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Abstract

Earthquakes can be dynamically triggered by the passing waves of events from disconnected faults. The frequent occurrence of

dynamic triggering offers tangible hope in revealing earthquake nucleation processes. However, the physical mechanisms behind

earthquake dynamic triggering have remained unclear, and contributions of competing hypotheses are challenging to isolate with

individual case studies. Therefore, developing a systematic understanding of the spatiotemporal patterns of dynamic triggering

can provide insights into the physical mechanisms, which may aid mitigation of earthquake hazards. Here we investigate

earthquake dynamic triggering in Southern California from 2008 to 2017 using the Quake Template Matching catalog and

an approach free from assuming an earthquake occurrence distribution. We develop a new set of statistics to examine the

significance of seismicity-rate changes as well as moment-release changes. We show that up to 70% of global M[?]6 events

may have triggered earthquakes in southern California and that the triggered seismicity often occurred several hours after the

passing seismic waves. On average, earthquakes are triggered about every 4 days in the region, albeit at different locations.

Although adjacent fault segments can be triggered by the same earthquakes, the majority of triggered earthquakes seem to

be uncorrelated, suggesting that the process is primarily governed by local conditions. Further, the occurrence of dynamic

triggering does not seem to correlate with ground motion (e.g., peak ground velocity) at the triggered sites. These observations

indicate that nonlinear processes may have primarily regulated the dynamic triggering cases.
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Key Points:5

• Earthquake dynamic triggering is ubiquitous in southern California.6

• Triggered earthquakes are frequently associated with significant moment-release7

anomalies and are likely controlled by local processes.8

• The choice of statistical test is less impactful for identifying earthquake dynamic9

triggering using the method developed here.10
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Abstract11

Earthquakes can be dynamically triggered by the passing waves of events from discon-12

nected faults. The frequent occurrence of dynamic triggering offers tangible hope in re-13

vealing earthquake nucleation processes. However, the physical mechanisms behind earth-14

quake dynamic triggering have remained unclear, and contributions of competing hypothe-15

ses are challenging to isolate with individual case studies. Therefore, developing a sys-16

tematic understanding of the spatiotemporal patterns of dynamic triggering can provide17

insights into the physical mechanisms, which may aid mitigation of earthquake hazards.18

Here we investigate earthquake dynamic triggering in Southern California from 2008 to19

2017 using the Quake Template Matching catalog and an approach free from assuming20

an earthquake occurrence distribution. We develop a new set of statistics to examine the21

significance of seismicity-rate changes as well as moment-release changes. We show that22

up to 70% of global M≥6 events may have triggered earthquakes in southern California23

and that the triggered seismicity often occurred several hours after the passing seismic24

waves. On average, earthquakes are triggered about every 4 days in the region, albeit25

at different locations. Although adjacent fault segments can be triggered by the same26

earthquakes, the majority of triggered earthquakes seem to be uncorrelated, suggesting27

that the process is primarily governed by local conditions. Further, the occurrence of dy-28

namic triggering does not seem to correlate with ground motion (e.g., peak ground ve-29

locity) at the triggered sites. These observations indicate that nonlinear processes may30

have primarily regulated the dynamic triggering cases.31

Plain Language Summary32

Earthquakes interact with each other, such as mainshocks triggering nearby after-33

shocks. Earthquake dynamic triggering is a type of interaction where seismic waves from34

an earthquake trigger other earthquakes beyond several fault lengths, and sometimes,35

up to thousands of kilometers away. Triggered earthquakes may occur upon the arrival36

of the seismic waves but may also be delayed hours after the wave passage, suggesting37

the involvement of time-dependent processes. Identifying delayed cases relies on robust38

measures of seismicity-rate changes. Here we present a new method that can identify trig-39

gering cases without many assumptions. We find that earthquakes in southern Califor-40

nia are frequently triggered by distant earthquakes around the globe, and the triggered41

earthquakes tend to cluster in space and time. Some of the triggered earthquakes are larger42

in magnitude than the background seismicity. We also find that the triggering incidences43

do not seem to correlate with the seismic wave characteristics of the distant earthquakes.44

