Tailored forecasts can predict extreme climate informing proactive interventions in East Africa

Chris Funk¹, Laura Harrison¹, Zewdu Segele², Todd Stuart Rosenstock³, peter steward⁴, leigh anderson⁵, Erin Coughlan-Perez⁶, daniel maxwell⁷, Hussen Seid Endris⁸, Eunice Koech⁸, guleid artan⁸, Fetene Teshome⁹, Stella Aura¹⁰, Gideon Galu¹¹, Diriba Korecha¹², weston anderson¹³, Andrew Hoell¹⁴, kerstin damerau¹⁵, Emily L Williams¹⁶, Aniruddha gosh⁴, Julian Ramirez Villegas¹⁰, and david Peter hughes¹⁷

¹University of California, Santa Barbara ²IGAD Climate Prediction and Applications Centre [ICPAC] ³World Agroforestry Centre ⁴Alliance of Biodiversity International and the International Center for Tropical Agriculture (Biodiversity - CIAT) ⁵Marc Lindenberg Professor for Humanitarian Action, International Development and Global Citizenship, University of Washing ⁶Tufts University ⁷Friedman School of Nutrition, Tufts University ⁸IGAD Climate Prediction and Applications Center ⁹Ethiopian National Meteorology Department ¹⁰Unknown ¹¹United States Geological Survey ¹²Famine Early Warning Systems Network ¹³Goddard Space Flight Center ¹⁴NOAA/ESRL/PSD ¹⁵Department of Global Development, Cornell University ¹⁶University of California Santa Barbara ¹⁷USAID Innovation Lab on Current and Emerging Threats to Crops, Pennsylvania State University

February 9, 2023

Abstract

This commentary discusses new advances in the predictability of east African rains and highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, and agricultural decision-making. Following an unprecedented sequence of five droughts, in 2022 23 million east Africans faced starvation, requiring >\$2 billion in aid. Here, we update climate attribution studies showing that these droughts resulted from an interaction of climate change and La Niña. Then we describe, for the first time, how attribution-based insights can be combined with the latest dynamic models to predict droughts at eight-month lead-times. We then discuss behavioral and social barriers to forecast use, and review literature examining how EWS might (or might not) enhance agro-pastoral advisories and humanitarian interventions. Finally, in reference to the new World Meteorological Organization (WMO) "Early Warning for All" plan, we conclude with a set of recommendations supporting actionable and

authoritative climate services. Trust, urgency, and accuracy can help overcome barriers created by limited funding, uncertain tradeoffs, and inertia. Understanding how climate change is producing predictable climate extremes now, investing in African-led EWS, and building better links between EWS and agricultural development efforts can support long-term adaptation, reducing chronic needs for billions of dollars in reactive assistance. The main messages of this commentary will be widely. Climate change is interacting with La Niña to produce extreme, but extremely predictable, Pacific sea surface temperature gradients. These gradients will affect the climate in many countries creating opportunities for prediction. Effective use of such predictions, however, will demand cross-silo collaboration.

1 Tailored forecasts can predict extreme climate informing proactive interventions in East

2 Africa

Author	Position
Chris Funk	Director, Climate Hazards Center, University of California, Santa
	Barbara
Laura Harrison	Researcher, Climate Hazards Center
Zewdu Segele	Senior Climate Scientist, IGAD Climate Prediction and
	Applications Center
Todd Rosenstock	Principal Scientist, Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity – CIAT)
Peter Steward	Scientist, Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity – CIAT)
C. Leigh Anderson	Marc Lindenberg Professor for Humanitarian Action, International
	Development and Global Citizenship, University of Washington
Erin Coughlan-Perez	Research Director, Dignitas Professor, Friedman School of
	Nutrition, Tufts University
Daniel Maxwell	Henry J. Leir Professor in Food Security, Tufts University
Hussen Seid Endris	Researcher, IGAD Climate Prediction and Applications Center
Eunice Koch	Climate Modeling Assistant, IGAD Climate Prediction and
	Applications Center
Guleid Artan	Director, IGAD Climate Prediction and Applications Center
Fetene Teshome	Director, Ethiopian National Meteorological Agency
Stella Maris Aura	Director, Kenya Meteorological Department
Gideon Galu	FEWS NET Regional Scientist, East Africa
Diriba Korecha	FEWS NET Regional Scientist, Ethiopia
Andrew Hoell	NOAA Physical Sciences Laboratory
Weston Anderson	NASA GSFC, FEWS NET Science Team
Kerstin Damerau	Research Associate, Department of Global Development, Cornell
	University
Emily Williams	Researcher, Climate Hazards Center
Aniruddha Ghosh	Scientist – Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity – CIAT)
Julian Ramirez-Villegas	Principal Scientist, Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity –
	CIAT); Professor, Plant Production Systems group, Wageningen
	University & Research
David Hughes	Director of USAID Innovation Lab on Current and Emerging
	Threats to Crops, Pennsylvania State University

4

5 Abstract:

6 This commentary discusses new advances in the predictability of east African rains and 7 highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, 8 and agricultural decision-making. Following an unprecedented sequence of five droughts, in 9 2022 23 million east Africans faced starvation, requiring >\$2 billion in aid. Here, we update 10 climate attribution studies showing that these droughts resulted from an interaction of climate 11 change and La Niña. Then we describe, for the first time, how attribution-based insights can be 12 combined with the latest dynamic models to predict droughts at eight-month lead-times. We then discuss behavioral and social barriers to forecast use, and review literature examining how EWS 13 14 might (or might not) enhance agro-pastoral advisories and humanitarian interventions. Finally, in reference to the new World Meteorological Organization (WMO) "Early Warning for All" plan, 15 16 we conclude with a set of recommendations supporting actionable and authoritative climate 17 services. Trust, urgency, and accuracy can help overcome barriers created by limited funding, 18 uncertain tradeoffs, and inertia. Understanding how climate change is producing predictable 19 climate extremes now, investing in African-led EWS, and building better links between EWS 20 and agricultural development efforts can support long-term adaptation, reducing chronic needs 21 for billions of dollars in reactive assistance.

The main messages of this commentary will be widely. Climate change is interacting with La Niña to produce extreme, but extremely predictable, Pacific sea surface temperature gradients. These gradients will affect the climate in many countries creating opportunities for prediction. Effective use of such predictions, however, will demand cross-silo collaboration.

26 Plain language summary

Eastern East Africa is extremely food insecure. Millions of farmers and pastoralists rely on two 27 28 meagre rainy seasons that arrive twice a year. In the thirteen seasons since late 2016, the region 29 experienced eight droughts and three exceptionally wet seasons. Seven droughts were linked to 30 exceptionally strong Pacific sea surface temperature gradients, which arose through an 31 interaction between climate change and La Niña. For the first time, we show that these gradients 32 can be very well predicted by the current generation of climate models. We then discuss how 33 such information might be used to inform risk management, harvests, and livestock management 34 practices. The IGAD Climate Predictions and Applications Center, Ethiopian and Kenvan 35 meteorological agencies, and other groups are providing increasingly accurate climate 36 information. This provides opportunities for more proactive and effective agricultural and 37 pastoral advisory services. Trust, urgency and accuracy can lower uncertainty, reduce risk 38 aversion, and empower poor households and cash-strapped institutions to act and innovate. As 39 Climate change will bring more extreme (but predictable) Pacific and Indian Ocean sea surface 40 temperature gradients. Investing now in collaborative African climate services, participatory 41 advisory services and proactive risk management will help counter these threatening climate 42 extremes.

43 Main Points

1. Climate change and La Niña are producing extreme Pacific temperature gradients, which canbe predicted very far in advance.

46 2. These Pacific temperature forecasts provide opportunities for predicting wet and dry outcomes47 very well in East Africa.

48 3. Increased *trust, urgency and accuracy* can help overcome barriers associated with *limited*49 *funding, uncertain tradeoffs,* and *inertia*.
50

51 Main

In this commentary, an interdisciplinary, international set of authors describes how climate 52 attribution studies have led to new advances in the predictability of Eastern Horn of Africa 53 54 (EHoA) rains, and then explores how these forecasts might better guide humanitarian relief and proactive agricultural decisions in the future, leading to increased resilience (Fig. 1A). The team 55 includes scientists from the IGAD Climate Prediction and Applications Center (ICPAC), the 56 Famine Early Warning Systems Network (FEWS NET), Ethiopian and Kenyan Meteorological 57 Departments, and scientists engaged in agricultural development, advisory services, and 58 humanitarian relief efforts. Updating previously published climate attribution studies¹⁻⁷, we show 59 that sequential EHoA droughts are tied to strong east-west sea surface temperature (SST) 60 gradients, which arise through an interaction of human-caused climate change (hereafter referred 61 62 to simply as climate change) and La Niña (Fig. 1). We then describe, for the first time in print, how the latest generation of climate models can predict these gradients and very warm west 63 64 Pacific SSTs, and consequently EHoA droughts, at surprisingly long (eight-month) lead-times (Fig. 2). Given that climate change is likely to increase the frequency of these events (Fig. 3), we 65 conclude with a discussion of the long-term implications of a potential increase in drought 66 frequency. While many countries in East Africa have, in theory, policies supporting increased 67 agricultural productivity and disaster risk management⁸, in practice, millions of poor households 68 remain vulnerable to climate shocks⁹. Could improved forecasts and EWS be useful to 69 70 agricultural and food security decision-makers?

71 The schema in Fig. 1A lays out the logic of this Commentary. We first describe how climate 72 change attribution leads to a tailored forecast process that produce more accurate long lead time 73 forecasts. We then discuss how these forecasts might improve humanitarian relief planning,

74	agricultural outcomes and food security if decision-makers are able to translate predictions into
75	effective practice. Appropriately interpreting and communicating forecasts can decrease the
76	uncertainty associated with trade-offs. This improves decision-making and makes information
77	more actionable via technically feasible cost-effective response that addresses limited resources.
78	Social and individual inertia potentially is reduced through localized, relevant information. We
79	conclude by discussing how trust, urgency, and accuracy may help overcome barriers created by
80	limited funding, uncertain tradeoffs, and inertia, and provide a set of recommendations related to
81	effective EWS development and implementation in the context of climate change.
82	While focused on the EHoA, the techniques, opportunities, and barriers discussed here may
83	be widely applicable to many areas exposed to risks associated with La Niñas. Human-induced
84	warming in the west Pacific is interacting with natural El Niño-Southern Oscillation (ENSO)
85	variability, but tailored forecasting approaches can translate the influence of climate change into

86 expanded opportunities for prediction.

87 Background – volatile climate, humanitarian crises, but opportunities for predictions

Since late 2016, the EHoA (Ethiopia, Kenya, and Somalia to the east and south of 38°E and 88 8°N) has experienced a high degree of climate volatility, with recurrent shocks due to frequent 89 90 droughts and floods. During this period, nine seasons were dry, three were wet, and only two had 91 normal rains (Fig. 1B). Below-normal rains are inadequate to support productive crops and rangeland¹⁰. 92

93 Seven of the dry eight dry seasons in Fig. 1B were anticipated with operational "tailored" forecasts¹¹, based on climate-change-enhanced west Pacific SST, La Niña, and strong Pacific 94 SST gradients (with one false alarm in March-April-May, or MAM, 2018¹¹). Hits, i.e., droughts 95

that were accurately forecasted, included the back-to-back drought sequence in 2016/17¹² and the
five sequential below-normal seasons stretching from October-November-December (OND)
2020 through OND 2022. These tailored forecasts benefitted from a two-step approach that 1)
attributes droughts to extreme SST states, which arise through the interaction of natural
variability and climate change (Fig. 1), then 2) predicts these states using the latest state-of-thescience climate forecast ensembles (Fig. 2).

102 EHoA's position makes it uniquely exposed to climatic hazards driven by Indo-Pacific SSTs. 103 When SST gradients increase rains above the eastern Indian Ocean and western Pacific, rains 104 decrease over EHoA. This links EHoA precipitation to La Niña and Indian Ocean Dipole (IOD) 105 events. During OND, these connections are well-established. There is less consensus for MAM. Some research suggests MAM rains are weakly linked to SSTs¹³⁻¹⁵, and hence, largely 106 107 unpredictable. However, many FEWS NET studies¹⁻⁷ have attributed sequential OND/MAM dry 108 seasons to Pacific SST gradients which arise through an interaction between La Niña and climate 109 change.

110 These insights, combined with increasingly sophisticated climate forecast systems, has supported five successful long-lead forecasts in a row¹¹. Eight months before the end of OND 111 112 and MAM, strong Pacific SST gradients can be accurately predicted. In May¹⁶ and November¹⁷ 113 of 2022, these inputs helped motivate exceptional multi-agency drought alerts. Never before had 114 such a broad coalition of EHoA early warning experts acted so successfully so far in advance of 115 the next rainy season. Yet, by late 2022, the interaction of five sequential droughts, COVID-19, 116 conflict, inflation, and pre-existing vulnerabilities placed 23 million people in food security 117 crises¹⁷. In Somalia, despite massive humanitarian responses reaching more than 7 million 118 people, experts anticipated the outbreak of famine in 2023. Despite repeated, accurate

119 predictions of drought (Fig. 1B), the magnitude of this crisis continued to grow. An EWS may 120 begin with climate information, but requires effective transformation into actions which can 121 increase resilience (Fig. 1A). This requires a shared understanding of how climate change and 122 ENSO, together, offer opportunities for long lead predictions. Hence, we describe here the 123 potential of these forecasts, and then discuss the opportunities and barriers associated with using 124 such information within participatory agricultural advisory systems and humanitarian EWS for 125 incentivizing adaption and reducing food insecurity. With more research and dialogue, the 126 incorporation of such forecasts into operational forecast systems and policy-relevant decision-127 making processes may help our communities cope with increasing climate volatility, both in 128 EHoA and in other areas linked to Indo-Pacific SSTs.

129 Data and Methods

This study relies on widely used Climate Hazard Center rainfall data sets^{18,19} and NOAA 130 Extended Reconstruction SST data²⁰. The terms dry, normal, and wet correspond to bottom, 131 132 middle, and top-tercile rainy season outcomes. To reduce repetition, we also use "drought" to 133 refer to below-normal rainy seasons. Seasonal SST forecasts are based on the North American Multi-Model Ensemble (NMME)²¹. A 152-member, 25 model ensemble from the Coupled 134 135 Model Intercomparison Project Phase 6 (CMIP6) is used to examine projected human-induced 136 SST increases, based on a moderate emissions scenario (Shared Socioeconomic Pathway 2-4.5, SSP2-4.5)²². The attribution analyses, detailed in our first results section and presented in Fig. 1, 137 138 are updates of climate attribution studies focused on the 2016/17 droughts^{6,7}. These results^{6,7} informed accurate tailored forecasts¹¹ (Fig. 2), which we describe in our second results section. 139 140 We then describe increasing risks associated with CMIP6 projections of stronger future Pacific 141 SST gradients, new spatially-explicit forecast results, and biochar-based farming practices in a

8

third results section (Fig. 3). We then discuss how improved "climate-smart" decision-making
might help regions cope with more frequent climate extremes. This discussion is guided by
existing literature, ongoing policy-relevant activities in East Africa, the authors' experience, and
the recently announced WMO "Early Warning for All" project²³.

146 Inclusion and Ethics: By design, this Commentary includes numerous authors from East 147 Africa, as well as numerous collaborators in the US or Europe. The authors also represent several 148 different communities of practice: climate, agricultural development, and food security. Effective 149 dialog across these communities will be needed to guide effective adaptation. The collaboration 150 supporting this article furthers that objective.

151 Results 1 – linking recent droughts to extremely warm Pacific SSTs and climate change

Scientists have long emphasized the societal dangers^{24,25} associated with predictable^{21,26-} 152 153 ²⁸ El Niños and La Niñas and climate change is expected to increase the frequency of strong ENSO and IOD events²⁹⁻³². What is less appreciated is that the interaction of climate change and 154 ENSO is creating opportunities for prediction—now. As climate change rapidly warms³³ 155 dynamically important regions in the Indian³⁴⁻³⁶ and Pacific Oceans^{37,38}, exceptionally warm 156 ocean conditions can produce potentially predictable droughts and wet seasons^{6,7,39}. For EHoA, 157 158 this may be especially important for MAM, due to a strengthening connection to La Niña⁴⁰. Figure 1C-F updates attribution studies that identified how extremely warm west Pacific SST 159 contributed to droughts in 2016/17^{6,7}. Composites of standardized contemporaneous SSTs 160 161 during recent OND and MAM dry seasons (Fig. 1C,D) can help identify predictor zones. OND rains are influenced by IOD⁴¹⁻⁴³, ENSO/NINO3.4 SSTs⁴⁴, and the SSTs in the equatorial west 162 Pacific^{3,4,6}. The MAM rains are linked to SSTs in the southern Indian Ocean⁴⁵, and the Pacific 163

164	"Western V" and equatorial eastern Pacific regions ^{6,7} . When the equatorial west Pacific and
165	"Western V" regions are exceptionally warm, the area around Indonesia sees increases in
166	rainfall, while the EHoA often experiences sequential dry conditions in OND and MAM ³⁻⁷ .
167	While the OND teleconnections (Fig. 1C) are well-appreciated, the strong MAM
168	"teleconnections" implicit in Fig. 1D are not as well-appreciated.
169	Gradient indices provide a convenient short-hand to describe Indian and Pacific Basin
169 170	Gradient indices provide a convenient short-hand to describe Indian and Pacific Basin SST patterns. While gradients are commonly used in the Indian Ocean ⁴¹ , there remains a
170	SST patterns. While gradients are commonly used in the Indian Ocean ⁴¹ , there remains a

We define two gradients useful for such predictions. For OND, we describe the Pacific via the "West Pacific Gradient" (WPG)³: the difference between standardized equatorial western and eastern Pacific SSTs (Pacific boxes in Fig. 1C). For MAM, we use a similar "Western V Gradient" (WVG), based on the difference between NINO3.4 and Western V temperatures (boxes in Fig. 1D). During MAM, there are important extratropical interactions with the northern and southern hemisphere subtropical westerly jets over the Pacific Ocean, which link warm extra-tropical northern and southern Pacific SST to La Niña-like climate impacts^{6,7}.

