from an interaction of climate change and La Niña. Then we describe, for the first

time, how attribution-based insights can be combined with the latest dynamic models to predict droughts at eight-month lead-

times. We then discuss behavioral and social barriers to forecast use, and review literature examining how EWS might (or might

not) enhance agro-pastoral advisories and humanitarian interventions. Finally, in reference to the new World Meteorological

Organization (WMO) “Early Warning for All” plan, we conclude with a set of recommendations supporting actionable and
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authoritative climate services. Trust, urgency, and accuracy can help overcome barriers created by limited funding, uncertain

tradeoffs, and inertia. Understanding how climate change is producing predictable climate extremes now, investing in African-led

EWS, and building better links between EWS and agricultural development efforts can support long-term adaptation, reducing

chronic needs for billions of dollars in reactive assistance. The main messages of this commentary will be widely. Climate

change is interacting with La Niña to produce extreme, but extremely predictable, Pacific sea surface temperature gradients.

These gradients will affect the climate in many countries creating opportunities for prediction. Effective use of such predictions,

however, will demand cross-silo collaboration.
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Abstract:  5 

This commentary discusses new advances in the predictability of east African rains and 6 

highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, 7 

and agricultural decision-making. Following an unprecedented sequence of five droughts, in 8 

2022 23 million east Africans faced starvation, requiring >$2 billion in aid. Here, we update 9 

climate attribution studies showing that these droughts resulted from an interaction of climate 10 

change and La Niña. Then we describe, for the first time, how attribution-based insights can be 11 

combined with the latest dynamic models to predict droughts at eight-month lead-times. We then 12 

discuss behavioral and social barriers to forecast use, and review literature examining how EWS 13 

might (or might not) enhance agro-pastoral advisories and humanitarian interventions. Finally, in 14 

reference to the new World Meteorological Organization (WMO) “Early Warning for All” plan, 15 

we conclude with a set of recommendations supporting actionable and authoritative climate 16 

services. Trust, urgency, and accuracy can help overcome barriers created by limited funding, 17 

uncertain tradeoffs, and inertia. Understanding how climate change is producing predictable 18 

climate extremes now, investing in African-led EWS, and building better links between EWS 19 

and agricultural development efforts can support long-term adaptation, reducing chronic needs 20 

for billions of dollars in reactive assistance. 21 

The main messages of this commentary will be widely. Climate change is interacting 22 

with La Niña to produce extreme, but extremely predictable, Pacific sea surface temperature 23 

gradients. These gradients will affect the climate in many countries creating opportunities for 24 

prediction. Effective use of such predictions, however, will demand cross-silo collaboration. 25 
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Plain language summary 26 

Eastern East Africa is extremely food insecure. Millions of farmers and pastoralists rely on two 27 

meagre rainy seasons that arrive twice a year. In the thirteen seasons since late 2016, the region 28 

experienced eight droughts and three exceptionally wet seasons. Seven droughts were linked to 29 

exceptionally strong Pacific sea surface temperature gradients, which arose through an 30 

interaction between climate change and La Niña. For the first time, we show that these gradients 31 

can be very well predicted by the current generation of climate models. We then discuss how 32 

such information might be used to inform risk management, harvests, and livestock management 33 

practices. The IGAD Climate Predictions and Applications Center, Ethiopian and Kenyan 34 

meteorological agencies, and other groups are providing increasingly accurate climate 35 

information. This provides opportunities for more proactive and effective agricultural and 36 

pastoral advisory services. Trust, urgency and accuracy can lower uncertainty, reduce risk 37 

aversion, and empower poor households and cash-strapped institutions to act and innovate. As 38 

Climate change will bring more extreme (but predictable) Pacific and Indian Ocean sea surface 39 

temperature gradients. Investing now in collaborative African climate services, participatory 40 

advisory services and proactive risk management will help counter these threatening climate 41 

extremes. 42 

Main Points 43 

1. Climate change and La Niña are producing extreme Pacific temperature gradients, which can 44 
be predicted very far in advance. 45 

2. These Pacific temperature forecasts provide opportunities for predicting wet and dry outcomes 46 
very well in East Africa. 47 

3. Increased trust, urgency and accuracy can help overcome barriers associated with limited 48 
funding, uncertain tradeoffs, and inertia. 49 

50 
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Main 51 

In this commentary, an interdisciplinary, international set of authors describes how climate 52 

attribution studies have led to new advances in the predictability of Eastern Horn of Africa 53 

(EHoA) rains, and then explores how these forecasts might better guide humanitarian relief and 54 

proactive agricultural decisions in the future, leading to increased resilience (Fig. 1A). The team 55 

includes scientists from the IGAD Climate Prediction and Applications Center (ICPAC), the 56 

Famine Early Warning Systems Network (FEWS NET), Ethiopian and Kenyan Meteorological 57 

Departments, and scientists engaged in agricultural development, advisory services, and 58 

humanitarian relief efforts. Updating previously published climate attribution studies1-7, we show 59 

that sequential EHoA droughts are tied to strong east-west sea surface temperature (SST) 60 

gradients, which arise through an interaction of human-caused climate change (hereafter referred 61 

to simply as climate change) and La Niña (Fig. 1). We then describe, for the first time in print, 62 

how the latest generation of climate models can predict these gradients and very warm west 63 

Pacific SSTs, and consequently EHoA droughts, at surprisingly long (eight-month) lead-times 64 

(Fig. 2). Given that climate change is likely to increase the frequency of these events (Fig. 3), we 65 

conclude with a discussion of the long-term implications of a potential increase in drought 66 

frequency. While many countries in East Africa have, in theory, policies supporting increased 67 

agricultural productivity and disaster risk management8, in practice, millions of poor households 68 

remain vulnerable to climate shocks9. Could improved forecasts and EWS be useful to 69 

agricultural and food security decision-makers?  70 

The schema in Fig. 1A lays out the logic of this Commentary. We first describe how climate 71 

change attribution leads to a tailored forecast process that produce more accurate long lead time 72 

forecasts. We then discuss how these forecasts might improve humanitarian relief planning, 73 
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agricultural outcomes and food security if decision-makers are able to translate predictions into 74 

effective practice. Appropriately interpreting and communicating forecasts can decrease the 75 

uncertainty associated with trade-offs. This improves decision-making and makes information 76 

more actionable via technically feasible cost-effective response that addresses limited resources. 77 

Social and individual inertia potentially is reduced through localized, relevant information. We 78 

conclude by discussing how trust, urgency, and accuracy may help overcome barriers created by 79 

limited funding, uncertain tradeoffs, and inertia, and provide a set of recommendations related to 80 

effective EWS development and implementation in the context of climate change. 81 

While focused on the EHoA, the techniques, opportunities, and barriers discussed here may 82 

be widely applicable to many areas exposed to risks associated with La Niñas. Human-induced 83 

warming in the west Pacific is interacting with natural El Niño-Southern Oscillation (ENSO) 84 

variability, but tailored forecasting approaches can translate the influence of climate change into 85 

expanded opportunities for prediction.  86 

Background – volatile climate, humanitarian crises, but opportunities for predictions 87 

Since late 2016, the EHoA (Ethiopia, Kenya, and Somalia to the east and south of 38°E and 88 

8°N) has experienced a high degree of climate volatility, with recurrent shocks due to frequent 89 

droughts and floods. During this period, nine seasons were dry, three were wet, and only two had 90 

normal rains (Fig. 1B). Below-normal rains are inadequate to support productive crops and 91 

rangeland10.  92 

Seven of the dry eight dry seasons in Fig. 1B were anticipated with operational “tailored” 93 

forecasts11, based on climate-change-enhanced west Pacific SST, La Niña, and strong Pacific 94 

SST gradients (with one false alarm in March-April-May, or MAM, 201811). Hits, i.e., droughts 95 
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that were accurately forecasted, included the back-to-back drought sequence in 2016/1712 and the 96 

five sequential below-normal seasons stretching from October-November-December (OND) 97 

2020 through OND 2022. These tailored forecasts benefitted from a two-step approach that 1) 98 

attributes droughts to extreme SST states, which arise through the interaction of natural 99 

variability and climate change (Fig. 1), then 2) predicts these states using the latest state-of-the-100 

science climate forecast ensembles (Fig. 2).  101 

EHoA’s position makes it uniquely exposed to climatic hazards driven by Indo-Pacific SSTs. 102 

When SST gradients increase rains above the eastern Indian Ocean and western Pacific, rains 103 

decrease over EHoA. This links EHoA precipitation to La Niña and Indian Ocean Dipole (IOD) 104 

events. During OND, these connections are well-established. There is less consensus for MAM. 105 

Some research suggests MAM rains are weakly linked to SSTs13-15, and hence, largely 106 

unpredictable. However, many FEWS NET studies1-7 have attributed sequential OND/MAM dry 107 

seasons to Pacific SST gradients which arise through an interaction between La Niña and climate 108 

change.  109 

These insights, combined with increasingly sophisticated climate forecast systems, has 110 

supported five successful long-lead forecasts in a row11. Eight months before the end of OND 111 

and MAM, strong Pacific SST gradients can be accurately predicted. In May16 and November17 112 

of 2022, these inputs helped motivate exceptional multi-agency drought alerts. Never before had 113 

such a broad coalition of EHoA early warning experts acted so successfully so far in advance of 114 

the next rainy season. Yet, by late 2022, the interaction of five sequential droughts, COVID-19, 115 

conflict, inflation, and pre-existing vulnerabilities placed 23 million people in food security 116 

crises17. In Somalia, despite massive humanitarian responses reaching more than 7 million 117 

people, experts anticipated the outbreak of famine in 2023. Despite repeated, accurate 118 
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predictions of drought (Fig. 1B), the magnitude of this crisis continued to grow. An EWS may 119 

begin with climate information, but requires effective transformation into actions which can 120 

increase resilience (Fig. 1A). This requires a shared understanding of how climate change and 121 

ENSO, together, offer opportunities for long lead predictions. Hence, we describe here the 122 

potential of these forecasts, and then discuss the opportunities and barriers associated with using 123 

such information within participatory agricultural advisory systems and humanitarian EWS for 124 

incentivizing adaption and reducing food insecurity. With more research and dialogue, the 125 

incorporation of such forecasts into operational forecast systems and policy-relevant decision-126 

making processes may help our communities cope with increasing climate volatility, both in 127 

EHoA and in other areas linked to Indo-Pacific SSTs. 128 

Data and Methods 129 

This study relies on widely used Climate Hazard Center rainfall data sets18,19 and NOAA 130 

Extended Reconstruction SST data20. The terms dry, normal, and wet correspond to bottom, 131 

middle, and top-tercile rainy season outcomes. To reduce repetition, we also use “drought” to 132 

refer to below-normal rainy seasons. Seasonal SST forecasts are based on the North American 133 

Multi-Model Ensemble (NMME)21. A 152-member, 25 model ensemble from the Coupled 134 

Model Intercomparison Project Phase 6 (CMIP6) is used to examine projected human-induced 135 

SST increases, based on a moderate emissions scenario (Shared Socioeconomic Pathway 2-4.5, 136 

SSP2-4.5)22. The attribution analyses, detailed in our first results section and presented in Fig. 1, 137 

are updates of climate attribution studies focused on the 2016/17 droughts6,7. These results6,7 138 

informed accurate tailored forecasts11 (Fig. 2), which we describe in our second results section. 139 

