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Abstract

Globally, extreme precipitation events cause enormous impacts. Climate change increases the frequency and intensity of extreme

precipitation, which in combination with rising population enhances exposure to major floods. An improved understanding of the

atmospheric processes that cause extreme precipitation events would help to advance predictions and projections of such events.

To date, such analyses have typically been performed rather unsystematically and over limited areas (e.g., the U.S.) which has

resulted in contradictory findings. Here we present the Multi Object Analysis of Atmospheric Phenomenon (MOAAP) algorithm

that uses a set of nine common atmospheric variables to identify and track tropical and extra-tropical cyclones, anticyclones,

atmospheric rivers (ARs), mesoscale convective systems (MCSs), and frontal zones. We apply the algorithm to global historical

data between 2000 to 2020. We find that MCSs produce the vast majority of extreme precipitation in the tropics and some

mid-latitude land regions, while extreme precipitation in mid- and high-latitude ocean and coastal regions are dominated by

cyclones and ARs. Importantly, most extreme precipitation events are associated with interacting features across scales that

intensify precipitation. These interactions, however, can be a function of the rarity (e.g., return period) of extreme events.

The presented methodology and results could have wide-ranging applications including training of machine learning methods,

lagrangian-based evaluation of climate models, and process-based understanding of extreme precipitation in a changing climate.
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Key Points:6

• A novel algorithm simultaneously tracks cyclones, anticyclones, MCSs, atmospheric7

rivers, and fronts.8

• Extreme precipitation is typically associated with multiple atmospheric phenom-9

ena that interact across scales.10

• MCSs are involved in most extreme precipitation events in the tropics and many11

sub-tropical and mid-latitude regions.12
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Abstract13

Globally, extreme precipitation events cause enormous impacts. Climate change increases14

the frequency and intensity of extreme precipitation, which in combination with rising15

population enhances exposure to major floods. An improved understanding of the at-16

mospheric processes that cause extreme precipitation events would help to advance pre-17

dictions and projections of such events. To date, such analyses have typically been per-18

formed rather unsystematically and over limited areas (e.g., the U.S.) which has resulted19

in contradictory findings. Here we present the Multi Object Analysis of Atmospheric Phe-20

nomenon (MOAAP) algorithm that uses a set of nine common atmospheric variables to21

identify and track tropical and extra-tropical cyclones, anticyclones, atmospheric rivers22

(ARs), mesoscale convective systems (MCSs), and frontal zones. We apply the algorithm23

to global historical data between 2000 to 2020. We find that MCSs produce the vast ma-24

jority of extreme precipitation in the tropics and some mid-latitude land regions, while25

extreme precipitation in mid- and high-latitude ocean and coastal regions are dominated26

by cyclones and ARs. Importantly, most extreme precipitation events are associated with27

interacting features across scales that intensify precipitation. These interactions, how-28

ever, can be a function of the rarity (e.g., return period) of extreme events. The presented29

methodology and results could have wide-ranging applications including training of ma-30

chine learning methods, lagrangian-based evaluation of climate models, and process-based31

understanding of extreme precipitation in a changing climate.32

Plain Language Summary33

Increases in intense precipitation and faster onsets of droughts are just two of many34

precipitation related extreme events that worsen under progressive climate change. Sur-35

prisingly little is know about the weather systems that are driving these changes in many36

regions around the world. In order to better predict and prepare for these events, sci-37

entists need an improved understanding of the causes of the involved atmospheric pro-38

cesses and their interactions. A new algorithm called the Multi Object Analysis of At-39

mospheric Phenomenon (MOAAP) has been developed to identify and track different40

types of weather systems, such as tropical and extra-tropical cyclones, that can lead to41

extreme precipitation. The algorithm was applied to global weather data from 2000 to42

2020. The results showed that certain types of weather systems, such as mesoscale con-43

vective systems, are frequently involved in causing the most extreme precipitation. Ad-44

ditionally, the study found that most extreme precipitation events are caused by a com-45

bination of different weather systems working together, and that these interactions can46

vary for very rare and more common extreme events. This research could be useful for47

improving climate models and understanding how extreme precipitation is likely to change48

in the future.49

1 Introduction50

Many studies have examined the atmospheric drivers of intense precipitation. Kunkel51

et al. (2012) analyzed the drivers of 1-in-5-year occurrence of daily precipitation events52

in the U.S. during the period 1908–2009 and found that more than 70% of extreme pre-53

cipitation in the central U.S. is related to frontal systems and less than 10% to mesoscale54

convective systems (MCSs). In similar work, Schumacher and Johnson (2006) found a55

much greater contribution from MCSs of 75% of warm-season intense precipitation events56

in the eastern U.S. This highlights: (i) the difficulty in differentiating the dominant phe-57

nomena that cause intense precipitation and (ii) that intense events may be influenced58

by multiple phenomena that interact on multiple scales. This is confirmed by a recent59

review of intense precipitation events and their large-scale meteorology over North Amer-60

ica by Barlow et al. (2019), who concludes that events are often related to mesoscale pro-61

cesses that are triggered, enhanced, or organized by larger-scale processes.62
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The above examples illustrate that classifying extreme precipitation-producing phe-63

nomena is challenging and that scientists might attribute the same event to different phe-64

nomena dependent on their data analysis methods. Additionally, manually classifying65

extreme events is both labor-intensive and time-consuming, and difficult to reproduce.66

In contrast, automatic algorithms can be very efficient in classifying atmospheric features67

and allow analyzing vast datasets much more efficiently than manual classification. Au-68

tomatic algorithms are frequently used to identify atmospheric phenomenon such as trop-69

ical cyclones (TC) (Vitart et al., 1997; K. Hodges et al., 2017; Ullrich et al., 2021), ex-70

tratropical cyclones (Neu et al., 2013), frontal zones (Berry et al., 2011), ARs (Guan &71

Waliser, 2015; Shields et al., 2018), and MCSs (Davis et al., 2009; A. F. Prein et al., 2020;72

Feng et al., 2021). However, these algorithms can be prone to creating spurious results73

and results can be sensitive to their classification settings (A. F. Prein et al., 2020). To74

date, most feature classification algorithms have been designed to identify single phe-75

nomena, which can lead to similar issues as explained for the manual classification above.76

Here we present the Multi Object Analysis of Atmospheric Phenomenon (MOAAP)77

algorithm that uses a set of nine common atmospheric variables to track MCSs, cyclones,78

anticyclones, TCs, frontal zones, and ARs. Our goal is to understand the contribution79

of each phenomenon to mean and extreme precipitation on a close-to-global scale and80

to highlight interactions of different phenomena in producing extreme precipitation. The81

paper focuses on the past 20 years because of the availability of global hourly precipi-82

tation observations. A climatological dataset of atmospheric phenomena is established83

that can be used in future model evaluation, climate variability, and climate change as-84

sessments. All of the identified phenomena have multiple classification criteria in exist-85

ing literature, which introduces epistemic uncertainty in our analyses. Where possible,86

we compare our results with published references and discuss potential sources of dif-87

ferences. We select classification criteria based on previously published literature and,88

where necessary, develop new criteria that reduce the input data demand while repro-89

ducing similar statistics. We acknowledge that there are other potentially important phe-90

nomena such as stationary thunderstorms, tropical waves, or jet-stream patterns that91

can cause extreme precipitation events. These are not included in this analysis due to92

the lack of observational data and our study’s objective to minimize the data require-93

ments.94

2 Data and Methods95

A guiding principle of our approach is to use a minimum set of variables to iden-96

tify and track a maximum number of atmospheric phenomena. We only use standard97

output variables that are commonly available from reanalyses and climate models. The98

following section introduces the selected variables and the methods used for the feature99

classification.100

2.1 Data101

We use hourly global or almost global datasets to identify and track features within102

the period from January 2000 to December 2020. In doing so, we combine variables from103

the fifth generation reanalysis from the European Centre for Medium-Range Weather104

Forecasts (ERA5) (Hersbach et al., 2020), NASA global precipitation measurement (GPM)105

integrated multi-satellite retrievals for GPM (IMERG) (G. J. Huffman, Bolvin, Braith-106

waite, et al., 2015), and National Oceanic and Atmospheric Administration (NOAA) merged107

geostationary brightness temperature observations (GPM MERGIR) (Janowiak et al.,108

2017).109

ERA5 is a state-of-the-art reanalysis product that assimilates a large variety of in-110

situ and remote-sensing observations into the global Integrated Forecast System (IFS)111

model to create hourly estimates of the state of the atmosphere within the period 1950112
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to present on a 30 km grid (Hersbach et al., 2020). The following six variables are used113

in our analysis: pressure at sea level, zonal and meridional wind speed at 850 hPa, air114

temperature at 850 hPa, and eastward and northward integrated water vapor flux (IVT).115

We decided to not use ERA5 precipitation and longwave outgoing radiation since we found116

that these fields largely deviated from observational products likely due to the coarse grid117

spacing and the need to parameterize deep convection in ERA5 (Rasmussen & et al., in118

review). Blending observational fields with reanalysis fields for the identification of phe-119

nomenon did not result in problems likely due to the assimilation of these datasets into120

the ERA5 system.121

Instead of precipitation from ERA5 we use estimates from IMERG version 6 that122

are available from 2000 to the present on a global 0.1◦ grid every 30-minutes. Data pole-123

ward of ±60◦ is only partially available for grid cells without snow on the ground. IMERG124

merges satellite microwave precipitation estimates with satellite infrared observations125

and precipitation gauge records. Although IMERG has a fairly high spatiotemporal spac-126

ing, its effective resolution is several times coarser than its grid spacing (Guilloteau &127

Foufoula-Georgiou, 2020). We also acknowledge that gridded precipitation datasets may128

under-represent the most extreme precipitation recorded by gauges. Nonetheless, Feng129

et al. (2021) show that using IMERG precipitation to track MCSs over the U.S. leads130

to similar results compared to using hourly stage-IV (Lin & Mitchell, 2005) radar-based131

precipitation estimates.132

For cloud brightness temperature we use observations from GPM MERGIR that133

merge a range of European, Japanese, and U.S. geostationary satellites observations onto134

a 60◦S–60◦N 4-km grid every 30-minutes starting in 2000 (G. J. Huffman, Bolvin, Nelkin,135

& Tan, 2015). There are occasionally areas with missing data, particularly in the South136

Pacific. Areas with missing data are treated as not a number values and no cloud fea-137

tures are identified in these regions. Brightness temperature is typically no standard model138

output but can be estimated from longwave outgoing radiation at the top of the atmo-139

sphere (Yang & Slingo, 2001; Wu & Yan, 2011) , which is widely available.140

We calculate hourly precipitation accumulations from IMERG and use GPM MERGIR141

observations at the full hour to align their temporal resolution with the one from ERA5.142

Additionally, we regrid these datasets to the ERA5 grid using bi-linear interpolation. All143

of the analyses presented in this paper are performed on the 30 km regular grid of ERA5144

using hourly data.145

2.2 Methods146

2.2.1 Identification and Tracking of Objects147

Our tracking algorithm is based on the connectedness (i.e., adjacent in space and148

time) of objects in space and time. It is conceptually similar to the Method for Object-149

Based Diagnostic Evaluation (MODE) Time Domain (MTD) (Davis et al., 2009; Clark150

et al., 2014; A. F. Prein et al., 2020) and a further developed version of the python-based151

