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Abstract

The challenge of reconstructing air temperature for environmental applications is to accurately estimate past exposures even

where monitoring is sparse. We present XGBoost-IDW Synthesis for air temperature (XIS-Temperature), a high-resolution

machine-learning model for daily minimum, mean, and maximum air temperature, covering the contiguous US from 2003

through 2021. XIS uses remote sensing (land surface temperature and vegetation) along with a parsimonious set of additional

predictors to make predictions at arbitrary points, allowing the estimation of address-level exposures. We built XIS with a

computationally tractable workflow for extensibility to future years, and we used weighted evaluation to fairly assess performance

in sparsely monitored regions. The weighted root mean square error (RMSE) of predictions in site-level cross-validation for 2021

was 1.89 K for the minimum daily temperature, 1.27 K for the mean, and 1.72 K for the maximum. We obtained higher RMSEs

in earlier years with fewer ground monitors. Comparing to three leading gridded temperature models in 2021 at thousands of

private weather stations not used in model training, XIS had at most 49% of the mean square error for the minimum temperature

and 87% for the maximum. In a national application, we report a stronger relationship between minimum temperature in a

heatwave and social vulnerability with XIS than with the other models. Thus, XIS-Temperature has potential for reconstructing

important environmental exposures, and its predictions have applications in environmental justice and human health.
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Abstract 

The challenge of reconstructing air temperature for environmental applications is to 

accurately estimate past exposures even where monitoring is sparse. We present XGBoost-IDW 

Synthesis for air temperature (XIS-Temperature), a high-resolution machine-learning model for 

daily minimum, mean, and maximum air temperature, covering the contiguous US from 2003 

through 2021. XIS uses remote sensing (land surface temperature and vegetation) along with a 

parsimonious set of additional predictors to make predictions at arbitrary points, allowing the 

estimation of address-level exposures. We built XIS with a computationally tractable workflow 

for extensibility to future years, and we used weighted evaluation to fairly assess performance in 

sparsely monitored regions. The weighted root mean square error (RMSE) of predictions in site-

level cross-validation for 2021 was 1.89 K for the minimum daily temperature, 1.27 K for the 

mean, and 1.72 K for the maximum. We obtained higher RMSEs in earlier years with fewer 

ground monitors. Comparing to three leading gridded temperature models in 2021 at thousands 

of private weather stations not used in model training, XIS had at most 49% of the mean square 

error for the minimum temperature and 87% for the maximum. In a national application, we 

report a stronger relationship between minimum temperature in a heatwave and social 
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vulnerability with XIS than with the other models. Thus, XIS-Temperature has potential for 

reconstructing important environmental exposures, and its predictions have applications in 

environmental justice and human health. 
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Synopsis 

Improved estimates of air temperature across the United States will improve future 

analyses on the health impacts of temperature and exposure disparities. 

Introduction 

Reconstructions of outdoor air temperature are an important exposure-assessment tool in 

characterizing the effect of extreme weather on human health. Epidemiological studies and 

health-impact assessments rely on accurate exposure modeling, and many people do not live 

close to weather stations. Large populations within a metropolitan area may be assigned the 

temperature from the nearest weather station (e.g., an outlying airport), yet temperatures can vary 

substantially across the area, even block-to-block, due to factors such as varying land cover and 

urban heat islands. While there are a number of available temperature models, developed for 

various purposes, that are used in health studies, they vary in accuracy and resolution. 

Gridded temperature estimates are often built from numerical weather models and 

assimilation systems,1 or from hybrid approaches that downscale these models to a higher 



resolution.2 Sophisticated interpolation approaches for weather monitors can account for 

elevation with digital elevation models (DEMs),3 but they may not capture temperature variation 

driven by hyper-local land-use differences, such as those that occur within urban heat 

archipelagos, which may also be underrepresented within long-term climate-monitoring 

networks. Satellite remote sensing offers important predictors for land-use regression of air 

temperature, ranging from land-cover classifications to vegetation indices. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor on NASA’s Terra and Aqua satellites 

offer daily thermal infrared-derived land surface temperature (LST). These LST products cover 

the top few millimeters of the earth’s surface at a 1-km resolution. Recent reprocessing of 