We then describe increasing risks associated with CMIP6 projections of stronger future Pacific 140 

SST gradients, new spatially-explicit forecast results, and biochar-based farming practices in a 141 
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third results section (Fig. 3). We then discuss how improved “climate-smart” decision-making 142 

might help regions cope with more frequent climate extremes. This discussion is guided by 143 

existing literature, ongoing policy-relevant activities in East Africa, the authors’ experience, and 144 

the recently announced WMO “Early Warning for All” project23.  145 

Inclusion and Ethics: By design, this Commentary includes numerous authors from East 146 

Africa, as well as numerous collaborators in the US or Europe. The authors also represent several 147 

different communities of practice: climate, agricultural development, and food security. Effective 148 

dialog across these communities will be needed to guide effective adaptation. The collaboration 149 

supporting this article furthers that objective.   150 

Results 1 – linking recent droughts to extremely warm Pacific SSTs and climate change 151 

Scientists have long emphasized the societal dangers24,25 associated with predictable21,26-152 

28   El Niños and La Niñas and climate change is expected to increase the frequency of strong 153 

ENSO and IOD events29-32. What is less appreciated is that the interaction of climate change and 154 

ENSO is creating opportunities for prediction—now. As climate change rapidly warms33 155 

dynamically important regions in the Indian34-36 and Pacific Oceans37,38, exceptionally warm 156 

ocean conditions can produce potentially predictable droughts and wet seasons6,7,39.  For EHoA, 157 

this may be especially important for MAM, due to a strengthening connection to La Niña40. 158 

Figure 1C-F updates attribution studies that identified how extremely warm west Pacific SST 159 

contributed to droughts in 2016/176,7.  Composites of standardized contemporaneous SSTs 160 

during recent OND and MAM dry seasons (Fig. 1C,D) can help identify predictor zones. OND 161 

rains are influenced by IOD41-43, ENSO/NINO3.4 SSTs44, and the SSTs in the equatorial west 162 

Pacific3,4,6. The MAM rains are linked to SSTs in the southern Indian Ocean45, and the Pacific 163 
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“Western V” and equatorial eastern Pacific regions6,7. When the equatorial west Pacific and 164 

“Western V” regions are exceptionally warm, the area around Indonesia sees increases in 165 

rainfall, while the EHoA often experiences sequential dry conditions in OND and MAM3-7. 166 

While the OND teleconnections (Fig. 1C) are well-appreciated, the strong MAM 167 

“teleconnections” implicit in Fig. 1D are not as well-appreciated. 168 

Gradient indices provide a convenient short-hand to describe Indian and Pacific Basin 169 

SST patterns. While gradients are commonly used in the Indian Ocean41, there remains a 170 

tendency to only describe the Pacific with equatorial eastern Pacific SSTs46. Such a focus can 171 

miss important interactions with climate change and lead to missed opportunities for skillful 172 

predictions5,6.  173 

We define two gradients useful for such predictions. For OND, we describe the Pacific 174 

via the “West Pacific Gradient” (WPG)3: the difference between standardized equatorial western 175 

and eastern Pacific SSTs (Pacific boxes in Fig. 1C). For MAM, we use a similar “Western V 176 

Gradient” (WVG), based on the difference between NINO3.4 and Western V temperatures 177 

(boxes in Fig. 1D). During MAM, there are important extratropical interactions with the northern 178 

and southern hemisphere subtropical westerly jets over the Pacific Ocean, which link warm 179 

extra-tropical northern and southern Pacific SST to La Niña-like climate impacts6,7.  180 

Following the 1997/98 El Niño, the western Pacific warmed substantially, and WPG and 181 

WVG values decreased dramatically (Fig. 1E). This set the stage for numerous, often sequential, 182 

EHoA dry seasons (noted with short vertical lines). This trend towards more frequent strong 183 

gradient events has been attributed to a combination of natural ENSO variability and human-184 

induced warming in the western Pacific6,7,47,48. Strong upward SST trends in the equatorial west 185 
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Pacific3, the western North Pacific6, and the “Western V” region7 have been formally linked to 186 

human-induced warming6,7. Warming in the already very warm west Pacific has enhanced 187 

observed La Niñas3,6 in ways similar to climate change projections49,50. These exceptional Pacific 188 

gradient events have arisen alongside an exceptional number of 1998-2022 La Niña events—189 

thirteen events in twenty-five years since 1998. Historically, La Niña events occur every three-190 

to-five years24,25. Hence, very frequent La Niñas, a lack of a warming trend in the eastern 191 

Pacific47,48, and rapid warming in the west Pacific have created a large increase in Pacific SST 192 

gradients (Fig. 1E), setting the stage for sequential droughts, especially during multi-year La 193 

Niñas51. However, wet EHoA rainy seasons, associated with exceptionally warm western Indian 194 

Ocean and eastern Pacific conditions, are also expected29-36.  195 

We briefly assess the role of climate change in recent extremely warm SST hot spots 196 

(Fig. 1F). The extremity of SST hot spots during recent extreme EHoA rainfall seasons is clear 197 

when compared to the past ~70 years, while climate model SST simulations highlight the very 198 

likely role of climate change. During the droughts in OND 2016/2020/2021 and MAM 199 

2017/2021/2022, and the flooding in OND 201939, either the western Pacific or the western 200 

Indian Ocean was exceptionally warm. In Fig.1F, the observed SST anomalies for these seasons, 201 

represented as vertical black lines, are compared with CMIP6 ensemble PDFs for 1950-1979 and 202 

2016-2022. The observed hot spots were +0.5 to 1°C above the 1950-2021 baseline. In a cooler 203 

world with less climate change (1950-1979), climate models indicate that the observed 204 

anomalies during these seasons were virtually impossible in such a world without climate change 205 

(Fig. 1F). The large offset between modeled SST in the recent period and historically much 206 

cooler conditions reflects a strong climate change signature in these areas. Diagnostic studies 207 

link EHoA rainfall extremes to these very warm SSTs3,4,6,7,39. Climate change helped produce 208 
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these extreme WPG, WVG, and IOD values, and associated EHoA rainfall extremes. Can these 209 

warm ocean conditions be predicted well, offering opportunities for improved decision-making? 210 

Results 2. The latest generation of climate models can predict these extreme ocean states 211 

well at eight month leads 212 

Figure 2 presents exciting new examples of how climate change is interacting with 213 

natural variability to produce opportunities for long lead prediction. Each scatterplot shows 214 

NMME eight-month lead forecasts and actual outcomes: OND forecasts (left panels) were made 215 

in May, while MAM forecasts (right panels) were made in September. The first row presents the 216 

WPG and WVG indices, the western region component of the WPG and WVG indices. The 217 

second row displays equatorial west Pacific and Western V SSTs. Since mid-2020, such scatter 218 

plots have been used operationally11 to inform FEWS NET’s Food Security Outlook process52. 219 

These plots convey information about the predictability (high R2) of the SSTs, as well as the 220 

potential association between extreme SST states and observed EHoA dry and wet rainy season 221 

outcomes (circle color).  222 

At long leads, the WPG and WVG are predicted well (Fig. 2A), with R2 values of greater 223 

than 70%. The uncertainty surrounding these forecasts are shown with 80% confidence intervals. 224 

These 80% confidence intervals can be used to assess the probability of being within a strong 225 

gradient season. In May, the models robustly anticipated strong negative WPG values associated 226 

with eight OND La Niña events. When such forecasts were made, there were below-normal 227 

EHoA seasons seven times out of eight. These dry seasons are shown with orange circles in the 228 

left of 2A. When forecast MAM WVG values have been less than -0.4Z, as was anticipated in 229 

September 2023, dry seasons occurred nine times out of thirteen (orange circles, right side Fig. 230 
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2A). In late 2016, 2020, and 2021, WVG forecasts helped anticipate dry outcomes the following 231 

MAM11,12. Used in concert, WPG/WVG forecasts can anticipate sequential droughts (Fig. 1B). 232 

Extreme West Pacific SST predictions, alone, are also useful drought indicators. 233 

Forecasts of exceptionally warm west Pacific SST clearly indicate strong tendencies for dry 234 

EHoA outcomes (Fig. 2B), and diagnostic studies have explained how these warm conditions 235 

modify winds in ways that reduce EHoA rains6,7. This information builds on the information 236 

contained in more traditional predictors, such as equatorial eastern Pacific (NINO3.4) SST 237 

forecasts. Knowing, with a high degree of certainty at long leads, that the western Pacific will be 238 

extremely warm allows us to bracket future drought events with higher confidence. These 239 

extreme SSTs are associated with climate change (Fig. 1F). 240 

Results 3. Climate change simulations anticipate more 2020-2050 strong gradient La Niñas 241 

Should we anticipate more WPG and WVG events in the future? To address this 242 

question, we examine the 1920-2050 OND and MAM Pacific SST gradients, derived from 152 243 

CMIP6 SSP2-4.5 SST simulations22. For each year, for all of the simulations, we count the 244 

number of strong gradient events (WPG or WVG values less than -1Z) and translate those counts 245 

into a summary time-series (Fig. 3A). Due to warming in the west Pacific, all of the models 246 

indicate substantial (>30%) event frequency increases between 2020-2030 and 1920-1979. There 247 

is very consistent agreement on these changes across all the models (inset in Fig. 3A). The 248 

simulations (Fig. 3A), like the observations (Fig. 1E), suggest a strong tendency towards more 249 

frequent strong gradient events, such that in the 2020s, we expect strong gradient La Niña-like 250 

conditions about 50% of the time. This tendency is related to a strong anthropogenic ENSO-251 

residual trend mode53 that is closely related to the west Pacific warming, and will almost 252 
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certainly increase over the next several decades (Fig. 3A) as the west Pacific continues to warm. 253 

This creates both an opportunity and a need for improved forecast information. 254 

Results 4. Exploring spatially-explicit WVG-based MAM forecasts 255 

If WPG/WVG events do become even more frequent, then enhanced forecast systems 256 

will be a critical tool for managing risk. One challenge associated with improving forecasts is the 257 

difficulty in linking research-based attribution studies6,7,51 with the operational “consolidated” 258 

forecast system used by groups such as ICPAC (https://www.icpac.net/seasonal-forecast/). These 259 

forecasts use spatially explicit maps and are presented at seasonal Climate Outlook Fora in East 260 

Africa. The OND and MAM seasons differ in that MAM rains are not predicted well by climate 261 

models54, because these rains are less spatially homogeneous55 and can have non-linear 262 

relationships to SSTs, with more coherent links during droughts (e.g., Fig. 1D).  ICPAC 263 

scientists, however, are now exploring the use of logistic regression, in conjunction with WVG 264 

forecasts, to produce experimental MAM forecast maps at long-leads (Fig. 3B), and such 265 

predictions are being used to support long-lead alerts17. Preliminary results from such approaches 266 

appear promising. Unlike Fig. 3B, the scatter plot-based forecasts shown in Fig. 2 lack the spatial 267 

dimension required to fit into ICPAC’s map-based forecast streams. If gradient events become 268 

more frequent (Fig. 3A), these novel forecasting techniques may help capture the predictability 269 

inherent in extremely warm SST (Fig. 2A). 270 

Discussion 1. Implications of these advances in the predictability: challenges 271 