MCS tracker used in Poujol et al. (2020) and A. Prein et al. (2021). Our tracker applies152

the following five steps.153

1. A threshold is applied to the three-dimensional (time, latitude, longitude) vari-154

able of interest resulting in a binary field where all grid cells that are above/below155

the threshold are set to one (these are the objects of interest), and all other cells156

are set to zero. Larger absolute threshold values generally result in fewer, smaller,157

and more intense objects.158

2. The binary field is provided to the python label function of the multidimensional159

image processing tool (ndimage), which is part of the SciPy package. This func-160

tion identifies objects that are connected in space and time (horizontally or diag-161
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onal) and assigns them with a unique label (i.e., index) resulting in a feature ma-162

trix.163

3. For long-lived objects we apply a merging and splitting function to the feature ma-164

trix. This function merges or breaks up objects that are connected in time but not165

in space. E.g., if two objects merge, the smaller object will end at the previous166

timestep and will be assimilated into the bigger object. Similarly, when an object167

splits into two objects the larger of the two objects will continue while the smaller168

object will be treated as a new feature (see Fig. 1). The merging and splitting func-169

tion allows to define a temporal threshold that ensures that only longer-lived merged170

and split objects are relabeled. For instance, we only relabel a split object if it ex-171

ists for longer than 4-hours.172

4. From the entire population of identified objects a subset is selected that fulfills173

a range of criteria that are specific to the atmospheric phenomena under consid-174

eration (see Tabel 1 and the following subsection). All objects already fulfill the175

intensity criteria because of the thresholding performed in step 1. All phenomena176

except for fronts have temporal criteria that remove short-lived (typically small)177

objects from the analysis and some phenomena have a minimum area threshold.178

Additional criteria such as the geometric criteria for ARs or a minimum latitude179

to detect fronts are also considered.180

5. We calculate object characteristics once all objects that qualify as a specific phe-181

nomenon are identified.182

2.2.2 Object Characteristics183

The calculation of object characteristics allows us to perform statistical analyses184

by e.g., pooling objects within a region. Characteristics are calculated by using the ob-185

ject label to mask the object from its background field (e.g., AR objects are used to ex-186

tract IVT data). From this data, we calculate object characteristics for each time step187

(i.e., hour). Those characteristics include the area, sum (e.g., accumulated precipitation),188

minimum, mean, maximum, and center of mass. The latter is used to calculate the ob-189

ject speed given by the displacement of the center of mass between two time steps. The190

object speed can fluctuate largely over time mainly due to the merging and splitting of191

objects, which can result in large changes in the center of mass from one time step to192

the next (see Fig. 1). We tested alternative methods to calculate the translation speed193

of objects such as maximizing the pattern correlation by moving the object from the pre-194

vious time step spatially over the object of the current time step. While this is compu-195

tationally much more expensive it does not provide a significant improvement over the196

center of mass-based method.197

2.2.3 Cyclone and Anticyclone Detection198

Multiple approaches have been proposed to track cyclones (Neu et al., 2013). Some199

use minimum thresholds in local gradients (Blender & Schubert, 2000), closed contours,200

and/or minimum pressure (Bardin & Polonsky, 2005). Also, different variables are used201

to track cyclones, each having benefits and drawbacks (K. I. Hodges et al., 2003). The202

most common variables are sea level pressure (SLP), geopotential height at low levels,203

and vorticity (Neu et al., 2013).204

We decided to use SLP for tracking cyclones and anticyclones mostly because of205

its wide availability as a standard model output. The downside of using SLP is that oro-206

graphic effects can create artificial gradients that might be identified as phenomena (Simmonds207

& Murray, 1999). We do not use a closed contour criterion because we want our algo-208

rithm to work on regional and global domains. Rather than tracking absolute values of209

SLP, we track SLP anomalies that are derived in three steps. First, we smooth the orig-210

inal SLP field with a uniform square filter with a length of 100 km. This removes small-211
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scale noise and local orographic effects from the SLP field. Second, we calculate the back-212

ground SLP environment in which cyclones exist. For this, we use a uniform square fil-213

ter with a side length of 3,000 km and a temporal extent of 78 hours. In the third and214

final step, we calculate SLP anomalies by subtracting the background state from the fil-215

tered field from step 1. Contiguous areas in the anomaly field that are ≤ -8 hPa and ex-216

ist for more than 12 hours are identified as cyclones.217

Using the anomaly field for tracking cyclones rather than the absolute SLP field218

has the benefit of being able to track cyclones at lower latitudes that are typically not219

very deep, but can be very impactful. Fig. 2b shows a representative example of a cutoff-220

low that formed in August 2002 over the Gulf of Genoa and tracked north-eastward caus-221

ing major flooding in the northern Alpine region (such storms are called Vb-cyclones in222

this region, and are known to cause torrential rain (Messmer et al., 2015)).223

Anticyclones can also be detected in the same SLP anomaly field. Anticyclones are224

contiguous areas of SLP anomalies ≥ 6 hPa that exist for at least 12 hours. The settings225

for calculating SLP anomaly fields and the cyclone and anticyclone anomaly thresholds226

are based on sensitivity tests and comparisons to existing cyclone tracking studies (not227

shown).228

2.2.4 Tropical Cyclone (TCs)229

Since TCs are a sub-set of cyclones, we use additional criteria to differentiate TCs230

from other cyclones. We optimized these criteria based on a comparison to IBTrACS ob-231

servations (not shown) (Knapp et al., 2010). These criteria are:232

• The cyclone minimum SLP must be ≤995 hPa. This ensures that cyclones are suf-233

ficiently strong to be considered a TC.234

• The TC genesis must be equator-ward of ±35 ◦ latitude.235

• TC cannot exist pole-ward of ±60 ◦ latitude.236

• The TC core must be warmer than the average 850 hPa temperature within the237

cyclone object. This ensures that the TC has a warm core. Optimally, temper-238

atures at higher atmospheric levels should be used to assess the warm core struc-239

ture of TCs (4–8 km height (Stern & Nolan, 2012)). Using the 850 hPa temper-240

ature is a compromise since we use this field for detecting frontal zones and want241

to minimize the number of necessary algorithm input variables.242

• The minimum temperature with the TC at 850 hPa has to be ≥285K.243

• The mean cloud shield brightness temperature (Tb) over the TC object must be244

≤241K. This helps to eliminate cyclones that do not produce deep convection.245

2.2.5 Atmospheric Fronts246

We use the algorithm proposed by Parfitt et al. (2017) for detecting frontal zones.247

The frontal variable (F ∗) is calculated as:248

F ∗ = ζp|∇(Tp)|, (1)249

250

where T is the air temperature at a pressure surface (p; here 850 hPa) and ζp is the251

curl of the wind vector that is normal to the pressure surface. Next, we calculate the non-252

dimensional and normalized frontal diagnostic F as:253

F =
F ∗

f |∇T |0
, (2)254

255
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where f is the Coriolis parameter at the corresponding latitude and |∇T |0 = 0.45K/100 km.256

Fronts are identified in grid cells where F > 1. An example of frontal zones is shown257

in brown contours Fig. 2d over Eastern Europe and south of France. A caveat in using258

this frontal definition is that grid cells close to the equator can not be analyzed since f259

becomes zero. Additionally, orographic effects on temperature and wind speed frequently260

introduce stationary fronts over mountain regions (e.g., see Fig. 2f), which complicates261

the analysis of fronts over areas with steep orographic gradients. We decided to only iden-262

tify but not track frontal zones since the hourly input data from ERA5 is typically too263

coarse to connect thin and often fast-moving frontal zones in time.264

2.2.6 Mesoscale Convective Systems (MCSs)265

We identify mesoscale precipitation areas that include convective precipitation by266

using hourly GPM-IMERG precipitation on the ERA5 grid. In doing so, we mask all hourly267

precipitation grid cells with more than 2mmh−1 and select contiguous areas that are268

5,000 km2 for at least four hours. We call these features mesoscale precipitation objects.269

Additionally, we track mesoscale ice cloud shields similarly to mesoscale precipi-270

tation objects. We mask all grid cells in the hourly regridded brightness temperature that271

have temperatures less than or equal to 241K. We remove all features that do not have272

cloud shields ≥ 40,000 2 for more than four hours. This or similar thresholds are widely273

used in identifying MCSs maddox1980mesoscale,feng2021274

We define MCSs as a combination of a mesoscale precipitation object under a mesoscale275

ice cloud shield. However, we need additional criteria to make sure that the precipita-276

tion is originating from deep convection. Therefore, we demand a minimum cloud bright-277

ness temperature of ≤225K at least once during the MCS lifetime (associated with over-278

shooting cloud tops) and that the maximum hourly precipitation is more than 10mmh−1
279

during the MCS lifetime. These criteria for MCS detection are similar to previous stud-280

ies (A. Prein et al., 2021; Feng et al., 2021).281

2.2.7 Atmospheric Rivers (ARs)282

We use IVT to identify AR objects. ARs must have IVT values of at least 500 kgm−1 s−1
283

and last at least 9-hours. We decided to use a rather high 500 kgm−1 s−1 threshold since284

previous work has shown that it results in more reliable results when applied globally285

(Reid et al., 2020). All objects that fulfill this criterion are called IVT streams. To clas-286

sify as an AR, IVT streams must be at least 2,000 km long and must be at least twice287

as long as wide (Neiman et al., 2008; Rutz et al., 2014; Reid et al., 2020; Guan & Waliser,288

2015). Additionally, we demand that the centroid of an AR is poleward of 20 ◦, which289

helps to eliminate persistent objects in the tropics that would otherwise classify as ARs.290

3 Results291

3.1 Case Studies of Interacting Phenomena During Extreme Precipi-292

tation Events293

We illustrate MOAAP’s multi-feature identification approach by showing the tracks294

and atmospheric conditions of three recent and extensively studied extreme precipita-295

tion events starting with the U.S. landfall of tropical cyclone Florence in September 2018296

(Fig. 2a,b). The track of the TC is very similar to the track of its associated precipita-297

tion, cloud shield, and IVT stream objects (Fig. 2a). During landfall (Fig. 2b), Florence298

was fully wrapped within an IVT stream object meaning that it transported a large amount299

of moisture around its center. We can also detect frontal objects around the center of300

the TC indicating strong gradients in temperature and pressure. Importantly, an anti-301
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cyclone object is detected northeast of Florence, which helped stall the system during302

landfall causing catastrophic flooding.303

As a second example, we selected the northern Alpine flooding of August 2002 where304

a cutoff low developed over the Gulf of Genoa and slowly tracked northeastward produc-305

ing large rainfall amounts (Fig. 2c,d). Cyclones with these tracks are known flood pro-306

ducers in this region and are called Vb-cyclones (Bebber, 1882; Hofstätter et al., 2018).307

The track of the cyclone, the cloud shield, the precipitation object, and the IVT stream308

develop in parallel at the beginning of the event and then start to deviate as the storm309

moves northeastward and weakens. The IVT stream object indicates the advection of310

moist air from the Mediterranean but in comparison to Florence, this storm is weaker311

and is not able to wrap the IVT object around its core. Anticyclones to the west, south,312

and east contributed to the slow movement speed of this cyclone.313

The last example is an AR event that contributed to major flooding in California314

in January 2017. We can track the IVT stream and associated cloud shield from the mid-315

dle of the North Pacific to landfall and beyond (Fig. 2e). The associated cyclone is fairly316

stationary and sometimes connects to a cyclone in the east resulting in a convoluted track.317

At landfall, the moisture flux towards the U.S. West Coast is amplified by a cyclone in318

the north and an anticyclone in the south. We will see later that this general pattern319

of an anticyclone, AR, cyclone (from south to north) is common during the landfall of320

heavily precipitating ARs.321

3.2 Scale Analysis of Atmospheric Phenomena322

Scale diagrams that visualize the time and spatial scale of various atmospheric phe-323

nomena, such as shown in Kotamarthi et al. (2016) (see their Fig. 7), are useful to un-324

derstand the spatiotemporal characteristics of motions in the atmosphere. Such diagrams325

are typically based on expert knowledge. Fig. 3 shows a fully data-driven version of a scale326

diagram based on the tracking results in this study. We can sample meso-alpha to macro-327

alpha scales (Orlanski, 1975) and hours to weeks since ERA5 has a horizontal grid spac-328

ing of ∼30 km, hourly output, and we are tracking phenomena one month at a time, mean-329

ing that phenomena that life from one month to the next are split into two. While this330

increases the frequency of phenomena and reduces their duration, it has little effect on331

the overall statistics since most phenomena live much shorter than a month. We calcu-332

late the length scale of each phenomenon from its area by assuming circular shapes. MCSs333

are with an average lifetime of ∼10 hours and an average length of ∼200 km the small-334

est phenomena that we track while ARs are with 1,000 km and ∼2.7 days the largest and335

longest-lived. This is partly related to the criteria that ARs have to be at least 2,000 km336

long. Cyclones and anticyclones occupy a wide range of length scales with anticyclones337

typically being shorter-lived than cyclones. Large cyclones and anticyclones often occur338

in mid-latitudes while their polar counterparts are typically much smaller (not shown).339