MODIS data and advancements in the LST retrieval algorithms have reduced geolocation error 

and improved sensor calibration.4 Although the relation between LST and air temperature is 

complex, we and many others have integrated LST into geostatistical models trained with air-

temperature monitors.5–7 In a recent model comparison that reconstructed air temperature in the 

Northeastern US at 1 km of resolution, we found that a machine-learning approach based on 

gradient boosting outperformed several other approaches, including generalized additive mixed 

models with spatial smoothing.8 Machine learning is increasingly used to integrate remotely 

sensed predictors for higher-resolution predictions, but it is computationally demanding. 

Machine learning also needs reproducible data-ingestion pipelines to be extensible and to remain 

as up-to-date as the popular interpolation models.3 

Gridded models are subject to a tradeoff between spatial resolution and computational 

demands as the resulting datasets expand. But even 1-km grid cells can fail to capture 

temperature gradients that are important for human health. In this study, we extend our prior 

machine-learning framework8 and switch to a point-based model that incorporates both 



rasterized and continuous fields. With a point-based approach, we can make daily predictions 

anywhere in the contiguous United States, such as at exact locations for geocoded addresses. We 

call this model XGBoost-IDW Synthesis (XIS) and build a reusable and extensible data pipeline 

to generate our daily XIS-Temperature predictions for 2003 through 2021; in a companion 

paper,9 we use the same approach for modeling fine particulate air pollution (PM2.5). Popular 

gridded models report only daily minimum and maximum temperature because they rely on 

interpolation of observed extrema. With large quality-controlled time-resolved observation 

series, one can construct accurate daily mean temperatures, without the assumption of diurnal 

symmetry (and consequent bias) that is inherent in averaging daily minima and maxima 

together.10 We fit separate models for the daily minimum, mean, and maximum temperature, 

because all three variables are relevant in applications, including epidemiology. 

We present detailed performance metrics for XIS-Temperature using a site-level cross-

validation across the contiguous US with stratification by year, season, and NOAA climate 

region.11,12 Because weather stations are found more often in densely populated areas, we use 

weights to appropriately quantify performance across the study region, including suburban and 

rural areas.8 It is often difficult to tell which particular weather stations have been used in 

training large models, raising the threat of data leakage in model comparison. We consider three 

gridded models popular for applied research in the US, and compare them to XIS on thousands 

of private weather stations that were not used for training any of the models. The comparison 

models and their resolutions are PRISM (4 km),13, gridMET (4 km),14 and Daymet (1 km).3 

Finally, to demonstrate the model-dependent interpretation of temperature exposures and to show 

implications for environmental justice, we show the relation of a peak summer temperature from 



XIS (versus the same gridded models) with tract-level social vulnerability15 across the 

contiguous US. 

Method 

Study area and time period 

XIS-Temperature covers the same area and time period as XIS-PM2.5,9 namely the 

contiguous US (excluding large water bodies) for 2003 through 2021. Like XIS-PM2.5, XIS-

Temperature represents space as floating-point longitude-and-latitude pairs and represents days 

as midnight-to-midnight intervals of Central Standard Time (UTC−6). 

Data 

Temperature 

A key input for geostatistical models of environmental conditions is the set of 

observations used for training. We separately modeled three metrics of daily temperature as 

dependent variables (DVs): minimum (hereinafter “min”) temperature, mean temperature, and 

maximum (hereinafter “max”) temperature. We used two sources of temperature data: 1. the 

Meteorological Assimilation Data Ingest System (MADIS),16 maintained by the National 

Oceanic and Atmospheric Administration (NOAA), from which we ingested the National 

Mesonet and COOP datasets available to registered research organizations, and 2. Weather 

Underground, a private commercial network of personal weather stations, which we have used 

previously.8 For MADIS, we started with individual observations timestamped to the second, 

whereas for Weather Underground, we used precomputed daily means and extrema. We filtered 

and quality-checked the data per year and source as follows: 

1. Drop station-times with a missing temperature, time, longitude, or latitude. 



2. (MADIS only) Keep only station-times passing at least MADIS quality-control stages 1 

and 2 checks for validity and consistency (temperatureDD equal to S, V, K, or k). 