Following the 1997/98 El Niño, the western Pacific warmed substantially, and WPG and
WVG values decreased dramatically (Fig. 1E). This set the stage for numerous, often sequential,
EHoA dry seasons (noted with short vertical lines). This trend towards more frequent strong
gradient events has been attributed to a combination of natural ENSO variability and humaninduced warming in the western Pacific^{6,7,47,48}. Strong upward SST trends in the equatorial west

186	Pacific ³ , the western North Pacific ⁶ , and the "Western V" region ⁷ have been formally linked to
187	human-induced warming ^{6,7} . Warming in the already very warm west Pacific has enhanced
188	observed La Niñas ^{3,6} in ways similar to climate change projections ^{49,50} . These exceptional Pacific
189	gradient events have arisen alongside an exceptional number of 1998-2022 La Niña events-
190	thirteen events in twenty-five years since 1998. Historically, La Niña events occur every three-
191	to-five years ^{24,25} . Hence, very frequent La Niñas, a lack of a warming trend in the eastern
192	Pacific ^{47,48} , and rapid warming in the west Pacific have created a large increase in Pacific SST
193	gradients (Fig. 1E), setting the stage for sequential droughts, especially during multi-year La
194	Niñas ⁵¹ . However, wet EHoA rainy seasons, associated with exceptionally warm western Indian
195	Ocean and eastern Pacific conditions, are also expected ²⁹⁻³⁶ .

196 We briefly assess the role of climate change in recent extremely warm SST hot spots 197 (Fig. 1F). The extremity of SST hot spots during recent extreme EHoA rainfall seasons is clear 198 when compared to the past \sim 70 years, while climate model SST simulations highlight the very 199 likely role of climate change. During the droughts in OND 2016/2020/2021 and MAM 200 2017/2021/2022, and the flooding in OND 2019³⁹, either the western Pacific or the western 201 Indian Ocean was exceptionally warm. In Fig.1F, the observed SST anomalies for these seasons, 202 represented as vertical black lines, are compared with CMIP6 ensemble PDFs for 1950-1979 and 203 2016-2022. The observed hot spots were +0.5 to 1°C above the 1950-2021 baseline. In a cooler 204 world with less climate change (1950-1979), climate models indicate that the observed 205 anomalies during these seasons were virtually impossible in such a world without climate change 206 (Fig. 1F). The large offset between modeled SST in the recent period and historically much 207 cooler conditions reflects a strong climate change signature in these areas. Diagnostic studies link EHoA rainfall extremes to these very warm SSTs^{3,4,6,7,39}. Climate change helped produce 208

209	these extreme WPG, WVG, and IOD values, and associated EHoA rainfall extremes. Can these
210	warm ocean conditions be predicted well, offering opportunities for improved decision-making?
211	Results 2. The latest generation of climate models can predict these extreme ocean states
212	well at eight month leads
213	Figure 2 presents exciting new examples of how climate change is interacting with
214	natural variability to produce opportunities for long lead prediction. Each scatterplot shows
215	NMME <i>eight-month</i> lead forecasts and actual outcomes: OND forecasts (left panels) were made
216	in May, while MAM forecasts (right panels) were made in September. The first row presents the
217	WPG and WVG indices, the western region component of the WPG and WVG indices. The
218	second row displays equatorial west Pacific and Western V SSTs. Since mid-2020, such scatter
219	plots have been used operationally ¹¹ to inform FEWS NET's Food Security Outlook process ⁵² .
220	These plots convey information about the predictability (high R^2) of the SSTs, as well as the
221	potential association between extreme SST states and observed EHoA dry and wet rainy season
222	outcomes (circle color).
223	At long leads, the WPG and WVG are predicted well (Fig. 2A), with R ² values of greater
224	than 70%. The uncertainty surrounding these forecasts are shown with 80% confidence intervals.
225	These 80% confidence intervals can be used to assess the probability of being within a strong
226	gradient season. In May, the models robustly anticipated strong negative WPG values associated
227	with eight OND La Niña events. When such forecasts were made, there were below-normal
228	EHoA seasons seven times out of eight. These dry seasons are shown with orange circles in the
229	left of 2A. When forecast MAM WVG values have been less than -0.4Z, as was anticipated in

230 September 2023, dry seasons occurred *nine times out of thirteen* (orange circles, right side Fig.

231	2A). In late 2016, 2020, and 2021, WVG forecasts helped anticipate dry outcomes the following
232	MAM ^{11,12} . Used in concert, WPG/WVG forecasts can anticipate sequential droughts (Fig. 1B).

233 Extreme West Pacific SST predictions, alone, are also useful drought indicators. 234 Forecasts of exceptionally warm west Pacific SST clearly indicate strong tendencies for dry 235 EHoA outcomes (Fig. 2B), and diagnostic studies have explained how these warm conditions modify winds in ways that reduce EHoA rains^{6,7}. This information builds on the information 236 237 contained in more traditional predictors, such as equatorial eastern Pacific (NINO3.4) SST 238 forecasts. Knowing, with a high degree of certainty at long leads, that the western Pacific will be 239 extremely warm allows us to bracket future drought events with higher confidence. These 240 extreme SSTs are associated with climate change (Fig. 1F).

241 Results 3. Climate change simulations anticipate more 2020-2050 strong gradient La Niñas

242 Should we anticipate more WPG and WVG events in the future? To address this 243 question, we examine the 1920-2050 OND and MAM Pacific SST gradients, derived from 152 CMIP6 SSP2-4.5 SST simulations²². For each year, for all of the simulations, we count the 244 245 number of strong gradient events (WPG or WVG values less than -1Z) and translate those counts 246 into a summary time-series (Fig. 3A). Due to warming in the west Pacific, all of the models 247 indicate substantial (>30%) event frequency increases between 2020-2030 and 1920-1979. There 248 is very consistent agreement on these changes across all the models (inset in Fig. 3A). The 249 simulations (Fig. 3A), like the observations (Fig. 1E), suggest a strong tendency towards more 250 frequent strong gradient events, such that in the 2020s, we expect strong gradient La Niña-like 251 conditions about 50% of the time. This tendency is related to a strong anthropogenic ENSOresidual trend mode⁵³ that is closely related to the west Pacific warming, and will almost 252

253 certainly increase over the next several decades (Fig. 3A) as the west Pacific continues to warm.

254 This creates both an opportunity and a need for improved forecast information.

255 Results 4. Exploring spatially-explicit WVG-based MAM forecasts

256 If WPG/WVG events do become even more frequent, then enhanced forecast systems 257 will be a critical tool for managing risk. One challenge associated with improving forecasts is the difficulty in linking research-based attribution studies^{6,7,51} with the operational "consolidated" 258 259 forecast system used by groups such as ICPAC (https://www.icpac.net/seasonal-forecast/). These 260 forecasts use spatially explicit maps and are presented at seasonal Climate Outlook Fora in East 261 Africa. The OND and MAM seasons differ in that MAM rains are not predicted well by climate models⁵⁴, because these rains are less spatially homogeneous⁵⁵ and can have non-linear 262 263 relationships to SSTs, with more coherent links during droughts (e.g., Fig. 1D). ICPAC 264 scientists, however, are now exploring the use of logistic regression, in conjunction with WVG 265 forecasts, to produce experimental MAM forecast maps at long-leads (Fig. 3B), and such 266 predictions are being used to support long-lead alerts¹⁷. Preliminary results from such approaches 267 appear promising. Unlike Fig. 3B, the scatter plot-based forecasts shown in Fig. 2 lack the spatial 268 dimension required to fit into ICPAC's map-based forecast streams. If gradient events become 269 more frequent (Fig. 3A), these novel forecasting techniques may help capture the predictability 270 inherent in extremely warm SST (Fig. 2A).

271 Discussion 1. Implications of these advances in the predictability: challenges

While Ethiopia, Kenya, and Somalia face many barriers to increased food security⁵⁶⁻⁵⁹ and agricultural development⁹ better climate predictions can support relief planning, policy, agricultural advising, and adaptation decisions. Yet, translating prediction to action is not straightforward⁹. Most east Africans are small-scale farmers with little mechanization and often

276	nutrient-depleted soils ⁶⁰ . These farmers are typically poor and risk-averse ⁹ , which limits their
277	ability and willingness to change farming practices. There is very limited uptake of innovative
278	farming practices, crop insurance, and advisory services ⁹ . Since 2015, extreme climate has
279	contributed to large increases in food insecurity ^{61,62} .
280	While research has demonstrated that combinations of investment in resilience and early
281	action can both protect lives and livelihoods and save money on humanitarian response in
282	EHoA ⁶³ , research has also explored why humanitarian relief responses have often been
283	inadequate ⁵⁶⁻⁵⁹ . The latter work has identified barriers associated with limited funding ,
284	uncertain tradeoffs, and inertia ⁵⁶⁻⁵⁹ . Adequate relief funding is always a challenge.
285	Organizations face a financial trade-off: "do I use these limited resources for real, known needs
286	now, or do I devote them to mitigating future problems?" This barrier also incorporates
287	uncertainty and the fear that resources might be squandered, especially if the information is
288	contradictory or confusing. Social inertia within national or international agencies provides
289	another barrier. Relief agencies design their programs, identify their partners and beneficiaries,
290	and make security arrangements. Changing these plans is difficult and slow because the plans are
291	complex, and involve many partners.

Governments operate within limited budgets. Uncertain tradeoffs involve multiple
stakeholders, the media, and competing goals. Will national insurance schemes reduce incentives
for households to adapt? While traditional models assume that individuals make fully reasoned
choices, decision-making itself is cognitively costly, individuals often employ "fast and frugal"
heuristics^{64,65}. These rules support decisions in the absence of full information. Despite some
encouraging signs, there remain inconsistent findings in research on associations between
farmers' perceptions of climate variability and the likelihood of them using weather and climate

information services⁶⁶⁻⁶⁸. Decisions involve tradeoffs. Forecasts provide information on the 299 300 probability of an adverse event, but they are silent on the risk of moving from the status quo. 301 Yet, moving from the status quo also involves risk: adopting a new practice, crop, technology, or 302 livelihood mix that may increase short-term resilience but prove to be maladaptive, resulting in 303 negative impacts on crop yields, ecological health, or socioeconomic systems in the long run. For 304 example, switching from a water-demanding crop like maize to drought-tolerant cassava often 305 involves a tradeoff between lower risk and lower returns. A heuristic that mimics neighbor 306 behaviors under conditions of covariant risk exposure and thin markets can lead to suboptimal 307 outcomes, such as deflated prices for the livestock everyone is simultaneously selling to cope 308 with a shock. Better predictions do not always translate into better decisions, as individuals tend to favor the known over the unknown, including known risks over unknown risks⁶⁹. The risk-309 310 perception literature finds that individuals systematically overestimate the size of risks that are 311 small, unfamiliar, involuntary, and uncertain, and contrastingly underestimate the size of risks that are larger, more certain, more familiar, or, over which they have some control⁷⁰⁻⁷². The risk 312 313 of extreme climate events in the EHoA is growing, unfortunately familiar, and now more 314 predictable, but certainly not voluntary.

315 Discussion 2. Implications of these advances in the predictability of East African rains: 316 opportunities

In theory, improving EWS may be one of the most cost-effective mechanisms for
reducing food insecurity⁷³. In practice, individual behavior change may never be sufficient to
offset the negative consequences of catastrophic, covariant risks without public investment in
large-scale insurance schemes and rural infrastructure. However, within that context, improving
EWS and the distribution of related advisories is a crucial component in improving resilience.

The availability and influence of agricultural advisories remains very low in Africa⁹. 322 323 Furthermore, such advisories may not respond to the unique needs of farmers: a recent survey⁷⁴ 324 found that "most climate services have been developed using a 'loading dock model', whereby 325 products are designed by information suppliers with little input from ... users." In contrast, co-326 developed services involve engagement and discussion between data providers, advisory service 327 developers, and farmers. Table 1 provides some good examples of co-developed participatory agricultural advisory systems in Ghana, Rwanda⁷⁵, and Senegal^{76,77}. In some non-African La 328 Niña-impacted countries like Colombia, agro-advisories have helped maize farmers⁷⁸ and rice 329 farmers^{79,80} increase profits. Modest expenditures on improved advisories can improve yields by 330 331 30% or more. 332 In Ethiopia, multi-agency collaborators have developed the Ethiopian Digital AgroClimate Advisory Platform⁸¹ (EDACaP, advisory.ethioagroclimate.net). EDACaP uses 333 334 climate and weather forecasts in conjunction with soil and crop data to develop local language 335 advisories that are distributed to development agents and farmers via text messages and radio. 336 In Kenya, collaboration between the Kenya Meteorological Department, PlantVillage, 337 Shamba Shape Up, and the Climate Hazards Center is providing text and television-based 338 advisories to more than 9 million Kenyans. These advisories incorporate high-resolution rainfall observations¹⁹, weather forecasts⁸², and WPG/WVG-based climate outlooks (Fig. 2). In addition 339 340 to outreach, PlantVillage is piloting innovative strategies that promote drought resilience via

341 labor-intensive cultivation practices that involve the digging of moisture retaining "Zai" pits and342 the introduction of biochar. Zai pits can hold up to nine seeds of maize and can be filled with

organic manure, biochar, or dry plant biomass. Derived from local organic waste, biochar attracts

and maintains nutrients and water in the soil. Despite the dry MAM 2022 rains, a pilot project

343

based in Kilifi county in eastern Kenya (Fig. 3C) demonstrated the potential benefits. While
control plots exhibited very low maize yields (< one ton per hectare), harvests in the test plots
ranged from three-to-four tons per hectare. While more research and evaluation are required,
WVG-based forecasts (Fig. 3B) hold the promise of supporting increased resilience, even in the
face of severe droughts, as suggested by the pilot from Kilifi.

These advisory services are not costless, but are relatively inexpensive when compared to post-impact, response-based alternatives such as humanitarian assistance and/or funding safetynet programs. In Kenya, the cost of getting a single SMS-advisory into the hands of a farmer is \$0.006, and a farmer might typically receive 15 advisories per season. To reach 6-8 million farmers per week on TV is approximately \$3,000. Reaching 50 million farmers each year via SMS might cost \$4.5 million dollars. Localizing climate information, however, to agroecological and social contexts will require a considerable increase in resources.

From a policy perspective, the potential costs of EWS-empowered advisory systems might be compared to the >\$2 billion USD in humanitarian relief being provided in 2022 to Ethiopia, Kenya, and Somalia. Investments in advisory systems might save millions of dollars a year in east Africa alone, if they reduced the need for very expensive emergency relief while supporting resilience and autonomy.

Pilot studies (Table 1) suggest that ~30% increases in yields are plausible. In terms of
historical variations, a 30% increase is a substantial increase. For example, in Kenya, poor MAM
rains typically appear in association with a ~15% reduction in national maize yields. A 30%
increase in national maize production (~1MT), represents a large sum of money, when valued at
2022 wholesale Kenyan maize prices (~US \$320 million). In addition to increased economic
outcomes, increased crop production can reduce price volatility.

368 Discussion 3. Can long-lead forecasts be used to improve decision-making and increase369 resilience?

370 As sequential droughts become more common during La Niña events, responding to the first 371 drought, which consistently arises in OND, may be a low-regret intervention, especially since 372 MAM dry seasons often follow. Social protection via safety nets and insurance programs can 373 support more effective resilience building at scale by integrating early action and preparedness⁸³. 374 Guaranteed funding before a shock can enhance the scalability, timeliness, predictability, and 375 adequacy of social protection benefits. In 1998, 2010, 2016, 2020, 2021 and 2022, June forecasts 376 of extremely warm west Pacific SSTs clearly indicated OND droughts (Fig. 2B) that led to 377 widespread livestock loss and plummeting livestock prices. Index-Based Livestock Insurance 378 (IBLI) is another promising intervention strategy that targets pastoralists and agropastoralists who face some of the most-extreme risks from drought⁸⁴. Climate forecasts (Fig. 3B) might be 379 combined with Predictive Livestock Early Warning Systems (PLEWS)⁸⁵ to improve predictions 380 of forage conditions. More extreme precipitation may be recharging deep aquifers⁸⁶. Accessing 381 382 this water via boreholes might help buffer rainfall deficits.