TCs have similar average lifetimes as cyclones but have larger average length scales. There340

is a tendency that larger objects are also longer-lived. Generally, these results agree with341

expectations but the significant amount of overlap between the spatiotemporal space that342

different phenomena occupy is often misrepresented in existing scale diagrams.343

3.3 Climatology of Atmospheric Phenomena344

Fig. 4 shows the climatological frequency of phenomena and their month of peak345

occurrence. These frequencies represent the average number of days that a grid cell is346

occupied by a phenomenon. Note that this is not the track density but incorporates the347

phenomenon’s spatial extent. Seasonal freature frequencies are shown in supplementaryFig. S1.348

Cyclones feature a global hot spot of up to 200 days per year in the Southern Ocean349

around 60 ◦S and 120 ◦E (Fig. 4a). The northern hemisphere features the well known storm350
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tracks in the North Pacific and North Atlantic. Cyclone frequencies typically peak in win-351

ter meaning during DJF in the northern hemisphere and JJA in the southern hemisphere352

(Fig. 4b). However, there are some noticeable exceptions such as an April peak of cy-353

clones in the western and central U.S. or over northeast Asia. The spatial pattern of cy-354

clone frequencies agrees well with previous studies (Neu et al., 2013; Ullrich & Zarzy-355

cki, 2017) but the absolute values are hard to compare since most studies present track356

densities instead of object frequencies. We believe showing the latter is more informa-357

tive since it better represents the impact of a phenomenon on an area that can extend358

large distances from its center.359

Anticyclones feature maxima north and south of the area of maximum cyclone fre-360

quency in both hemispheres (Fig. 4c). A band of high anticyclonic activity spans across361

the southern hemisphere at ∼40 ◦S, which persists through all seasons and migrates north-362

ward during JJA (Fig. 4d). There is also a high frequency of anticyclones over Antarc-363

tica. Over the northern hemisphere, anticyclone frequencies are highest in DJF and low-364

est in JJA with local maxima over the eastern parts of the Pacific and Atlantic basin,365

and the Beaufort Sea. Further hotspots exist over central Asia and Greenland that should366

be interpreted with caution since they are partly a result of interpolating surface pres-367

sure to sea level. These frequency patterns agree well with previously published data (Pepler368

et al., 2019).369

AR frequencies show maxima over all mid-latitude ocean basins (Fig. 4e), and have370

a characteristic diagonal orientation (equator-ward in the west and pole-ward in the east)371

that is associated with hot spots in cyclones and anticyclones. ARs occur most frequently372

between these two hot spot regions and reach their peak frequency during JFM in most373

areas of the southern hemisphere while a clear seasonal progression is visible in the north-374

east Pacific and north-east Atlantic (Fig. 4f). Here, northern regions have a late sum-375

mer peak changing to a winter peak in southern regions.376

Our front detection algorithm frequently identifies stationary fronts over regions377

with steep topography (Fig. 4g). This is likely the reason why Parfitt et al. (2017), whose378

algorithm we apply, only showed results over ocean regions. Regions with the highest379

frontal activity are close to the east coasts in northern mid-latitudes. No prominent hotspots380

are visible over the southern hemisphere except for subtropical areas west of South Amer-381

ica and Africa and coastal regions around Antarctica. Frontal statistics in the latter area382

are likely affected by strong land-ocean and orographic gradients. These general patterns383

agree well with results shown in Berry et al. (2011) and Parfitt et al. (2017) except for384

the hotspots in the subtropical southern Pacific and Atlantic. Fronts are most frequent385

during DJF over oceans in the northern hemisphere, while land regions frequently fea-386

ture a spring peak (Fig. 4h). Over the southern hemisphere, fronts are most frequent dur-387

ing JJA.388

MCSs are most common in the Intertropical Convergence Zone (ITCZ), particu-389

larly over the warm pool region, over the Amazon basin, and the Congo basin (Fig. 4i).390

In mid-latitudes, the La Plata basin and the Southeastern U.S. feature the highest ac-391

tivities. The different mechanisms that cause MCSs are visible in their seasonality (Fig. 4j).392

The northward and southward propagation of the ITCZ is visible in the tropical Atlantic393

and Pacific. Mid-latitude ocean regions feature winter-time maxima while mid-latitude394

land areas deviate from this pattern and show spring and summer peak frequencies.395

TCs occur over sub-tropical and mid-latitude ocean regions with a global hotspot396

in the west Pacific (Fig. 4k). Our algorithm erroneously picks up TCs in the South At-397

lantic, which is similar to Ullrich et al. (2021) and might partly be related to using ERA5398

data for TC identification. The seasonal peak months of TCs are late summer and early399

fall in both hemispheres (Fig. 4l).400
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3.4 Phenomena Contribution to Mean and Heavy Precipitation401

In this subsection, we discuss the fractional contribution of each phenomenon’s pre-402

cipitation to total annual precipitation and how frequently each phenomenon contributes403

to the top 99th percentile hourly precipitation events at each grid cell (Fig. 5). We in-404

corporate the precipitation within each object’s extent and the precipitation under mesoscale405

ice cloud shields that are intersecting with the phenomenon. E.g., for TCs we account406

for the precipitation in the area of the low-pressure anomaly and the precipitation in the407

adjacent ice cloud shield.408

Commonly we do not associate anticyclones with precipitation and this is true for409

their core regions but precipitation frequently originates across their pole-ward flanks410

such as shown for the land-falling AR in Fig. 2f. This most often happens in the South411

Atlantic where some regions experience more than 40% of their annual rainfalls in the412

vicinity of anticyclones (Fig. 5a). In the northern hemisphere, the Karakoram region is413

the hot spot for precipitation under anticyclonic influence, which is related to the fre-414

quently detected anticyclones over steep topography partly originating from extrapolat-415

ing surface pressure from high altitudes to mean sea level. Concerning extreme precip-416

itation, anticyclones can play an important role in mid-latitude ocean basins, particu-417

larly in the South Atlantic and parts of the South Indian Ocean (Fig. 5b).418

Cyclonic rainfall contributions are shifted poleward from those of anticyclones (Fig. 5c).419

The Northeast Atlantic is the global hotspot for cyclonic precipitation with more than420

50% of the annual rainfall related to cyclonic activity. Other regions with more than 40%421

cyclonic precipitation are in the Northeast and Northwest Pacific, the South Atlantic,422

and the Southern Indian Ocean. All ocean regions pole-ward of ±30◦, except for the south-423

east Pacific, receive more than 50% (with peaks of more than 90%) of their hourly heavy424

precipitation from cyclones. The West Coast and eastern part of North America, parts425

of Europe, Japan, and parts of central Asia are land hotspots for heavy cyclonic precip-426

itation (Fig. 5c).427

TCs are a very small subset of cyclones that contribute little to total precipitation428

except for a small area in the West Pacific that gets more than 20% of its annual rain-429

fall from TCs (Fig. 5e). The values presented here are smaller than in previous studies430

– e.g., by Rodgers et al. (2001) or Jiang and Zipser (2010), compare to their Fig. 5d). This431

has two reasons. First, we systematically under-count TC frequencies in areas that Jiang432

and Zipser (2010) identified as hot spots such as the Northeast and Northwest Pacific,433

and second, rather than using a fixed radius around the center of a TC (typically ∼500 km434

is used), we account for precipitation in the TC object (low-pressure anomaly, see Fig.2b)435

and precipitation underneath the TC cloud shield. The latter will result in not account-436

ing for TC precipitation in remote cloud bands that are not directly connected to the437

system. TC contributions to extreme hourly rainfall can reach up to 50% in the North-438

west Pacific but are low otherwise (Fig. 5f). This low contribution of TCs to extreme hourly439

rainfall might be surprising but it is predominantly due to their rarity and their relative440

contribution to extremes is higher when investigating rarer (more intense) extreme pre-441

cipitation events as we will show later.442

Precipitation from AR accounts for more than 50% of annual precipitation over443

the central regions of mid-latitude ocean basins. There is little AR rainfall contribution444

over land except for islands and coastal areas (Fig. 5e). The magnitude and location where445

ARs contribute to heavy rainfall are similar to those of CY (except over land), which446

is not surprising since those two phenomena are closely linked (e.g., see Fig. 2c). Our re-447

sults agree well with previous analyses and highlight similar hot spot regions of extreme448

precipitation contributions from ARs (Waliser & Guan, 2017).449

MCSs contribute the majority of precipitation in the tropics and some mid-latitude450

land regions such as Southeast South America and the Central U.S., which is in good451
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agreement with published literature (Nesbitt et al., 2006; Feng et al., 2021) (Fig. 5g). Even452

higher contributions of MCSs are found for extreme hourly precipitation with rates of453

more than 80% in the tropics, subtropics, the eastern U.S., large parts of Sub-Saharan454

Africa, South America, and China (Fig. 5h).455

3.5 Phenomena Related to Extreme Precipitation Events456

Here we investigate what phenomena were present in a 1,000 km radius around the457

top 100 heaviest hourly precipitation events in each IPCC AR6 region (Iturbide et al.,458

2020). Note that this method results in selecting much rarer events compared to using459

the 99th percentile of hourly rainfall in each grid cell used in the previous section.460

Fig. 7 shows that interactions between phenomena during extreme hourly precip-461

itation events are the norm and not the exception in most regions. For instance, the East-462

ern North America (ENA) region gets all of its top 100 hourly extreme rainfall events463

from MCSs, 70% of them are near a front, ∼50% are in the vicinity of a cyclone, ∼40%464

are near an anticyclone or AR, and 10 events are related to a TC. Most tropical regions465

get the majority of their extreme hourly precipitation events from MCSs while cyclones466

become dominant in higher latitudes. ARs are major contributors to hourly extreme pre-467

cipitation events on the west coast of North America (WNA and NWN region; Waliser468

and Guan (2017)) northern Europe (NEU; Lavers and Villarini (2013)), southern South469

America (SSA; Viale et al. (2018)), New Zealand (NZ; Reid et al. (2021)), and the south470

Atlantic Ocean. Surprising is the frequent presence of anticyclones in the vicinity of ex-471

treme precipitation in mid and high latitudes.472

We find similar results when considering the top 100 daily extreme precipitation473

events (see supplementary Fig. S2). Noteworthy differences include the higher contribu-474

tion of TCs to daily compared to hourly events in regions around the northwest and the475

southwest Pacific Ocean, and the much larger contribution from CY in central and east-476

ern North America, and Southeast South America. These differences are likely caused477

by the increasing importance of rainfall duration for daily extreme events compared to478

hourly extremes. TCs and CY have much longer lifetimes than MCSs (see Fig. 3) and479

can therefore create longer duration rainfall and higher daily accumulations when storm480

motion slows.481

The contribution of atmospheric phenomenon to extreme precipitation is a func-482

tion of the rarity of extreme events. Fig. 8 shows the relative contribution of each phe-483

nomena to extreme hourly precipitation as a function of event intensity (e.g., the 10th484

event includes the top 10 most intense precipitation events). For instance, in South East-485

ern South America (SES) MCSs in combination with fronts and anticyclones were present486

in the most intense precipitation events while weaker events are more frequently influ-487

enced by CY and ARs. In Northern Australia (NAU), East Asia (EAS), and eastern North488

America (ENA) TCs are gaining in importance with increasing event rarity. Supplemen-489

tary Fig. S3 shows the same statistics for daily precipitation extremes. While differences490

depend on the region, there is a tendency of stronger cyclonic influence during the rarest491

daily extreme events compared to hourly events in many regions.492

To better understand which phenomena combinations are interacting during ex-493

treme precipitation events we show the frequency of phenomena co-occurrences in Fig. 9.494