  While Ethiopia, Kenya, and Somalia face many barriers to increased food security56-59 272 

and agricultural development9 better climate predictions can support relief planning, policy, 273 

agricultural advising, and adaptation decisions. Yet, translating prediction to action is not 274 

straightforward9. Most east Africans are small-scale farmers with little mechanization and often 275 
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nutrient-depleted soils60. These farmers are typically poor and risk-averse9, which limits their 276 

ability and willingness to change farming practices. There is very limited uptake of innovative 277 

farming practices, crop insurance, and advisory services9. Since 2015, extreme climate has 278 

contributed to large increases in food insecurity61,62.  279 

While research has demonstrated that combinations of investment in resilience and early 280 

action can both protect lives and livelihoods and save money on humanitarian response in 281 

EHoA63, research has also explored why humanitarian relief responses have often been 282 

inadequate56-59. The latter work has identified barriers associated with limited funding, 283 

uncertain tradeoffs, and inertia56-59. Adequate relief funding is always a challenge. 284 

Organizations face a financial trade-off: “do I use these limited resources for real, known needs 285 

now, or do I devote them to mitigating future problems?” This barrier also incorporates 286 

uncertainty and the fear that resources might be squandered, especially if the information is 287 

contradictory or confusing. Social inertia within national or international agencies provides 288 

another barrier. Relief agencies design their programs, identify their partners and beneficiaries, 289 

and make security arrangements. Changing these plans is difficult and slow because the plans are 290 

complex, and involve many partners.  291 

Governments operate within limited budgets. Uncertain tradeoffs involve multiple 292 

stakeholders, the media, and competing goals. Will national insurance schemes reduce incentives 293 

for households to adapt? While traditional models assume that individuals make fully reasoned 294 

choices, decision-making itself is cognitively costly, individuals often employ “fast and frugal” 295 

heuristics64,65. These rules support decisions in the absence of full information. Despite some 296 

encouraging signs, there remain inconsistent findings in research on associations between 297 

farmers’ perceptions of climate variability and the likelihood of them using weather and climate 298 
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information services66-68. Decisions involve tradeoffs. Forecasts provide information on the 299 

probability of an adverse event, but they are silent on the risk of moving from the status quo. 300 

Yet, moving from the status quo also involves risk: adopting a new practice, crop, technology, or 301 

livelihood mix that may increase short-term resilience but prove to be maladaptive, resulting in 302 

negative impacts on crop yields, ecological health, or socioeconomic systems in the long run. For 303 

example, switching from a water-demanding crop like maize to drought-tolerant cassava often 304 

involves a tradeoff between lower risk and lower returns.  A heuristic that mimics neighbor 305 

behaviors under conditions of covariant risk exposure and thin markets can lead to suboptimal 306 

outcomes, such as deflated prices for the livestock everyone is simultaneously selling to cope 307 

with a shock. Better predictions do not always translate into better decisions, as individuals tend 308 

to favor the known over the unknown, including known risks over unknown risks69. The risk-309 

perception literature finds that individuals systematically overestimate the size of risks that are 310 

small, unfamiliar, involuntary, and uncertain, and contrastingly underestimate the size of risks 311 

that are larger, more certain, more familiar, or, over which they have some control70-72. The risk 312 

of extreme climate events in the EHoA is growing, unfortunately familiar, and now more 313 

predictable, but certainly not voluntary. 314 

Discussion 2. Implications of these advances in the predictability of East African rains: 315 

opportunities   316 

In theory, improving EWS may be one of the most cost-effective mechanisms for 317 

reducing food insecurity73. In practice, individual behavior change may never be sufficient to 318 

offset the negative consequences of catastrophic, covariant risks without public investment in 319 

large-scale insurance schemes and rural infrastructure. However, within that context, improving 320 

EWS and the distribution of related advisories is a crucial component in improving resilience. 321 
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The availability and influence of agricultural advisories remains very low in Africa9.  322 

Furthermore, such advisories may not respond to the unique needs of farmers: a recent survey74 323 

found that “most climate services have been developed using a ‘loading dock model’, whereby 324 

products are designed by information suppliers with little input from … users.” In contrast, co-325 

developed services involve engagement and discussion between data providers, advisory service 326 

developers, and farmers. Table 1 provides some good examples of co-developed participatory 327 

agricultural advisory systems in Ghana, Rwanda75, and Senegal76,77. In some non-African La 328 

Niña-impacted countries like Colombia, agro-advisories have helped maize farmers78 and rice 329 

farmers79,80 increase profits. Modest expenditures on improved advisories can improve yields by 330 

30% or more.  331 

In Ethiopia, multi-agency collaborators have developed the Ethiopian Digital 332 

AgroClimate Advisory Platform81 (EDACaP, advisory.ethioagroclimate.net). EDACaP uses 333 

climate and weather forecasts in conjunction with soil and crop data to develop local language 334 

advisories that are distributed to development agents and farmers via text messages and radio.  335 

In Kenya, collaboration between the Kenya Meteorological Department, PlantVillage, 336 

Shamba Shape Up, and the Climate Hazards Center is providing text and television-based 337 

advisories to more than 9 million Kenyans. These advisories incorporate high-resolution rainfall 338 

observations19, weather forecasts82, and WPG/WVG-based climate outlooks (Fig. 2). In addition 339 

to outreach, PlantVillage is piloting innovative strategies that promote drought resilience via 340 

labor-intensive cultivation practices that involve the digging of moisture retaining “Zai” pits and 341 

the introduction of biochar. Zai pits can hold up to nine seeds of maize and can be filled with 342 

organic manure, biochar, or dry plant biomass. Derived from local organic waste, biochar attracts 343 

and maintains nutrients and water in the soil. Despite the dry MAM 2022 rains, a pilot project 344 
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based in Kilifi county in eastern Kenya (Fig. 3C) demonstrated the potential benefits. While 345 

control plots exhibited very low maize yields (< one ton per hectare), harvests in the test plots 346 

ranged from three-to-four tons per hectare. While more research and evaluation are required, 347 

WVG-based forecasts (Fig. 3B) hold the promise of supporting increased resilience, even in the 348 

face of severe droughts, as suggested by the pilot from Kilifi.   349 

These advisory services are not costless, but are relatively inexpensive when compared to 350 

post-impact, response-based alternatives such as humanitarian assistance and/or funding safety-351 

net programs. In Kenya, the cost of getting a single SMS-advisory into the hands of a farmer is 352 

$0.006, and a farmer might typically receive 15 advisories per season. To reach 6-8 million 353 

farmers per week on TV is approximately $3,000. Reaching 50 million farmers each year via 354 

SMS might cost $4.5 million dollars. Localizing climate information, however, to agro-355 

ecological and social contexts will require a considerable increase in resources.  356 

     From a policy perspective, the potential costs of EWS-empowered advisory systems 357 

might be compared to the >$2 billion USD in humanitarian relief being provided in 2022 to 358 

Ethiopia, Kenya, and Somalia. Investments in advisory systems might save millions of dollars a 359 

year in east Africa alone, if they reduced the need for very expensive emergency relief while 360 

supporting resilience and autonomy.  361 

Pilot studies (Table 1) suggest that ~30% increases in yields are plausible. In terms of 362 

historical variations, a 30% increase is a substantial increase. For example, in Kenya, poor MAM 363 

rains typically appear in association with a ~15% reduction in national maize yields. A 30% 364 

increase in national maize production (~1MT), represents a large sum of money, when valued at 365 

2022 wholesale Kenyan maize prices (~US $320 million). In addition to increased economic 366 

outcomes, increased crop production can reduce price volatility.  367 
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Discussion 3. Can long-lead forecasts be used to improve decision-making and increase 368 

resilience? 369 

As sequential droughts become more common during La Niña events, responding to the first 370 

drought, which consistently arises in OND, may be a low-regret intervention, especially since 371 

MAM dry seasons often follow. Social protection via safety nets and insurance programs can 372 

support more effective resilience building at scale by integrating early action and preparedness83. 373 

Guaranteed funding before a shock can enhance the scalability, timeliness, predictability, and 374 

adequacy of social protection benefits. In 1998, 2010, 2016, 2020, 2021 and 2022, June forecasts 375 

of extremely warm west Pacific SSTs clearly indicated OND droughts (Fig. 2B) that led to 376 

widespread livestock loss and plummeting livestock prices. Index-Based Livestock Insurance 377 

(IBLI) is another promising intervention strategy that targets pastoralists and agropastoralists 378 

who face some of the most-extreme risks from drought84. Climate forecasts (Fig. 3B) might be 379 

combined with Predictive Livestock Early Warning Systems (PLEWS)85 to improve predictions 380 

of forage conditions. More extreme precipitation may be recharging deep aquifers86. Accessing 381 

this water via boreholes might help buffer rainfall deficits.  382 

There are opportunities to better link EWS with adaptation research. For example, the 383 

Evidence for Resilient Agriculture (ERA, https://era.ccafs.cgiar.org/) project provides data and 384 

tools that pinpoint what agricultural technologies work where.  Resources like the Adaptation 385 

Atlas (http://adaptationatlas.cgiar.org/riskmap) allow decision-makers to examine climate 386 

change-related risks alongside potential solutions. Agroforestry, micro-credit, insurance, digital 387 

advisories, improved breeds, crops, forages and diets, fertilizer, intercropping, irrigation, mulch, 388 

trees, planting decisions, stress-adapted varietals, and water harvesting—the list of potential 389 
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adaptations is long. African-led efforts that link EWS to appropriate local solutions can help us 390 

anticipate and adapt to more extreme climate.  391 

Conclusion: recommendations vis-à-vis calls for improved early warning systems  392 

In November 2022, at COP27, the UN Secretary-General unveiled the “Early Warnings 393 

for All Plan”23 which provides $3.1 billion USD to support EWS in developing countries. The 394 

plan supports four disaster-risk reduction84 pillars: 1) Disaster-risk knowledge, 2) Observations 395 

and Forecasting, 3) Preparedness and response, and 4) Dissemination and communication. EWS 396 

“are a proven, effective, and feasible climate adaptation measure, that save lives, and provide a 397 

tenfold return on investment,”73 which have been recognized by the IPCC as a key adaptation 398 

strategy87. Within Africa, ICPAC, FEWS NET and the Kenyan and Ethiopian Meteorological 399 

Departments provide some of the most sophisticated EWS. This sophistication, the long-standing 400 

climate volatility, and food insecurity in the Horn, in addition to the many years of collective 401 

research and practical experience represented by the authors, provide us a vantage point from 402 

which to provide ten recommendations related to effective EWS development and 403 

implementation in the context of climate change. These recommendations are relevant for many 404 

regions linked to Indo-Pacific SSTs: 405 

 406 

1. Realize that climate change is happening now and offers opportunities for prediction. 407 

2. Realize that climate change contributed to recent extreme SSTs and associated EHoA droughts and 408 

floods, and that many of these extremes were predictable. 409 

3. Realize that extreme SST gradients provide opportunities for forecasts. 410 

4. Pay attention to extremely warm SSTs, these can drive predictable droughts and floods. 411 

5. Be concerned about increasing aridity and declining per capita resources. 412 

6. Work towards integrated observation/forecast systems. 413 
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7. Invest in building capacity. Utilize local expertise. 414 