There are opportunities to better link EWS with adaptation research. For example, the Evidence for Resilient Agriculture (ERA, https://era.ccafs.cgiar.org/) project provides data and tools that pinpoint what agricultural technologies work where. Resources like the Adaptation Atlas (http://adaptationatlas.cgiar.org/riskmap) allow decision-makers to examine climate change-related risks alongside potential solutions. Agroforestry, micro-credit, insurance, digital advisories, improved breeds, crops, forages and diets, fertilizer, intercropping, irrigation, mulch, trees, planting decisions, stress-adapted varietals, and water harvesting—the list of potential

adaptations is long. African-led efforts that link EWS to appropriate local solutions can help usanticipate and adapt to more extreme climate.

392 Conclusion: recommendations vis-à-vis calls for improved early warning systems

393 In November 2022, at COP27, the UN Secretary-General unveiled the "Early Warnings for All Plan²³ which provides \$3.1 billion USD to support EWS in developing countries. The 394 plan supports four disaster-risk reduction⁸⁴ pillars: 1) Disaster-risk knowledge, 2) Observations 395 and Forecasting, 3) Preparedness and response, and 4) Dissemination and communication. EWS 396 397 "are a proven, effective, and feasible climate adaptation measure, that save lives, and provide a tenfold return on investment,"73 which have been recognized by the IPCC as a key adaptation 398 strategy⁸⁷. Within Africa, ICPAC, FEWS NET and the Kenyan and Ethiopian Meteorological 399 400 Departments provide some of the most sophisticated EWS. This sophistication, the long-standing 401 climate volatility, and food insecurity in the Horn, in addition to the many years of collective 402 research and practical experience represented by the authors, provide us a vantage point from 403 which to provide ten recommendations related to effective EWS development and 404 implementation in the context of climate change. These recommendations are relevant for many 405 regions linked to Indo-Pacific SSTs: 406 407 1. Realize that climate change is happening now and offers opportunities for prediction.

- 408 2. Realize that climate change contributed to recent extreme SSTs and associated EHoA droughts and409 floods, and that many of these extremes were predictable.
- 410 3. Realize that extreme SST gradients provide opportunities for forecasts.

411 4. Pay attention to extremely warm SSTs, these can drive predictable droughts and floods.

- 412 5. Be concerned about increasing aridity and declining per capita resources.
- 413 6. Work towards integrated observation/forecast systems.

414 7. Invest in building capacity. Utilize local expertise.

415 8. Look for places or seasons where conditions will likely be clement. Teleconnections will produce416 droughts, but also areas with bountiful rains.

417 9. Leverage agricultural adaptation resources to build resilience. Link EWS to the latest agricultural418 adaptation science.

419 10. Pay attention to barriers to climate information use, and learn from them.

420

421 Trust, urgency, and accuracy can enable action, helping overcome barriers associated 422 with funding, uncertain tradeoffs, and inertia. Trust and urgency involve a shared 423 understanding of how climate change is interacting with natural variability to produce frequent 424 climate extremes, now. Trust also involves developing (and investing in) co-developed 425 participatory advisory services: localized, culturally appropriate flows of information. Accuracy 426 arises when we carefully combine domain-specific insights with the best-available information. 427 For example, satellite observations and numerical model predictions are tremendous sources of information, but transforming this information into accurate rainfall estimates¹⁹ or forecasts (Fig. 428 429 2, 3B) demands expertise. Predictions of exceptionally warm west Pacific SSTs (Fig. 2B) help 430 anticipate the influence of climate change. While still evolving, inter-disciplinary collaboration is leading to first-in-kind long-lead alerts^{16,17}. But the development of effective EWS in developing 431 432 countries will require large investments in human capacity. "Loading dock" approaches to 433 climate services can fail to provide locally appropriate advisory services⁷⁴ just as "raw" climate 434 model forecasts may miss important teleconnections and opportunities for prediction, such as those shown in Fig. 2. Especially for MAM, long-lead drought outlooks would be substantially 435 436 less skillful if they were just based on climate model rainfall forecasts⁵⁴ or equatorial east Pacific

437	SST predictions. Skill matters. For OND La Niña-related droughts, which the models capture
438	well, effective actions based early alerts can build resilience in the face of sequential droughts.
439	Urgency arises from the long-term implications of extreme SST gradients (Fig. 3A),
440	warming air temperatures, population growth, income gaps, and other socioeconomic and
441	political stressors. Strong negative WPG/WVG gradients have become common (Fig. 1E).
442	Climate change contributed to extreme gradients in 2016/17 and 2020/22 (Fig. 1F). These
443	gradients helped produce an unprecedented five-season drought in the Horn. Given that the serial
444	correlation of EHoA MAM and OND rains is very close to zero, the chance of a five-season
445	drought sequence happening randomly is extremely low ($0.333^{5} \approx 0.4\%$).
446	The frequency of strong gradient events is expected to increase dramatically (by $>50\%$)
447	by mid-century (Fig. 3A), which will likely increase in the frequency of poor EHoA rainy
448	seasons. More frequent dry seasons may also be accompanied by more frequent El Niños and
449	positive IOD events and extreme precipitation ^{30,31,50} . Increasing air temperatures contribute to
450	both droughts and floods. Under dry conditions, warmer air draws more moisture from plants.
451	Under wet conditions, warmer air holds more water vapor, leading to more extreme precipitation.
452	Such influences contribute to "wet-getting-wetter" and "dry-getting-drier" tendencies in the
453	Horn ⁸⁸ . Observed EHoA crop water requirements are also trending upward during dry seasons,
454	and these influences appear preferentially in hot-arid lowland areas ^{10,89} . Importantly, the spatial
455	signature of these impacts largely aligns with the footprint of WPG/WVG-related drought
456	tendencies.
457	Finally, increases in population and water scarcity are also likely to expand insecurity.

459 Somalia, will increase by 70%. Holding other factors constant, population-driven per capita

UN projections suggest that between 2022 and 2050, the population of Ethiopia, Kenya, and

458

460 water availability projections for 2050 indicate the potential for severe water stress and 461 scarcity⁶¹. Population-driven projections of Kenyan per capita maize production also indicate 40% reductions by 2050⁸⁹. Planning for more frequent and severe extremes by enhancing EWS 462 463 and advisory services can help mitigate these climate shocks. 464 The long-term implications of these compound stresses are very concerning, especially 465 for the hot, dry EHoA lowlands. Yet, there is also hope that crop productivity can be increased in 466 humid areas. Many areas of Ethiopia, and substantial portions of Kenya, are climatically secure. 467 Some of these areas (most of Ethiopia) tend to experience rainfall increases during La Niña-like 468 seasons. Closing yield gaps in humid regions would create wealth and lower food prices, and 469 there is growing evidence that climate-enhanced advisories can contribute (Table 1). But 470 achieving this promise will require much greater investments in African experts, experts who can 471 improve and interpret forecasts, link to agricultural ministries, extension programs, and 472 agricultural research centers, and, ultimately, farmers and pastoralists.

474 Data Availability:

475 The time series data supporting the primary results of this study are available via Dryad. Funk,

476 Chris (2022), Data - Tailored forecasts can predict extreme climate informing proactive

477 interventions in East Africa, Dryad, Dataset, <u>https://doi.org/10.25349/D9MC8Z</u>.

478 For now, the data is available at:

479 <u>https://datadryad.org/stash/share/PxI2GIJv-4Q_C51wiHw-gySoI72xjRp19_2euUONcM4</u>

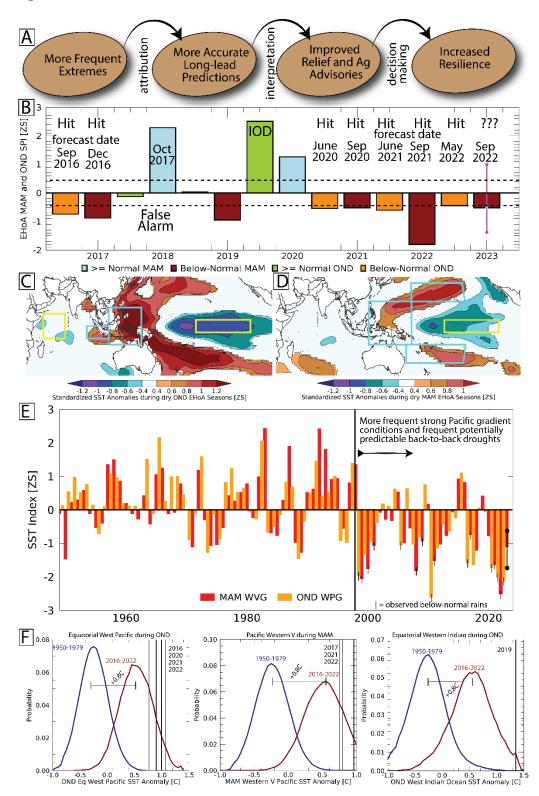
480 Code Availability: The bulk of the analysis presented in this paper are based on simple time-481 series manipulations, and are presented in the excel file in the Dryad link above. The most salient 482 results can be recreated without coding, using the time series provided in the Dryad repository.

483 Time-series extraction and the simple SST composite plots shown in Fig. 2C,D were done using

484 Interactive Data Language version 8.7, and the related code is contained with the Dryad

485 Repository. Zip files in that directory also contain NOAA extended reconstruction version 5

486 gridded SST data, NMME SST forecasts from May and September, and regionally averaged


487 CMIP6 SSP245 SST time-series. For the convenience of the reviewers, the contents of the data

488 repository are also available at: https://data.chc.ucsb.edu/people/chris/DataRepository.zip.

490	Table 1 Exemplar case studies demonstrating the benefits of co-production and social networks
491	in scaling climate-informed advisories.

Location	Agriculture decision affected	Benefit	Scaling potential	Behavior science for scaling	Distribution channel
Senegal	Crop varieties, field location, intercrop, crop type, crop mix, timing of sales, harvest & weeding, fertilizer use, water harvesting	Crop income increased between 10 and 25%	PICSA and WMG approaches can be easily scaled.	Multidisciplinary Working Groups (WMG) increase farmer's awareness of forecasts by 18%, access by 12% and uptake by 10%.	SMS, phone, Interactive radio, farmers share information word of mouth.
Rwanda	Crop type, Crop varieties, Timing of planting and land preparation, When and how to prepare land	+24% production	-PICSA and RLC approaches can be easily scaled.	Participatory Integrated Climate Services for Agriculture (PICSA) approach. Radio Learning Clubs (RLC) address disparities.	Radio, Phone, TV (43:11:7%) With RLC (81:37:9 %)
Ghana	Land preparation planting & harvest dates, crop varieties, fertilizer scheduling	+35% sorghum yields +6% technical Efficiency	Easily replicated. Requires mobile access. \$35 subscription plus training costs	The most significant factor in forecast use was training.	Mobile (Voice Message, SMS, Call Centre)
Colombia, Guatemala, Honduras	Sowing & harvesting dates, rainwater harvesting, pest prevention, crop rotations, variety changes		Government and local stakeholder uptake of LTAC approach enables scaling	Local Technical Agro-Climatic Committees (LTACs) where stakeholders discuss forecasts and develop recommendations.	Agroclimatic bulletin, radio, TV, newspaper, extension service, social networks

494 Figures

496 Figure 1. A. Schematic diagram describing the links between climate attribution, prediction and
497 improved interventions. B. Barplot showing 2016-2023 regionally averaged EHoA MAM and

- 498 OND Standardized Precipitation Index values. Western Pacific Gradient (WPG) and Western
- 499 'V'-Gradient (WVG)-based drought forecast dates are noted for La Niña-related dry seasons,
- along with hit or false alarm outcomes. MAM 2023 result is a forecast, shown with 80%
- 501 confidence intervals. C. Standardized OND SST composites for post-1996 dry EHoA OND
- seasons. Screened for significance at p=0.1. Boxes denote the western and eastern IOD regions,
- the equatorial west Pacific (110°E-140°E, 15°S-15°N), and the NINO3.4 region. D. Same for
 MAM EHoA dry seasons. Boxes denote the Western V (blue) (110°E-140°E, 15°S-15°N, 160°E-
- 505 160° W, 20° N- 35° N, 155° E- 160° W, 15° S- 30° S) and NINO3.4 (yellow) regions. **E**. SST index
- 506 values for the observed MAM WVG and OND WPG. Anomalies calculated using a 1950-2020
- 507 baseline. The Pacific gradients associated with droughts (1C.D) are becoming more frequent
- 508 (1E). Recent below-normal EHoA rainy seasons are marked with short vertical lines. The 2023
- 509 MAM WVG values are based on forecasts in Fig. 2. The black circles denote the associated 80%
- 510 confidence intervals. The associated question mark conveys our concerns for a 6th dry season,
- 511 based on the 2023 WVG forecast in Fig. 2. **F**. Equatorial OND western Pacific, MAM Western
- 512 V, and OND western Indian Ocean CMIP6 SSP245 SST anomalies for 1950-1979 and 2016-
- 513 2022, along with observed SST anomalies for selected drought seasons. Anomalies based on a
- 514 1950-2020 baseline.

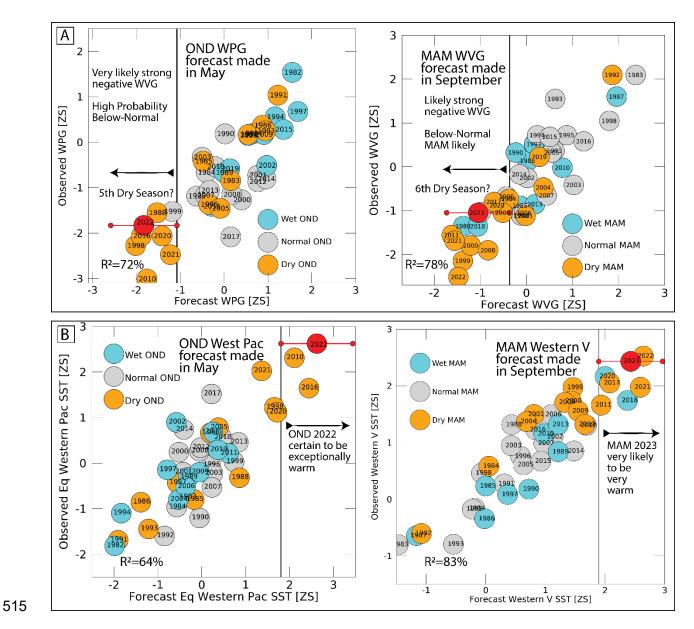
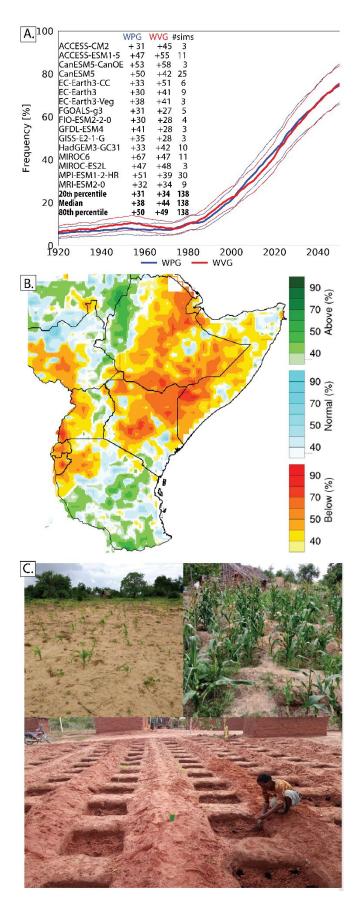



Figure 2. A. Scatterplots of forecast and observed WPG and WVG values. Left panels show
1982-2022 OND forecasts made in May. Right panels show 1983-2023 MAM forecasts made in
September. OND 2022 and MAM 2023 'observations' are assumed to equal the forecasts.
Vertical bars indicate 80% confidence intervals. Blue, gray and red circles denote the EHoA
rainfall outcomes for each OND or MAM season. B. Same but for regionally averaged SST in
equatorial western Pacific and Western V regions. Regions described in Fig. 1C,D.