The fewest interactions are found in tropical ocean regions where stand-alone MCSs are495

the most common source of extreme events. However, MCSs combined with frontal zones496

are also common. Mid-latitude regions show more complex interactions. For instance,497

west-central Europe (WCE) features frequent interactions between anticyclones, CY, and498

fronts. AR-related extreme precipitation events are frequently co-occurring with a pair499

of CY and anticyclones as visible in the example in Fig. 2. Generally, the combined oc-500

currence of CY and anticyclones is a common feature in many mid-latitude regions dur-501

ing extreme events. Results for daily extreme events are similar (Supplementary Fig. S4)502
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with the most noticeable differences in mid-latitudes where interactions with cyclones503

increase in importance, and in northern high-latitudes where phenomena interactions de-504

crease in general.505

4 Summary and Discussion506

In this study, we present the Multi Object Analysis of Atmospheric Phenomenon507

(MOAAP) algorithm to identify extratropical and tropical cyclones, anticyclones, ARs,508

MCSs, and frontal zones and applied it to historical data to better understand how these509

features are related to mean and extreme precipitation on a global scale. The main ad-510

vantage of using a multi-feature-based approach compared to single-feature-based meth-511

ods that are most common in the existing literature is that it allows us to study inter-512

actions between phenomena in extreme precipitation-producing environments. Such in-513

teractions are known to be important (Barlow et al., 2019) but are understudied system-514

atically on a global scale.515

Many approaches exist in the published literature to identify and track individual516

phenomena such as TC, cyclones, or ARs. Where available, we established methods to517

maximize the quality of the phenomenon classification. We alsominimized the amount518

of input data, and used variables that are standard model outputs. The main results and519

conclusions from this study are:520

• Extreme hourly and daily precipitation events are typically caused by multiple at-521

mospheric phenomena that interact on different scales and maximize local precip-522

itation rates. This is intuitive since the need for the alignment and interaction of523

multiple phenomena is the prime reason why those events are rare and agrees with524

previous studies over North America (Barlow et al., 2019). Therefore, associat-525

ing extreme precipitation events to a single atmospheric process can be mislead-526

ing and often oversimplifies the multi-scale interactions involved. It is also impor-527

tant to note that the investigated phenomena are not physically or statistically528

independent of each other (e.g., cyclones typically have frontal systems).529

• MCSs dominate the water cycle in the tropics and continental areas of the sub-530

tropics such as the Eastern U.S., Southeast South America, and parts of South-531

ern Africa in agreement with previous findings (Nesbitt et al., 2006; Feng et al.,532

2021). Hourly and daily precipitation extremes are almost exclusively related to533

MCSs in these regions.534

• TCs are a minor contributor to the global water cycle and are of secondary im-535

portance for extreme hourly and daily precipitation production. However, this is536

mainly due to how we define extremes in our analyses and TCs might play a much537

more significant role in extreme statistics when higher-end extremes would be con-538

sidered (e.g., the one-in-a-hundred-year event). The advent of such high-resolution539

climate modeling (Haarsma et al., 2016) and particularly km-scale climate mod-540

eling (A. F. Prein et al., 2015; Stevens et al., 2019; Mahoney et al., 2021) could541

help to alleviate some of the observational record-length issues that limit our un-542

derstanding of high-impact extreme events.543

• At higher latitudes, pairs of cyclones and anticyclones play an important role in544

extreme precipitation production. The co-occurrence of these two phenomena in-545

creases moisture convergence and transport. This is a prime mechanism in regions546

with strong AR events but also plays an important role in other regions such as547

in central and Northeastern Asia.548

The findings listed above should be interpreted alongside the following caveats re-549

lated to our approach.550
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• The frontal detection algorithm often identifies fronts over steep topography and551

coastlines. This leads to an overestimation of precipitation related to fronts in these552

regions. Additionally, hourly model output is typically not sufficient to track frontal553

objects and only allowes us to study them as 2D features.554

• The TC tracking algorithm could be improved, particularly in the South Atlantic555

and South Pacific basins. Identifying warm cores at higher tropospheric levels would556

be beneficial but would increase the input data volume.557

• The thresholds to identify phenomena (see Table 1) could be scale dependent and558

might have to be re-tuned particularly when applied to much coarser resolution559

data (i.e., one degree or larger). The thresholds can be easily changed in the MOAAP560

algorithm to optimize it to various input datasets.561

• IMERG precipitation does not cover high latitudes and smooths out hourly pre-562

cipitation features (Guilloteau & Foufoula-Georgiou, 2020). Additionally, deficien-563

cies have been reported over mountain regions (Bartsotas et al., 2018; G. Huff-564

man, 2019). The results presented here should, therefore, be interpreted with cau-565

tion over high-mountain and high-latitude regions.566

Future work will focus on addressing these caveats. Additionally, MOAAP will be567

applied as a lagrangian evaluation tool to global and regional climate model simulations568

and to improve our understanding of climate change impacts on the occurrence of phe-569

nomena, phenomena characteristics, and their relation to mean and extreme precipita-570

tion. Adding additional phenomena such as jet streams or smaller scale convection and571

phenomena in the land surface or ocean could provide further insights into the physi-572

cal processes contributing to extreme precipitation, particularly in phenomena interac-573

tions in the coupled earth system. Finally, the results from this feature-based analysis574

could be used to train machine learning algorithms, most of which currently rely on la-575

beling features by hand (Kashinath et al., 2021).576
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11
6

b) 2020-02-02 20

11
1

c) 2020-02-03 00

111

123

d) 2020-02-03 12

123

Figure 1. Example for merging and tracking of cyclones over eastern North America. Cyclone

number 111 (red) and 110 (blue) collide on Feb. 2, 2020 (a) resulting in the termination of the

smaller cyclone (110, b). Six hours later, cyclone 111 splits into two cyclones resulting in the

genesis of a new cyclone (123, c). Dotted lines show the track of each cyclone. Cyclone 111 ends

over Hudson Bay and cyclone 123 moves over Greenland and enters the Arctic Ocean (d).
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Figure 2. Involved features during the extreme precipitation related to tropical cyclone (TC)

Florence in 2018 (a,b), the 2003 Northern Alpine floods (c,d), and the AR event that contributed

to the floods in California in early 2017. Colored-filled contours in the left panels show accumu-

lated precipitation from the precipitation feature that resulted in severe flooding. Additionally,

the track of involved cyclones (dashed black line), IVT streams (red line), cold cloud tops (grey

lines), and the precipitation object (blue line) are shown. The right panels show a snap-shot of

the synoptic situation during the flood events with satellite brightness temperature (gray con-

tours), the cyclone track (dashed black line), the outline of the cyclone object (black contour),

the IVT object (red contour), cold cloud objects (gray contour), anticyclones (light brown con-

tours), and frontal zones (dark brown). The white circle indicated the 1,000 km search radius

that is used to associate phenomena to extreme rainfall events.
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Figure 3. Characteristic feature horizontal length scale (x-axis) and time scale (y-axis) for

cyclones (light blue), tropical cyclones (dark clue), MCSs (light red), anticyclones (dark red),

and ARs (green). The contours show 2-dimensional Gaussian kernel density estimates with a

bandwidth of 0.4 that was applied to the logarithm of the data. The box-whisker plots show the

median (white dot), interquartile range (boxes), 5th to 95th percentile (whiskers), and maximum

and minimum (colored circles).
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Figure 4. Annual frequency of cyclones, anticyclones, ARs, fronts, MCSs, and TCs features

are shown top-down in the left column. The right column shows the color-coded month with

their maximum frequency.
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Figure 5. Fraction of precipitation from anticyclones, cyclones, TCs, ARs, and MCSs (top-

down) to total precipitation (left column) and the fraction of 99th percentile hourly precipitation

event occurrence from each phenomenon (right column).

–18–



manuscript submitted to Earth’s Future

IBTrACS (WMO)
ERA5 No

rth
At

la
nt

ic
No

rth
ea

st
Pa

cif
ic

No
rth

we
st

Pa
cif

ic
No

rth
In

di
an

 O
ce

an
So

ut
h

At
la

nt
ic

So
ut

he
as

t
Pa

cif
ic

So
ut

hw
es

t
Pa

cif
ic

So
ut

h
In

di
an

 O
ce

an

0

5

10

15

20

25

30

35

An
nu

al
 T

C 
fre

qu
en

cy

IbTracks
ERA5

Figure 6. Tropical cyclone tracks from the IBTrACS WMO (red) and our results from track-

ing TCs in ERA5 (black) over the period 2001–2020 (left). Only category 1 or stronger tropical

cyclones on the Saffir-Simpson scale are shown. Annual frequency of TCs in each major ocean

basis (right). Box-whisker statistics show the inter-annual variability.
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Figure 7. Frequency of features in the vicinity (1,000 km radius) of extreme precipitation

events in IPCC AR6 regions. We consider the 100 most extreme hourly precipitation events in

each region based on GPM-IMERG precipitation. Blue hexagons indicate ocean regions and grey

hexagons do not contain GPM-IMERG precipitation data. The location of each region is shown

in the map-inlet in the lower right corner (taken from Iturbide et al. (2020)).
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Figure 8. As Fig. 7 but showing the percent contribution (vertical axis) of atmospheric fea-

tures dependent on the intensity of the extreme precipitation events with the rarest event on the

left and all of the 100 most extreme precipitation events on the right.
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Figure 9. Showing the same data as in Fig. 7 but highlighting the co-occurrence of features

during extreme precipitation events. The colors in the heatmaps show the percent of the time at

which features co-occurred. The colors beneath the x- and y-axis show the feature as indicated in

the legend.
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Table 1. Criteria used for feature classification. The following acronyms are used in the table:

pressure (P), moisture stream (MS), integrated vapor transport (IVT), brightness temperature

(Tb), temperature (T), area (A), the standard deviation of Gaussian smoother (σ; values in

brackets correspond to the time, latitude, and longitude dimension).

Feature Intensity Thresholds Temporal Spatial/Area Additional Criteria Breakup

Cyclones Panom ≤ -8 hPa 12-hours yes

Anticyclones Panom ≥ 6 hPa 12-hours yes

IVT Streams MSmin ≥ 0.13 g/g×m/s 9-hours AIV T ≥ 100,000 km2 yes

ARs IVT ≥ 500 kg/ms 9-hours min. length≥ 2,000 km;

length/width≥ 2;

lat. centroid≥±20◦

yes

Mesoscale

Cloud Shields

Tb≤ 241K 9-hours σ=[0,1,1];

ACL ≥ 40,000 km2

no

Mesoscale

Precipitation

Areas

PR≥ 2mm/h 3-hours σ=[0,1,1];

APR=5,000 km2

no

Mesoscale

Convective

Systems

max. PR≥ 3mm/h;

Tb≤ 241K;

minTb≤ 225K

3-hours APR≥2mm/h

≥ 2,500 km2;

ATb≥ 241K

≥ 40,000 km2

Must be a mesoscale

precipitation

area and under a

mesoscale cloud

shield

no

Tropical Cy-

clones

Pmin ≤ 995 hPa;

Tb≤ 241K;

warm coreT850≥ 0 ◦C;

meanT850hPa ≥ 285K

max. lat gen-

esis ≤ ±35◦;

max. lat≤±65◦

no

Fronts AFR ≥ 50,000 km2 lat.≥±10◦ no
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precipitation over central Europe and the role of atmospheric cyclone track645

types. International Journal of Climatology , 38 , e497–e517.646

Huffman, G. (2019). IMERG V06 quality index. Retrieved from https://gpm.nasa647

.gov/sites/default/files/2020-02/IMERGV06 QI 0.pdf648

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Yoo,649

S.-H. (2015). NASA global precipitation measurement (GPM) integrated650

multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis651

Document (ATBD) Version, 4 , 26.652

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2015). Integrated Multi-653

satellitE Retrievals for GPM (IMERG) technical documentation. Nasa/Gsfc654

Code, 612 (47), 2019.655

Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadev-656

illa, E., . . . others (2020). An update of IPCC climate reference regions657

for subcontinental analysis of climate model data: definition and aggregated658

datasets. Earth System Science Data, 12 (4), 2959–2970.659

Janowiak, J., Joyce, B., & Xie, P. (2017). Merged IR V1, Edited by Andrey660

Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information661

Services Center (GES DISC). https://disc.gsfc.nasa.gov/datasets/GPM662

MERGIR 1/summary. (Accessed: 2022-03-15) doi: 10.5067/P4HZB9N27EKU663

Jiang, H., & Zipser, E. J. (2010). Contribution of tropical cyclones to the global664

precipitation from eight seasons of TRMM data: Regional, seasonal, and inter-665

annual variations. Journal of climate, 23 (6), 1526–1543.666

Kashinath, K., Mudigonda, M., Kim, S., Kapp-Schwoerer, L., Graubner, A., Karais-667

mailoglu, E., . . . others (2021). ClimateNet: an expert-labeled open dataset668

and deep learning architecture for enabling high-precision analyses of extreme669

weather. Geoscientific Model Development , 14 (1), 107–124.670

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J.671

(2010). The international best track archive for climate stewardship (IB-672

TrACS) unifying tropical cyclone data. Bulletin of the American Meteorological673