8. Look for places or seasons where conditions will likely be clement. Teleconnections will produce 415 

droughts, but also areas with bountiful rains. 416 

9. Leverage agricultural adaptation resources to build resilience. Link EWS to the latest agricultural 417 

adaptation science. 418 

10. Pay attention to barriers to climate information use, and learn from them. 419 

 420 

Trust, urgency, and accuracy can enable action, helping overcome barriers associated 421 

with funding, uncertain tradeoffs, and inertia. Trust and urgency involve a shared 422 

understanding of how climate change is interacting with natural variability to produce frequent 423 

climate extremes, now. Trust also involves developing (and investing in) co-developed 424 

participatory advisory services: localized, culturally appropriate flows of information. Accuracy 425 

arises when we carefully combine domain-specific insights with the best-available information. 426 

For example, satellite observations and numerical model predictions are tremendous sources of 427 

information, but transforming this information into accurate rainfall estimates19 or forecasts (Fig. 428 

2, 3B) demands expertise. Predictions of exceptionally warm west Pacific SSTs (Fig. 2B) help 429 

anticipate the influence of climate change. While still evolving, inter-disciplinary collaboration is 430 

leading to first-in-kind long-lead alerts16,17. But the development of effective EWS in developing 431 

countries will require large investments in human capacity. “Loading dock” approaches to 432 

climate services can fail to provide locally appropriate advisory services74 just as “raw” climate 433 

model forecasts may miss important teleconnections and opportunities for prediction, such as 434 

those shown in Fig. 2. Especially for MAM, long-lead drought outlooks would be substantially 435 

less skillful if they were just based on climate model rainfall forecasts54 or equatorial east Pacific 436 
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SST predictions. Skill matters. For OND La Niña-related droughts, which the models capture 437 

well, effective actions based early alerts can build resilience in the face of sequential droughts. 438 

Urgency arises from the long-term implications of extreme SST gradients (Fig. 3A), 439 

warming air temperatures, population growth, income gaps, and other socioeconomic and 440 

political stressors.  Strong negative WPG/WVG gradients have become common (Fig. 1E). 441 

Climate change contributed to extreme gradients in 2016/17 and 2020/22 (Fig. 1F). These 442 

gradients helped produce an unprecedented five-season drought in the Horn. Given that the serial 443 

correlation of EHoA MAM and OND rains is very close to zero, the chance of a five-season 444 

drought sequence happening randomly is extremely low (0.333^5 ≈ 0.4%).  445 

The frequency of strong gradient events is expected to increase dramatically (by >50%) 446 

by mid-century (Fig. 3A), which will likely increase in the frequency of poor EHoA rainy 447 

seasons. More frequent dry seasons may also be accompanied by more frequent El Niños and 448 

positive IOD events and extreme precipitation30,31,50. Increasing air temperatures contribute to 449 

both droughts and floods. Under dry conditions, warmer air draws more moisture from plants. 450 

Under wet conditions, warmer air holds more water vapor, leading to more extreme precipitation. 451 

Such influences contribute to “wet-getting-wetter” and “dry-getting-drier” tendencies in the 452 

Horn88. Observed EHoA crop water requirements are also trending upward during dry seasons, 453 

and these influences appear preferentially in hot-arid lowland areas10,89. Importantly, the spatial 454 

signature of these impacts largely aligns with the footprint of WPG/WVG-related drought 455 

tendencies. 456 

Finally, increases in population and water scarcity are also likely to expand insecurity. 457 

UN projections suggest that between 2022 and 2050, the population of Ethiopia, Kenya, and 458 

Somalia, will increase by 70%. Holding other factors constant, population-driven per capita 459 
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water availability projections for 2050 indicate the potential for severe water stress and 460 

scarcity61. Population-driven projections of Kenyan per capita maize production also indicate 461 

40% reductions by 205089. Planning for more frequent and severe extremes by enhancing EWS 462 

and advisory services can help mitigate these climate shocks. 463 

The long-term implications of these compound stresses are very concerning, especially 464 

for the hot, dry EHoA lowlands. Yet, there is also hope that crop productivity can be increased in 465 

humid areas. Many areas of Ethiopia, and substantial portions of Kenya, are climatically secure. 466 

Some of these areas (most of Ethiopia) tend to experience rainfall increases during La Niña-like 467 

seasons. Closing yield gaps in humid regions would create wealth and lower food prices, and 468 

there is growing evidence that climate-enhanced advisories can contribute (Table 1). But 469 

achieving this promise will require much greater investments in African experts, experts who can 470 

improve and interpret forecasts, link to agricultural ministries, extension programs, and 471 

agricultural research centers, and, ultimately, farmers and pastoralists.  472 

  473 
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Data Availability: 474 

The time series data supporting the primary results of this study are available via Dryad. Funk, 475 

Chris (2022), Data - Tailored forecasts can predict extreme climate informing proactive 476 

interventions in East Africa, Dryad, Dataset, https://doi.org/10.25349/D9MC8Z.   477 

For now, the data is available at: 478 

https://datadryad.org/stash/share/PxI2GIJv-4Q_C51wiHw-gySoI72xjRpl9_2euUONcM4  479 

Code Availability: The bulk of the analysis presented in this paper are based on simple time-480 

series manipulations, and are presented in the excel file in the Dryad link above. The most salient 481 

results can be recreated without coding, using the time series provided in the Dryad repository. 482 

Time-series extraction and the simple SST composite plots shown in Fig. 2C,D were  done using 483 

Interactive Data Language version 8.7, and the related code is contained with the Dryad 484 

Repository. Zip files in that directory also contain NOAA extended reconstruction version 5 485 

gridded SST data, NMME SST forecasts from May and September, and regionally averaged 486 

CMIP6 SSP245 SST time-series. For the convenience of the reviewers, the contents of the data 487 

repository are also available at: https://data.chc.ucsb.edu/people/chris/DataRepository.zip. 488 

  489 

https://doi.org/10.25349/D9MC8Z
https://datadryad.org/stash/share/PxI2GIJv-4Q_C51wiHw-gySoI72xjRpl9_2euUONcM4
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Table 1 | Exemplar case studies demonstrating the benefits of co-production and social networks 490 
in scaling climate-informed advisories.  491 

Location Agriculture 
decision 
affected 

Benefit Scaling 
potential 

Behavior science 
for scaling 

Distribution channel 

Senegal Crop varieties, 
field location, 
intercrop, crop 
type, crop mix,   
timing of sales, 
harvest & 
weeding, 
fertilizer use, 
water harvesting 

Crop income 
increased 
between 10 
and 25% 

PICSA and 
WMG 
approaches 
can be easily 
scaled. 

Multidisciplinary 
Working Groups 
(WMG) increase 
farmer’s awareness 
of forecasts by 
18%, access by 
12% and uptake by 
10%. 

SMS, phone,   
Interactive radio, 
farmers share 
information word of 
mouth. 

Rwanda Crop type, Crop 
varieties, Timing 
of planting and 
land preparation, 
When and how 
to prepare land 

With PICSA 
 +24% 
production   
 +36% 
income 
 
With 
PICSA+RLC 
 +47% 
production    
 +56% 
income 

-PICSA and 
RLC 
approaches 
can be easily 
scaled. 

Participatory 
Integrated Climate 
Services for 
Agriculture 
(PICSA) approach. 
Radio Learning 
Clubs (RLC) 
address disparities. 

Radio, Phone, TV 
    (43:11:7%) 
 
With RLC 
    (81:37:9 %) 

Ghana Land preparation 
planting & 
harvest dates, 
crop varieties, 
fertilizer 
scheduling 

+35% 
sorghum 
yields 
 
+6% technical 
Efficiency 

Easily 
replicated.   
Requires 
mobile access. 
$35 
subscription 
plus training 
costs 

The most 
significant factor in 
forecast use was 
training. 
 

Mobile (Voice Message, 
SMS, Call Centre) 

Colombia, 
Guatemala, 
Honduras 

Sowing & 
harvesting  
dates, rainwater 
harvesting, pest 
prevention, crop 
rotations, variety 
changes 

Avoided 
income loss 
of 20%. 
 
+20-to-50% 
yield gain for 
rice, maize, 
bean 

Government 
and local 
stakeholder 
uptake of 
LTAC 
approach 
enables 
scaling 

Local Technical 
Agro-Climatic 
Committees 
(LTACs) where 
stakeholders 
discuss forecasts 
and develop 
recommendations. 

Agroclimatic bulletin, 
radio, TV, newspaper, 
extension service, social 
networks 

 492 

 493 
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Figures 494 

  495 

Figure 1. A. Schematic diagram describing the links between climate attribution, prediction and 496 
improved interventions. B. Barplot showing 2016-2023 regionally averaged EHoA MAM and 497 



Commentary for Earth’s Future 

26 

OND Standardized Precipitation Index values. Western Pacific Gradient (WPG) and Western 498 
‘V’-Gradient (WVG)-based drought forecast dates are noted for La Niña-related dry seasons, 499 
along with hit or false alarm outcomes. MAM 2023 result is a forecast, shown with 80% 500 
confidence intervals. C. Standardized OND SST composites for post-1996 dry EHoA OND 501 
seasons. Screened for significance at p=0.1. Boxes denote the western and eastern IOD regions, 502 
the equatorial west Pacific (110°E-140°E, 15°S-15°N), and the NINO3.4 region. D. Same for 503 
MAM EHoA dry seasons. Boxes denote the Western V (blue) (110°E-140°E, 15°S-15°N, 160°E-504 
160°W, 20°N-35°N, 155°E-160°W, 15°S-30°S) and NINO3.4 (yellow) regions. E. SST index 505 
values for the observed MAM WVG and OND WPG. Anomalies calculated using a 1950-2020 506 
baseline. The Pacific gradients associated with droughts (1C,D) are becoming more frequent 507 
(1E). Recent below-normal EHoA rainy seasons are marked with short vertical lines. The 2023 508 
MAM WVG values are based on forecasts in Fig. 2. The black circles denote the associated 80% 509 
confidence intervals. The associated question mark conveys our concerns for a 6th dry season, 510 
based on the 2023 WVG forecast in Fig. 2. F. Equatorial OND western Pacific, MAM Western 511 
V, and OND western Indian Ocean CMIP6 SSP245 SST anomalies for 1950-1979 and 2016-512 
2022, along with observed SST anomalies for selected drought seasons. Anomalies based on a 513 
1950-2020 baseline.  514 
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 515 

Figure 2. A. Scatterplots of forecast and observed WPG and WVG values. Left panels show 516 
1982-2022 OND forecasts made in May. Right panels show 1983-2023 MAM forecasts made in 517 
September. OND 2022 and MAM 2023 ‘observations’ are assumed to equal the forecasts. 518 
Vertical bars indicate 80% confidence intervals. Blue, gray and red circles denote the EHoA 519 
rainfall outcomes for each OND or MAM season.  B. Same but for regionally averaged SST in 520 
equatorial western Pacific and Western V regions. Regions described in Fig. 1C,D. 521 

 522 
 523 

  524 
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Figure 3. A. Time-series showing the median frequency of extreme OND WPG and MAM 526 
WVG events, based on standardized time-series from the CMIP6 SSP245 climate change 527 
ensemble, along with 95% confidence intervals. The WPG and WVG are calculated using SSTs 528 
from the Pacific boxes in Fig. 1A and 1B, respectively. Extreme negative OND WPG and MAM 529 
WVG events are associated with values less than -1Z. Change in extreme event frequencies (# of 530 
events per 100 years) were calculated by taking the frequency differences between 2020-2030 531 
and 1920-1979, and are reported in the inset table for each model with at least three simulations. 532 
The 20th, 50th and 80th percentile values of the per-model changes are shown in the last three 533 
columns. Time series were standardized using a 1950-2020 baseline. Human-induced warming 534 
in the western Pacific results in strong inter-model agreement on more frequent WPG and WVG 535 
events, in line with the observed gradient values shown in Fig. 1C. B. Experimental ICPAC 536 
forecasts for MAM 2023, based on localized logistic regressions and WVG forecasts. C. Test 537 
plot results in eastern Kenya from MAM 2022. Upper-left and right panels show adjacent control 538 
and test plots. Bottom panel shows field preparation using Zai pits and biochar. 539 