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540	Figure 3. A. Time-series showing the median frequency of extreme OND WPG and MAM WVG events, based on standardized time-series from the CMIP6 SSP245 climate change ensemble, along with 95% confidence intervals. The WPG and WVG are calculated using SSTs from the Pacific boxes in Fig. 1A and 1B, respectively. Extreme negative OND WPG and MAM WVG events are associated with values less than -1Z. Change in extreme event frequencies (# of events per 100 years) were calculated by taking the frequency differences between 2020-2030 and 1920-1979, and are reported in the inset table for each model with at least three simulations. The 20 th , 50 th and 80 th percentile values of the per-model changes are shown in the last three columns. Time series were standardized using a 1950-2020 baseline. Human-induced warming in the western Pacific results in strong inter-model agreement on more frequent WPG and WVG events, in line with the observed gradient values shown in Fig. 1C. B . Experimental ICPAC forecasts for MAM 2023, based on localized logistic regressions and WVG forecasts. C . Test plot results in eastern Kenya from MAM 2022. Upper-left and right panels show adjacent control and test plots. Bottom panel shows field preparation using Zai pits and biochar.			
541				
542				
543				
544	Refer	ences		
545				
546	1	Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security		
547		but could be mitigated by agricultural development. Proc Nat Acad Sci USA 105, 11081-11086		
548	2			
549 550	2	Williams, P. & Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. <i>Climate Dynamics</i> 37 , 2417-2435 (2011).		
551	3	Hoell, A. & Funk, C. The ENSO-Related West Pacific Sea Surface Temperature Gradient.		
552	_	Journal of Climate 26 , 9545-9562 (2013).		
553	4	Hoell, A. & Funk, C. Indo-Pacific sea surface temperature influences on failed consecutive rainy		
554	5	seasons over eastern Africa. <i>Climate Dynamics</i> 43 , 1645-1660 (2013).		
555 556	5	Funk, C. <i>et al.</i> Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. <i>Hydrology and Earth System Sciences Discussions</i> 11 , 3111-3136		
557		(2014).		
558	6	Funk, C. et al. Examining the role of unusually warm Indo-Pacific sea surface temperatures in		
559		recent African droughts Quart J Roy Meteor Soc 144, 360-383, doi:10.1002/qj.3266 (2018).		
560	7	Funk, C. et al. Examining the potential contributions of extreme 'Western V' sea surface		
561 562		temperatures to the 2017 March-June East African Drought. <i>Bull. Amer. Meteor. Soc.</i> 100 , S55-		
563	8	S60 (2019). Tadesse, T. Strategic framework for drought risk management and enhancing resilience in Africa,		
564	0	in African Drought Conference. 15-19 (2016).		
565	9	Hansen, J. et al. Climate risk management and rural poverty reduction. Agricultural Systems 172,		
566		28-46 (2019).		

567 568	10	Funk, C. <i>et al.</i> An Agro-Pastoral Phenological Water Balance Framework for Monitoring and Predicting Growing Season Water Deficits and Drought Stress. <i>Frontiers in Climate</i> 3 ,	
569		doi:10.3389/fclim.2021.716568 (2021).	
570	11	CHC/FEWSNET. in <i>blog.chc.ucsb.edu</i> (Climate Hazards Center, University of California, Santa	
571 572		Barbara, 2022). blog.chc.ucsb.edu/?p=10, blog.chc.ucsb.edu/?p=94, blog.chc.ucsb.edu/?p=283,	
572 573		blog.chc.ucsb.edu/?p=757, blog.chc.ucsb.edu/?p=868, blog.chc.ucsb.edu/?p=991, blog.chc.ucsb.edu/?p=1030, blog.chc.ucsb.edu/?p=1102, bttps://blog.chc.ucsb.edu/?p=1240	
573 574	10	blog.chc.ucsb.edu/?p=1030, blog.chc.ucsb.edu/?p=1192, https://blog.chc.ucsb.edu/?p=1240.	
	12	Voosen, P. The hunger forecast. <i>Science</i> 368 , 226-229, doi:DOI: 10.1126/science.368.6488.226 (2020).	
575 576	12		
577	13	Yang, W., Seager, R., Cane, M. A. & Lyon, B. The East African Long Rains in Observations and Models. <i>Journal of Climate</i> 27 , 7185-7202, doi:10.1175/JCLI-D-13-00447.1 (2014).	
578	14	Lyon, B. & DeWitt, D. G. A recent and abrupt decline in the East African long rains.	
579		GEOPHYSICAL RESEARCH LETTERS 39 (2012).	
580	15	Lyon, B. Seasonal Drought in the Greater Horn of Africa and its Recent Increase During the	
581		March-May Long Rains. Journal of Climate 27, 7953-7975 (2014).	
582	16	ICPAC, C., FEWS NET, CHC, FAO, WMO, OCHA, IRI, WFP, Mercy Corps, UK Met Office,	
583		UKAID, UNHCR, Islamic Relief. The Threat of Starvation Looms in East Africa After Four	
584		Failed Rainy Seasons. Multi-Agency Drought Alert (2022).	
585		<https: 3="" cc0312en="" cc0312en.pdf="" www.fao.org="">.</https:>	
586	17	ICPAC et al. Immediate global action required to prevent Famine in the Horn of Africa. Multi-	
587		agency Drought Alert (2022).	
588		<https: default="" fews.net="" files="" joint%20alert%20on%202023%20mam%20rains%20final<="" sites="" td=""></https:>	
589		<u>0.pdf</u> >.	
590	18	Funk, C. et al. The Centennial Trends Greater Horn of Africa precipitation dataset. Scientific	
591		Data 2, doi:10.1038/sdata.2015.50 (2015).	
592	19	Funk, C. <i>et al.</i> The climate hazards infrared precipitation with stations—a new environmental	
593	•	record for monitoring extremes. <i>Scientific data</i> 2 (2015).	
594	20	Huang, B. <i>et al.</i> Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5):	
595		Upgrades, Validations, and Intercomparisons. <i>Journal of Climate</i> 30 , 8179-8205,	
596	21	doi:10.1175/JCLI-D-16-0836.1 (2017).	
597	21	Becker, E. J., Kirtman, B. P., L'Heureux, M., Muñoz, Á. G. & Pegion, K. A Decade of the North	
598		American Multimodel Ensemble (NMME): Research, Application, and Future Directions. <i>B Am</i>	
599	22	Meteorol Soc 103, E973-E995 (2022).	
600	22	Eyring, V. <i>et al.</i> Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)	
601	22	experimental design and organization. <i>Geoscientific Model Development</i> 9, 1937-1958 (2016).	
602	23	WMO. Early Warnings for All Action Plan unveiled at COP27,	
603		< <u>https://public.wmo.int/en/media/press-release/early-warnings-all-action-plan-unveiled-cop27</u> >	
604 605	24	(2022).	
605	24	Diaz, H. F. El Niño and the Southern Oscillation: multiscale variability and global and regional	
606 607	25	<i>impacts</i> . (Cambridge University Press, 2000).	
608	23	Glantz, M. H. <i>Currents of change: impacts of El Niño and La Niña on climate and society.</i> (Cambridge University Press, 2001).	
609	26	Barnston, A. G., Tippett, M. K., Ranganathan, M. & L'Heureux, M. L. Deterministic skill of	
610	20	ENSO predictions from the North American Multimodel Ensemble. <i>Climate Dynamics</i> 53, 7215-	
611		7234 (2019).	
612	27	L'Heureux, M. L. <i>et al.</i> Observing and predicting the 2015/16 El Niño. <i>B Am Meteorol Soc</i> 98,	
613	<i>4 1</i>	1363-1382 (2017).	
614	28	Tippett, M. K., Ranganathan, M., L'Heureux, M., Barnston, A. G. & DelSole, T. Assessing	
615	20	probabilistic predictions of ENSO phase and intensity from the North American Multimodel	
616		Ensemble. <i>Climate Dynamics</i> , doi:10.1007/s00382-017-3721-y (2017).	
010		Liseniore. Cumule Dynamics, doi:10.100//s00502-01/-5/21-y (2017).	

617 Cai, W. et al. Increasing frequency of extreme El Nino events due to greenhouse warming. 29 618 Nature Clim. Change 4, 111-116, doi:10.1038/nclimate2100 (2014). Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission 619 30 620 scenarios. Nature Climate Change 12, 228-231, doi:10.1038/s41558-022-01282-z (2022). 621 31 Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse 622 warming. Nature 510, 254-258 (2014). 623 32 Cai, W. et al. ENSO and greenhouse warming. Nature Climate Change (2015). 624 33 Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? 625 Science 363, 128-129 (2019). 626 34 Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global 627 warming. Nature Climate Change 11, 27-32 (2021). 628 35 Ihara, C., Kushnir, Y. & Cane, M. A. Warming trend of the Indian Ocean SST and Indian Ocean 629 dipole from 1880 to 2004. Journal of Climate 21, 2035-2046 (2008). 630 Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S. & Mudelsee, M. Recent intensification of 36 631 tropical climate variability in the Indian Ocean. Nat Geosci 1, 849-853 (2008). 632 37 Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M. & Leloup, J. Observed freshening and 633 warming of the western Pacific warm pool. Climate Dynamics 33, 565-589 (2009). 634 38 Roxy, M. et al. Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. 635 Nature 575, 647-651 (2019). 636 39 Nicholson, S. E., Fink, A. H., Funk, C., Klotter, D. A. & Satheesh, A. R. Meteorological causes 637 of the catastrophic rains of October/November 2019 in equatorial Africa. Global and Planetary 638 Change 208, 103687 (2022). 639 40 Park, S., Kang, D., Yoo, C., Im, J. & Lee, M.-I. Recent ENSO influence on East African drought 640 during rainy seasons through the synergistic use of satellite and reanalysis data. ISPRS Journal of 641 Photogrammetry and Remote Sensing 162, 17-26 (2020). 642 Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the 41 643 tropical Indian Ocean. Nature 401, 360-363 (1999). 644 42 Saii, N. & Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. 645 Clim Res 25, 151-169 (2003). 646 43 Behera, S. K. et al. Paramount impact of the Indian Ocean dipole on the East African short rains: 647 A CGCM study. Journal of Climate 18, 4514-4530 (2005). 648 44 Indeje, M., Semazzi, F. H. & Ogallo, L. J. ENSO signals in East African rainfall seasons. 649 International Journal of Climatology 20, 19-46 (2000). 650 45 Wainwright, C. M. et al. 'Eastern African Paradox'rainfall decline due to shorter not less intense 651 Long Rains. npj Climate and Atmospheric Science 2, 1-9 (2019). 652 46 Trenberth, K. E. The definition of el nino. B Am Meteorol Soc 78, 2771-2778 (1997). 653 47 Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled 654 trends in the tropical Pacific Ocean. Journal of Climate, 1-41, doi:10.1175/jcli-d-21-0648.1 655 (2022).656 48 Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent 657 with rising greenhouse gases. Nature Climate Change 9, 517-522, doi:10.1038/s41558-019-0505-658 x (2019). 659 49 Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nature 660 Climate Change 5, 132-137 (2015). Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 661 50 662 564, 201-206 (2018). 663 51 Anderson, W. et al. Multi-year La Niña events and multi-season drought in the Horn of Africa. 664 Journal of Hydrometeorology (2022). 665 Magadzire, T., Galu, G. & Verdin, J. How climate forecasts strengthen food security. World 52 666 Meteorological Organisation Bulletin - Special Issue on Water 67 (2017). 667 <https://public.wmo.int/en/resources/bulletin/how-climate-forecasts-strengthen-food-security>.

668	53	Funk, C. & Hoell, A. The leading mode of observed and CMIP5 ENSO-residual sea surface		
669		temperatures and associated changes in Indo-Pacific climate. Journal of Climate 28, 4309-4329		
670		(2015).		
671	54	Shukla, S. et al. Assessing North American multimodel ensemble (NMME) seasonal forecast		
672		skill to assist in the early warning of anomalous hydrometeorological events over East Africa.		
673		<i>Climate Dynamics</i> , 1-17, doi:10.1007/s00382-016-3296-z (2016).		
674	55	Nicholson, S. E. Climate and Climatic Variability of Rainfall over Eastern Africa. Reviews of		
675		Geophysics, doi:10.1002/2016RG000544 (2017).		
676	56	Lentz, E. & Maxwell, D. G. Anticipating, Mitigating, and Responding to Crises: How Do		
677		Information Problems Constrain Action? International Journal of Disaster Risk Reduction, 81,		
678		103242, https://doi.org/10.1016/j.ijdrr.2022.103242 (2022).		
679	57	Maxwell, D. & Hailey, P. Towards anticipatory information systems and action: Notes on early		
680		warning and early action in East Africa. (Tufts University, Feinstein International Center,		
681		Friedman School of Nutrition Science and Policy, Boston, MA, 2020).		
682	58	Maxwell, D. G. Famine in Somalia. (Oxford University Press, 2016).		
683	59	Sarkar, A., Spatz, B. J., de Waal, A., Newton, C. & Maxwell, D. The Political Marketplace		
684	09	Framework and Mass Starvation: How Can Humanitarian Analysis, Early Warning and Response		
685		Be Improved? Journal of Humanitarian Affairs 3 , 43-55 (2021).		
686	60	Giller, K. E. <i>et al.</i> Small farms and development in sub-Saharan Africa: Farming for food, for		
687	00	income or for lack of better options? <i>Food Sec</i> 13 , 1431-1454 (2021).		
688	61	Funk, C. & Shukla, S. Drought early warning and forecasting: theory and practice. (Elsevier,		
689	01	2020).		
690	62	ICPAC <i>et al.</i> Unprecedented drought brings threat of starvation to millions in Ethiopia, Kenya,		
691	02	and Somalia. <i>Multi-Agency Drought Alert</i> (2022).		
692		< <u>https://fews.net/sites/default/files/Joint%20Statement%20Horn%20of%20Africa%209%20June</u>		
693	(2)	<u>%202022.pdf</u> >.		
694 605	63	Venton, C. C., Fitzgibbon, C., Shitarek, T., Coulter, L. & Dooley, O. The economics of early		
695	<i>C</i> A	response and disaster resilience: Lessons from Kenya and Ethiopia. <i>Final report</i> (2012).		
696	64	Dosi, G., Napoletano, M., Roventini, A., Stiglitz, J. E. & Treibich, T. Rational heuristics?		
697		Expectations and behaviors in evolving economies with heterogeneous interacting agents.		
698	<i>(</i> -	<i>Economic Inquiry</i> 58 , 1487-1516 (2020).		
699	65	Luan, S., Reb, J. & Gigerenzer, G. Ecological rationality: Fast-and-frugal heuristics for		
700		managerial decision making under uncertainty. Academy of Management Journal 62, 1735-1759		
701		(2019).		
702	66	Djido, A. et al. To what extent do weather and climate information services drive the adoption of		
703		climate-smart agriculture practices in Ghana? Climate Risk Management 32, 100309 (2021).		
704	67	Diouf, N. S. et al. Factors influencing gendered access to climate information services for		
705		farming in Senegal. Gender, Technology and Development 23, 93-110 (2019).		
706	68	Owusu Danquah, E. et al. Monitoring and modelling analysis of maize (Zea mays L.) yield gap in		
707		smallholder farming in Ghana. Agriculture 10, 420 (2020).		
708	69	Ellsberg, D. Risk, ambiguity, and the Savage axioms. The quarterly journal of economics, 643-		
709		669 (1961).		
710	70	Cullen, A. C., Anderson, C. L., Biscaye, P. & Reynolds, T. W. Variability in cross-domain risk		
711		perception among smallholder farmers in Mali by gender and other demographic and attitudinal		
712		characteristics. Risk analysis 38, 1361-1377 (2018).		
713	71	Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S. & Combs, B. How safe is safe enough? A		
714		psychometric study of attitudes towards technological risks and benefits. Policy sciences 9, 127-		
715		152 (1978).		
716	72	Slovic, P. Perception of risk. Science 236, 280-285 (1987).		
717	73	Global Commission on Adaptation. Adapt now: A global call for leadership on climate resilience.		
718		(World Resources Institute, 2019).		