3. To handle instances where nearby stations might be duplicates, group stations into 

clusters in which no two stations are more than 50 m apart. In each cluster, keep only the 

station with the most common station identifier. Identify these clusters as stations 

henceforth, using the lexicographically first location as the location for the cluster. 

4. Drop stations outside the study area. 

5. Remove rows with observations that are beyond NOAA’s record historical extrema for 

the region.17 

6. Among observations that are equal (or very close) to 0 °F or 0 °C, try to distinguish 

which are real measurements and which represent missing values. We do this by 

dropping any such “zero observations” with no other observation at the same station 

within 5 days that is both nonzero and within 3 K of the zero observation. 

7. Drop to one observation per station-time, preferring observations that appear earlier in 

the input. 

8. (MADIS only) Ensure that each station-day covers at least 18 distinct hours in UTC−6, 

then aggregate into days. Compute the min as simply the minimum observation on each 

date, and likewise for the max. Compute the mean with all observations on the date, 

weighted according to the number of seconds in the date to which each observation is 

closest. (Note that in general, the daily Weather Underground values have been computed 

differently, including a different time zone.) 

9. Remove daily observations that are part of a run of equal values, spanning more than 3 

consecutive nonmissing station-days, for any of min, mean, or max temperature. 



10. For spatial consistency, compare observations that are within 100 km of two other 

observations. If these neighbors have an elevation difference from the original 

observation no greater than 500 m, and both differ from the original observation by more 

than 20 K, drop the original observation. Run this check separately for each DV, but drop 

the entire row (i.e., all DVs) if an observation fails on any of them. 

11. Drop stations with less than 30 days of observations. 

Thanks to the inclusion of Weather Underground, the size of the entire temperature 

dataset for each year could be computationally burdensome; for example, in 2020, there were 

35,825,729 observations of each DV from 117,276 stations. We suspected that with a subset of 

the data, we could obtain similar performance as with all of it. We opted to prioritize Weather 

Underground stations that cover the most area not covered by MADIS. To determine appropriate 

subsets, we conducted a learning-curve analysis on the mean-temperature DV in 30 random days 

of 2018. We held out a random fifth of stations and computed per-station weights by summing 

observation weights (computed with Voronoi diagrams of the study region using the stations 

available each day, as described previously9). The process started with all the MADIS stations 

and none of the Weather Underground stations, then added the next 2,500 remaining Weather 

Underground stations of highest weight (representing the largest areas without monitors in the 

study region) at each subsequent step. At each step, we used IDW to predict observations at the 

held-out stations using the training stations, then computed the weighted root mean square error 

(RMSE). We found that the earliest step with a weighted RMSE within 0.01 K of the best was 

step 5, with 1.81 K. The minimum weight of the Weather Underground stations used in this step 

was 2,636 km2. Thus, for our real models, we used only Weather Underground stations with a 

weight of at least 2,636 km2 times n/30, where n is the number of days in the year being analyzed 



(365 or 366) and 30 is the number of days in the learning-curve analysis. Ultimately, the per-year 

rate at which observations in our analytic dataset came from Weather Underground ranged from 

10% to 40%. 

Predictors 

We used the following 13 variables as predictors. 