 540 
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Abstract:  5 

This commentary discusses new advances in the predictability of east African rains and 6 

highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, 7 

and agricultural decision-making. Following an unprecedented sequence of five droughts, in 8 

2022 23 million east Africans faced starvation, requiring >$2 billion in aid. Here, we update 9 

climate attribution studies showing that these droughts resulted from an interaction of climate 10 

change and La Niña. Then we describe, for the first time, how attribution-based insights can be 11 

combined with the latest dynamic models to predict droughts at eight-month lead-times. We then 12 

discuss behavioral and social barriers to forecast use, and review literature examining how EWS 13 

might (or might not) enhance agro-pastoral advisories and humanitarian interventions. Finally, in 14 

reference to the new World Meteorological Organization (WMO) “Early Warning for All” plan, 15 

we conclude with a set of recommendations supporting actionable and authoritative climate 16 

services. Trust, urgency, and accuracy can help overcome barriers created by limited funding, 17 

uncertain tradeoffs, and inertia. Understanding how climate change is producing predictable 18 

climate extremes now, investing in African-led EWS, and building better links between EWS 19 

and agricultural development efforts can support long-term adaptation, reducing chronic needs 20 

for billions of dollars in reactive assistance. 21 

The main messages of this commentary will be widely. Climate change is interacting 22 

with La Niña to produce extreme, but extremely predictable, Pacific sea surface temperature 23 

gradients. These gradients will affect the climate in many countries creating opportunities for 24 

prediction. Effective use of such predictions, however, will demand cross-silo collaboration. 25 
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Plain language summary 26 

Eastern East Africa is extremely food insecure. Millions of farmers and pastoralists rely on two 27 

meagre rainy seasons that arrive twice a year. In the thirteen seasons since late 2016, the region 28 

experienced eight droughts and three exceptionally wet seasons. Seven droughts were linked to 29 

exceptionally strong Pacific sea surface temperature gradients, which arose through an 30 

interaction between climate change and La Niña. For the first time, we show that these gradients 31 

can be very well predicted by the current generation of climate models. We then discuss how 32 

such information might be used to inform risk management, harvests, and livestock management 33 

practices. The IGAD Climate Predictions and Applications Center, Ethiopian and Kenyan 34 

meteorological agencies, and other groups are providing increasingly accurate climate 35 

information. This provides opportunities for more proactive and effective agricultural and 36 

pastoral advisory services. Trust, urgency and accuracy can lower uncertainty, reduce risk 37 

aversion, and empower poor households and cash-strapped institutions to act and innovate. As 38 

Climate change will bring more extreme (but predictable) Pacific and Indian Ocean sea surface 39 

temperature gradients. Investing now in collaborative African climate services, participatory 40 

advisory services and proactive risk management will help counter these threatening climate 41 

extremes. 42 

Main Points 43 

1. Climate change and La Niña are producing extreme Pacific temperature gradients, which can 44 
be predicted very far in advance. 45 

2. These Pacific temperature forecasts provide opportunities for predicting wet and dry outcomes 46 
very well in East Africa. 47 

3. Increased trust, urgency and accuracy can help overcome barriers associated with limited 48 
funding, uncertain tradeoffs, and inertia. 49 

50 
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Main 51 

In this commentary, an interdisciplinary, international set of authors describes how climate 52 

attribution studies have led to new advances in the predictability of Eastern Horn of Africa 53 

(EHoA) rains, and then explores how these forecasts might better guide humanitarian relief and 54 

proactive agricultural decisions in the future, leading to increased resilience (Fig. 1A). The team 55 

includes scientists from the IGAD Climate Prediction and Applications Center (ICPAC), the 56 

Famine Early Warning Systems Network (FEWS NET), Ethiopian and Kenyan Meteorological 57 

Departments, and scientists engaged in agricultural development, advisory services, and 58 

humanitarian relief efforts. Updating previously published climate attribution studies1-7, we show 59 

that sequential EHoA droughts are tied to strong east-west sea surface temperature (SST) 60 

gradients, which arise through an interaction of human-caused climate change (hereafter referred 61 

to simply as climate change) and La Niña (Fig. 1). We then describe, for the first time in print, 62 

how the latest generation of climate models can predict these gradients and very warm west 63 

Pacific SSTs, and consequently EHoA droughts, at surprisingly long (eight-month) lead-times 64 

(Fig. 2). Given that climate change is likely to increase the frequency of these events (Fig. 3), we 65 

conclude with a discussion of the long-term implications of a potential increase in drought 66 

frequency. While many countries in East Africa have, in theory, policies supporting increased 67 

agricultural productivity and disaster risk management8, in practice, millions of poor households 68 

remain vulnerable to climate shocks9. Could improved forecasts and EWS be useful to 69 

agricultural and food security decision-makers?  70 

The schema in Fig. 1A lays out the logic of this Commentary. We first describe how climate 71 

change attribution leads to a tailored forecast process that produce more accurate long lead time 72 

forecasts. We then discuss how these forecasts might improve humanitarian relief planning, 73 
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agricultural outcomes and food security if decision-makers are able to translate predictions into 74 

effective practice. Appropriately interpreting and communicating forecasts can decrease the 75 

uncertainty associated with trade-offs. This improves decision-making and makes information 76 

more actionable via technically feasible cost-effective response that addresses limited resources. 77 

Social and individual inertia potentially is reduced through localized, relevant information. We 78 

conclude by discussing how trust, urgency, and accuracy may help overcome barriers created by 79 

limited funding, uncertain tradeoffs, and inertia, and provide a set of recommendations related to 80 

effective EWS development and implementation in the context of climate change. 81 

While focused on the EHoA, the techniques, opportunities, and barriers discussed here may 82 

be widely applicable to many areas exposed to risks associated with La Niñas. Human-induced 83 

warming in the west Pacific is interacting with natural El Niño-Southern Oscillation (ENSO) 84 

variability, but tailored forecasting approaches can translate the influence of climate change into 85 

expanded opportunities for prediction.  86 

Background – volatile climate, humanitarian crises, but opportunities for predictions 87 

Since late 2016, the EHoA (Ethiopia, Kenya, and Somalia to the east and south of 38°E and 88 

8°N) has experienced a high degree of climate volatility, with recurrent shocks due to frequent 89 

droughts and floods. During this period, nine seasons were dry, three were wet, and only two had 90 

normal rains (Fig. 1B). Below-normal rains are inadequate to support productive crops and 91 

rangeland10.  92 

Seven of the dry eight dry seasons in Fig. 1B were anticipated with operational “tailored” 93 

forecasts11, based on climate-change-enhanced west Pacific SST, La Niña, and strong Pacific 94 

SST gradients (with one false alarm in March-April-May, or MAM, 201811). Hits, i.e., droughts 95 
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that were accurately forecasted, included the back-to-back drought sequence in 2016/1712 and the 96 

five sequential below-normal seasons stretching from October-November-December (OND) 97 

2020 through OND 2022. These tailored forecasts benefitted from a two-step approach that 1) 98 

attributes droughts to extreme SST states, which arise through the interaction of natural 99 

variability and climate change (Fig. 1), then 2) predicts these states using the latest state-of-the-100 

science climate forecast ensembles (Fig. 2).  101 

EHoA’s position makes it uniquely exposed to climatic hazards driven by Indo-Pacific SSTs. 102 

When SST gradients increase rains above the eastern Indian Ocean and western Pacific, rains 103 

decrease over EHoA. This links EHoA precipitation to La Niña and Indian Ocean Dipole (IOD) 104 

events. During OND, these connections are well-established. There is less consensus for MAM. 105 

Some research suggests MAM rains are weakly linked to SSTs13-15, and hence, largely 106 

unpredictable. However, many FEWS NET studies1-7 have attributed sequential OND/MAM dry 107 

seasons to Pacific SST gradients which arise through an interaction between La Niña and climate 108 

change.  109 

These insights, combined with increasingly sophisticated climate forecast systems, has 110 

supported five successful long-lead forecasts in a row11. Eight months before the end of OND 111 

and MAM, strong Pacific SST gradients can be accurately predicted. In May16 and November17 112 

of 2022, these inputs helped motivate exceptional multi-agency drought alerts. Never before had 113 

such a broad coalition of EHoA early warning experts acted so successfully so far in advance of 114 

the next rainy season. Yet, by late 2022, the interaction of five sequential droughts, COVID-19, 115 

conflict, inflation, and pre-existing vulnerabilities placed 23 million people in food security 116 

crises17. In Somalia, despite massive humanitarian responses reaching more than 7 million 117 

people, experts anticipated the outbreak of famine in 2023. Despite repeated, accurate 118 
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predictions of drought (Fig. 1B), the magnitude of this crisis continued to grow. An EWS may 119 

begin with climate information, but requires effective transformation into actions which can 120 

increase resilience (Fig. 1A). This requires a shared understanding of how climate change and 121 

ENSO, together, offer opportunities for long lead predictions. Hence, we describe here the 122 

potential of these forecasts, and then discuss the opportunities and barriers associated with using 123 

such information within participatory agricultural advisory systems and humanitarian EWS for 124 

incentivizing adaption and reducing food insecurity. With more research and dialogue, the 125 

incorporation of such forecasts into operational forecast systems and policy-relevant decision-126 

making processes may help our communities cope with increasing climate volatility, both in 127 

EHoA and in other areas linked to Indo-Pacific SSTs. 128 

Data and Methods 129 

This study relies on widely used Climate Hazard Center rainfall data sets18,19 and NOAA 130 

Extended Reconstruction SST data20. The terms dry, normal, and wet correspond to bottom, 131 

middle, and top-tercile rainy season outcomes. To reduce repetition, we also use “drought” to 132 

refer to below-normal rainy seasons. Seasonal SST forecasts are based on the North American 133 

Multi-Model Ensemble (NMME)21. A 152-member, 25 model ensemble from the Coupled 134 

Model Intercomparison Project Phase 6 (CMIP6) is used to examine projected human-induced 135 

SST increases, based on a moderate emissions scenario (Shared Socioeconomic Pathway 2-4.5, 136 

SSP2-4.5)22. The attribution analyses, detailed in our first results section and presented in Fig. 1, 137 

are updates of climate attribution studies focused on the 2016/17 droughts6,7. These results6,7 138 

informed accurate tailored forecasts11 (Fig. 2), which we describe in our second results section. 139 

We then describe increasing risks associated with CMIP6 projections of stronger future Pacific 140 

SST gradients, new spatially-explicit forecast results, and biochar-based farming practices in a 141 
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third results section (Fig. 3). We then discuss how improved “climate-smart” decision-making 142 

might help regions cope with more frequent climate extremes. This discussion is guided by 143 

existing literature, ongoing policy-relevant activities in East Africa, the authors’ experience, and 144 

the recently announced WMO “Early Warning for All” project23.  145 

Inclusion and Ethics: By design, this Commentary includes numerous authors from East 146 