- 74 Born, L., Prager, S., Ramirez-Villegas, J. & Imbach, P. A global meta-analysis of climate services
 720 and decision-making in agriculture. *Climate Services* 22, 100231 (2021).
- 721 75 Ingabire, C. Closing Gender Gaps in Farmers' Access to Climate Information: The Case of Radio
 722 Listeners Clubs (RLCs) in Rwanda: Preliminary results of a mixed-method analysis. (2021).
- 723 76 Chiputwa, B., Blundo-Canto, G., Steward, P., Andrieu, N. & Ndiaye, O. Co-production, uptake of
 724 weather and climate services, and welfare impacts on farmers in Senegal: A panel data approach.
 725 Agricultural Systems 195, 103309 (2022).
- 726 77 Chiputwa, B. *et al.* Transforming climate science into usable services: The effectiveness of co727 production in promoting uptake of climate information by smallholder farmers in Senegal.
 728 *Climate Services* 20, 100203 (2020).
- 729 78 Jimenez, D. *et al.* A scalable scheme to implement data-driven agriculture for small-scale farmers. *Global Food Security* 23, 256-266 (2019).
- 731 79 Case, C. O., America, L. & Läderach, P. Cracking patterns in big data saves Colombian rice
 732 farmers' huge losses. *Tropical Agriculture (CIAT)* (2014).
- 73380Delerce, S. *et al.* Assessing weather-yield relationships in rice at local scale using data mining734approaches. *PloS one* 11, e0161620 (2016).
- 81 Seid, J., Demissie, T., Tesfaye, K., Tamene, L. & Solomon, D. Ethiopian Digital AgroClimate
 736 Advisory Platform (EDACaP) Technical Working Document | Brief version. (2020).
- Harrison, L. *et al.* Advancing early warning capabilities with CHIRPS-compatible NCEP GEFS
 precipitation forecasts. *Scientific Data* 9, 1-13 (2022).
- 739 83 Costella, C. *et al.* Scalable and sustainable: How to build anticipatory capacity into social protection systems. (2017).
- 741 84 Syll, M. M. A. Willingness to Pay for Index-Based Livestock Insurance by Pastoralists and
 742 Agropastoralists: Evidence from Senegal. *Int. J. of Innovative Science and Research* (2021).
- 743 85 Matere, J. *et al.* Predictive Livestock Early Warning System (PLEWS): Monitoring forage
 744 condition and implications for animal production in Kenya. *Weather and Climate Extremes* 27, 100209 (2020).
- 74686Adloff, M. et al. Sustained water storage in Horn of Africa drylands dominated by seasonal
rainfall extremes. Geophysical Research Letters, e2022GL099299 (2022).
- 748 87 Pörtner, H.-O. *et al.* Climate change 2022: Impacts, adaptation and vulnerability. *IPCC Sixth*749 *Assessment Report* (2022).
- Haile, G. G. *et al.* Projected Impacts of Climate Change on Drought Patterns Over East Africa. *Earth's Future* 8, e2020EF001502, doi:<u>https://doi.org/10.1029/2020EF001502</u> (2020).
- Funk, C., Way-Henthorne, J. & Turner, W. Phenological Water Balance Applications for Trend
 Analyses and Risk Management. *Frontiers in Climate* 3, doi:10.3389/fclim.2021.716588 (2021).

1 Tailored forecasts can predict extreme climate informing proactive interventions in East

2 Africa

Author	Position
Chris Funk	Director, Climate Hazards Center, University of California, Santa
	Barbara
Laura Harrison	Researcher, Climate Hazards Center
Zewdu Segele	Senior Climate Scientist, IGAD Climate Prediction and
	Applications Center
Todd Rosenstock	Principal Scientist, Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity – CIAT)
Peter Steward	Scientist, Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity – CIAT)
C. Leigh Anderson	Marc Lindenberg Professor for Humanitarian Action, International
	Development and Global Citizenship, University of Washington
Erin Coughlan-Perez	Research Director, Dignitas Professor, Friedman School of
	Nutrition, Tufts University
Daniel Maxwell	Henry J. Leir Professor in Food Security, Tufts University
Hussen Seid Endris	Researcher, IGAD Climate Prediction and Applications Center
Eunice Koch	Climate Modeling Assistant, IGAD Climate Prediction and
	Applications Center
Guleid Artan	Director, IGAD Climate Prediction and Applications Center
Fetene Teshome	Director, Ethiopian National Meteorological Agency
Stella Maris Aura	Director, Kenya Meteorological Department
Gideon Galu	FEWS NET Regional Scientist, East Africa
Diriba Korecha	FEWS NET Regional Scientist, Ethiopia
Andrew Hoell	NOAA Physical Sciences Laboratory
Weston Anderson	NASA GSFC, FEWS NET Science Team
Kerstin Damerau	Research Associate, Department of Global Development, Cornell
	University
Emily Williams	Researcher, Climate Hazards Center
Aniruddha Ghosh	Scientist – Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity – CIAT)
Julian Ramirez-Villegas	Principal Scientist, Alliance of Biodiversity International and the
	International Center for Tropical Agriculture (Biodiversity –
	CIAT); Professor, Plant Production Systems group, Wageningen
	University & Research
David Hughes	Director of USAID Innovation Lab on Current and Emerging
	Threats to Crops, Pennsylvania State University

4

5 Abstract:

6 This commentary discusses new advances in the predictability of east African rains and 7 highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, 8 and agricultural decision-making. Following an unprecedented sequence of five droughts, in 9 2022 23 million east Africans faced starvation, requiring >\$2 billion in aid. Here, we update 10 climate attribution studies showing that these droughts resulted from an interaction of climate 11 change and La Niña. Then we describe, for the first time, how attribution-based insights can be 12 combined with the latest dynamic models to predict droughts at eight-month lead-times. We then discuss behavioral and social barriers to forecast use, and review literature examining how EWS 13 14 might (or might not) enhance agro-pastoral advisories and humanitarian interventions. Finally, in reference to the new World Meteorological Organization (WMO) "Early Warning for All" plan, 15 16 we conclude with a set of recommendations supporting actionable and authoritative climate 17 services. Trust, urgency, and accuracy can help overcome barriers created by limited funding, 18 uncertain tradeoffs, and inertia. Understanding how climate change is producing predictable 19 climate extremes now, investing in African-led EWS, and building better links between EWS 20 and agricultural development efforts can support long-term adaptation, reducing chronic needs 21 for billions of dollars in reactive assistance.

The main messages of this commentary will be widely. Climate change is interacting with La Niña to produce extreme, but extremely predictable, Pacific sea surface temperature gradients. These gradients will affect the climate in many countries creating opportunities for prediction. Effective use of such predictions, however, will demand cross-silo collaboration.

26 Plain language summary

Eastern East Africa is extremely food insecure. Millions of farmers and pastoralists rely on two 27 28 meagre rainy seasons that arrive twice a year. In the thirteen seasons since late 2016, the region 29 experienced eight droughts and three exceptionally wet seasons. Seven droughts were linked to 30 exceptionally strong Pacific sea surface temperature gradients, which arose through an 31 interaction between climate change and La Niña. For the first time, we show that these gradients 32 can be very well predicted by the current generation of climate models. We then discuss how 33 such information might be used to inform risk management, harvests, and livestock management 34 practices. The IGAD Climate Predictions and Applications Center, Ethiopian and Kenvan 35 meteorological agencies, and other groups are providing increasingly accurate climate 36 information. This provides opportunities for more proactive and effective agricultural and 37 pastoral advisory services. Trust, urgency and accuracy can lower uncertainty, reduce risk 38 aversion, and empower poor households and cash-strapped institutions to act and innovate. As 39 Climate change will bring more extreme (but predictable) Pacific and Indian Ocean sea surface 40 temperature gradients. Investing now in collaborative African climate services, participatory 41 advisory services and proactive risk management will help counter these threatening climate 42 extremes.

43 Main Points

1. Climate change and La Niña are producing extreme Pacific temperature gradients, which canbe predicted very far in advance.

46 2. These Pacific temperature forecasts provide opportunities for predicting wet and dry outcomes47 very well in East Africa.

48 3. Increased *trust, urgency and accuracy* can help overcome barriers associated with *limited*49 *funding, uncertain tradeoffs,* and *inertia*.
50

51 Main

In this commentary, an interdisciplinary, international set of authors describes how climate 52 attribution studies have led to new advances in the predictability of Eastern Horn of Africa 53 54 (EHoA) rains, and then explores how these forecasts might better guide humanitarian relief and proactive agricultural decisions in the future, leading to increased resilience (Fig. 1A). The team 55 includes scientists from the IGAD Climate Prediction and Applications Center (ICPAC), the 56 Famine Early Warning Systems Network (FEWS NET), Ethiopian and Kenyan Meteorological 57 Departments, and scientists engaged in agricultural development, advisory services, and 58 humanitarian relief efforts. Updating previously published climate attribution studies¹⁻⁷, we show 59 that sequential EHoA droughts are tied to strong east-west sea surface temperature (SST) 60 gradients, which arise through an interaction of human-caused climate change (hereafter referred 61 62 to simply as climate change) and La Niña (Fig. 1). We then describe, for the first time in print, how the latest generation of climate models can predict these gradients and very warm west 63 64 Pacific SSTs, and consequently EHoA droughts, at surprisingly long (eight-month) lead-times (Fig. 2). Given that climate change is likely to increase the frequency of these events (Fig. 3), we 65 conclude with a discussion of the long-term implications of a potential increase in drought 66 frequency. While many countries in East Africa have, in theory, policies supporting increased 67 agricultural productivity and disaster risk management⁸, in practice, millions of poor households 68 remain vulnerable to climate shocks⁹. Could improved forecasts and EWS be useful to 69 70 agricultural and food security decision-makers?

71 The schema in Fig. 1A lays out the logic of this Commentary. We first describe how climate 72 change attribution leads to a tailored forecast process that produce more accurate long lead time 73 forecasts. We then discuss how these forecasts might improve humanitarian relief planning,

74	agricultural outcomes and food security if decision-makers are able to translate predictions into
75	effective practice. Appropriately interpreting and communicating forecasts can decrease the
76	uncertainty associated with trade-offs. This improves decision-making and makes information
77	more actionable via technically feasible cost-effective response that addresses limited resources.
78	Social and individual inertia potentially is reduced through localized, relevant information. We
79	conclude by discussing how trust, urgency, and accuracy may help overcome barriers created by
80	limited funding, uncertain tradeoffs, and inertia, and provide a set of recommendations related to
81	effective EWS development and implementation in the context of climate change.
82	While focused on the EHoA, the techniques, opportunities, and barriers discussed here may
83	be widely applicable to many areas exposed to risks associated with La Niñas. Human-induced
84	warming in the west Pacific is interacting with natural El Niño-Southern Oscillation (ENSO)
85	variability, but tailored forecasting approaches can translate the influence of climate change into

86 expanded opportunities for prediction.

87 Background – volatile climate, humanitarian crises, but opportunities for predictions

Since late 2016, the EHoA (Ethiopia, Kenya, and Somalia to the east and south of 38°E and 88 8°N) has experienced a high degree of climate volatility, with recurrent shocks due to frequent 89 90 droughts and floods. During this period, nine seasons were dry, three were wet, and only two had 91 normal rains (Fig. 1B). Below-normal rains are inadequate to support productive crops and rangeland¹⁰. 92

93 Seven of the dry eight dry seasons in Fig. 1B were anticipated with operational "tailored" forecasts¹¹, based on climate-change-enhanced west Pacific SST, La Niña, and strong Pacific 94 SST gradients (with one false alarm in March-April-May, or MAM, 2018¹¹). Hits, i.e., droughts 95

that were accurately forecasted, included the back-to-back drought sequence in 2016/17¹² and the
five sequential below-normal seasons stretching from October-November-December (OND)
2020 through OND 2022. These tailored forecasts benefitted from a two-step approach that 1)
attributes droughts to extreme SST states, which arise through the interaction of natural
variability and climate change (Fig. 1), then 2) predicts these states using the latest state-of-thescience climate forecast ensembles (Fig. 2).

102 EHoA's position makes it uniquely exposed to climatic hazards driven by Indo-Pacific SSTs. 103 When SST gradients increase rains above the eastern Indian Ocean and western Pacific, rains 104 decrease over EHoA. This links EHoA precipitation to La Niña and Indian Ocean Dipole (IOD) 105 events. During OND, these connections are well-established. There is less consensus for MAM. Some research suggests MAM rains are weakly linked to SSTs¹³⁻¹⁵, and hence, largely 106 107 unpredictable. However, many FEWS NET studies¹⁻⁷ have attributed sequential OND/MAM dry 108 seasons to Pacific SST gradients which arise through an interaction between La Niña and climate 109 change.

110 These insights, combined with increasingly sophisticated climate forecast systems, has supported five successful long-lead forecasts in a row¹¹. Eight months before the end of OND 111 112 and MAM, strong Pacific SST gradients can be accurately predicted. In May¹⁶ and November¹⁷ 113 of 2022, these inputs helped motivate exceptional multi-agency drought alerts. Never before had 114 such a broad coalition of EHoA early warning experts acted so successfully so far in advance of 115 the next rainy season. Yet, by late 2022, the interaction of five sequential droughts, COVID-19, 116 conflict, inflation, and pre-existing vulnerabilities placed 23 million people in food security 117 crises¹⁷. In Somalia, despite massive humanitarian responses reaching more than 7 million 118 people, experts anticipated the outbreak of famine in 2023. Despite repeated, accurate

119 predictions of drought (Fig. 1B), the magnitude of this crisis continued to grow. An EWS may 120 begin with climate information, but requires effective transformation into actions which can 121 increase resilience (Fig. 1A). This requires a shared understanding of how climate change and 122 ENSO, together, offer opportunities for long lead predictions. Hence, we describe here the 123 potential of these forecasts, and then discuss the opportunities and barriers associated with using 124 such information within participatory agricultural advisory systems and humanitarian EWS for 125 incentivizing adaption and reducing food insecurity. With more research and dialogue, the 126 incorporation of such forecasts into operational forecast systems and policy-relevant decision-127 making processes may help our communities cope with increasing climate volatility, both in 128 EHoA and in other areas linked to Indo-Pacific SSTs.

129 Data and Methods

This study relies on widely used Climate Hazard Center rainfall data sets^{18,19} and NOAA 130 Extended Reconstruction SST data²⁰. The terms dry, normal, and wet correspond to bottom, 131 132 middle, and top-tercile rainy season outcomes. To reduce repetition, we also use "drought" to 133 refer to below-normal rainy seasons. Seasonal SST forecasts are based on the North American Multi-Model Ensemble (NMME)²¹. A 152-member, 25 model ensemble from the Coupled 134 135 Model Intercomparison Project Phase 6 (CMIP6) is used to examine projected human-induced 136 SST increases, based on a moderate emissions scenario (Shared Socioeconomic Pathway 2-4.5, SSP2-4.5)²². The attribution analyses, detailed in our first results section and presented in Fig. 1, 137 138 are updates of climate attribution studies focused on the 2016/17 droughts^{6,7}. These results^{6,7} informed accurate tailored forecasts¹¹ (Fig. 2), which we describe in our second results section. 139 140 We then describe increasing risks associated with CMIP6 projections of stronger future Pacific 141 SST gradients, new spatially-explicit forecast results, and biochar-based farming practices in a

8

third results section (Fig. 3). We then discuss how improved "climate-smart" decision-making
might help regions cope with more frequent climate extremes. This discussion is guided by
existing literature, ongoing policy-relevant activities in East Africa, the authors' experience, and
the recently announced WMO "Early Warning for All" project²³.

146 Inclusion and Ethics: By design, this Commentary includes numerous authors from East 147 Africa, as well as numerous collaborators in the US or Europe. The authors also represent several 148 different communities of practice: climate, agricultural development, and food security. Effective 149 dialog across these communities will be needed to guide effective adaptation. The collaboration 150 supporting this article furthers that objective.

151 Results 1 – linking recent droughts to extremely warm Pacific SSTs and climate change

Scientists have long emphasized the societal dangers^{24,25} associated with predictable^{21,26-} 152 153 ²⁸ El Niños and La Niñas and climate change is expected to increase the frequency of strong ENSO and IOD events²⁹⁻³². What is less appreciated is that the interaction of climate change and 154 ENSO is creating opportunities for prediction—now. As climate change rapidly warms³³ 155 dynamically important regions in the Indian³⁴⁻³⁶ and Pacific Oceans^{37,38}, exceptionally warm 156 ocean conditions can produce potentially predictable droughts and wet seasons^{6,7,39}. For EHoA, 157 158 this may be especially important for MAM, due to a strengthening connection to La Niña⁴⁰. Figure 1C-F updates attribution studies that identified how extremely warm west Pacific SST 159 contributed to droughts in 2016/17^{6,7}. Composites of standardized contemporaneous SSTs 160 161 during recent OND and MAM dry seasons (Fig. 1C,D) can help identify predictor zones. OND rains are influenced by IOD⁴¹⁻⁴³, ENSO/NINO3.4 SSTs⁴⁴, and the SSTs in the equatorial west 162 Pacific^{3,4,6}. The MAM rains are linked to SSTs in the southern Indian Ocean⁴⁵, and the Pacific 163

164	"Western V" and equatorial eastern Pacific regions ^{6,7} . When the equatorial west Pacific and	
165	"Western V" regions are exceptionally warm, the area around Indonesia sees increases in	
166	rainfall, while the EHoA often experiences sequential dry conditions in OND and MAM ³⁻⁷ .	
167	While the OND teleconnections (Fig. 1C) are well-appreciated, the strong MAM	
168	"teleconnections" implicit in Fig. 1D are not as well-appreciated.	
169	Gradient indices provide a convenient short-hand to describe Indian and Pacific Basin	
169 170	Gradient indices provide a convenient short-hand to describe Indian and Pacific Basin SST patterns. While gradients are commonly used in the Indian Ocean ⁴¹ , there remains a	
170	SST patterns. While gradients are commonly used in the Indian Ocean ⁴¹ , there remains a	

We define two gradients useful for such predictions. For OND, we describe the Pacific via the "West Pacific Gradient" (WPG)³: the difference between standardized equatorial western and eastern Pacific SSTs (Pacific boxes in Fig. 1C). For MAM, we use a similar "Western V Gradient" (WVG), based on the difference between NINO3.4 and Western V temperatures (boxes in Fig. 1D). During MAM, there are important extratropical interactions with the northern and southern hemisphere subtropical westerly jets over the Pacific Ocean, which link warm extra-tropical northern and southern Pacific SST to La Niña-like climate impacts^{6,7}.