Our findings suggest that dynamically triggered earthquakes in southern California are45

likely caused by time-dependent, complex processes.46

1 Introduction47

While large earthquakes are difficult to predict on a given fault, earthquake occur-48

rence is not completely random (e.g., Abercrombie & Mori, 1996; Ross, Idini, et al., 2019;49

Trugman & Ross, 2019; Utsu, 1961). Earthquakes interact with each other and often clus-50

ter in space and time, such as commonly observed mainshock-aftershock sequences. For51

example, the 1992 Landers earthquake caused widespread aftershocks that occurred in52

the near-field (Bosl & Nur, 2002; Harris & Simpson, 1992; Parsons & Dreger, 2000) and53

the far-field (Gomberg, 1996; Gomberg et al., 2001). The far-field aftershocks were likely54

triggered by the passing seismic waves, termed earthquake dynamic triggering (Aiken55

& Peng, 2014; Gomberg & Johnson, 2005; Gonzalez-Huizar & Velasco, 2011). As seis-56

mic waves pass through a region, transient dynamic stresses perturb local fault systems57

that ultimately trigger earthquakes (Hill & Prejean, 2015). This direct correlation be-58

tween the triggered seismicity and passing waves reflects an observable process that promises59

tangible hope of deciphering earthquake nucleation mechanisms (Brodsky & van der Elst,60
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2014). Despite numerous observations of dynamic triggering around the globe, its oc-61

currence conditions and associated precise physical mechanisms remain unclear (e.g., Fan62

et al., 2021; Meng & Peng, 2014; Velasco et al., 2008). Understanding the physical pro-63

cesses is crucial, as damaging earthquakes can be dynamically triggered (e.g., Pollitz et64

al., 2012; Uchide et al., 2016; Yoshida, 2016) but are not considered in most seismic haz-65

ard models (e.g., Field et al., 2014).66

California is an ideal natural laboratory to study earthquake dynamic triggering67

because of its rich geophysical datasets including high quality catalogs, seismic records,68

and geodetic observations. The long-term continuous records provide an opportunity to69

examine the phenomenon by comparing statistical observations to a variety of geophys-70

ical observables (e.g., Fan et al., 2021; Miyazawa et al., 2021). Dynamic triggering has71

been frequently observed in California following M7 earthquakes from different regions72

(e.g., Aiken & Peng, 2014; Fan et al., 2022; Meng & Peng, 2014; Prejean et al., 2004).73

Further, geothermal and volcanic areas in the region, such as the Salton Sea Geother-74

mal Field (e.g., Fan et al., 2021), Coso Geothermal Field (e.g., Aiken & Peng, 2014), Gey-75

sers Geothermal Field (e.g., Stark & Davis, 1996), and Long Valley Caldera (e.g., Brod-76

sky & Prejean, 2005) seem to be particularly susceptible to dynamic triggering.77

In practice, earthquake dynamic triggering is often identified using statistical meth-78

ods that examine the significance of seismicity-rate changes following candidate trigger79

earthquakes (e.g., Marsan & Nalbant, 2005; Pankow & Kilb, 2020; Wyss & Marsan, 2011).80

If the changes are statistically significant, the local earthquakes are inferred to be trig-81

gered seismicity (e.g., Marsan & Nalbant, 2005; Pankow & Kilb, 2020; Wyss & Marsan,82

2011). Such statistical exercises often assume that local earthquake occurrence is a ran-83

dom and independent process, following a Poissonian distribution (Marsan & Nalbant,84

2005; Pankow & Kilb, 2020). However, this assumption is inaccurate for transient, trig-85

gered seismicity due to its correlated activity, small sample size, and short duration (e.g.,86

Fan et al., 2021). Fan et al. (2021) experimented using a sampling method to identify87

statistically significant changes in seismicity-rate. Here we critically reevaluate the ap-88

proach and construct new statistics that are free from the Poissonian assumption.89