Africa, as well as numerous collaborators in the US or Europe. The authors also represent several 147 

different communities of practice: climate, agricultural development, and food security. Effective 148 

dialog across these communities will be needed to guide effective adaptation. The collaboration 149 

supporting this article furthers that objective.   150 

Results 1 – linking recent droughts to extremely warm Pacific SSTs and climate change 151 

Scientists have long emphasized the societal dangers24,25 associated with predictable21,26-152 

28   El Niños and La Niñas and climate change is expected to increase the frequency of strong 153 

ENSO and IOD events29-32. What is less appreciated is that the interaction of climate change and 154 

ENSO is creating opportunities for prediction—now. As climate change rapidly warms33 155 

dynamically important regions in the Indian34-36 and Pacific Oceans37,38, exceptionally warm 156 

ocean conditions can produce potentially predictable droughts and wet seasons6,7,39.  For EHoA, 157 

this may be especially important for MAM, due to a strengthening connection to La Niña40. 158 

Figure 1C-F updates attribution studies that identified how extremely warm west Pacific SST 159 

contributed to droughts in 2016/176,7.  Composites of standardized contemporaneous SSTs 160 

during recent OND and MAM dry seasons (Fig. 1C,D) can help identify predictor zones. OND 161 

rains are influenced by IOD41-43, ENSO/NINO3.4 SSTs44, and the SSTs in the equatorial west 162 

Pacific3,4,6. The MAM rains are linked to SSTs in the southern Indian Ocean45, and the Pacific 163 
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“Western V” and equatorial eastern Pacific regions6,7. When the equatorial west Pacific and 164 

“Western V” regions are exceptionally warm, the area around Indonesia sees increases in 165 

rainfall, while the EHoA often experiences sequential dry conditions in OND and MAM3-7. 166 

While the OND teleconnections (Fig. 1C) are well-appreciated, the strong MAM 167 

“teleconnections” implicit in Fig. 1D are not as well-appreciated. 168 

Gradient indices provide a convenient short-hand to describe Indian and Pacific Basin 169 

SST patterns. While gradients are commonly used in the Indian Ocean41, there remains a 170 

tendency to only describe the Pacific with equatorial eastern Pacific SSTs46. Such a focus can 171 

miss important interactions with climate change and lead to missed opportunities for skillful 172 

predictions5,6.  173 

We define two gradients useful for such predictions. For OND, we describe the Pacific 174 

via the “West Pacific Gradient” (WPG)3: the difference between standardized equatorial western 175 

and eastern Pacific SSTs (Pacific boxes in Fig. 1C). For MAM, we use a similar “Western V 176 

Gradient” (WVG), based on the difference between NINO3.4 and Western V temperatures 177 

(boxes in Fig. 1D). During MAM, there are important extratropical interactions with the northern 178 

and southern hemisphere subtropical westerly jets over the Pacific Ocean, which link warm 179 

extra-tropical northern and southern Pacific SST to La Niña-like climate impacts6,7.  180 

Following the 1997/98 El Niño, the western Pacific warmed substantially, and WPG and 181 

WVG values decreased dramatically (Fig. 1E). This set the stage for numerous, often sequential, 182 

EHoA dry seasons (noted with short vertical lines). This trend towards more frequent strong 183 

gradient events has been attributed to a combination of natural ENSO variability and human-184 

induced warming in the western Pacific6,7,47,48. Strong upward SST trends in the equatorial west 185 
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Pacific3, the western North Pacific6, and the “Western V” region7 have been formally linked to 186 

human-induced warming6,7. Warming in the already very warm west Pacific has enhanced 187 

observed La Niñas3,6 in ways similar to climate change projections49,50. These exceptional Pacific 188 

gradient events have arisen alongside an exceptional number of 1998-2022 La Niña events—189 

thirteen events in twenty-five years since 1998. Historically, La Niña events occur every three-190 

to-five years24,25. Hence, very frequent La Niñas, a lack of a warming trend in the eastern 191 

Pacific47,48, and rapid warming in the west Pacific have created a large increase in Pacific SST 192 

gradients (Fig. 1E), setting the stage for sequential droughts, especially during multi-year La 193 

Niñas51. However, wet EHoA rainy seasons, associated with exceptionally warm western Indian 194 

Ocean and eastern Pacific conditions, are also expected29-36.  195 

We briefly assess the role of climate change in recent extremely warm SST hot spots 196 

(Fig. 1F). The extremity of SST hot spots during recent extreme EHoA rainfall seasons is clear 197 

when compared to the past ~70 years, while climate model SST simulations highlight the very 198 

likely role of climate change. During the droughts in OND 2016/2020/2021 and MAM 199 

2017/2021/2022, and the flooding in OND 201939, either the western Pacific or the western 200 

Indian Ocean was exceptionally warm. In Fig.1F, the observed SST anomalies for these seasons, 201 

represented as vertical black lines, are compared with CMIP6 ensemble PDFs for 1950-1979 and 202 

2016-2022. The observed hot spots were +0.5 to 1°C above the 1950-2021 baseline. In a cooler 203 

world with less climate change (1950-1979), climate models indicate that the observed 204 

anomalies during these seasons were virtually impossible in such a world without climate change 205 

(Fig. 1F). The large offset between modeled SST in the recent period and historically much 206 

cooler conditions reflects a strong climate change signature in these areas. Diagnostic studies 207 

link EHoA rainfall extremes to these very warm SSTs3,4,6,7,39. Climate change helped produce 208 
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these extreme WPG, WVG, and IOD values, and associated EHoA rainfall extremes. Can these 209 

warm ocean conditions be predicted well, offering opportunities for improved decision-making? 210 

Results 2. The latest generation of climate models can predict these extreme ocean states 211 

well at eight month leads 212 

Figure 2 presents exciting new examples of how climate change is interacting with 213 

natural variability to produce opportunities for long lead prediction. Each scatterplot shows 214 

NMME eight-month lead forecasts and actual outcomes: OND forecasts (left panels) were made 215 

in May, while MAM forecasts (right panels) were made in September. The first row presents the 216 

WPG and WVG indices, the western region component of the WPG and WVG indices. The 217 

second row displays equatorial west Pacific and Western V SSTs. Since mid-2020, such scatter 218 

plots have been used operationally11 to inform FEWS NET’s Food Security Outlook process52. 219 

These plots convey information about the predictability (high R2) of the SSTs, as well as the 220 

potential association between extreme SST states and observed EHoA dry and wet rainy season 221 

outcomes (circle color).  222 

At long leads, the WPG and WVG are predicted well (Fig. 2A), with R2 values of greater 223 

than 70%. The uncertainty surrounding these forecasts are shown with 80% confidence intervals. 224 

These 80% confidence intervals can be used to assess the probability of being within a strong 225 

gradient season. In May, the models robustly anticipated strong negative WPG values associated 226 

with eight OND La Niña events. When such forecasts were made, there were below-normal 227 

EHoA seasons seven times out of eight. These dry seasons are shown with orange circles in the 228 

left of 2A. When forecast MAM WVG values have been less than -0.4Z, as was anticipated in 229 

September 2023, dry seasons occurred nine times out of thirteen (orange circles, right side Fig. 230 
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2A). In late 2016, 2020, and 2021, WVG forecasts helped anticipate dry outcomes the following 231 

MAM11,12. Used in concert, WPG/WVG forecasts can anticipate sequential droughts (Fig. 1B). 232 

Extreme West Pacific SST predictions, alone, are also useful drought indicators. 233 

Forecasts of exceptionally warm west Pacific SST clearly indicate strong tendencies for dry 234 

EHoA outcomes (Fig. 2B), and diagnostic studies have explained how these warm conditions 235 

modify winds in ways that reduce EHoA rains6,7. This information builds on the information 236 

contained in more traditional predictors, such as equatorial eastern Pacific (NINO3.4) SST 237 

forecasts. Knowing, with a high degree of certainty at long leads, that the western Pacific will be 238 

extremely warm allows us to bracket future drought events with higher confidence. These 239 

extreme SSTs are associated with climate change (Fig. 1F). 240 

Results 3. Climate change simulations anticipate more 2020-2050 strong gradient La Niñas 241 

Should we anticipate more WPG and WVG events in the future? To address this 242 

question, we examine the 1920-2050 OND and MAM Pacific SST gradients, derived from 152 243 

CMIP6 SSP2-4.5 SST simulations22. For each year, for all of the simulations, we count the 244 

number of strong gradient events (WPG or WVG values less than -1Z) and translate those counts 245 

into a summary time-series (Fig. 3A). Due to warming in the west Pacific, all of the models 246 

indicate substantial (>30%) event frequency increases between 2020-2030 and 1920-1979. There 247 

is very consistent agreement on these changes across all the models (inset in Fig. 3A). The 248 

simulations (Fig. 3A), like the observations (Fig. 1E), suggest a strong tendency towards more 249 

frequent strong gradient events, such that in the 2020s, we expect strong gradient La Niña-like 250 

conditions about 50% of the time. This tendency is related to a strong anthropogenic ENSO-251 

residual trend mode53 that is closely related to the west Pacific warming, and will almost 252 
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certainly increase over the next several decades (Fig. 3A) as the west Pacific continues to warm. 253 

This creates both an opportunity and a need for improved forecast information. 254 

Results 4. Exploring spatially-explicit WVG-based MAM forecasts 255 

If WPG/WVG events do become even more frequent, then enhanced forecast systems 256 

will be a critical tool for managing risk. One challenge associated with improving forecasts is the 257 

difficulty in linking research-based attribution studies6,7,51 with the operational “consolidated” 258 

forecast system used by groups such as ICPAC (https://www.icpac.net/seasonal-forecast/). These 259 

forecasts use spatially explicit maps and are presented at seasonal Climate Outlook Fora in East 260 

Africa. The OND and MAM seasons differ in that MAM rains are not predicted well by climate 261 

models54, because these rains are less spatially homogeneous55 and can have non-linear 262 

relationships to SSTs, with more coherent links during droughts (e.g., Fig. 1D).  ICPAC 263 

scientists, however, are now exploring the use of logistic regression, in conjunction with WVG 264 

forecasts, to produce experimental MAM forecast maps at long-leads (Fig. 3B), and such 265 

predictions are being used to support long-lead alerts17. Preliminary results from such approaches 266 

appear promising. Unlike Fig. 3B, the scatter plot-based forecasts shown in Fig. 2 lack the spatial 267 

dimension required to fit into ICPAC’s map-based forecast streams. If gradient events become 268 

more frequent (Fig. 3A), these novel forecasting techniques may help capture the predictability 269 

inherent in extremely warm SST (Fig. 2A). 270 

Discussion 1. Implications of these advances in the predictability: challenges 271 

  While Ethiopia, Kenya, and Somalia face many barriers to increased food security56-59 272 

and agricultural development9 better climate predictions can support relief planning, policy, 273 

agricultural advising, and adaptation decisions. Yet, translating prediction to action is not 274 

straightforward9. Most east Africans are small-scale farmers with little mechanization and often 275 
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nutrient-depleted soils60. These farmers are typically poor and risk-averse9, which limits their 276 

ability and willingness to change farming practices. There is very limited uptake of innovative 277 

farming practices, crop insurance, and advisory services9. Since 2015, extreme climate has 278 

contributed to large increases in food insecurity61,62.  279 

While research has demonstrated that combinations of investment in resilience and early 280 

action can both protect lives and livelihoods and save money on humanitarian response in 281 