• Longitude and latitude 

• The integer day of the year 

• An IDW feature, which is an interpolation of the relevant temperature metric (min, mean, 

or max) at sites within 100 km, weighted by the distance (thus, the IDW exponent is 1) 

• Two overpasses per day of Aqua LST,18 one during the daytime and one at night, 

represented in kelvins 

• Monthly vegetation, quantified as the enhanced vegetation index from Aqua19 

• Two variables for surface imperviousness (from the National Land Cover Database20): 

one for the imperviousness at a single 30-m grid cell and one for the Gaussian-filtered 

imperviousness in a 1-km square around the query point9 

• Population density, from the Gridded Population of the World21 

• Elevation, from the US Geological Survey’s 3D Elevation Program22 

• Hilliness, or local relative topography, quantified as the multi-scale topographic 

dissection index computed from elevation6 

• Distance from water, in kilometers 

Given the goal of sharing an efficient geospatial data-processing workflow, we reused 

variable construction with XIS-PM2.5 for the majority of predictors.9 



We computed distance from water using a global coastline shapefile from 

OpenStreetMap and Great Lakes shapefiles by the US Geological Survey, including Lake 

St. Clair. Other bodies of water were not considered. Distances were capped at 500 km so that 

our model did not use this variable as an index of far-inland locations in place of the longitude 

and latitude features. 

Models 

The core modeling approach used extreme gradient boosting (XGBoost) and IDW as in 

XIS-PM2.5 with station-level cross validation.9 We conducted tuning as in XIS-PM2.5
9 separately 

for each of the three DVs, resulting in a separate hyperparameter vector for each (Table 1). 

Table 1: Selected hyperparameters for the three dependent variables. 

dv nrounds max_depth eta gamma lambda alpha 

temp.min 500 9 0.078 0.38 360 0.570 

temp.mean 500 9 0.090 0.82 810 0.011 

temp.max 500 9 0.061 0.22 250 0.080 

 

Evaluation 

We used station-wise cross-validation (CV) as for XIS-PM2.5, but with 5 rather than 10 

folds for speed, in the face of much larger datasets. The concerns that motivated the use of 

absolute-error metrics for XIS-PM2.5 did not apply to the temperature data, so we gave XGBoost 

a square-error objection function, evaluated the models RMSE, and measured baseline variability 

with the standard deviation (SD). In order to account for the highly variable density of 

observations across the study region, we weighted observations by their spatial coverage with the 

same daily Voronoi-diagram method we used for XIS-PM2.5. We calculated SHAP23 for our 

cross-validated predictions to quantify feature contributions. 

 

Results 



Cross-validation 

Table 2 shows weighted results for each year of CV. The bias of our predictions per year 

ranged from -0.004 to +0.048 K for min temperature, -0.044 to +0.019 K for mean temperature, 

and -0.087 to -0.022 K for max temperature. Table 3 shows per-region performance for a single 

year; Figure 5 in the Supplementary Information (SI) plots per-region performance for a single 

DV in every year. Table 6 in the SI shows unweighted performance at particularly isolated 

stations, as a demonstration of how the model performs in sparsely monitored regions. Finally, 

Tables 7 and 8 in the SI show unweighted CV results among station-days that are particularly hot 

or cold, which is of particular relevance for epidemiologic applications examining the health 

impacts of extreme weather and similar to an analysis for our previous temperature model.8 

Table 2: Weighted SDs and RMSEs (K) from yearly CV. 

Year Observations Sites 
Min temp. Mean temp. Max temp. 