There are several families of statistics that have been used to evaluate seismicity-90

rate changes, and we focus on the two most commonly used statistics for comparison,91

the β-statistic (Matthews & Reasenberg, 1988) and the Z-statistic (Habermann, 1983).92

We further develop two additional statistics to investigate earthquake moment-release93

changes, the βm-statistic and the Zm-statistic, which can help identify anomalous oc-94

currence of earthquakes with large magnitudes. The four test statistics were applied to95

southern California earthquakes to identify cases of dynamic triggering from 2008 to 2017.96

The statistical results are then compared with seismic waveform characteristics, includ-97

ing peak ground velocity (PGV), peak frequency, kinetic energy, and relative frequency98

content. Our approach provides a systematic way to investigate the physical mechanisms99

of earthquake dynamic triggering.100

We find that dynamic triggering is common throughout southern California, and101

about 70% of global M≥6 earthquakes may have triggered seismicity in the region. Sig-102

nificant seismic moment-release is triggered less often, but 52% of the global earthquakes103

may have triggered anomalies. Triggering of both types, seismicity and moment-release,104

is widespread in southern California, albeit with strong spatial heterogeneities in their105

triggering frequency. For example, earthquakes at geothermal fields and the San Jacinto106

Fault are frequently triggered, but triggering is rarely observed in the Los Angeles Basin.107

The general triggering patterns are consistent regardless of the test statistic that is used108

to evaluate the cases. We observe no obvious correlations between the triggering pat-109

tern and the instantaneous waveform metrics (e.g., PGV), suggesting that the transient110

dynamic stress is unlikely the primarily control for the observed cases. Our findings sug-111

gest that dynamic triggering in southern California likely involves nonlinear, time-dependent112

processes that may occur over hours to a day. Triggered seismicity clusters in space and113
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time, indicating that the regulating physical processes likely operate on local length scales114

on the order of tens of kilometers.115

2 Data and Methods116

2.1 Catalog and Waveform Data117

To study dynamic triggering in southern California, we use the Quake Template118

Matching catalog (QTM) with a detection threshold of 12 times the median average de-119

viation (MAD) for local seismicity (Ross, Trugman, et al., 2019). This catalog has nearly120

900 thousand earthquakes across southern California. We opt to use the 12 times MAD121

catalog over the 9.5 times MAD QTM version because it is more robust and is free from122

occasional day-long seismicity bursts that could be misinterpreted as triggering by our123

algorithm (e.g., Moutote et al., 2021).124

We consider global M≥6 earthquakes as possible candidate trigger earthquakes, which125

are obtained from the International Seismological Centre (ISC) catalog (International126

Seismological Centre, 2022). The catalog is downloaded from the Incorporated Research127

Institutions for Seismology Data Management Center. We consider 1,580 M≥6 candi-128

date trigger earthquakes between 2008 and 2017. To achieve a uniform sampling pro-129

cedure, we do not examine earthquakes from January to June 2008 and July to Decem-130

ber 2017; the details are described in Section 2.3. We also do not consider global earth-131

quakes that occurred in the two months after the 2010 El Mayor Cucapah Earthquake132

due to its extended triggering behavior in southern California (e.g., Inbal et al., 2017;133

Meng & Peng, 2014). In total, 1,388 candidate earthquakes are investigated in this study.134

To investigate local ground motions caused by the candidate trigger earthquakes,135

we examine the three-component, broadband, velocity seismograms recorded by stations136

in the region of interest, which roughly brackets southern California from 31◦ to 38◦ in137

latitude and from -123◦ to -113◦ in longitude. For each candidate event, we downloaded138

data from 10 minutes before the candidate earthquake origin time to two hours after.139

Thus, the data contains a 10-minute pre-event noise window and a two-hour signal win-140

dow, which include body wave phases and minor arc surface wave phases. Waveform data141

is downloaded using the Obspy Mass Downloader tool (Beyreuther et al., 2010).142

2.2 Study Area143

We focus on identifying dynamic triggering in southern California where the QTM144

catalog continuously reported local earthquakes (Figure 1). Ideally, the region would be145

gridded to have uniform coverage of southern California. Such a gridding scheme would146

lead to about 1,750 grids using a 0.2◦ separation distance. In practice, we take advan-147

tage of the well-documented surface fault traces from the Southern California Earthquake148