EHoA63, research has also explored why humanitarian relief responses have often been 282 

inadequate56-59. The latter work has identified barriers associated with limited funding, 283 

uncertain tradeoffs, and inertia56-59. Adequate relief funding is always a challenge. 284 

Organizations face a financial trade-off: “do I use these limited resources for real, known needs 285 

now, or do I devote them to mitigating future problems?” This barrier also incorporates 286 

uncertainty and the fear that resources might be squandered, especially if the information is 287 

contradictory or confusing. Social inertia within national or international agencies provides 288 

another barrier. Relief agencies design their programs, identify their partners and beneficiaries, 289 

and make security arrangements. Changing these plans is difficult and slow because the plans are 290 

complex, and involve many partners.  291 

Governments operate within limited budgets. Uncertain tradeoffs involve multiple 292 

stakeholders, the media, and competing goals. Will national insurance schemes reduce incentives 293 

for households to adapt? While traditional models assume that individuals make fully reasoned 294 

choices, decision-making itself is cognitively costly, individuals often employ “fast and frugal” 295 

heuristics64,65. These rules support decisions in the absence of full information. Despite some 296 

encouraging signs, there remain inconsistent findings in research on associations between 297 

farmers’ perceptions of climate variability and the likelihood of them using weather and climate 298 
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information services66-68. Decisions involve tradeoffs. Forecasts provide information on the 299 

probability of an adverse event, but they are silent on the risk of moving from the status quo. 300 

Yet, moving from the status quo also involves risk: adopting a new practice, crop, technology, or 301 

livelihood mix that may increase short-term resilience but prove to be maladaptive, resulting in 302 

negative impacts on crop yields, ecological health, or socioeconomic systems in the long run. For 303 

example, switching from a water-demanding crop like maize to drought-tolerant cassava often 304 

involves a tradeoff between lower risk and lower returns.  A heuristic that mimics neighbor 305 

behaviors under conditions of covariant risk exposure and thin markets can lead to suboptimal 306 

outcomes, such as deflated prices for the livestock everyone is simultaneously selling to cope 307 

with a shock. Better predictions do not always translate into better decisions, as individuals tend 308 

to favor the known over the unknown, including known risks over unknown risks69. The risk-309 

perception literature finds that individuals systematically overestimate the size of risks that are 310 

small, unfamiliar, involuntary, and uncertain, and contrastingly underestimate the size of risks 311 

that are larger, more certain, more familiar, or, over which they have some control70-72. The risk 312 

of extreme climate events in the EHoA is growing, unfortunately familiar, and now more 313 

predictable, but certainly not voluntary. 314 

Discussion 2. Implications of these advances in the predictability of East African rains: 315 

opportunities   316 

In theory, improving EWS may be one of the most cost-effective mechanisms for 317 

reducing food insecurity73. In practice, individual behavior change may never be sufficient to 318 

offset the negative consequences of catastrophic, covariant risks without public investment in 319 

large-scale insurance schemes and rural infrastructure. However, within that context, improving 320 

EWS and the distribution of related advisories is a crucial component in improving resilience. 321 
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The availability and influence of agricultural advisories remains very low in Africa9.  322 

Furthermore, such advisories may not respond to the unique needs of farmers: a recent survey74 323 

found that “most climate services have been developed using a ‘loading dock model’, whereby 324 

products are designed by information suppliers with little input from … users.” In contrast, co-325 

developed services involve engagement and discussion between data providers, advisory service 326 

developers, and farmers. Table 1 provides some good examples of co-developed participatory 327 

agricultural advisory systems in Ghana, Rwanda75, and Senegal76,77. In some non-African La 328 

Niña-impacted countries like Colombia, agro-advisories have helped maize farmers78 and rice 329 

farmers79,80 increase profits. Modest expenditures on improved advisories can improve yields by 330 

30% or more.  331 

In Ethiopia, multi-agency collaborators have developed the Ethiopian Digital 332 

AgroClimate Advisory Platform81 (EDACaP, advisory.ethioagroclimate.net). EDACaP uses 333 

climate and weather forecasts in conjunction with soil and crop data to develop local language 334 

advisories that are distributed to development agents and farmers via text messages and radio.  335 

In Kenya, collaboration between the Kenya Meteorological Department, PlantVillage, 336 

Shamba Shape Up, and the Climate Hazards Center is providing text and television-based 337 

advisories to more than 9 million Kenyans. These advisories incorporate high-resolution rainfall 338 

observations19, weather forecasts82, and WPG/WVG-based climate outlooks (Fig. 2). In addition 339 

to outreach, PlantVillage is piloting innovative strategies that promote drought resilience via 340 

labor-intensive cultivation practices that involve the digging of moisture retaining “Zai” pits and 341 

the introduction of biochar. Zai pits can hold up to nine seeds of maize and can be filled with 342 

organic manure, biochar, or dry plant biomass. Derived from local organic waste, biochar attracts 343 

and maintains nutrients and water in the soil. Despite the dry MAM 2022 rains, a pilot project 344 
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based in Kilifi county in eastern Kenya (Fig. 3C) demonstrated the potential benefits. While 345 

control plots exhibited very low maize yields (< one ton per hectare), harvests in the test plots 346 

ranged from three-to-four tons per hectare. While more research and evaluation are required, 347 

WVG-based forecasts (Fig. 3B) hold the promise of supporting increased resilience, even in the 348 

face of severe droughts, as suggested by the pilot from Kilifi.   349 

These advisory services are not costless, but are relatively inexpensive when compared to 350 

post-impact, response-based alternatives such as humanitarian assistance and/or funding safety-351 

net programs. In Kenya, the cost of getting a single SMS-advisory into the hands of a farmer is 352 

$0.006, and a farmer might typically receive 15 advisories per season. To reach 6-8 million 353 

farmers per week on TV is approximately $3,000. Reaching 50 million farmers each year via 354 

SMS might cost $4.5 million dollars. Localizing climate information, however, to agro-355 

ecological and social contexts will require a considerable increase in resources.  356 

     From a policy perspective, the potential costs of EWS-empowered advisory systems 357 

might be compared to the >$2 billion USD in humanitarian relief being provided in 2022 to 358 

Ethiopia, Kenya, and Somalia. Investments in advisory systems might save millions of dollars a 359 

year in east Africa alone, if they reduced the need for very expensive emergency relief while 360 

supporting resilience and autonomy.  361 

Pilot studies (Table 1) suggest that ~30% increases in yields are plausible. In terms of 362 

historical variations, a 30% increase is a substantial increase. For example, in Kenya, poor MAM 363 

rains typically appear in association with a ~15% reduction in national maize yields. A 30% 364 

increase in national maize production (~1MT), represents a large sum of money, when valued at 365 

2022 wholesale Kenyan maize prices (~US $320 million). In addition to increased economic 366 

outcomes, increased crop production can reduce price volatility.  367 
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Discussion 3. Can long-lead forecasts be used to improve decision-making and increase 368 

resilience? 369 

As sequential droughts become more common during La Niña events, responding to the first 370 

drought, which consistently arises in OND, may be a low-regret intervention, especially since 371 

MAM dry seasons often follow. Social protection via safety nets and insurance programs can 372 

support more effective resilience building at scale by integrating early action and preparedness83. 373 

Guaranteed funding before a shock can enhance the scalability, timeliness, predictability, and 374 

adequacy of social protection benefits. In 1998, 2010, 2016, 2020, 2021 and 2022, June forecasts 375 

of extremely warm west Pacific SSTs clearly indicated OND droughts (Fig. 2B) that led to 376 

widespread livestock loss and plummeting livestock prices. Index-Based Livestock Insurance 377 

(IBLI) is another promising intervention strategy that targets pastoralists and agropastoralists 378 

who face some of the most-extreme risks from drought84. Climate forecasts (Fig. 3B) might be 379 

combined with Predictive Livestock Early Warning Systems (PLEWS)85 to improve predictions 380 

of forage conditions. More extreme precipitation may be recharging deep aquifers86. Accessing 381 

this water via boreholes might help buffer rainfall deficits.  382 

There are opportunities to better link EWS with adaptation research. For example, the 383 

Evidence for Resilient Agriculture (ERA, https://era.ccafs.cgiar.org/) project provides data and 384 

tools that pinpoint what agricultural technologies work where.  Resources like the Adaptation 385 

Atlas (http://adaptationatlas.cgiar.org/riskmap) allow decision-makers to examine climate 386 

change-related risks alongside potential solutions. Agroforestry, micro-credit, insurance, digital 387 

advisories, improved breeds, crops, forages and diets, fertilizer, intercropping, irrigation, mulch, 388 

trees, planting decisions, stress-adapted varietals, and water harvesting—the list of potential 389 
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adaptations is long. African-led efforts that link EWS to appropriate local solutions can help us 390 

anticipate and adapt to more extreme climate.  391 

Conclusion: recommendations vis-à-vis calls for improved early warning systems  392 

In November 2022, at COP27, the UN Secretary-General unveiled the “Early Warnings 393 

for All Plan”23 which provides $3.1 billion USD to support EWS in developing countries. The 394 

plan supports four disaster-risk reduction84 pillars: 1) Disaster-risk knowledge, 2) Observations 395 

and Forecasting, 3) Preparedness and response, and 4) Dissemination and communication. EWS 396 

“are a proven, effective, and feasible climate adaptation measure, that save lives, and provide a 397 

tenfold return on investment,”73 which have been recognized by the IPCC as a key adaptation 398 

strategy87. Within Africa, ICPAC, FEWS NET and the Kenyan and Ethiopian Meteorological 399 

Departments provide some of the most sophisticated EWS. This sophistication, the long-standing 400 

climate volatility, and food insecurity in the Horn, in addition to the many years of collective 401 

research and practical experience represented by the authors, provide us a vantage point from 402 

which to provide ten recommendations related to effective EWS development and 403 

implementation in the context of climate change. These recommendations are relevant for many 404 

regions linked to Indo-Pacific SSTs: 405 

 406 

1. Realize that climate change is happening now and offers opportunities for prediction. 407 

2. Realize that climate change contributed to recent extreme SSTs and associated EHoA droughts and 408 

floods, and that many of these extremes were predictable. 409 

3. Realize that extreme SST gradients provide opportunities for forecasts. 410 

4. Pay attention to extremely warm SSTs, these can drive predictable droughts and floods. 411 

5. Be concerned about increasing aridity and declining per capita resources. 412 

6. Work towards integrated observation/forecast systems. 413 
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7. Invest in building capacity. Utilize local expertise. 414 

8. Look for places or seasons where conditions will likely be clement. Teleconnections will produce 415 

droughts, but also areas with bountiful rains. 416 

9. Leverage agricultural adaptation resources to build resilience. Link EWS to the latest agricultural 417 

adaptation science. 418 

10. Pay attention to barriers to climate information use, and learn from them. 419 

 420 

Trust, urgency, and accuracy can enable action, helping overcome barriers associated 421 

with funding, uncertain tradeoffs, and inertia. Trust and urgency involve a shared 422 

understanding of how climate change is interacting with natural variability to produce frequent 423 

climate extremes, now. Trust also involves developing (and investing in) co-developed 424 

participatory advisory services: localized, culturally appropriate flows of information. Accuracy 425 

arises when we carefully combine domain-specific insights with the best-available information. 426 

For example, satellite observations and numerical model predictions are tremendous sources of 427 

information, but transforming this information into accurate rainfall estimates19 or forecasts (Fig. 428 