SD RMSE SD RMSE SD RMSE 

2003 1,007,880 5,241 10.55 2.61 10.91 2.16 11.92 2.82 

2004 1,435,459 6,426 10.26 2.26 10.49 1.85 11.35 2.41 

2005 2,030,065 9,229 10.38 2.21 10.74 1.73 11.73 2.29 

2006 2,694,789 10,869 10.05 2.23 10.38 1.69 11.33 2.18 

2007 3,212,596 12,530 10.79 2.25 11.11 1.75 12.11 2.25 

2008 3,620,854 14,090 10.82 1.99 11.06 1.52 11.96 1.96 

2009 4,019,316 15,111 10.73 1.96 10.95 1.48 11.82 1.90 

2010 4,428,537 16,604 10.69 1.92 11.09 1.43 12.14 1.88 

2011 4,989,079 18,451 10.93 1.97 11.31 1.49 12.29 1.89 

2012 6,546,637 24,811 10.13 1.87 10.46 1.34 11.43 1.72 

2013 7,297,032 26,322 11.10 1.86 11.30 1.36 12.12 1.78 

2014 7,884,056 27,970 11.10 1.84 11.22 1.35 12.06 1.75 

2015 8,354,364 29,892 10.61 1.81 10.75 1.36 11.56 1.75 

2016 9,003,820 30,839 10.37 1.85 10.64 1.42 11.55 1.79 

2017 9,740,974 33,230 10.42 1.91 10.78 1.44 11.78 1.90 

2018 9,999,329 34,869 11.17 1.90 11.40 1.42 12.26 1.94 

2019 10,682,830 39,077 11.17 1.84 11.39 1.29 12.35 1.86 

2020 11,681,725 39,947 10.46 1.90 10.65 1.28 11.61 1.76 

2021 11,646,537 39,074 10.66 1.89 10.79 1.27 11.72 1.72 



Table 3: Weighted SDs and RMSEs (K) for 2021 broken down by region. 

Region Observations Sites 
Min temp. Mean temp. Max temp. 

SD RMSE SD RMSE SD RMSE 

Ohio Valley 1,395,207 4,550 9.77 1.33 9.84 0.98 10.74 1.49 

Upper Midwest 981,677 3,131 11.82 1.52 12.02 0.95 12.96 1.45 

Northeast 1,377,490 4,495 10.07 1.43 10.13 0.91 11.05 1.37 

Northwest 939,829 3,135 8.10 2.24 9.31 1.48 11.19 1.88 

South 1,556,537 5,243 9.52 1.45 9.08 1.09 9.54 1.63 

Southeast 1,507,076 5,081 8.41 1.32 7.70 0.95 8.04 1.50 

Southwest 1,143,976 3,967 9.93 2.47 10.34 1.64 11.10 2.03 

West 1,917,297 6,678 9.54 2.61 10.07 1.73 11.03 2.11 

Northern Rockies and Plains 827,448 2,794 11.05 1.97 11.89 1.29 13.25 1.72 

 

To demonstrate the difference between mean temperature modeled directly and mean 

temperature represented as the average of min and max, we computed the weighted root mean 

square difference between our mean predictions and the average of our min and max predictions 

for 2021. The result was 0.77 K, comparable in magnitude to our RMSEs from CV. 

Figure 1 shows the mean absolute SHAP of each feature for mean temperature in 2010. 

Although there is substantial variation by region, the largest contributions come from the IDW 

feature, elevation, longitude, and distance to water. 

 



Figure 1: Mean absolute SHAP for mean temperature of each predictor in 2010 (the IDW 

feature, which has much greater absolute SHAP than everything else, is omitted). Small dots 

show per-region means. Diamonds show overall means.  

Figure 2 shows one year of daily predictions and error (i.e., the difference from 

observations) for a single representative station. 

 
Figure 2: A plot of predicted min temperature from CV in 2010 (points), and the distance 

from the observed value (line segments), for a Weather Underground station near Oklahoma 

City. This station was selected to have the yearly per-station unweighted RMSE closest to the 

median among all stations that had an observation for every day in 2010. Its RMSE is 1.12 K.  

 



New predictions 

For the following plots and analyses, we fit XIS to all the training data we had for each 

year and made predictions for new point-days. Figure 3 maps predictions for the entire study area 

on the hottest day in 2021. Figure 4 shows predictions for the same day in the New York City 

area, with discernible fine-scale variation in temperature, such as cooler air in Central Park than 

in adjacent built-up areas within the island of Manhattan. 

 
Figure 3: Predicted mean temperature for 11 Aug 2021 across the study area, shown in 

the US National Atlas projection. We chose this date for having the highest mean temperature in 

2021 across all stations.  



 
Figure 4: Predicted mean temperature for 11 Aug 2021 in the New York City area.  

 

Comparison with other models 

Tables 4 and 5 show RMSEs (stratified by year and then for seasons of 2021) of daily 

min temperature from our model and three gridded temperature products: PRISM, gridMET, and 

Daymet. Table 9 in the SI shows analogous results to Table 4 for max temperature. The models 

are tested on observations at Weather Underground stations that were not used for training XIS. 