Center Community Fault Model (CFM) (Marshall et al., 2022) to identify sites of inter-149

est. We first discretize the study area into 429 circular sites centering on the CFM sur-150

face traces (Figure 1a). Each site has a radius of 20 km and we space them ∼20 km apart151

such that each grid overlaps by ∼50% in area (inset, Figure 1a). Overlapping the grids152

avoids a cluster of triggered seismicity being split by a region border, leading to possi-153

ble misidentification of dynamic triggering. Despite centering the grids on the CFM fault154

traces, our gridding strategy ensures the entire study area is nearly contained within the155

boundaries of the grid points. In each grid, we associate the QTM earthquakes contained156

within its footprint to the grid and estimate the magnitude of completeness (Mc) for the157

earthquakes using both the maximum-curvature and goodness-of-fit methods (Wiemer,158

2000). The estimate with the greater value is taken as the Mc for the grid (Figure 1c).159

When evaluating dynamic triggering for the grids, we only consider earthquakes with mag-160

nitudes greater than the Mc for the individual sites. Grid points containing less than 500161

earthquakes above Mc during the study period are not evaluated to ensure reliable re-162
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sults, leaving 222 grid points (Figure 1b-c). Our gridding approach leads to almost eight163

times less grid points than using an equal-separation uniform gridding scheme, which greatly164

improves the computational efficiency.165

Figure 1: Study area in southern California. (a) Map of locations (grid points) where
earthquake dynamic triggering is evaluated. Gray lines show surface fault traces from the
Southern California Earthquake Center Community Fault Model (CFM). Each red dot
represents a site of interest covering a region within a 20 km radius. Gray box shows the
region highlighted in the inset demonstrating the boundaries and overlapping of the grid
points near the Salton Sea area. (b) Earthquake density, representing the average number
of earthquakes per year that have magnitudes above the Mc within each grid point. (c)
Magnitude of completeness of the grid points. Grid points that have less than 500 earth-
quakes during the study period are removed.

2.3 Dynamic Triggering Identification166

We hypothesize that statistically significant seismicity-rate changes within the im-167

mediate 24 hours following a candidate earthquake are likely caused by earthquake dy-168

namic triggering. The seismicity-rate changes are examined using two different statis-169

tics: the β-statistic (Matthews & Reasenberg, 1988) and the Z-statistic (Habermann,170

1983). Furthermore, we modify the two statistics to evaluate significant seismic moment-171

release anomalies, which we term the βm-statistic (Section 2.3.1) and the Zm-statistic172

(Section 2.3.2). The statistics compare seismicity or seismic moment within two differ-173

ent time periods, δa and δb, where δa is the time period of interest and δb is the refer-174

ence time period. For the time period of interest (δa), we evaluate seismicity-rate and175

moment-release changes within 2-, 6-, 12-, and 24-hour time windows at each grid after176

the candidate earthquake origin time. The time-window length can be adjusted for cus-177

tomized applications. We select the 2-hour window to monitor possible instantaneous178

triggering and use the other three windows to characterize delayed dynamic triggering.179

It is worth noting that the instantaneous-triggering window length can be shorter, al-180

beit at the cost of the robustness of the statistics due to the small number of samples.181

The reference time period (δb) is set to be the immediate 30 days before and after the182

candidate earthquake for the β- and βm-statistics (a total of 60 days) and the immedi-183

ate 30 days before the candidate earthquake for the Z- and Zm-statistics. Positive statis-184

tic values suggest an increase in seismicity-rate or moment-release and the negative val-185

ues suggest a decrease. Our procedure aims to identify spatiotemporal dependent thresh-186

olds to quantify the significance of the changes in seismicity and moment-release after187

a candidate trigger earthquake.188
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2.3.1 β- and βm-statistics189