Following the 1997/98 El Niño, the western Pacific warmed substantially, and WPG and
WVG values decreased dramatically (Fig. 1E). This set the stage for numerous, often sequential,
EHoA dry seasons (noted with short vertical lines). This trend towards more frequent strong
gradient events has been attributed to a combination of natural ENSO variability and humaninduced warming in the western Pacific^{6,7,47,48}. Strong upward SST trends in the equatorial west

186	Pacific ³ , the western North Pacific ⁶ , and the "Western V" region ⁷ have been formally linked to
187	human-induced warming ^{6,7} . Warming in the already very warm west Pacific has enhanced
188	observed La Niñas ^{3,6} in ways similar to climate change projections ^{49,50} . These exceptional Pacific
189	gradient events have arisen alongside an exceptional number of 1998-2022 La Niña events-
190	thirteen events in twenty-five years since 1998. Historically, La Niña events occur every three-
191	to-five years ^{24,25} . Hence, very frequent La Niñas, a lack of a warming trend in the eastern
192	Pacific ^{47,48} , and rapid warming in the west Pacific have created a large increase in Pacific SST
193	gradients (Fig. 1E), setting the stage for sequential droughts, especially during multi-year La
194	Niñas ⁵¹ . However, wet EHoA rainy seasons, associated with exceptionally warm western Indian
195	Ocean and eastern Pacific conditions, are also expected ²⁹⁻³⁶ .

196 We briefly assess the role of climate change in recent extremely warm SST hot spots 197 (Fig. 1F). The extremity of SST hot spots during recent extreme EHoA rainfall seasons is clear 198 when compared to the past \sim 70 years, while climate model SST simulations highlight the very 199 likely role of climate change. During the droughts in OND 2016/2020/2021 and MAM 200 2017/2021/2022, and the flooding in OND 2019³⁹, either the western Pacific or the western 201 Indian Ocean was exceptionally warm. In Fig.1F, the observed SST anomalies for these seasons, 202 represented as vertical black lines, are compared with CMIP6 ensemble PDFs for 1950-1979 and 203 2016-2022. The observed hot spots were +0.5 to 1°C above the 1950-2021 baseline. In a cooler 204 world with less climate change (1950-1979), climate models indicate that the observed 205 anomalies during these seasons were virtually impossible in such a world without climate change 206 (Fig. 1F). The large offset between modeled SST in the recent period and historically much 207 cooler conditions reflects a strong climate change signature in these areas. Diagnostic studies link EHoA rainfall extremes to these very warm SSTs^{3,4,6,7,39}. Climate change helped produce 208

209	these extreme WPG, WVG, and IOD values, and associated EHoA rainfall extremes. Can these
210	warm ocean conditions be predicted well, offering opportunities for improved decision-making?
211	Results 2. The latest generation of climate models can predict these extreme ocean states
212	well at eight month leads
213	Figure 2 presents exciting new examples of how climate change is interacting with
214	natural variability to produce opportunities for long lead prediction. Each scatterplot shows
215	NMME <i>eight-month</i> lead forecasts and actual outcomes: OND forecasts (left panels) were made
216	in May, while MAM forecasts (right panels) were made in September. The first row presents the
217	WPG and WVG indices, the western region component of the WPG and WVG indices. The
218	second row displays equatorial west Pacific and Western V SSTs. Since mid-2020, such scatter
219	plots have been used operationally ¹¹ to inform FEWS NET's Food Security Outlook process ⁵² .
220	These plots convey information about the predictability (high R^2) of the SSTs, as well as the
221	potential association between extreme SST states and observed EHoA dry and wet rainy season
222	outcomes (circle color).
223	At long leads, the WPG and WVG are predicted well (Fig. 2A), with R ² values of greater
224	than 70%. The uncertainty surrounding these forecasts are shown with 80% confidence intervals.
225	These 80% confidence intervals can be used to assess the probability of being within a strong
226	gradient season. In May, the models robustly anticipated strong negative WPG values associated
227	with eight OND La Niña events. When such forecasts were made, there were below-normal
228	EHoA seasons seven times out of eight. These dry seasons are shown with orange circles in the
229	left of 2A. When forecast MAM WVG values have been less than -0.4Z, as was anticipated in

230 September 2023, dry seasons occurred *nine times out of thirteen* (orange circles, right side Fig.

231	2A). In late 2016, 2020, and 2021, WVG forecasts helped anticipate dry outcomes the following
232	MAM ^{11,12} . Used in concert, WPG/WVG forecasts can anticipate sequential droughts (Fig. 1B).

233 Extreme West Pacific SST predictions, alone, are also useful drought indicators. 234 Forecasts of exceptionally warm west Pacific SST clearly indicate strong tendencies for dry 235 EHoA outcomes (Fig. 2B), and diagnostic studies have explained how these warm conditions modify winds in ways that reduce EHoA rains^{6,7}. This information builds on the information 236 237 contained in more traditional predictors, such as equatorial eastern Pacific (NINO3.4) SST 238 forecasts. Knowing, with a high degree of certainty at long leads, that the western Pacific will be 239 extremely warm allows us to bracket future drought events with higher confidence. These 240 extreme SSTs are associated with climate change (Fig. 1F).

241 Results 3. Climate change simulations anticipate more 2020-2050 strong gradient La Niñas

242 Should we anticipate more WPG and WVG events in the future? To address this 243 question, we examine the 1920-2050 OND and MAM Pacific SST gradients, derived from 152 CMIP6 SSP2-4.5 SST simulations²². For each year, for all of the simulations, we count the 244 245 number of strong gradient events (WPG or WVG values less than -1Z) and translate those counts 246 into a summary time-series (Fig. 3A). Due to warming in the west Pacific, all of the models 247 indicate substantial (>30%) event frequency increases between 2020-2030 and 1920-1979. There 248 is very consistent agreement on these changes across all the models (inset in Fig. 3A). The 249 simulations (Fig. 3A), like the observations (Fig. 1E), suggest a strong tendency towards more 250 frequent strong gradient events, such that in the 2020s, we expect strong gradient La Niña-like 251 conditions about 50% of the time. This tendency is related to a strong anthropogenic ENSOresidual trend mode⁵³ that is closely related to the west Pacific warming, and will almost 252

253 certainly increase over the next several decades (Fig. 3A) as the west Pacific continues to warm.

254 This creates both an opportunity and a need for improved forecast information.

255 Results 4. Exploring spatially-explicit WVG-based MAM forecasts

256 If WPG/WVG events do become even more frequent, then enhanced forecast systems 257 will be a critical tool for managing risk. One challenge associated with improving forecasts is the difficulty in linking research-based attribution studies^{6,7,51} with the operational "consolidated" 258 259 forecast system used by groups such as ICPAC (https://www.icpac.net/seasonal-forecast/). These 260 forecasts use spatially explicit maps and are presented at seasonal Climate Outlook Fora in East 261 Africa. The OND and MAM seasons differ in that MAM rains are not predicted well by climate models⁵⁴, because these rains are less spatially homogeneous⁵⁵ and can have non-linear 262 263 relationships to SSTs, with more coherent links during droughts (e.g., Fig. 1D). ICPAC 264 scientists, however, are now exploring the use of logistic regression, in conjunction with WVG 265 forecasts, to produce experimental MAM forecast maps at long-leads (Fig. 3B), and such 266 predictions are being used to support long-lead alerts¹⁷. Preliminary results from such approaches 267 appear promising. Unlike Fig. 3B, the scatter plot-based forecasts shown in Fig. 2 lack the spatial 268 dimension required to fit into ICPAC's map-based forecast streams. If gradient events become 269 more frequent (Fig. 3A), these novel forecasting techniques may help capture the predictability 270 inherent in extremely warm SST (Fig. 2A).

271 Discussion 1. Implications of these advances in the predictability: challenges

While Ethiopia, Kenya, and Somalia face many barriers to increased food security⁵⁶⁻⁵⁹ and agricultural development⁹ better climate predictions can support relief planning, policy, agricultural advising, and adaptation decisions. Yet, translating prediction to action is not straightforward⁹. Most east Africans are small-scale farmers with little mechanization and often

276	nutrient-depleted soils ⁶⁰ . These farmers are typically poor and risk-averse ⁹ , which limits their
277	ability and willingness to change farming practices. There is very limited uptake of innovative
278	farming practices, crop insurance, and advisory services ⁹ . Since 2015, extreme climate has
279	contributed to large increases in food insecurity ^{61,62} .
280	While research has demonstrated that combinations of investment in resilience and early
281	action can both protect lives and livelihoods and save money on humanitarian response in
282	EHoA ⁶³ , research has also explored why humanitarian relief responses have often been
283	inadequate ⁵⁶⁻⁵⁹ . The latter work has identified barriers associated with limited funding ,
284	uncertain tradeoffs, and inertia ⁵⁶⁻⁵⁹ . Adequate relief funding is always a challenge.
285	Organizations face a financial trade-off: "do I use these limited resources for real, known needs
286	now, or do I devote them to mitigating future problems?" This barrier also incorporates
287	uncertainty and the fear that resources might be squandered, especially if the information is
288	contradictory or confusing. Social inertia within national or international agencies provides
289	another barrier. Relief agencies design their programs, identify their partners and beneficiaries,
290	and make security arrangements. Changing these plans is difficult and slow because the plans are
291	complex, and involve many partners.

Governments operate within limited budgets. Uncertain tradeoffs involve multiple
stakeholders, the media, and competing goals. Will national insurance schemes reduce incentives
for households to adapt? While traditional models assume that individuals make fully reasoned
choices, decision-making itself is cognitively costly, individuals often employ "fast and frugal"
heuristics^{64,65}. These rules support decisions in the absence of full information. Despite some
encouraging signs, there remain inconsistent findings in research on associations between
farmers' perceptions of climate variability and the likelihood of them using weather and climate

information services⁶⁶⁻⁶⁸. Decisions involve tradeoffs. Forecasts provide information on the 299 300 probability of an adverse event, but they are silent on the risk of moving from the status quo. 301 Yet, moving from the status quo also involves risk: adopting a new practice, crop, technology, or 302 livelihood mix that may increase short-term resilience but prove to be maladaptive, resulting in 303 negative impacts on crop yields, ecological health, or socioeconomic systems in the long run. For 304 example, switching from a water-demanding crop like maize to drought-tolerant cassava often 305 involves a tradeoff between lower risk and lower returns. A heuristic that mimics neighbor 306 behaviors under conditions of covariant risk exposure and thin markets can lead to suboptimal 307 outcomes, such as deflated prices for the livestock everyone is simultaneously selling to cope 308 with a shock. Better predictions do not always translate into better decisions, as individuals tend to favor the known over the unknown, including known risks over unknown risks⁶⁹. The risk-309 310 perception literature finds that individuals systematically overestimate the size of risks that are 311 small, unfamiliar, involuntary, and uncertain, and contrastingly underestimate the size of risks that are larger, more certain, more familiar, or, over which they have some control⁷⁰⁻⁷². The risk 312 313 of extreme climate events in the EHoA is growing, unfortunately familiar, and now more 314 predictable, but certainly not voluntary.

315 Discussion 2. Implications of these advances in the predictability of East African rains: 316 opportunities

In theory, improving EWS may be one of the most cost-effective mechanisms for
reducing food insecurity⁷³. In practice, individual behavior change may never be sufficient to
offset the negative consequences of catastrophic, covariant risks without public investment in
large-scale insurance schemes and rural infrastructure. However, within that context, improving
EWS and the distribution of related advisories is a crucial component in improving resilience.

The availability and influence of agricultural advisories remains very low in Africa⁹. 322 323 Furthermore, such advisories may not respond to the unique needs of farmers: a recent survey⁷⁴ 324 found that "most climate services have been developed using a 'loading dock model', whereby 325 products are designed by information suppliers with little input from ... users." In contrast, co-326 developed services involve engagement and discussion between data providers, advisory service 327 developers, and farmers. Table 1 provides some good examples of co-developed participatory agricultural advisory systems in Ghana, Rwanda⁷⁵, and Senegal^{76,77}. In some non-African La 328 Niña-impacted countries like Colombia, agro-advisories have helped maize farmers⁷⁸ and rice 329 farmers^{79,80} increase profits. Modest expenditures on improved advisories can improve yields by 330 331 30% or more. 332 In Ethiopia, multi-agency collaborators have developed the Ethiopian Digital AgroClimate Advisory Platform⁸¹ (EDACaP, advisory.ethioagroclimate.net). EDACaP uses 333 334 climate and weather forecasts in conjunction with soil and crop data to develop local language 335 advisories that are distributed to development agents and farmers via text messages and radio. 336 In Kenya, collaboration between the Kenya Meteorological Department, PlantVillage, 337 Shamba Shape Up, and the Climate Hazards Center is providing text and television-based 338 advisories to more than 9 million Kenyans. These advisories incorporate high-resolution rainfall observations¹⁹, weather forecasts⁸², and WPG/WVG-based climate outlooks (Fig. 2). In addition 339 340 to outreach, PlantVillage is piloting innovative strategies that promote drought resilience via

341 labor-intensive cultivation practices that involve the digging of moisture retaining "Zai" pits and342 the introduction of biochar. Zai pits can hold up to nine seeds of maize and can be filled with

organic manure, biochar, or dry plant biomass. Derived from local organic waste, biochar attracts

and maintains nutrients and water in the soil. Despite the dry MAM 2022 rains, a pilot project

343

based in Kilifi county in eastern Kenya (Fig. 3C) demonstrated the potential benefits. While
control plots exhibited very low maize yields (< one ton per hectare), harvests in the test plots
ranged from three-to-four tons per hectare. While more research and evaluation are required,
WVG-based forecasts (Fig. 3B) hold the promise of supporting increased resilience, even in the
face of severe droughts, as suggested by the pilot from Kilifi.

These advisory services are not costless, but are relatively inexpensive when compared to post-impact, response-based alternatives such as humanitarian assistance and/or funding safetynet programs. In Kenya, the cost of getting a single SMS-advisory into the hands of a farmer is \$0.006, and a farmer might typically receive 15 advisories per season. To reach 6-8 million farmers per week on TV is approximately \$3,000. Reaching 50 million farmers each year via SMS might cost \$4.5 million dollars. Localizing climate information, however, to agroecological and social contexts will require a considerable increase in resources.

From a policy perspective, the potential costs of EWS-empowered advisory systems might be compared to the >\$2 billion USD in humanitarian relief being provided in 2022 to Ethiopia, Kenya, and Somalia. Investments in advisory systems might save millions of dollars a year in east Africa alone, if they reduced the need for very expensive emergency relief while supporting resilience and autonomy.

Pilot studies (Table 1) suggest that ~30% increases in yields are plausible. In terms of
historical variations, a 30% increase is a substantial increase. For example, in Kenya, poor MAM
rains typically appear in association with a ~15% reduction in national maize yields. A 30%
increase in national maize production (~1MT), represents a large sum of money, when valued at
2022 wholesale Kenyan maize prices (~US \$320 million). In addition to increased economic
outcomes, increased crop production can reduce price volatility.

368 Discussion 3. Can long-lead forecasts be used to improve decision-making and increase369 resilience?

370 As sequential droughts become more common during La Niña events, responding to the first 371 drought, which consistently arises in OND, may be a low-regret intervention, especially since 372 MAM dry seasons often follow. Social protection via safety nets and insurance programs can 373 support more effective resilience building at scale by integrating early action and preparedness⁸³. 374 Guaranteed funding before a shock can enhance the scalability, timeliness, predictability, and 375 adequacy of social protection benefits. In 1998, 2010, 2016, 2020, 2021 and 2022, June forecasts 376 of extremely warm west Pacific SSTs clearly indicated OND droughts (Fig. 2B) that led to 377 widespread livestock loss and plummeting livestock prices. Index-Based Livestock Insurance 378 (IBLI) is another promising intervention strategy that targets pastoralists and agropastoralists who face some of the most-extreme risks from drought⁸⁴. Climate forecasts (Fig. 3B) might be 379 combined with Predictive Livestock Early Warning Systems (PLEWS)⁸⁵ to improve predictions 380 of forage conditions. More extreme precipitation may be recharging deep aquifers⁸⁶. Accessing 381 382 this water via boreholes might help buffer rainfall deficits.

There are opportunities to better link EWS with adaptation research. For example, the Evidence for Resilient Agriculture (ERA, https://era.ccafs.cgiar.org/) project provides data and tools that pinpoint what agricultural technologies work where. Resources like the Adaptation Atlas (http://adaptationatlas.cgiar.org/riskmap) allow decision-makers to examine climate change-related risks alongside potential solutions. Agroforestry, micro-credit, insurance, digital advisories, improved breeds, crops, forages and diets, fertilizer, intercropping, irrigation, mulch, trees, planting decisions, stress-adapted varietals, and water harvesting—the list of potential

adaptations is long. African-led efforts that link EWS to appropriate local solutions can help usanticipate and adapt to more extreme climate.