For each year, we take a random sample of 10,000 such stations that lie in the intersection of all 

four modeling regions, so we only analyze years with at least this many stations available. We 

recompute weights for these observations with the same algorithm we used for the main CV. We 



omit December 31st on leap years, since Daymet provides no predictions on these days. With 

averaging across years, our model has 28% of the MSE of PRISM, 34% of gridMET, and 46% of 

Daymet. Without weighting, these figures become 32% of PRISM, 35% of gridMET, and 52% 

of Daymet. Yearly weighted biases range from -0.94 to -0.74 K for PRISM, -0.91 to -0.72 K for 

gridMET, -0.88 to -0.57 K for Daymet, and -0.14 to +0.03 K for XIS. For max temperature, our 

results are relatively less impressive, because gridMET and Daymet are much improved over 

min temperature: XIS obtains 18% of the MSE of PRISM, 69% of gridMET, and 81% of 

Daymet. The yearly weighted biases range from -1.02 to -0.61 K for PRISM, -0.79 to -0.43 K for 

gridMET, -0.70 to -0.30 K for Daymet, and -0.46 to -0.13 K for XIS. 

Table 4: Comparison of weighted RMSEs (K) of min temperature with PRISM, gridMET, and 

Daymet. 

Year Observations SD PRISM gridMET Daymet XIS 

2014 2,874,710 11.12 3.29 2.69 2.50 1.53 

2015 2,749,242 10.60 3.15 2.66 2.47 1.61 

2016 2,718,814 10.47 3.11 2.69 2.46 1.61 

2017 2,807,208 10.46 3.30 3.44 2.61 1.83 

2018 2,729,138 11.29 3.23 2.70 2.49 1.75 

2019 2,702,679 11.25 3.23 2.96 2.50 1.78 

2020 3,114,743 10.51 3.26 3.66 2.58 1.82 

2021 3,034,309 10.68 3.15 2.96 2.51 1.75 

Table 5: Weighted RMSEs (K) of min temperature for the various models in 2021, broken down 

by season. We use December from 2020 instead of 2021 so as to analyze a contiguous winter. 

Thus the winter row includes the random samples of sites from two different years and has more 

distinct sites than the other seasons. 

Season Observations Sites SD PRISM gridMET Daymet XIS 

Winter 777,358 16,919 8.59 3.66 3.36 2.78 1.90 

Spring 702,355 9,700 7.91 3.19 2.96 2.56 1.80 

Summer 791,595 9,398 5.29 2.20 2.42 2.07 1.57 

Fall 751,520 9,062 8.14 3.14 2.99 2.53 1.75 

 

To examine how XIS’s higher spatial resolution contributed to its improved performance, 

we also tried making XIS predictions for the 2021 test observations using the centroids of 



Daymet’s 1-km grid cells instead of the true locations. The result was an unweighted RMSE for 

min temperature of 1.70 K, compared to 1.68 K for using the true locations and 2.24 K for 

Daymet. 

Model application to social vulnerability 

We examined how minimum temperature on 17 Jul 2010, the day of 2010 with the 

highest mean of min temperatures across all stations, related to the social vulnerability index in 

2010.15 We fit a mixed-effects linear regression model where the unit of analysis was the 71,712 

US Census tracts in our study area and the dependent variable was the minimum temperature at 

the center of population of each tract. The model had a fixed effect for vulnerability, per-county 

random slopes of vulnerability, and per-county random intercepts (with the slopes and intercepts 

modeled as correlated). The fixed effect of vulnerability was estimated as 0.69 K ([0.65, 0.74]), 

where the latter is a 95% CI, meaning that a change from minimum to maximum vulnerability 

was associated with a 0.69-K higher minimum temperature on this day. 

We fit similar mixed models with temperature estimates from the gridded temperature 

products to which we compared XIS earlier, and obtained substantially smaller estimates for this 

effect: 0.20 K ([0.15, 0.25]) for PRISM, 0.26 K ([0.21, 0.30]) for gridMET, and 0.16 K ([0.13, 

0.20]) for Daymet. 