2, 3B) demands expertise. Predictions of exceptionally warm west Pacific SSTs (Fig. 2B) help 429 

anticipate the influence of climate change. While still evolving, inter-disciplinary collaboration is 430 

leading to first-in-kind long-lead alerts16,17. But the development of effective EWS in developing 431 

countries will require large investments in human capacity. “Loading dock” approaches to 432 

climate services can fail to provide locally appropriate advisory services74 just as “raw” climate 433 

model forecasts may miss important teleconnections and opportunities for prediction, such as 434 

those shown in Fig. 2. Especially for MAM, long-lead drought outlooks would be substantially 435 

less skillful if they were just based on climate model rainfall forecasts54 or equatorial east Pacific 436 



Commentary for Earth’s Future 

21 

SST predictions. Skill matters. For OND La Niña-related droughts, which the models capture 437 

well, effective actions based early alerts can build resilience in the face of sequential droughts. 438 

Urgency arises from the long-term implications of extreme SST gradients (Fig. 3A), 439 

warming air temperatures, population growth, income gaps, and other socioeconomic and 440 

political stressors.  Strong negative WPG/WVG gradients have become common (Fig. 1E). 441 

Climate change contributed to extreme gradients in 2016/17 and 2020/22 (Fig. 1F). These 442 

gradients helped produce an unprecedented five-season drought in the Horn. Given that the serial 443 

correlation of EHoA MAM and OND rains is very close to zero, the chance of a five-season 444 

drought sequence happening randomly is extremely low (0.333^5 ≈ 0.4%).  445 

The frequency of strong gradient events is expected to increase dramatically (by >50%) 446 

by mid-century (Fig. 3A), which will likely increase in the frequency of poor EHoA rainy 447 

seasons. More frequent dry seasons may also be accompanied by more frequent El Niños and 448 

positive IOD events and extreme precipitation30,31,50. Increasing air temperatures contribute to 449 

both droughts and floods. Under dry conditions, warmer air draws more moisture from plants. 450 

Under wet conditions, warmer air holds more water vapor, leading to more extreme precipitation. 451 

Such influences contribute to “wet-getting-wetter” and “dry-getting-drier” tendencies in the 452 

Horn88. Observed EHoA crop water requirements are also trending upward during dry seasons, 453 

and these influences appear preferentially in hot-arid lowland areas10,89. Importantly, the spatial 454 

signature of these impacts largely aligns with the footprint of WPG/WVG-related drought 455 

tendencies. 456 

Finally, increases in population and water scarcity are also likely to expand insecurity. 457 

UN projections suggest that between 2022 and 2050, the population of Ethiopia, Kenya, and 458 

Somalia, will increase by 70%. Holding other factors constant, population-driven per capita 459 
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water availability projections for 2050 indicate the potential for severe water stress and 460 

scarcity61. Population-driven projections of Kenyan per capita maize production also indicate 461 

40% reductions by 205089. Planning for more frequent and severe extremes by enhancing EWS 462 

and advisory services can help mitigate these climate shocks. 463 

The long-term implications of these compound stresses are very concerning, especially 464 

for the hot, dry EHoA lowlands. Yet, there is also hope that crop productivity can be increased in 465 

humid areas. Many areas of Ethiopia, and substantial portions of Kenya, are climatically secure. 466 

Some of these areas (most of Ethiopia) tend to experience rainfall increases during La Niña-like 467 

seasons. Closing yield gaps in humid regions would create wealth and lower food prices, and 468 

there is growing evidence that climate-enhanced advisories can contribute (Table 1). But 469 

achieving this promise will require much greater investments in African experts, experts who can 470 

improve and interpret forecasts, link to agricultural ministries, extension programs, and 471 

agricultural research centers, and, ultimately, farmers and pastoralists.  472 

  473 
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Data Availability: 474 

The time series data supporting the primary results of this study are available via Dryad. Funk, 475 

Chris (2022), Data - Tailored forecasts can predict extreme climate informing proactive 476 

interventions in East Africa, Dryad, Dataset, https://doi.org/10.25349/D9MC8Z.   477 

For now, the data is available at: 478 

https://datadryad.org/stash/share/PxI2GIJv-4Q_C51wiHw-gySoI72xjRpl9_2euUONcM4  479 

Code Availability: The bulk of the analysis presented in this paper are based on simple time-480 

series manipulations, and are presented in the excel file in the Dryad link above. The most salient 481 

results can be recreated without coding, using the time series provided in the Dryad repository. 482 

Time-series extraction and the simple SST composite plots shown in Fig. 2C,D were  done using 483 

Interactive Data Language version 8.7, and the related code is contained with the Dryad 484 

Repository. Zip files in that directory also contain NOAA extended reconstruction version 5 485 

gridded SST data, NMME SST forecasts from May and September, and regionally averaged 486 

CMIP6 SSP245 SST time-series. For the convenience of the reviewers, the contents of the data 487 

repository are also available at: https://data.chc.ucsb.edu/people/chris/DataRepository.zip. 488 

  489 

https://doi.org/10.25349/D9MC8Z
https://datadryad.org/stash/share/PxI2GIJv-4Q_C51wiHw-gySoI72xjRpl9_2euUONcM4
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Table 1 | Exemplar case studies demonstrating the benefits of co-production and social networks 490 
in scaling climate-informed advisories.  491 

Location Agriculture 
decision 
affected 

Benefit Scaling 
potential 

Behavior science 
for scaling 

Distribution channel 

Senegal Crop varieties, 
field location, 
intercrop, crop 
type, crop mix,   
timing of sales, 
harvest & 
weeding, 
fertilizer use, 
water harvesting 

Crop income 
increased 
between 10 
and 25% 

PICSA and 
WMG 
approaches 
can be easily 
scaled. 

Multidisciplinary 
Working Groups 
(WMG) increase 
farmer’s awareness 
of forecasts by 
18%, access by 
12% and uptake by 
10%. 

SMS, phone,   
Interactive radio, 
farmers share 
information word of 
mouth. 

Rwanda Crop type, Crop 
varieties, Timing 
of planting and 
land preparation, 
When and how 
to prepare land 

With PICSA 
 +24% 
production   
 +36% 
income 
 
With 
PICSA+RLC 
 +47% 
production    
 +56% 
income 

-PICSA and 
RLC 
approaches 
can be easily 
scaled. 

Participatory 
Integrated Climate 
Services for 
Agriculture 
(PICSA) approach. 
Radio Learning 
Clubs (RLC) 
address disparities. 

Radio, Phone, TV 
    (43:11:7%) 
 
With RLC 
    (81:37:9 %) 

Ghana Land preparation 
planting & 
harvest dates, 
crop varieties, 
fertilizer 
scheduling 

+35% 
sorghum 
yields 
 
+6% technical 
Efficiency 

Easily 
replicated.   
Requires 
mobile access. 
$35 
subscription 
plus training 
costs 

The most 
significant factor in 
forecast use was 
training. 
 

Mobile (Voice Message, 
SMS, Call Centre) 

Colombia, 
Guatemala, 
Honduras 

Sowing & 
harvesting  
dates, rainwater 
harvesting, pest 
prevention, crop 
rotations, variety 
changes 

Avoided 
income loss 
of 20%. 
 
+20-to-50% 
yield gain for 
rice, maize, 
bean 

Government 
and local 
stakeholder 
uptake of 
LTAC 
approach 
enables 
scaling 

Local Technical 
Agro-Climatic 
Committees 
(LTACs) where 
stakeholders 
discuss forecasts 
and develop 
recommendations. 

Agroclimatic bulletin, 
radio, TV, newspaper, 
extension service, social 
networks 

 492 

 493 
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Figures 494 

  495 

Figure 1. A. Schematic diagram describing the links between climate attribution, prediction and 496 
improved interventions. B. Barplot showing 2016-2023 regionally averaged EHoA MAM and 497 
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OND Standardized Precipitation Index values. Western Pacific Gradient (WPG) and Western 498 
‘V’-Gradient (WVG)-based drought forecast dates are noted for La Niña-related dry seasons, 499 
along with hit or false alarm outcomes. MAM 2023 result is a forecast, shown with 80% 500 
confidence intervals. C. Standardized OND SST composites for post-1996 dry EHoA OND 501 
seasons. Screened for significance at p=0.1. Boxes denote the western and eastern IOD regions, 502 
the equatorial west Pacific (110°E-140°E, 15°S-15°N), and the NINO3.4 region. D. Same for 503 
MAM EHoA dry seasons. Boxes denote the Western V (blue) (110°E-140°E, 15°S-15°N, 160°E-504 
160°W, 20°N-35°N, 155°E-160°W, 15°S-30°S) and NINO3.4 (yellow) regions. E. SST index 505 
values for the observed MAM WVG and OND WPG. Anomalies calculated using a 1950-2020 506 
baseline. The Pacific gradients associated with droughts (1C,D) are becoming more frequent 507 
(1E). Recent below-normal EHoA rainy seasons are marked with short vertical lines. The 2023 508 
MAM WVG values are based on forecasts in Fig. 2. The black circles denote the associated 80% 509 
confidence intervals. The associated question mark conveys our concerns for a 6th dry season, 510 
based on the 2023 WVG forecast in Fig. 2. F. Equatorial OND western Pacific, MAM Western 511 
V, and OND western Indian Ocean CMIP6 SSP245 SST anomalies for 1950-1979 and 2016-512 
2022, along with observed SST anomalies for selected drought seasons. Anomalies based on a 513 
1950-2020 baseline.  514 
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 515 

Figure 2. A. Scatterplots of forecast and observed WPG and WVG values. Left panels show 516 
1982-2022 OND forecasts made in May. Right panels show 1983-2023 MAM forecasts made in 517 
September. OND 2022 and MAM 2023 ‘observations’ are assumed to equal the forecasts. 518 
Vertical bars indicate 80% confidence intervals. Blue, gray and red circles denote the EHoA 519 
rainfall outcomes for each OND or MAM season.  B. Same but for regionally averaged SST in 520 
equatorial western Pacific and Western V regions. Regions described in Fig. 1C,D. 521 

 522 
 523 

  524 



Commentary for Earth’s Future 

28 

 525 



Commentary for Earth’s Future 

29 

Figure 3. A. Time-series showing the median frequency of extreme OND WPG and MAM 526 
WVG events, based on standardized time-series from the CMIP6 SSP245 climate change 527 
ensemble, along with 95% confidence intervals. The WPG and WVG are calculated using SSTs 528 
from the Pacific boxes in Fig. 1A and 1B, respectively. Extreme negative OND WPG and MAM 529 
WVG events are associated with values less than -1Z. Change in extreme event frequencies (# of 530 
events per 100 years) were calculated by taking the frequency differences between 2020-2030 531 
and 1920-1979, and are reported in the inset table for each model with at least three simulations. 532 
The 20th, 50th and 80th percentile values of the per-model changes are shown in the last three 533 
columns. Time series were standardized using a 1950-2020 baseline. Human-induced warming 534 
in the western Pacific results in strong inter-model agreement on more frequent WPG and WVG 535 
events, in line with the observed gradient values shown in Fig. 1C. B. Experimental ICPAC 536 
forecasts for MAM 2023, based on localized logistic regressions and WVG forecasts. C. Test 537 
plot results in eastern Kenya from MAM 2022. Upper-left and right panels show adjacent control 538 
and test plots. Bottom panel shows field preparation using Zai pits and biochar. 539 

 540 
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