Society , 91 (3), 363–376.674

Kotamarthi, R., Mearns, L., Hayhoe, K., Castro, C. L., & Wuebbles, D. (2016). Use675

of climate information for decision-making and impacts research: State of our676

understanding (Tech. Rep.). Argonne National Laboratory Argonne United677

States.678

Kunkel, K. E., Easterling, D. R., Kristovich, D. A., Gleason, B., Stoecker, L., &679

Smith, R. (2012). Meteorological causes of the secular variations in observed680

extreme precipitation events for the conterminous United States. Journal of681

Hydrometeorology , 13 (3), 1131–1141.682

–25–



manuscript submitted to Earth’s Future

Lavers, D. A., & Villarini, G. (2013). The nexus between atmospheric rivers and ex-683

treme precipitation across Europe. Geophysical Research Letters, 40 (12), 3259–684

3264.685

Lin, Y., & Mitchell, K. E. (2005). 1.2 the NCEP stage II/IV hourly precipitation686

analyses: Development and applications. In Proceedings of the 19th conference687

hydrology, american meteorological society, san diego, ca, usa (Vol. 10).688

Mahoney, K., McColl, C., Hultstrand, D. M., Kappel, W. D., McCormick, B., &689

Compo, G. P. (2021). Blasts from the past: Reimagining historical storms690

with model simulations to modernize dam safety and flood risk assessment.691

Bulletin of the American Meteorological Society , 1–35.692
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Key Points:6

• A novel algorithm simultaneously tracks cyclones, anticyclones, MCSs, atmospheric7

rivers, and fronts.8

• Extreme precipitation is typically associated with multiple atmospheric phenom-9

ena that interact across scales.10

• MCSs are involved in most extreme precipitation events in the tropics and many11

sub-tropical and mid-latitude regions.12
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Abstract13

Globally, extreme precipitation events cause enormous impacts. Climate change increases14

the frequency and intensity of extreme precipitation, which in combination with rising15

population enhances exposure to major floods. An improved understanding of the at-16

mospheric processes that cause extreme precipitation events would help to advance pre-17

dictions and projections of such events. To date, such analyses have typically been per-18

formed rather unsystematically and over limited areas (e.g., the U.S.) which has resulted19

in contradictory findings. Here we present the Multi Object Analysis of Atmospheric Phe-20

nomenon (MOAAP) algorithm that uses a set of nine common atmospheric variables to21

identify and track tropical and extra-tropical cyclones, anticyclones, atmospheric rivers22

(ARs), mesoscale convective systems (MCSs), and frontal zones. We apply the algorithm23

to global historical data between 2000 to 2020. We find that MCSs produce the vast ma-24

jority of extreme precipitation in the tropics and some mid-latitude land regions, while25

extreme precipitation in mid- and high-latitude ocean and coastal regions are dominated26

by cyclones and ARs. Importantly, most extreme precipitation events are associated with27

interacting features across scales that intensify precipitation. These interactions, how-28

ever, can be a function of the rarity (e.g., return period) of extreme events. The presented29

methodology and results could have wide-ranging applications including training of ma-30

chine learning methods, lagrangian-based evaluation of climate models, and process-based31

understanding of extreme precipitation in a changing climate.32

Plain Language Summary33

Increases in intense precipitation and faster onsets of droughts are just two of many34

precipitation related extreme events that worsen under progressive climate change. Sur-35

prisingly little is know about the weather systems that are driving these changes in many36

regions around the world. In order to better predict and prepare for these events, sci-37

entists need an improved understanding of the causes of the involved atmospheric pro-38

cesses and their interactions. A new algorithm called the Multi Object Analysis of At-39

mospheric Phenomenon (MOAAP) has been developed to identify and track different40

types of weather systems, such as tropical and extra-tropical cyclones, that can lead to41

extreme precipitation. The algorithm was applied to global weather data from 2000 to42

2020. The results showed that certain types of weather systems, such as mesoscale con-43

vective systems, are frequently involved in causing the most extreme precipitation. Ad-44

ditionally, the study found that most extreme precipitation events are caused by a com-45

bination of different weather systems working together, and that these interactions can46

vary for very rare and more common extreme events. This research could be useful for47

improving climate models and understanding how extreme precipitation is likely to change48

in the future.49

1 Introduction50

Many studies have examined the atmospheric drivers of intense precipitation. Kunkel51

et al. (2012) analyzed the drivers of 1-in-5-year occurrence of daily precipitation events52

in the U.S. during the period 1908–2009 and found that more than 70% of extreme pre-53

cipitation in the central U.S. is related to frontal systems and less than 10% to mesoscale54

convective systems (MCSs). In similar work, Schumacher and Johnson (2006) found a55

much greater contribution from MCSs of 75% of warm-season intense precipitation events56

in the eastern U.S. This highlights: (i) the difficulty in differentiating the dominant phe-57

nomena that cause intense precipitation and (ii) that intense events may be influenced58

by multiple phenomena that interact on multiple scales. This is confirmed by a recent59

review of intense precipitation events and their large-scale meteorology over North Amer-60

ica by Barlow et al. (2019), who concludes that events are often related to mesoscale pro-61

cesses that are triggered, enhanced, or organized by larger-scale processes.62

–2–



manuscript submitted to Earth’s Future

The above examples illustrate that classifying extreme precipitation-producing phe-63

nomena is challenging and that scientists might attribute the same event to different phe-64

nomena dependent on their data analysis methods. Additionally, manually classifying65

extreme events is both labor-intensive and time-consuming, and difficult to reproduce.66

In contrast, automatic algorithms can be very efficient in classifying atmospheric features67

and allow analyzing vast datasets much more efficiently than manual classification. Au-68

tomatic algorithms are frequently used to identify atmospheric phenomenon such as trop-69

ical cyclones (TC) (Vitart et al., 1997; K. Hodges et al., 2017; Ullrich et al., 2021), ex-70

tratropical cyclones (Neu et al., 2013), frontal zones (Berry et al., 2011), ARs (Guan &71

Waliser, 2015; Shields et al., 2018), and MCSs (Davis et al., 2009; A. F. Prein et al., 2020;72

Feng et al., 2021). However, these algorithms can be prone to creating spurious results73

and results can be sensitive to their classification settings (A. F. Prein et al., 2020). To74

date, most feature classification algorithms have been designed to identify single phe-75

nomena, which can lead to similar issues as explained for the manual classification above.76

Here we present the Multi Object Analysis of Atmospheric Phenomenon (MOAAP)77

algorithm that uses a set of nine common atmospheric variables to track MCSs, cyclones,78

anticyclones, TCs, frontal zones, and ARs. Our goal is to understand the contribution79

of each phenomenon to mean and extreme precipitation on a close-to-global scale and80

to highlight interactions of different phenomena in producing extreme precipitation. The81

paper focuses on the past 20 years because of the availability of global hourly precipi-82

tation observations. A climatological dataset of atmospheric phenomena is established83

that can be used in future model evaluation, climate variability, and climate change as-84

sessments. All of the identified phenomena have multiple classification criteria in exist-85

ing literature, which introduces epistemic uncertainty in our analyses. Where possible,86

we compare our results with published references and discuss potential sources of dif-87

ferences. We select classification criteria based on previously published literature and,88

where necessary, develop new criteria that reduce the input data demand while repro-89

ducing similar statistics. We acknowledge that there are other potentially important phe-90

nomena such as stationary thunderstorms, tropical waves, or jet-stream patterns that91

can cause extreme precipitation events. These are not included in this analysis due to92

the lack of observational data and our study’s objective to minimize the data require-93

ments.94

2 Data and Methods95

A guiding principle of our approach is to use a minimum set of variables to iden-96

tify and track a maximum number of atmospheric phenomena. We only use standard97

output variables that are commonly available from reanalyses and climate models. The98

following section introduces the selected variables and the methods used for the feature99

classification.100

2.1 Data101

We use hourly global or almost global datasets to identify and track features within102

the period from January 2000 to December 2020. In doing so, we combine variables from103

the fifth generation reanalysis from the European Centre for Medium-Range Weather104

Forecasts (ERA5) (Hersbach et al., 2020), NASA global precipitation measurement (GPM)105

integrated multi-satellite retrievals for GPM (IMERG) (G. J. Huffman, Bolvin, Braith-106

waite, et al., 2015), and National Oceanic and Atmospheric Administration (NOAA) merged107

geostationary brightness temperature observations (GPM MERGIR) (Janowiak et al.,108

2017).109

ERA5 is a state-of-the-art reanalysis product that assimilates a large variety of in-110

situ and remote-sensing observations into the global Integrated Forecast System (IFS)111

model to create hourly estimates of the state of the atmosphere within the period 1950112
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to present on a 30 km grid (Hersbach et al., 2020). The following six variables are used113

in our analysis: pressure at sea level, zonal and meridional wind speed at 850 hPa, air114

temperature at 850 hPa, and eastward and northward integrated water vapor flux (IVT).115

We decided to not use ERA5 precipitation and longwave outgoing radiation since we found116

that these fields largely deviated from observational products likely due to the coarse grid117

spacing and the need to parameterize deep convection in ERA5 (Rasmussen & et al., in118

review). Blending observational fields with reanalysis fields for the identification of phe-119

nomenon did not result in problems likely due to the assimilation of these datasets into120

the ERA5 system.121

Instead of precipitation from ERA5 we use estimates from IMERG version 6 that122

are available from 2000 to the present on a global 0.1◦ grid every 30-minutes. Data pole-123

ward of ±60◦ is only partially available for grid cells without snow on the ground. IMERG124

merges satellite microwave precipitation estimates with satellite infrared observations125

and precipitation gauge records. Although IMERG has a fairly high spatiotemporal spac-126

ing, its effective resolution is several times coarser than its grid spacing (Guilloteau &127

Foufoula-Georgiou, 2020). We also acknowledge that gridded precipitation datasets may128

under-represent the most extreme precipitation recorded by gauges. Nonetheless, Feng129

et al. (2021) show that using IMERG precipitation to track MCSs over the U.S. leads130

to similar results compared to using hourly stage-IV (Lin & Mitchell, 2005) radar-based131

precipitation estimates.132

For cloud brightness temperature we use observations from GPM MERGIR that133

merge a range of European, Japanese, and U.S. geostationary satellites observations onto134

a 60◦S–60◦N 4-km grid every 30-minutes starting in 2000 (G. J. Huffman, Bolvin, Nelkin,135

& Tan, 2015). There are occasionally areas with missing data, particularly in the South136

Pacific. Areas with missing data are treated as not a number values and no cloud fea-137

tures are identified in these regions. Brightness temperature is typically no standard model138

output but can be estimated from longwave outgoing radiation at the top of the atmo-139

sphere (Yang & Slingo, 2001; Wu & Yan, 2011) , which is widely available.140

We calculate hourly precipitation accumulations from IMERG and use GPM MERGIR141

observations at the full hour to align their temporal resolution with the one from ERA5.142

Additionally, we regrid these datasets to the ERA5 grid using bi-linear interpolation. All143

of the analyses presented in this paper are performed on the 30 km regular grid of ERA5144

using hourly data.145

2.2 Methods146

2.2.1 Identification and Tracking of Objects147

Our tracking algorithm is based on the connectedness (i.e., adjacent in space and148

time) of objects in space and time. It is conceptually similar to the Method for Object-149

Based Diagnostic Evaluation (MODE) Time Domain (MTD) (Davis et al., 2009; Clark150

et al., 2014; A. F. Prein et al., 2020) and a further developed version of the python-based151