Discussion 

We present a daily spatiotemporal air temperature model for the contiguous US that 

covers 19 years. Our model, XIS-Temperature, builds on a large time-resolved dataset of ground 

observations, NOAA’s MADIS, and is augmented with observations from private weather 

stations in more sparsely monitored areas. As expected, our model shows substantial accuracy, 



which increases in more recent years, since the number of observations available increases 

tenfold from 2003 to 2021. 

We compared XIS predictions for min and max temperatures with three leading gridded 

models at 10,000 private weather stations not used in our model training, reweighted spatially to 

increase representativeness for the full study region. We have substantially lower RMSE than all 

three competitors in every year of the comparison. When we further stratified our model 

comparison by season in 2021, XIS had the least RMSE for each season, as well as the least 

variability in RMSE across seasons. A sensitivity analyses generating XIS predictions at the 

same centroids used by Daymet’s 1-km grid (as opposed to exact locations of weather stations) 

showed that our improved accuracy is not explained by differences in resolution. Overall, testing 

on a large network of private weather stations demonstrates that using XIS-Temperature obtains 

lower exposure measurement error overall, as well as lower seasonal variation in the error. 

We fit separate models for min, mean, and max temperature because all three DVs have 

useful applications in estimating impacts of temperature. Our primary data source, MADIS, 

provides time-resolved air-temperature data; thus, we did not need to rely on the inexact date-

shifting used by other models.3,6 We calculated a daily time-weighted mean temperature for 

MADIS data, and trained a separate model for mean temperature, to avoid the assumption of 

diurnal symmetry; that is, the assumption that the daily mean is reasonably approximated by the 

mean of the daily extrema.10 Given the inherent difficulty in estimating extrema, as well as the 

higher SD we observed for max temperature compared to mean and min, it is not surprising that 

our mean-temperature models have lower RMSE than our extrema models. 

As a demonstration of the application of the XIS model to social vulnerability, we 

constructed a national multi-level regression for the relation of tract-level minimum temperature 



with social vulnerability, nested within counties, on the hottest day in 2010. Comparing the most 

vulnerable to the least vulnerable tracts, we saw a substantially larger difference in temperature 

when using XIS than when using any of the competing models. Differences in overall accuracy 

are the most likely explanation for these model-dependent findings, although we also highlight 

the advantage of our point-based model to resolve stark disparities in temperature between 

nearby neighborhoods. Our application shows the model-dependent interpretation of the complex 

relation between temperature and vulnerability for this one day; a more thorough evaluation of 

temperature disparities across time is ongoing. 

The limitations of our model include temporal coverage bounded by our inclusion of data 

from NASA’s Aqua satellite. XIS-Temperature only goes back as far as 2003, whereas Daymet 

goes back to 1980. Furthermore, because we fit our model annually and incorporated new 

stations as they came online, (improving our accuracy for later years), our model may not be well 

suited for studying long-term climate change. Our 2021 model performance is worst in the West 

and Southwest regions, which may be related to more complex topoclimatic relations. Future 

inclusion of predictors related to snow cover may help in those regions, particularly in winter and 

spring, which were the hardest seasons to predict for XIS as well as for the competing models. 

Our SHAP analysis suggests that the LST variables contribute little to predictions, although we 

had expected them to contribute in complex terrain, particularly for min temperature.24 Future 

XIS development could adopt the approach of constructing measures of monthly relative LST 

variation over local windows6 to identify 1-km pixels that are hotter or colder than nearby pixels, 

rather than directly including the daily (and often missing) LST values. 

The parsimony and automation of XIS-Temperature enable further development, 

refinement, and the inclusion of new predictors. Thus we expect further improvement as we 



extend XIS into the future. Not only have we demonstrated better predictive accuracy and 

smaller bias than three leading gridded models, assessed at a large network of private weather 

stations, but we have shown a strong model-dependent relation of extreme heat and social 

vulnerability, highlighting the importance of using improved exposure models such as XIS-

Temperature in health-impacts analyses. 
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