392 Conclusion: recommendations vis-à-vis calls for improved early warning systems

393 In November 2022, at COP27, the UN Secretary-General unveiled the "Early Warnings for All Plan²³ which provides \$3.1 billion USD to support EWS in developing countries. The 394 plan supports four disaster-risk reduction⁸⁴ pillars: 1) Disaster-risk knowledge, 2) Observations 395 and Forecasting, 3) Preparedness and response, and 4) Dissemination and communication. EWS 396 397 "are a proven, effective, and feasible climate adaptation measure, that save lives, and provide a tenfold return on investment,"73 which have been recognized by the IPCC as a key adaptation 398 strategy⁸⁷. Within Africa, ICPAC, FEWS NET and the Kenyan and Ethiopian Meteorological 399 400 Departments provide some of the most sophisticated EWS. This sophistication, the long-standing 401 climate volatility, and food insecurity in the Horn, in addition to the many years of collective 402 research and practical experience represented by the authors, provide us a vantage point from 403 which to provide ten recommendations related to effective EWS development and 404 implementation in the context of climate change. These recommendations are relevant for many 405 regions linked to Indo-Pacific SSTs: 406 407 1. Realize that climate change is happening now and offers opportunities for prediction.

- 408 2. Realize that climate change contributed to recent extreme SSTs and associated EHoA droughts and409 floods, and that many of these extremes were predictable.
- 410 3. Realize that extreme SST gradients provide opportunities for forecasts.

411 4. Pay attention to extremely warm SSTs, these can drive predictable droughts and floods.

- 412 5. Be concerned about increasing aridity and declining per capita resources.
- 413 6. Work towards integrated observation/forecast systems.

414 7. Invest in building capacity. Utilize local expertise.

415 8. Look for places or seasons where conditions will likely be clement. Teleconnections will produce416 droughts, but also areas with bountiful rains.

417 9. Leverage agricultural adaptation resources to build resilience. Link EWS to the latest agricultural418 adaptation science.

419 10. Pay attention to barriers to climate information use, and learn from them.

420

421 Trust, urgency, and accuracy can enable action, helping overcome barriers associated 422 with funding, uncertain tradeoffs, and inertia. Trust and urgency involve a shared 423 understanding of how climate change is interacting with natural variability to produce frequent 424 climate extremes, now. Trust also involves developing (and investing in) co-developed 425 participatory advisory services: localized, culturally appropriate flows of information. Accuracy 426 arises when we carefully combine domain-specific insights with the best-available information. 427 For example, satellite observations and numerical model predictions are tremendous sources of information, but transforming this information into accurate rainfall estimates¹⁹ or forecasts (Fig. 428 429 2, 3B) demands expertise. Predictions of exceptionally warm west Pacific SSTs (Fig. 2B) help 430 anticipate the influence of climate change. While still evolving, inter-disciplinary collaboration is leading to first-in-kind long-lead alerts^{16,17}. But the development of effective EWS in developing 431 432 countries will require large investments in human capacity. "Loading dock" approaches to 433 climate services can fail to provide locally appropriate advisory services⁷⁴ just as "raw" climate 434 model forecasts may miss important teleconnections and opportunities for prediction, such as those shown in Fig. 2. Especially for MAM, long-lead drought outlooks would be substantially 435 436 less skillful if they were just based on climate model rainfall forecasts⁵⁴ or equatorial east Pacific

437	SST predictions. Skill matters. For OND La Niña-related droughts, which the models capture
438	well, effective actions based early alerts can build resilience in the face of sequential droughts.
439	Urgency arises from the long-term implications of extreme SST gradients (Fig. 3A),
440	warming air temperatures, population growth, income gaps, and other socioeconomic and
441	political stressors. Strong negative WPG/WVG gradients have become common (Fig. 1E).
442	Climate change contributed to extreme gradients in 2016/17 and 2020/22 (Fig. 1F). These
443	gradients helped produce an unprecedented five-season drought in the Horn. Given that the serial
444	correlation of EHoA MAM and OND rains is very close to zero, the chance of a five-season
445	drought sequence happening randomly is extremely low ($0.333^{5} \approx 0.4\%$).
446	The frequency of strong gradient events is expected to increase dramatically (by $>50\%$)
447	by mid-century (Fig. 3A), which will likely increase in the frequency of poor EHoA rainy
448	seasons. More frequent dry seasons may also be accompanied by more frequent El Niños and
449	positive IOD events and extreme precipitation ^{30,31,50} . Increasing air temperatures contribute to
450	both droughts and floods. Under dry conditions, warmer air draws more moisture from plants.
451	Under wet conditions, warmer air holds more water vapor, leading to more extreme precipitation.
452	Such influences contribute to "wet-getting-wetter" and "dry-getting-drier" tendencies in the
453	Horn ⁸⁸ . Observed EHoA crop water requirements are also trending upward during dry seasons,
454	and these influences appear preferentially in hot-arid lowland areas ^{10,89} . Importantly, the spatial
455	signature of these impacts largely aligns with the footprint of WPG/WVG-related drought
456	tendencies.
457	Finally, increases in population and water scarcity are also likely to expand insecurity.

459 Somalia, will increase by 70%. Holding other factors constant, population-driven per capita

UN projections suggest that between 2022 and 2050, the population of Ethiopia, Kenya, and

458

460 water availability projections for 2050 indicate the potential for severe water stress and 461 scarcity⁶¹. Population-driven projections of Kenyan per capita maize production also indicate 40% reductions by 2050⁸⁹. Planning for more frequent and severe extremes by enhancing EWS 462 463 and advisory services can help mitigate these climate shocks. 464 The long-term implications of these compound stresses are very concerning, especially 465 for the hot, dry EHoA lowlands. Yet, there is also hope that crop productivity can be increased in 466 humid areas. Many areas of Ethiopia, and substantial portions of Kenya, are climatically secure. 467 Some of these areas (most of Ethiopia) tend to experience rainfall increases during La Niña-like 468 seasons. Closing yield gaps in humid regions would create wealth and lower food prices, and 469 there is growing evidence that climate-enhanced advisories can contribute (Table 1). But 470 achieving this promise will require much greater investments in African experts, experts who can 471 improve and interpret forecasts, link to agricultural ministries, extension programs, and 472 agricultural research centers, and, ultimately, farmers and pastoralists.

474 Data Availability:

475 The time series data supporting the primary results of this study are available via Dryad. Funk,

476 Chris (2022), Data - Tailored forecasts can predict extreme climate informing proactive

477 interventions in East Africa, Dryad, Dataset, <u>https://doi.org/10.25349/D9MC8Z</u>.

478 For now, the data is available at:

479 <u>https://datadryad.org/stash/share/PxI2GIJv-4Q_C51wiHw-gySoI72xjRp19_2euUONcM4</u>

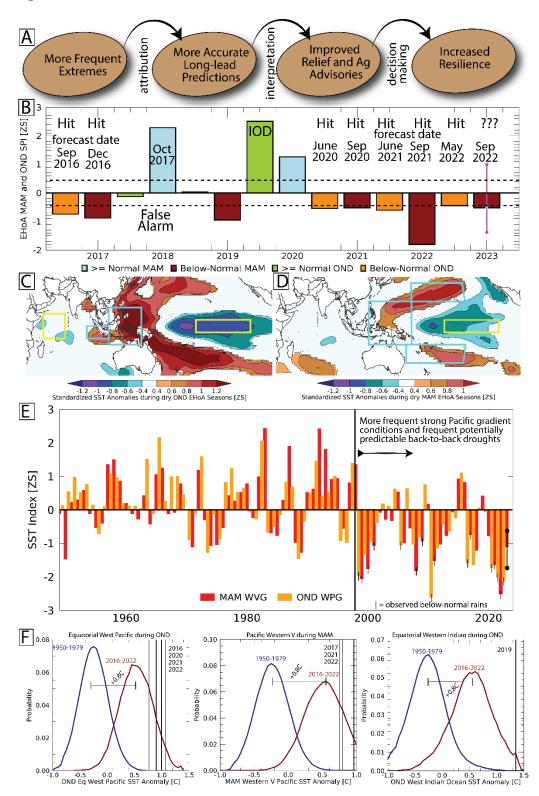
480 Code Availability: The bulk of the analysis presented in this paper are based on simple time-481 series manipulations, and are presented in the excel file in the Dryad link above. The most salient 482 results can be recreated without coding, using the time series provided in the Dryad repository.

483 Time-series extraction and the simple SST composite plots shown in Fig. 2C,D were done using

484 Interactive Data Language version 8.7, and the related code is contained with the Dryad

485 Repository. Zip files in that directory also contain NOAA extended reconstruction version 5

486 gridded SST data, NMME SST forecasts from May and September, and regionally averaged


487 CMIP6 SSP245 SST time-series. For the convenience of the reviewers, the contents of the data

488 repository are also available at: https://data.chc.ucsb.edu/people/chris/DataRepository.zip.

490	Table 1 Exemplar case studies demonstrating the benefits of co-production and social networks
491	in scaling climate-informed advisories.

Location	Agriculture decision affected	Benefit	Scaling potential	Behavior science for scaling	Distribution channel
Senegal	Crop varieties, field location, intercrop, crop type, crop mix, timing of sales, harvest & weeding, fertilizer use, water harvesting	Crop income increased between 10 and 25%	PICSA and WMG approaches can be easily scaled.	Multidisciplinary Working Groups (WMG) increase farmer's awareness of forecasts by 18%, access by 12% and uptake by 10%.	SMS, phone, Interactive radio, farmers share information word of mouth.
Rwanda	Crop type, Crop varieties, Timing of planting and land preparation, When and how to prepare land	+24% production	-PICSA and RLC approaches can be easily scaled.	Participatory Integrated Climate Services for Agriculture (PICSA) approach. Radio Learning Clubs (RLC) address disparities.	Radio, Phone, TV (43:11:7%) With RLC (81:37:9 %)
Ghana	Land preparation planting & harvest dates, crop varieties, fertilizer scheduling	+35% sorghum yields +6% technical Efficiency	Easily replicated. Requires mobile access. \$35 subscription plus training costs	The most significant factor in forecast use was training.	Mobile (Voice Message, SMS, Call Centre)
Colombia, Guatemala, Honduras	Sowing & harvesting dates, rainwater harvesting, pest prevention, crop rotations, variety changes		Government and local stakeholder uptake of LTAC approach enables scaling	Local Technical Agro-Climatic Committees (LTACs) where stakeholders discuss forecasts and develop recommendations.	Agroclimatic bulletin, radio, TV, newspaper, extension service, social networks

494 Figures

496 Figure 1. A. Schematic diagram describing the links between climate attribution, prediction and
497 improved interventions. B. Barplot showing 2016-2023 regionally averaged EHoA MAM and

- 498 OND Standardized Precipitation Index values. Western Pacific Gradient (WPG) and Western
- 499 'V'-Gradient (WVG)-based drought forecast dates are noted for La Niña-related dry seasons,
- along with hit or false alarm outcomes. MAM 2023 result is a forecast, shown with 80%
- 501 confidence intervals. C. Standardized OND SST composites for post-1996 dry EHoA OND
- seasons. Screened for significance at p=0.1. Boxes denote the western and eastern IOD regions,
- the equatorial west Pacific (110°E-140°E, 15°S-15°N), and the NINO3.4 region. D. Same for
 MAM EHoA dry seasons. Boxes denote the Western V (blue) (110°E-140°E, 15°S-15°N, 160°E-
- 505 160° W, 20° N- 35° N, 155° E- 160° W, 15° S- 30° S) and NINO3.4 (yellow) regions. **E**. SST index
- 506 values for the observed MAM WVG and OND WPG. Anomalies calculated using a 1950-2020
- 507 baseline. The Pacific gradients associated with droughts (1C.D) are becoming more frequent
- 508 (1E). Recent below-normal EHoA rainy seasons are marked with short vertical lines. The 2023
- 509 MAM WVG values are based on forecasts in Fig. 2. The black circles denote the associated 80%
- 510 confidence intervals. The associated question mark conveys our concerns for a 6th dry season,
- 511 based on the 2023 WVG forecast in Fig. 2. F. Equatorial OND western Pacific, MAM Western
- 512 V, and OND western Indian Ocean CMIP6 SSP245 SST anomalies for 1950-1979 and 2016-
- 513 2022, along with observed SST anomalies for selected drought seasons. Anomalies based on a
- 514 1950-2020 baseline.

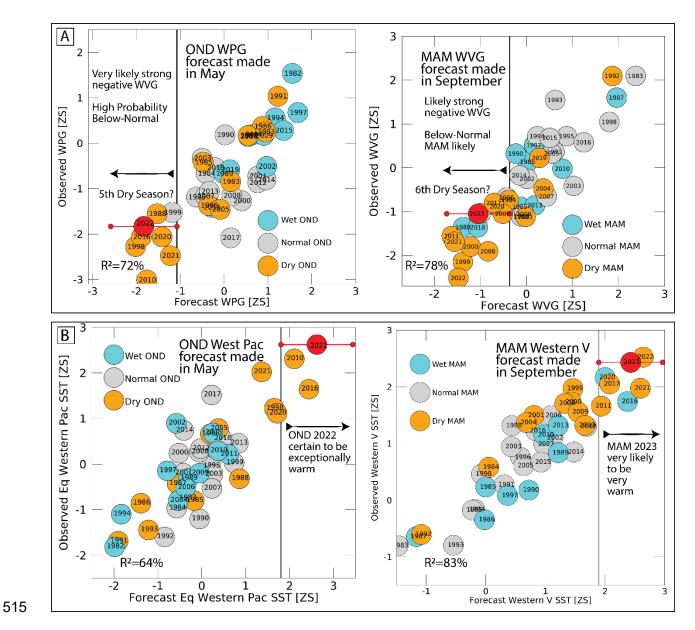
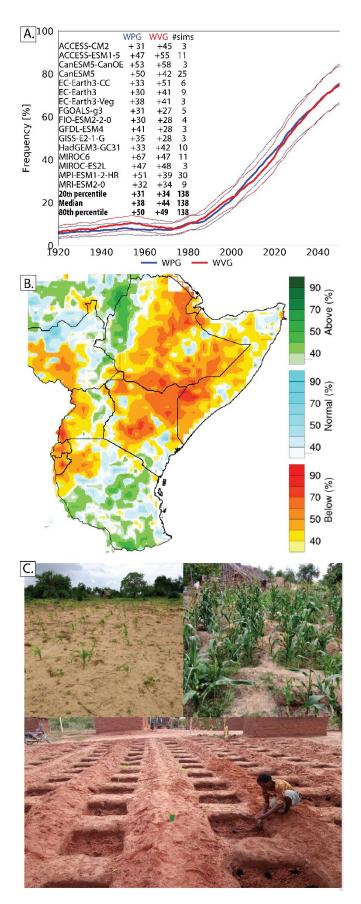



Figure 2. A. Scatterplots of forecast and observed WPG and WVG values. Left panels show
1982-2022 OND forecasts made in May. Right panels show 1983-2023 MAM forecasts made in
September. OND 2022 and MAM 2023 'observations' are assumed to equal the forecasts.
Vertical bars indicate 80% confidence intervals. Blue, gray and red circles denote the EHoA
rainfall outcomes for each OND or MAM season. B. Same but for regionally averaged SST in
equatorial western Pacific and Western V regions. Regions described in Fig. 1C,D.

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540	WVG events, based on standardized time-series from the CMIP6 SSP245 climate change ensemble, along with 95% confidence intervals. The WPG and WVG are calculated using SSTs from the Pacific boxes in Fig. 1A and 1B, respectively. Extreme negative OND WPG and MAM WVG events are associated with values less than -1Z. Change in extreme event frequencies (# of events per 100 years) were calculated by taking the frequency differences between 2020-2030 and 1920-1979, and are reported in the inset table for each model with at least three simulations. The 20 th , 50 th and 80 th percentile values of the per-model changes are shown in the last three columns. Time series were standardized using a 1950-2020 baseline. Human-induced warming in the western Pacific results in strong inter-model agreement on more frequent WPG and WVG events, in line with the observed gradient values shown in Fig. 1C. B . Experimental ICPAC forecasts for MAM 2023, based on localized logistic regressions and WVG forecasts. C . Test plot results in eastern Kenya from MAM 2022. Upper-left and right panels show adjacent control and test plots. Bottom panel shows field preparation using Zai pits and biochar.			
541				
542				
543				
544	Refer	ences		
545				
546	1	Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security		
547		but could be mitigated by agricultural development. Proc Nat Acad Sci USA 105, 11081-11086		
548	2			
549 550	2	Williams, P. & Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. <i>Climate Dynamics</i> 37 , 2417-2435 (2011).		
551	3	Hoell, A. & Funk, C. The ENSO-Related West Pacific Sea Surface Temperature Gradient.		
552	_	Journal of Climate 26 , 9545-9562 (2013).		
553	4	Hoell, A. & Funk, C. Indo-Pacific sea surface temperature influences on failed consecutive rainy		
554	5	seasons over eastern Africa. <i>Climate Dynamics</i> 43 , 1645-1660 (2013).		
555 556	5	Funk, C. <i>et al.</i> Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. <i>Hydrology and Earth System Sciences Discussions</i> 11 , 3111-3136		
557		(2014).		
558	6	Funk, C. et al. Examining the role of unusually warm Indo-Pacific sea surface temperatures in		
559		recent African droughts Quart J Roy Meteor Soc 144, 360-383, doi:10.1002/qj.3266 (2018).		
560	7	Funk, C. et al. Examining the potential contributions of extreme 'Western V' sea surface		
561 562		temperatures to the 2017 March-June East African Drought. <i>Bull. Amer. Meteor. Soc.</i> 100 , S55-		
563	8	S60 (2019). Tadesse, T. Strategic framework for drought risk management and enhancing resilience in Africa,		
564	0	in African Drought Conference. 15-19 (2016).		
565	9	Hansen, J. et al. Climate risk management and rural poverty reduction. Agricultural Systems 172,		
566		28-46 (2019).		