MCS tracker used in Poujol et al. (2020) and A. Prein et al. (2021). Our tracker applies152

the following five steps.153

1. A threshold is applied to the three-dimensional (time, latitude, longitude) vari-154

able of interest resulting in a binary field where all grid cells that are above/below155

the threshold are set to one (these are the objects of interest), and all other cells156

are set to zero. Larger absolute threshold values generally result in fewer, smaller,157

and more intense objects.158

2. The binary field is provided to the python label function of the multidimensional159

image processing tool (ndimage), which is part of the SciPy package. This func-160

tion identifies objects that are connected in space and time (horizontally or diag-161
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onal) and assigns them with a unique label (i.e., index) resulting in a feature ma-162

trix.163

3. For long-lived objects we apply a merging and splitting function to the feature ma-164

trix. This function merges or breaks up objects that are connected in time but not165

in space. E.g., if two objects merge, the smaller object will end at the previous166

timestep and will be assimilated into the bigger object. Similarly, when an object167

splits into two objects the larger of the two objects will continue while the smaller168

object will be treated as a new feature (see Fig. 1). The merging and splitting func-169

tion allows to define a temporal threshold that ensures that only longer-lived merged170

and split objects are relabeled. For instance, we only relabel a split object if it ex-171

ists for longer than 4-hours.172

4. From the entire population of identified objects a subset is selected that fulfills173

a range of criteria that are specific to the atmospheric phenomena under consid-174

eration (see Tabel 1 and the following subsection). All objects already fulfill the175

intensity criteria because of the thresholding performed in step 1. All phenomena176

except for fronts have temporal criteria that remove short-lived (typically small)177

objects from the analysis and some phenomena have a minimum area threshold.178

Additional criteria such as the geometric criteria for ARs or a minimum latitude179

to detect fronts are also considered.180

5. We calculate object characteristics once all objects that qualify as a specific phe-181

nomenon are identified.182

2.2.2 Object Characteristics183

The calculation of object characteristics allows us to perform statistical analyses184

by e.g., pooling objects within a region. Characteristics are calculated by using the ob-185

ject label to mask the object from its background field (e.g., AR objects are used to ex-186

tract IVT data). From this data, we calculate object characteristics for each time step187

(i.e., hour). Those characteristics include the area, sum (e.g., accumulated precipitation),188

minimum, mean, maximum, and center of mass. The latter is used to calculate the ob-189

ject speed given by the displacement of the center of mass between two time steps. The190

object speed can fluctuate largely over time mainly due to the merging and splitting of191

objects, which can result in large changes in the center of mass from one time step to192

the next (see Fig. 1). We tested alternative methods to calculate the translation speed193

of objects such as maximizing the pattern correlation by moving the object from the pre-194

vious time step spatially over the object of the current time step. While this is compu-195

tationally much more expensive it does not provide a significant improvement over the196

center of mass-based method.197

2.2.3 Cyclone and Anticyclone Detection198

Multiple approaches have been proposed to track cyclones (Neu et al., 2013). Some199

use minimum thresholds in local gradients (Blender & Schubert, 2000), closed contours,200

and/or minimum pressure (Bardin & Polonsky, 2005). Also, different variables are used201

to track cyclones, each having benefits and drawbacks (K. I. Hodges et al., 2003). The202

most common variables are sea level pressure (SLP), geopotential height at low levels,203

and vorticity (Neu et al., 2013).204

We decided to use SLP for tracking cyclones and anticyclones mostly because of205

its wide availability as a standard model output. The downside of using SLP is that oro-206

graphic effects can create artificial gradients that might be identified as phenomena (Simmonds207

& Murray, 1999). We do not use a closed contour criterion because we want our algo-208

rithm to work on regional and global domains. Rather than tracking absolute values of209

SLP, we track SLP anomalies that are derived in three steps. First, we smooth the orig-210

inal SLP field with a uniform square filter with a length of 100 km. This removes small-211
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scale noise and local orographic effects from the SLP field. Second, we calculate the back-212

ground SLP environment in which cyclones exist. For this, we use a uniform square fil-213

ter with a side length of 3,000 km and a temporal extent of 78 hours. In the third and214

final step, we calculate SLP anomalies by subtracting the background state from the fil-215

tered field from step 1. Contiguous areas in the anomaly field that are ≤ -8 hPa and ex-216

ist for more than 12 hours are identified as cyclones.217

Using the anomaly field for tracking cyclones rather than the absolute SLP field218

has the benefit of being able to track cyclones at lower latitudes that are typically not219

very deep, but can be very impactful. Fig. 2b shows a representative example of a cutoff-220

low that formed in August 2002 over the Gulf of Genoa and tracked north-eastward caus-221

ing major flooding in the northern Alpine region (such storms are called Vb-cyclones in222

this region, and are known to cause torrential rain (Messmer et al., 2015)).223

Anticyclones can also be detected in the same SLP anomaly field. Anticyclones are224

contiguous areas of SLP anomalies ≥ 6 hPa that exist for at least 12 hours. The settings225

for calculating SLP anomaly fields and the cyclone and anticyclone anomaly thresholds226

are based on sensitivity tests and comparisons to existing cyclone tracking studies (not227

shown).228

2.2.4 Tropical Cyclone (TCs)229

Since TCs are a sub-set of cyclones, we use additional criteria to differentiate TCs230

from other cyclones. We optimized these criteria based on a comparison to IBTrACS ob-231

servations (not shown) (Knapp et al., 2010). These criteria are:232

• The cyclone minimum SLP must be ≤995 hPa. This ensures that cyclones are suf-233

ficiently strong to be considered a TC.234

• The TC genesis must be equator-ward of ±35 ◦ latitude.235

• TC cannot exist pole-ward of ±60 ◦ latitude.236

• The TC core must be warmer than the average 850 hPa temperature within the237

cyclone object. This ensures that the TC has a warm core. Optimally, temper-238

atures at higher atmospheric levels should be used to assess the warm core struc-239

ture of TCs (4–8 km height (Stern & Nolan, 2012)). Using the 850 hPa temper-240

ature is a compromise since we use this field for detecting frontal zones and want241

to minimize the number of necessary algorithm input variables.242

• The minimum temperature with the TC at 850 hPa has to be ≥285K.243

• The mean cloud shield brightness temperature (Tb) over the TC object must be244

≤241K. This helps to eliminate cyclones that do not produce deep convection.245

2.2.5 Atmospheric Fronts246

We use the algorithm proposed by Parfitt et al. (2017) for detecting frontal zones.247

The frontal variable (F ∗) is calculated as:248

F ∗ = ζp|∇(Tp)|, (1)249

250

where T is the air temperature at a pressure surface (p; here 850 hPa) and ζp is the251

curl of the wind vector that is normal to the pressure surface. Next, we calculate the non-252

dimensional and normalized frontal diagnostic F as:253

F =
F ∗

f |∇T |0
, (2)254

255
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where f is the Coriolis parameter at the corresponding latitude and |∇T |0 = 0.45K/100 km.256

Fronts are identified in grid cells where F > 1. An example of frontal zones is shown257

in brown contours Fig. 2d over Eastern Europe and south of France. A caveat in using258

this frontal definition is that grid cells close to the equator can not be analyzed since f259

becomes zero. Additionally, orographic effects on temperature and wind speed frequently260

introduce stationary fronts over mountain regions (e.g., see Fig. 2f), which complicates261

the analysis of fronts over areas with steep orographic gradients. We decided to only iden-262

tify but not track frontal zones since the hourly input data from ERA5 is typically too263

coarse to connect thin and often fast-moving frontal zones in time.264

2.2.6 Mesoscale Convective Systems (MCSs)265

We identify mesoscale precipitation areas that include convective precipitation by266

using hourly GPM-IMERG precipitation on the ERA5 grid. In doing so, we mask all hourly267

precipitation grid cells with more than 2mmh−1 and select contiguous areas that are268

5,000 km2 for at least four hours. We call these features mesoscale precipitation objects.269

Additionally, we track mesoscale ice cloud shields similarly to mesoscale precipi-270

tation objects. We mask all grid cells in the hourly regridded brightness temperature that271

have temperatures less than or equal to 241K. We remove all features that do not have272

cloud shields ≥ 40,000 2 for more than four hours. This or similar thresholds are widely273

used in identifying MCSs maddox1980mesoscale,feng2021274

We define MCSs as a combination of a mesoscale precipitation object under a mesoscale275

ice cloud shield. However, we need additional criteria to make sure that the precipita-276

tion is originating from deep convection. Therefore, we demand a minimum cloud bright-277

ness temperature of ≤225K at least once during the MCS lifetime (associated with over-278

shooting cloud tops) and that the maximum hourly precipitation is more than 10mmh−1
279

during the MCS lifetime. These criteria for MCS detection are similar to previous stud-280

ies (A. Prein et al., 2021; Feng et al., 2021).281

2.2.7 Atmospheric Rivers (ARs)282

We use IVT to identify AR objects. ARs must have IVT values of at least 500 kgm−1 s−1
283

and last at least 9-hours. We decided to use a rather high 500 kgm−1 s−1 threshold since284

previous work has shown that it results in more reliable results when applied globally285

(Reid et al., 2020). All objects that fulfill this criterion are called IVT streams. To clas-286

sify as an AR, IVT streams must be at least 2,000 km long and must be at least twice287

as long as wide (Neiman et al., 2008; Rutz et al., 2014; Reid et al., 2020; Guan & Waliser,288

2015). Additionally, we demand that the centroid of an AR is poleward of 20 ◦, which289

helps to eliminate persistent objects in the tropics that would otherwise classify as ARs.290

3 Results291

3.1 Case Studies of Interacting Phenomena During Extreme Precipi-292

tation Events293

We illustrate MOAAP’s multi-feature identification approach by showing the tracks294

and atmospheric conditions of three recent and extensively studied extreme precipita-295

tion events starting with the U.S. landfall of tropical cyclone Florence in September 2018296

(Fig. 2a,b). The track of the TC is very similar to the track of its associated precipita-297

tion, cloud shield, and IVT stream objects (Fig. 2a). During landfall (Fig. 2b), Florence298

was fully wrapped within an IVT stream object meaning that it transported a large amount299

of moisture around its center. We can also detect frontal objects around the center of300

the TC indicating strong gradients in temperature and pressure. Importantly, an anti-301
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cyclone object is detected northeast of Florence, which helped stall the system during302

landfall causing catastrophic flooding.303

As a second example, we selected the northern Alpine flooding of August 2002 where304

a cutoff low developed over the Gulf of Genoa and slowly tracked northeastward produc-305

ing large rainfall amounts (Fig. 2c,d). Cyclones with these tracks are known flood pro-306

ducers in this region and are called Vb-cyclones (Bebber, 1882; Hofstätter et al., 2018).307

The track of the cyclone, the cloud shield, the precipitation object, and the IVT stream308

develop in parallel at the beginning of the event and then start to deviate as the storm309

moves northeastward and weakens. The IVT stream object indicates the advection of310

moist air from the Mediterranean but in comparison to Florence, this storm is weaker311

and is not able to wrap the IVT object around its core. Anticyclones to the west, south,312

and east contributed to the slow movement speed of this cyclone.313

The last example is an AR event that contributed to major flooding in California314

in January 2017. We can track the IVT stream and associated cloud shield from the mid-315

dle of the North Pacific to landfall and beyond (Fig. 2e). The associated cyclone is fairly316

stationary and sometimes connects to a cyclone in the east resulting in a convoluted track.317

At landfall, the moisture flux towards the U.S. West Coast is amplified by a cyclone in318

the north and an anticyclone in the south. We will see later that this general pattern319

of an anticyclone, AR, cyclone (from south to north) is common during the landfall of320

heavily precipitating ARs.321

3.2 Scale Analysis of Atmospheric Phenomena322

Scale diagrams that visualize the time and spatial scale of various atmospheric phe-323

nomena, such as shown in Kotamarthi et al. (2016) (see their Fig. 7), are useful to un-324

derstand the spatiotemporal characteristics of motions in the atmosphere. Such diagrams325

are typically based on expert knowledge. Fig. 3 shows a fully data-driven version of a scale326

diagram based on the tracking results in this study. We can sample meso-alpha to macro-327

alpha scales (Orlanski, 1975) and hours to weeks since ERA5 has a horizontal grid spac-328

ing of ∼30 km, hourly output, and we are tracking phenomena one month at a time, mean-329

ing that phenomena that life from one month to the next are split into two. While this330

increases the frequency of phenomena and reduces their duration, it has little effect on331

the overall statistics since most phenomena live much shorter than a month. We calcu-332

late the length scale of each phenomenon from its area by assuming circular shapes. MCSs333

are with an average lifetime of ∼10 hours and an average length of ∼200 km the small-334

est phenomena that we track while ARs are with 1,000 km and ∼2.7 days the largest and335

longest-lived. This is partly related to the criteria that ARs have to be at least 2,000 km336

long. Cyclones and anticyclones occupy a wide range of length scales with anticyclones337

typically being shorter-lived than cyclones. Large cyclones and anticyclones often occur338

in mid-latitudes while their polar counterparts are typically much smaller (not shown).339

TCs have similar average lifetimes as cyclones but have larger average length scales. There340

is a tendency that larger objects are also longer-lived. Generally, these results agree with341

expectations but the significant amount of overlap between the spatiotemporal space that342

different phenomena occupy is often misrepresented in existing scale diagrams.343

3.3 Climatology of Atmospheric Phenomena344

Fig. 4 shows the climatological frequency of phenomena and their month of peak345

occurrence. These frequencies represent the average number of days that a grid cell is346

occupied by a phenomenon. Note that this is not the track density but incorporates the347

phenomenon’s spatial extent. Seasonal freature frequencies are shown in supplementaryFig. S1.348

Cyclones feature a global hot spot of up to 200 days per year in the Southern Ocean349

around 60 ◦S and 120 ◦E (Fig. 4a). The northern hemisphere features the well known storm350
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tracks in the North Pacific and North Atlantic. Cyclone frequencies typically peak in win-351

ter meaning during DJF in the northern hemisphere and JJA in the southern hemisphere352

(Fig. 4b). However, there are some noticeable exceptions such as an April peak of cy-353

clones in the western and central U.S. or over northeast Asia. The spatial pattern of cy-354

clone frequencies agrees well with previous studies (Neu et al., 2013; Ullrich & Zarzy-355

cki, 2017) but the absolute values are hard to compare since most studies present track356

densities instead of object frequencies. We believe showing the latter is more informa-357

tive since it better represents the impact of a phenomenon on an area that can extend358

large distances from its center.359

Anticyclones feature maxima north and south of the area of maximum cyclone fre-360

quency in both hemispheres (Fig. 4c). A band of high anticyclonic activity spans across361

the southern hemisphere at ∼40 ◦S, which persists through all seasons and migrates north-362

ward during JJA (Fig. 4d). There is also a high frequency of anticyclones over Antarc-363

tica. Over the northern hemisphere, anticyclone frequencies are highest in DJF and low-364

est in JJA with local maxima over the eastern parts of the Pacific and Atlantic basin,365

and the Beaufort Sea. Further hotspots exist over central Asia and Greenland that should366

be interpreted with caution since they are partly a result of interpolating surface pres-367

sure to sea level. These frequency patterns agree well with previously published data (Pepler368

et al., 2019).369

AR frequencies show maxima over all mid-latitude ocean basins (Fig. 4e), and have370

a characteristic diagonal orientation (equator-ward in the west and pole-ward in the east)371

that is associated with hot spots in cyclones and anticyclones. ARs occur most frequently372

between these two hot spot regions and reach their peak frequency during JFM in most373

areas of the southern hemisphere while a clear seasonal progression is visible in the north-374

east Pacific and north-east Atlantic (Fig. 4f). Here, northern regions have a late sum-375

mer peak changing to a winter peak in southern regions.376

Our front detection algorithm frequently identifies stationary fronts over regions377

with steep topography (Fig. 4g). This is likely the reason why Parfitt et al. (2017), whose378

algorithm we apply, only showed results over ocean regions. Regions with the highest379

frontal activity are close to the east coasts in northern mid-latitudes. No prominent hotspots380

are visible over the southern hemisphere except for subtropical areas west of South Amer-381

ica and Africa and coastal regions around Antarctica. Frontal statistics in the latter area382

are likely affected by strong land-ocean and orographic gradients. These general patterns383

agree well with results shown in Berry et al. (2011) and Parfitt et al. (2017) except for384

the hotspots in the subtropical southern Pacific and Atlantic. Fronts are most frequent385

during DJF over oceans in the northern hemisphere, while land regions frequently fea-386

ture a spring peak (Fig. 4h). Over the southern hemisphere, fronts are most frequent dur-387

ing JJA.388

MCSs are most common in the Intertropical Convergence Zone (ITCZ), particu-389

larly over the warm pool region, over the Amazon basin, and the Congo basin (Fig. 4i).390

In mid-latitudes, the La Plata basin and the Southeastern U.S. feature the highest ac-391

tivities. The different mechanisms that cause MCSs are visible in their seasonality (Fig. 4j).392

The northward and southward propagation of the ITCZ is visible in the tropical Atlantic393

and Pacific. Mid-latitude ocean regions feature winter-time maxima while mid-latitude394

land areas deviate from this pattern and show spring and summer peak frequencies.395

TCs occur over sub-tropical and mid-latitude ocean regions with a global hotspot396

in the west Pacific (Fig. 4k). Our algorithm erroneously picks up TCs in the South At-397

lantic, which is similar to Ullrich et al. (2021) and might partly be related to using ERA5398

data for TC identification. The seasonal peak months of TCs are late summer and early399

fall in both hemispheres (Fig. 4l).400
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3.4 Phenomena Contribution to Mean and Heavy Precipitation401

In this subsection, we discuss the fractional contribution of each phenomenon’s pre-402

cipitation to total annual precipitation and how frequently each phenomenon contributes403

to the top 99th percentile hourly precipitation events at each grid cell (Fig. 5). We in-404

corporate the precipitation within each object’s extent and the precipitation under mesoscale405

ice cloud shields that are intersecting with the phenomenon. E.g., for TCs we account406

for the precipitation in the area of the low-pressure anomaly and the precipitation in the407

adjacent ice cloud shield.408

Commonly we do not associate anticyclones with precipitation and this is true for409

their core regions but precipitation frequently originates across their pole-ward flanks410

such as shown for the land-falling AR in Fig. 2f. This most often happens in the South411

Atlantic where some regions experience more than 40% of their annual rainfalls in the412

vicinity of anticyclones (Fig. 5a). In the northern hemisphere, the Karakoram region is413

the hot spot for precipitation under anticyclonic influence, which is related to the fre-414

quently detected anticyclones over steep topography partly originating from extrapolat-415

ing surface pressure from high altitudes to mean sea level. Concerning extreme precip-416

itation, anticyclones can play an important role in mid-latitude ocean basins, particu-417

larly in the South Atlantic and parts of the South Indian Ocean (Fig. 5b).418

Cyclonic rainfall contributions are shifted poleward from those of anticyclones (Fig. 5c).419

The Northeast Atlantic is the global hotspot for cyclonic precipitation with more than420

50% of the annual rainfall related to cyclonic activity. Other regions with more than 40%421

cyclonic precipitation are in the Northeast and Northwest Pacific, the South Atlantic,422

and the Southern Indian Ocean. All ocean regions pole-ward of ±30◦, except for the south-423

east Pacific, receive more than 50% (with peaks of more than 90%) of their hourly heavy424

precipitation from cyclones. The West Coast and eastern part of North America, parts425

of Europe, Japan, and parts of central Asia are land hotspots for heavy cyclonic precip-426

itation (Fig. 5c).427

TCs are a very small subset of cyclones that contribute little to total precipitation428

except for a small area in the West Pacific that gets more than 20% of its annual rain-429

fall from TCs (Fig. 5e). The values presented here are smaller than in previous studies430

– e.g., by Rodgers et al. (2001) or Jiang and Zipser (2010), compare to their Fig. 5d). This431

has two reasons. First, we systematically under-count TC frequencies in areas that Jiang432

and Zipser (2010) identified as hot spots such as the Northeast and Northwest Pacific,433

and second, rather than using a fixed radius around the center of a TC (typically ∼500 km434

is used), we account for precipitation in the TC object (low-pressure anomaly, see Fig.2b)435

and precipitation underneath the TC cloud shield. The latter will result in not account-436

ing for TC precipitation in remote cloud bands that are not directly connected to the437

system. TC contributions to extreme hourly rainfall can reach up to 50% in the North-438

west Pacific but are low otherwise (Fig. 5f). This low contribution of TCs to extreme hourly439

rainfall might be surprising but it is predominantly due to their rarity and their relative440

contribution to extremes is higher when investigating rarer (more intense) extreme pre-441

cipitation events as we will show later.442

Precipitation from AR accounts for more than 50% of annual precipitation over443

the central regions of mid-latitude ocean basins. There is little AR rainfall contribution444

over land except for islands and coastal areas (Fig. 5e). The magnitude and location where445

ARs contribute to heavy rainfall are similar to those of CY (except over land), which446

is not surprising since those two phenomena are closely linked (e.g., see Fig. 2c). Our re-447

sults agree well with previous analyses and highlight similar hot spot regions of extreme448

precipitation contributions from ARs (Waliser & Guan, 2017).449

MCSs contribute the majority of precipitation in the tropics and some mid-latitude450

land regions such as Southeast South America and the Central U.S., which is in good451
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agreement with published literature (Nesbitt et al., 2006; Feng et al., 2021) (Fig. 5g). Even452

higher contributions of MCSs are found for extreme hourly precipitation with rates of453

more than 80% in the tropics, subtropics, the eastern U.S., large parts of Sub-Saharan454

Africa, South America, and China (Fig. 5h).455

3.5 Phenomena Related to Extreme Precipitation Events456

Here we investigate what phenomena were present in a 1,000 km radius around the457

top 100 heaviest hourly precipitation events in each IPCC AR6 region (Iturbide et al.,458

2020). Note that this method results in selecting much rarer events compared to using459

the 99th percentile of hourly rainfall in each grid cell used in the previous section.460

Fig. 7 shows that interactions between phenomena during extreme hourly precip-461

itation events are the norm and not the exception in most regions. For instance, the East-462

ern North America (ENA) region gets all of its top 100 hourly extreme rainfall events463

from MCSs, 70% of them are near a front, ∼50% are in the vicinity of a cyclone, ∼40%464

are near an anticyclone or AR, and 10 events are related to a TC. Most tropical regions465

get the majority of their extreme hourly precipitation events from MCSs while cyclones466

become dominant in higher latitudes. ARs are major contributors to hourly extreme pre-467

cipitation events on the west coast of North America (WNA and NWN region; Waliser468

and Guan (2017)) northern Europe (NEU; Lavers and Villarini (2013)), southern South469

America (SSA; Viale et al. (2018)), New Zealand (NZ; Reid et al. (2021)), and the south470

Atlantic Ocean. Surprising is the frequent presence of anticyclones in the vicinity of ex-471

treme precipitation in mid and high latitudes.472

We find similar results when considering the top 100 daily extreme precipitation473

events (see supplementary Fig. S2). Noteworthy differences include the higher contribu-474

tion of TCs to daily compared to hourly events in regions around the northwest and the475

southwest Pacific Ocean, and the much larger contribution from CY in central and east-476

ern North America, and Southeast South America. These differences are likely caused477

by the increasing importance of rainfall duration for daily extreme events compared to478

hourly extremes. TCs and CY have much longer lifetimes than MCSs (see Fig. 3) and479

can therefore create longer duration rainfall and higher daily accumulations when storm480

motion slows.481

The contribution of atmospheric phenomenon to extreme precipitation is a func-482

tion of the rarity of extreme events. Fig. 8 shows the relative contribution of each phe-483

nomena to extreme hourly precipitation as a function of event intensity (e.g., the 10th484

event includes the top 10 most intense precipitation events). For instance, in South East-485

ern South America (SES) MCSs in combination with fronts and anticyclones were present486

in the most intense precipitation events while weaker events are more frequently influ-487

enced by CY and ARs. In Northern Australia (NAU), East Asia (EAS), and eastern North488