567 568	10	Funk, C. <i>et al.</i> An Agro-Pastoral Phenological Water Balance Framework for Monitoring and Predicting Growing Season Water Deficits and Drought Stress. <i>Frontiers in Climate</i> 3 ,
569		doi:10.3389/fclim.2021.716568 (2021).
570	11	CHC/FEWSNET. in <i>blog.chc.ucsb.edu</i> (Climate Hazards Center, University of California, Santa
571		Barbara, 2022). blog.chc.ucsb.edu/?p=10, blog.chc.ucsb.edu/?p=94, blog.chc.ucsb.edu/?p=283,
572		blog.chc.ucsb.edu/?p=757, blog.chc.ucsb.edu/?p=868, blog.chc.ucsb.edu/?p=991,
573	10	blog.chc.ucsb.edu/?p=1030, blog.chc.ucsb.edu/?p=1192, https://blog.chc.ucsb.edu/?p=1240.
574	12	Voosen, P. The hunger forecast. <i>Science</i> 368 , 226-229, doi:DOI: 10.1126/science.368.6488.226
575	10	(2020).
576 577	13	Yang, W., Seager, R., Cane, M. A. & Lyon, B. The East African Long Rains in Observations and Models. <i>Journal of Climate</i> 27 , 7185-7202, doi:10.1175/JCLI-D-13-00447.1 (2014).
578 579	14	Lyon, B. & DeWitt, D. G. A recent and abrupt decline in the East African long rains. GEOPHYSICAL RESEARCH LETTERS 39 (2012).
579 580	15	Lyon, B. Seasonal Drought in the Greater Horn of Africa and its Recent Increase During the
580 581	13	
582	16	March-May Long Rains. <i>Journal of Climate</i> 27 , 7953-7975 (2014). ICPAC, C., FEWS NET, CHC, FAO, WMO, OCHA, IRI, WFP, Mercy Corps, UK Met Office,
583	10	UKAID, UNHCR, Islamic Relief. The Threat of Starvation Looms in East Africa After Four
584		Failed Rainy Seasons. <i>Multi-Agency Drought Alert</i> (2022).
585		Faned Kainy Seasons. Multi-Agency Drought Alert (2022). < <u>https://www.fao.org/3/cc0312en/cc0312en.pdf</u> >.
586	17	ICPAC <i>et al.</i> Immediate global action required to prevent Famine in the Horn of Africa. <i>Multi-</i>
587	1/	agency Drought Alert (2022).
588		<pre><https: default="" fews.net="" files="" joint%20alert%20on%202023%20mam%20rains%20final<="" pre="" sites=""></https:></pre>
589		- <u>0.pdf</u> >.
590	18	Funk, C. <i>et al.</i> The Centennial Trends Greater Horn of Africa precipitation dataset. <i>Scientific</i>
591	10	<i>Data</i> 2 , doi:10.1038/sdata.2015.50 (2015).
592	19	Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental
593		record for monitoring extremes. Scientific data 2 (2015).
594	20	Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5):
595		Upgrades, Validations, and Intercomparisons. Journal of Climate 30, 8179-8205,
596		doi:10.1175/JCLI-D-16-0836.1 (2017).
597	21	Becker, E. J., Kirtman, B. P., L'Heureux, M., Muñoz, Á. G. & Pegion, K. A Decade of the North
598		American Multimodel Ensemble (NMME): Research, Application, and Future Directions. <i>B Am</i>
599		Meteorol Soc 103, E973-E995 (2022).
600	22	Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
601		experimental design and organization. Geoscientific Model Development 9, 1937-1958 (2016).
602	23	WMO. Early Warnings for All Action Plan unveiled at COP27,
603		<https: early-warnings-all-action-plan-unveiled-cop27="" en="" media="" press-release="" public.wmo.int=""></https:>
604		(2022).
605	24	Diaz, H. F. El Niño and the Southern Oscillation: multiscale variability and global and regional
606		impacts. (Cambridge University Press, 2000).
607	25	Glantz, M. H. Currents of change: impacts of El Niño and La Niña on climate and society.
608		(Cambridge University Press, 2001).
609	26	Barnston, A. G., Tippett, M. K., Ranganathan, M. & L'Heureux, M. L. Deterministic skill of
610		ENSO predictions from the North American Multimodel Ensemble. Climate Dynamics 53, 7215-
611		7234 (2019).
612	27	L'Heureux, M. L. et al. Observing and predicting the 2015/16 El Niño. B Am Meteorol Soc 98,
613		1363-1382 (2017).
614	28	Tippett, M. K., Ranganathan, M., L'Heureux, M., Barnston, A. G. & DelSole, T. Assessing
615		probabilistic predictions of ENSO phase and intensity from the North American Multimodel
616		Ensemble. Climate Dynamics, doi:10.1007/s00382-017-3721-y (2017).

617 Cai, W. et al. Increasing frequency of extreme El Nino events due to greenhouse warming. 29 618 Nature Clim. Change 4, 111-116, doi:10.1038/nclimate2100 (2014). Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission 619 30 620 scenarios. Nature Climate Change 12, 228-231, doi:10.1038/s41558-022-01282-z (2022). 621 31 Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse 622 warming. Nature 510, 254-258 (2014). 623 32 Cai, W. et al. ENSO and greenhouse warming. Nature Climate Change (2015). 624 33 Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? 625 Science 363, 128-129 (2019). 626 34 Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global 627 warming. Nature Climate Change 11, 27-32 (2021). 628 35 Ihara, C., Kushnir, Y. & Cane, M. A. Warming trend of the Indian Ocean SST and Indian Ocean 629 dipole from 1880 to 2004. Journal of Climate 21, 2035-2046 (2008). 630 Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S. & Mudelsee, M. Recent intensification of 36 631 tropical climate variability in the Indian Ocean. Nat Geosci 1, 849-853 (2008). 632 37 Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M. & Leloup, J. Observed freshening and 633 warming of the western Pacific warm pool. Climate Dynamics 33, 565-589 (2009). 634 38 Roxy, M. et al. Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. 635 Nature 575, 647-651 (2019). 636 39 Nicholson, S. E., Fink, A. H., Funk, C., Klotter, D. A. & Satheesh, A. R. Meteorological causes 637 of the catastrophic rains of October/November 2019 in equatorial Africa. Global and Planetary 638 Change 208, 103687 (2022). 639 40 Park, S., Kang, D., Yoo, C., Im, J. & Lee, M.-I. Recent ENSO influence on East African drought 640 during rainy seasons through the synergistic use of satellite and reanalysis data. ISPRS Journal of 641 Photogrammetry and Remote Sensing 162, 17-26 (2020). 642 Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the 41 643 tropical Indian Ocean. Nature 401, 360-363 (1999). 644 42 Saii, N. & Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global climate. 645 Clim Res 25, 151-169 (2003). 646 43 Behera, S. K. et al. Paramount impact of the Indian Ocean dipole on the East African short rains: 647 A CGCM study. Journal of Climate 18, 4514-4530 (2005). 648 44 Indeje, M., Semazzi, F. H. & Ogallo, L. J. ENSO signals in East African rainfall seasons. 649 International Journal of Climatology 20, 19-46 (2000). 650 45 Wainwright, C. M. et al. 'Eastern African Paradox'rainfall decline due to shorter not less intense 651 Long Rains. npj Climate and Atmospheric Science 2, 1-9 (2019). 652 46 Trenberth, K. E. The definition of el nino. B Am Meteorol Soc 78, 2771-2778 (1997). 653 47 Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled 654 trends in the tropical Pacific Ocean. Journal of Climate, 1-41, doi:10.1175/jcli-d-21-0648.1 655 (2022).656 48 Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent 657 with rising greenhouse gases. Nature Climate Change 9, 517-522, doi:10.1038/s41558-019-0505-658 x (2019). 659 49 Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nature 660 Climate Change 5, 132-137 (2015). Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 661 50 662 564, 201-206 (2018). 663 51 Anderson, W. et al. Multi-year La Niña events and multi-season drought in the Horn of Africa. 664 Journal of Hydrometeorology (2022). 665 Magadzire, T., Galu, G. & Verdin, J. How climate forecasts strengthen food security. World 52 666 Meteorological Organisation Bulletin - Special Issue on Water 67 (2017). 667 <https://public.wmo.int/en/resources/bulletin/how-climate-forecasts-strengthen-food-security>.

668	53	Funk, C. & Hoell, A. The leading mode of observed and CMIP5 ENSO-residual sea surface
669		temperatures and associated changes in Indo-Pacific climate. Journal of Climate 28, 4309-4329
670		(2015).
671	54	Shukla, S. et al. Assessing North American multimodel ensemble (NMME) seasonal forecast
672		skill to assist in the early warning of anomalous hydrometeorological events over East Africa.
673		<i>Climate Dynamics</i> , 1-17, doi:10.1007/s00382-016-3296-z (2016).
674	55	Nicholson, S. E. Climate and Climatic Variability of Rainfall over Eastern Africa. Reviews of
675		Geophysics, doi:10.1002/2016RG000544 (2017).
676	56	Lentz, E. & Maxwell, D. G. Anticipating, Mitigating, and Responding to Crises: How Do
677		Information Problems Constrain Action? International Journal of Disaster Risk Reduction, 81,
678		103242, https://doi.org/10.1016/j.ijdrr.2022.103242 (2022).
679	57	Maxwell, D. & Hailey, P. Towards anticipatory information systems and action: Notes on early
680		warning and early action in East Africa. (Tufts University, Feinstein International Center,
681		Friedman School of Nutrition Science and Policy, Boston, MA, 2020).
682	58	Maxwell, D. G. Famine in Somalia. (Oxford University Press, 2016).
683	59	Sarkar, A., Spatz, B. J., de Waal, A., Newton, C. & Maxwell, D. The Political Marketplace
684	09	Framework and Mass Starvation: How Can Humanitarian Analysis, Early Warning and Response
685		Be Improved? Journal of Humanitarian Affairs 3 , 43-55 (2021).
686	60	Giller, K. E. <i>et al.</i> Small farms and development in sub-Saharan Africa: Farming for food, for
687	00	income or for lack of better options? <i>Food Sec</i> 13 , 1431-1454 (2021).
688	61	Funk, C. & Shukla, S. Drought early warning and forecasting: theory and practice. (Elsevier,
689	01	2020).
690	62	ICPAC <i>et al.</i> Unprecedented drought brings threat of starvation to millions in Ethiopia, Kenya,
691	02	and Somalia. <i>Multi-Agency Drought Alert</i> (2022).
692		< <u>https://fews.net/sites/default/files/Joint%20Statement%20Horn%20of%20Africa%209%20June</u>
693	(2)	<u>%202022.pdf</u> >.
694 605	63	Venton, C. C., Fitzgibbon, C., Shitarek, T., Coulter, L. & Dooley, O. The economics of early
695	<i>C</i> A	response and disaster resilience: Lessons from Kenya and Ethiopia. <i>Final report</i> (2012).
696	64	Dosi, G., Napoletano, M., Roventini, A., Stiglitz, J. E. & Treibich, T. Rational heuristics?
697		Expectations and behaviors in evolving economies with heterogeneous interacting agents.
698	<i>(</i> -	<i>Economic Inquiry</i> 58 , 1487-1516 (2020).
699	65	Luan, S., Reb, J. & Gigerenzer, G. Ecological rationality: Fast-and-frugal heuristics for
700		managerial decision making under uncertainty. Academy of Management Journal 62, 1735-1759
701		(2019).
702	66	Djido, A. et al. To what extent do weather and climate information services drive the adoption of
703		climate-smart agriculture practices in Ghana? Climate Risk Management 32, 100309 (2021).
704	67	Diouf, N. S. et al. Factors influencing gendered access to climate information services for
705		farming in Senegal. Gender, Technology and Development 23, 93-110 (2019).
706	68	Owusu Danquah, E. et al. Monitoring and modelling analysis of maize (Zea mays L.) yield gap in
707		smallholder farming in Ghana. Agriculture 10, 420 (2020).
708	69	Ellsberg, D. Risk, ambiguity, and the Savage axioms. The quarterly journal of economics, 643-
709		669 (1961).
710	70	Cullen, A. C., Anderson, C. L., Biscaye, P. & Reynolds, T. W. Variability in cross-domain risk
711		perception among smallholder farmers in Mali by gender and other demographic and attitudinal
712		characteristics. Risk analysis 38, 1361-1377 (2018).
713	71	Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S. & Combs, B. How safe is safe enough? A
714		psychometric study of attitudes towards technological risks and benefits. Policy sciences 9, 127-
715		152 (1978).
716	72	Slovic, P. Perception of risk. Science 236, 280-285 (1987).
717	73	Global Commission on Adaptation. Adapt now: A global call for leadership on climate resilience.
718		(World Resources Institute, 2019).

- 74 Born, L., Prager, S., Ramirez-Villegas, J. & Imbach, P. A global meta-analysis of climate services
 720 and decision-making in agriculture. *Climate Services* 22, 100231 (2021).
- 721 75 Ingabire, C. Closing Gender Gaps in Farmers' Access to Climate Information: The Case of Radio
 722 Listeners Clubs (RLCs) in Rwanda: Preliminary results of a mixed-method analysis. (2021).
- 723 76 Chiputwa, B., Blundo-Canto, G., Steward, P., Andrieu, N. & Ndiaye, O. Co-production, uptake of
 724 weather and climate services, and welfare impacts on farmers in Senegal: A panel data approach.
 725 Agricultural Systems 195, 103309 (2022).
- 726 77 Chiputwa, B. *et al.* Transforming climate science into usable services: The effectiveness of co727 production in promoting uptake of climate information by smallholder farmers in Senegal.
 728 *Climate Services* 20, 100203 (2020).
- 729 78 Jimenez, D. *et al.* A scalable scheme to implement data-driven agriculture for small-scale
 730 farmers. *Global Food Security* 23, 256-266 (2019).
- 731 79 Case, C. O., America, L. & Läderach, P. Cracking patterns in big data saves Colombian rice
 732 farmers' huge losses. *Tropical Agriculture (CIAT)* (2014).
- 73380Delerce, S. *et al.* Assessing weather-yield relationships in rice at local scale using data mining734approaches. *PloS one* 11, e0161620 (2016).
- 81 Seid, J., Demissie, T., Tesfaye, K., Tamene, L. & Solomon, D. Ethiopian Digital AgroClimate
 736 Advisory Platform (EDACaP) Technical Working Document | Brief version. (2020).
- Harrison, L. *et al.* Advancing early warning capabilities with CHIRPS-compatible NCEP GEFS
 precipitation forecasts. *Scientific Data* 9, 1-13 (2022).
- 739 83 Costella, C. *et al.* Scalable and sustainable: How to build anticipatory capacity into social protection systems. (2017).
- 84 Syll, M. M. A. Willingness to Pay for Index-Based Livestock Insurance by Pastoralists and
 742 Agropastoralists: Evidence from Senegal. *Int. J. of Innovative Science and Research* (2021).
- 743 85 Matere, J. *et al.* Predictive Livestock Early Warning System (PLEWS): Monitoring forage
 744 condition and implications for animal production in Kenya. *Weather and Climate Extremes* 27, 100209 (2020).
- 74686Adloff, M. et al. Sustained water storage in Horn of Africa drylands dominated by seasonal
rainfall extremes. Geophysical Research Letters, e2022GL099299 (2022).
- 748 87 Pörtner, H.-O. *et al.* Climate change 2022: Impacts, adaptation and vulnerability. *IPCC Sixth*749 *Assessment Report* (2022).
- Haile, G. G. *et al.* Projected Impacts of Climate Change on Drought Patterns Over East Africa. *Earth's Future* 8, e2020EF001502, doi:<u>https://doi.org/10.1029/2020EF001502</u> (2020).
- Funk, C., Way-Henthorne, J. & Turner, W. Phenological Water Balance Applications for Trend
 Analyses and Risk Management. *Frontiers in Climate* 3, doi:10.3389/fclim.2021.716588 (2021).