America (ENA) TCs are gaining in importance with increasing event rarity. Supplemen-489

tary Fig. S3 shows the same statistics for daily precipitation extremes. While differences490

depend on the region, there is a tendency of stronger cyclonic influence during the rarest491

daily extreme events compared to hourly events in many regions.492

To better understand which phenomena combinations are interacting during ex-493

treme precipitation events we show the frequency of phenomena co-occurrences in Fig. 9.494

The fewest interactions are found in tropical ocean regions where stand-alone MCSs are495

the most common source of extreme events. However, MCSs combined with frontal zones496

are also common. Mid-latitude regions show more complex interactions. For instance,497

west-central Europe (WCE) features frequent interactions between anticyclones, CY, and498

fronts. AR-related extreme precipitation events are frequently co-occurring with a pair499

of CY and anticyclones as visible in the example in Fig. 2. Generally, the combined oc-500

currence of CY and anticyclones is a common feature in many mid-latitude regions dur-501

ing extreme events. Results for daily extreme events are similar (Supplementary Fig. S4)502
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with the most noticeable differences in mid-latitudes where interactions with cyclones503

increase in importance, and in northern high-latitudes where phenomena interactions de-504

crease in general.505

4 Summary and Discussion506

In this study, we present the Multi Object Analysis of Atmospheric Phenomenon507

(MOAAP) algorithm to identify extratropical and tropical cyclones, anticyclones, ARs,508

MCSs, and frontal zones and applied it to historical data to better understand how these509

features are related to mean and extreme precipitation on a global scale. The main ad-510

vantage of using a multi-feature-based approach compared to single-feature-based meth-511

ods that are most common in the existing literature is that it allows us to study inter-512

actions between phenomena in extreme precipitation-producing environments. Such in-513

teractions are known to be important (Barlow et al., 2019) but are understudied system-514

atically on a global scale.515

Many approaches exist in the published literature to identify and track individual516

phenomena such as TC, cyclones, or ARs. Where available, we established methods to517

maximize the quality of the phenomenon classification. We alsominimized the amount518

of input data, and used variables that are standard model outputs. The main results and519

conclusions from this study are:520

• Extreme hourly and daily precipitation events are typically caused by multiple at-521

mospheric phenomena that interact on different scales and maximize local precip-522

itation rates. This is intuitive since the need for the alignment and interaction of523

multiple phenomena is the prime reason why those events are rare and agrees with524

previous studies over North America (Barlow et al., 2019). Therefore, associat-525

ing extreme precipitation events to a single atmospheric process can be mislead-526

ing and often oversimplifies the multi-scale interactions involved. It is also impor-527

tant to note that the investigated phenomena are not physically or statistically528

independent of each other (e.g., cyclones typically have frontal systems).529

• MCSs dominate the water cycle in the tropics and continental areas of the sub-530

tropics such as the Eastern U.S., Southeast South America, and parts of South-531

ern Africa in agreement with previous findings (Nesbitt et al., 2006; Feng et al.,532

2021). Hourly and daily precipitation extremes are almost exclusively related to533

MCSs in these regions.534

• TCs are a minor contributor to the global water cycle and are of secondary im-535

portance for extreme hourly and daily precipitation production. However, this is536

mainly due to how we define extremes in our analyses and TCs might play a much537

more significant role in extreme statistics when higher-end extremes would be con-538

sidered (e.g., the one-in-a-hundred-year event). The advent of such high-resolution539

climate modeling (Haarsma et al., 2016) and particularly km-scale climate mod-540

eling (A. F. Prein et al., 2015; Stevens et al., 2019; Mahoney et al., 2021) could541

help to alleviate some of the observational record-length issues that limit our un-542

derstanding of high-impact extreme events.543

• At higher latitudes, pairs of cyclones and anticyclones play an important role in544

extreme precipitation production. The co-occurrence of these two phenomena in-545

creases moisture convergence and transport. This is a prime mechanism in regions546

with strong AR events but also plays an important role in other regions such as547

in central and Northeastern Asia.548

The findings listed above should be interpreted alongside the following caveats re-549

lated to our approach.550
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• The frontal detection algorithm often identifies fronts over steep topography and551

coastlines. This leads to an overestimation of precipitation related to fronts in these552

regions. Additionally, hourly model output is typically not sufficient to track frontal553

objects and only allowes us to study them as 2D features.554

• The TC tracking algorithm could be improved, particularly in the South Atlantic555

and South Pacific basins. Identifying warm cores at higher tropospheric levels would556

be beneficial but would increase the input data volume.557

• The thresholds to identify phenomena (see Table 1) could be scale dependent and558

might have to be re-tuned particularly when applied to much coarser resolution559

data (i.e., one degree or larger). The thresholds can be easily changed in the MOAAP560

algorithm to optimize it to various input datasets.561

• IMERG precipitation does not cover high latitudes and smooths out hourly pre-562

cipitation features (Guilloteau & Foufoula-Georgiou, 2020). Additionally, deficien-563

cies have been reported over mountain regions (Bartsotas et al., 2018; G. Huff-564

man, 2019). The results presented here should, therefore, be interpreted with cau-565

tion over high-mountain and high-latitude regions.566

Future work will focus on addressing these caveats. Additionally, MOAAP will be567

applied as a lagrangian evaluation tool to global and regional climate model simulations568

and to improve our understanding of climate change impacts on the occurrence of phe-569

nomena, phenomena characteristics, and their relation to mean and extreme precipita-570

tion. Adding additional phenomena such as jet streams or smaller scale convection and571

phenomena in the land surface or ocean could provide further insights into the physi-572

cal processes contributing to extreme precipitation, particularly in phenomena interac-573

tions in the coupled earth system. Finally, the results from this feature-based analysis574

could be used to train machine learning algorithms, most of which currently rely on la-575

beling features by hand (Kashinath et al., 2021).576
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a) 2020-02-02 17

111

11
6

b) 2020-02-02 20

11
1

c) 2020-02-03 00

111

123

d) 2020-02-03 12

123

Figure 1. Example for merging and tracking of cyclones over eastern North America. Cyclone

number 111 (red) and 110 (blue) collide on Feb. 2, 2020 (a) resulting in the termination of the

smaller cyclone (110, b). Six hours later, cyclone 111 splits into two cyclones resulting in the

genesis of a new cyclone (123, c). Dotted lines show the track of each cyclone. Cyclone 111 ends

over Hudson Bay and cyclone 123 moves over Greenland and enters the Arctic Ocean (d).
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Figure 2. Involved features during the extreme precipitation related to tropical cyclone (TC)

Florence in 2018 (a,b), the 2003 Northern Alpine floods (c,d), and the AR event that contributed

to the floods in California in early 2017. Colored-filled contours in the left panels show accumu-

lated precipitation from the precipitation feature that resulted in severe flooding. Additionally,

the track of involved cyclones (dashed black line), IVT streams (red line), cold cloud tops (grey

lines), and the precipitation object (blue line) are shown. The right panels show a snap-shot of

the synoptic situation during the flood events with satellite brightness temperature (gray con-

tours), the cyclone track (dashed black line), the outline of the cyclone object (black contour),

the IVT object (red contour), cold cloud objects (gray contour), anticyclones (light brown con-

tours), and frontal zones (dark brown). The white circle indicated the 1,000 km search radius

that is used to associate phenomena to extreme rainfall events.
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Figure 3. Characteristic feature horizontal length scale (x-axis) and time scale (y-axis) for

cyclones (light blue), tropical cyclones (dark clue), MCSs (light red), anticyclones (dark red),

and ARs (green). The contours show 2-dimensional Gaussian kernel density estimates with a

bandwidth of 0.4 that was applied to the logarithm of the data. The box-whisker plots show the

median (white dot), interquartile range (boxes), 5th to 95th percentile (whiskers), and maximum

and minimum (colored circles).
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Figure 4. Annual frequency of cyclones, anticyclones, ARs, fronts, MCSs, and TCs features

are shown top-down in the left column. The right column shows the color-coded month with

their maximum frequency.
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Figure 5. Fraction of precipitation from anticyclones, cyclones, TCs, ARs, and MCSs (top-

down) to total precipitation (left column) and the fraction of 99th percentile hourly precipitation

event occurrence from each phenomenon (right column).
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Figure 6. Tropical cyclone tracks from the IBTrACS WMO (red) and our results from track-

ing TCs in ERA5 (black) over the period 2001–2020 (left). Only category 1 or stronger tropical

cyclones on the Saffir-Simpson scale are shown. Annual frequency of TCs in each major ocean

basis (right). Box-whisker statistics show the inter-annual variability.
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Figure 7. Frequency of features in the vicinity (1,000 km radius) of extreme precipitation

events in IPCC AR6 regions. We consider the 100 most extreme hourly precipitation events in

each region based on GPM-IMERG precipitation. Blue hexagons indicate ocean regions and grey

hexagons do not contain GPM-IMERG precipitation data. The location of each region is shown

in the map-inlet in the lower right corner (taken from Iturbide et al. (2020)).
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Figure 8. As Fig. 7 but showing the percent contribution (vertical axis) of atmospheric fea-

tures dependent on the intensity of the extreme precipitation events with the rarest event on the

left and all of the 100 most extreme precipitation events on the right.
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Figure 9. Showing the same data as in Fig. 7 but highlighting the co-occurrence of features

during extreme precipitation events. The colors in the heatmaps show the percent of the time at

which features co-occurred. The colors beneath the x- and y-axis show the feature as indicated in

the legend.
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Table 1. Criteria used for feature classification. The following acronyms are used in the table:

pressure (P), moisture stream (MS), integrated vapor transport (IVT), brightness temperature

(Tb), temperature (T), area (A), the standard deviation of Gaussian smoother (σ; values in

brackets correspond to the time, latitude, and longitude dimension).

Feature Intensity Thresholds Temporal Spatial/Area Additional Criteria Breakup

Cyclones Panom ≤ -8 hPa 12-hours yes

Anticyclones Panom ≥ 6 hPa 12-hours yes

IVT Streams MSmin ≥ 0.13 g/g×m/s 9-hours AIV T ≥ 100,000 km2 yes

ARs IVT ≥ 500 kg/ms 9-hours min. length≥ 2,000 km;

length/width≥ 2;

lat. centroid≥±20◦

yes

Mesoscale

Cloud Shields

Tb≤ 241K 9-hours σ=[0,1,1];

ACL ≥ 40,000 km2

no

Mesoscale

Precipitation

Areas

PR≥ 2mm/h 3-hours σ=[0,1,1];

APR=5,000 km2

no

Mesoscale

Convective

Systems

max. PR≥ 3mm/h;

Tb≤ 241K;

minTb≤ 225K

3-hours APR≥2mm/h

≥ 2,500 km2;

ATb≥ 241K

≥ 40,000 km2

Must be a mesoscale

precipitation

area and under a

mesoscale cloud

shield

no

Tropical Cy-

clones

Pmin ≤ 995 hPa;

Tb≤ 241K;

warm coreT850≥ 0 ◦C;

meanT850hPa ≥ 285K

max. lat gen-

esis ≤ ±35◦;

max. lat≤±65◦

no

Fronts AFR ≥ 50,000 km2 lat.≥±10◦ no
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Figure S1. Seasonal frequencies of cyclones, anticyclones, ARs, fronts, MCSs, and TCs features

are shown top-down for DJF, MAM, JJA, and SON (top-to-bottom).
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Figure S2. Frequency of features in the vicinity (1,000 km radius) of daily extreme precipitation

events in IPCC AR6 regions. We consider the 100 most extreme daily precipitation events in

each region based on GPM-IMERG precipitation. Blue hexagons indicate ocean regions and grey

hexagons do not contain GPM-IMERG precipitation data. The regions are defined in Iturbide

et al. (2020)).
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Figure S3. As Fig. S2 but showing the percent contribution (vertical axis) of atmospheric

features dependent on the intensity of the extreme precipitation events with the rarest event on

the left and all of the 100 most extreme daily precipitation events on the right.
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Figure S4. Showing the same data as in Fig. S2 but highlighting the co-occurrence of features

during daily extreme precipitation events. The colors in the heatmaps show the percent of the

time at which features co-occurred. The colors beneath the x- and y-axis show the feature as

indicated in the legend. January 24, 2023, 11:17am
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