The β-statistic characterizes seismicity-rate changes with respect to a reference time190

period that is normalized by its standard deviation (a dispersion parameter), which can191

be given by192

β =
Na − N̄a

σa
, (1)193

where Na is the number of earthquakes during the time period of interest (δa), and N̄a194

and σa are its expected value and standard deviation during the reference time period195

(δb). The expected value can be obtained analytically as N̄a = Λ = Nb · δaδb . When as-196

suming that earthquake occurrence follows a Poisson distribution, the standard devia-197

tion is the square root of the expected value, or σa =
√
Λ. Alternatively, N̄a and σa198

can be estimated empirically from the statistical population of Na. Specifically, we ran-199

domly reposition the δa time window within the δb time window 10,000 times, leading200

to 10,000 samples of Na. The population expected value and standard deviation are es-201

timated as202

N̄a =
1

M

M∑
i=1

Ni, (2)203

σa =

√√√√ 1

M − 1

M∑
i=1

(Ni − N̄a)2, (3)204

where M is the number of samples (10,000 in this study) and Ni is the earthquake num-205

ber in the i-th reposition time window. The obtained Na samples are converted to their206

corresponding β-values (Equation 1), and we term this set of values B. The β-statistic207

of the original time period of interest is denoted as β0. The procedure is similar to that208

outlined in Fan et al. (2021), but N̄a and σa are obtained empirically from the sampled209

population and our new procedure is free from earthquake occurrence assumptions. We210

construct the Na samples and their associated β-values for every candidate trigger earth-211

quake at every grid and time window.212

Typically, the β-statistic is considered 95% significant when β ≥ 1.96 (Wyss &213

Marsan, 2011). In this case, the β-statistic attends to a zero-mean, unit-variance Gaus-214

sian distribution, which is a result of the Poissonian assumption about seismicity occur-215

rence (Wyss & Marsan, 2011). However, the assumption may be inaccurate and the β ≥216

1.96 threshold may cause erroneous identifications of significant seismicity-rate changes217

(e.g., Fan et al., 2021; Marsan & Nalbant, 2005; Pankow & Kilb, 2020; Prejean & Hill,218

2018). Therefore, we adopt the procedure described in (Fan et al., 2021) to evaluate the219

statistical significance of β0. To assess its statistical significance, we use the β-statistic220

values (B) to construct the B-distribution, a β-statistic probability density function (PDF,221

e.g., Figure 2c), by using the kernel density estimator (Bowman & Azzalini, 1997; Fan222

et al., 2021; Silverman, 1986). The 95th percentile from the PDF accords with a 95% sig-223

nificance level, and the value is taken as one threshold, βa
95%, for evaluating the signif-224

icance of the seismicity-rate changes. We choose the 95th confidence level as suggested225

in Fan et al. (2021) and emphasize that the value of the parameter is chosen subjectively.226

One can and sometimes should use a different value, but this is dependent on the specifics227

of individual cases (e.g., Cattania et al., 2017; Pankow & Kilb, 2020). Additionally, we228

calculate βb as the β-statistic for seismicity in a time window that has equal length of229

δa but immediately precedes the candidate event origin time. We consider the seismicity-230

rate change statistically significant for the given time window δa and grid point if β0 >231

βa
95% and β0 > βb (e.g., Figure 2c). For such cases, we hypothesize that the seismicity-232

rate change was caused by dynamic triggering.233

When computing the β-statistic for seismicity-rate changes, earthquakes with dif-234

ferent magnitudes are treated equally as only their occurrences are evaluated. However,235
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Figure 2: Example statistic distributions for δa as 6 hours. (a) Earthquake occurrence
at a grid point footprint near the Coso Geothermal Field within 24 hours of a candidate
trigger earthquake. Inset: candidate trigger earthquake (2017-01-08 23:47:13.66, M6.0,
ISC ID: 611831502) and the study site. (b) Cumulative seismicity and moment-release
within the grid point boundary and within 24 hours of a candidate trigger earthquake. (c)
β-statistic distribution (B-distribution), β0, and the associated thresholds βb and βa

95%.
(d) βm-statistic distribution (Bm-distribution), βm−0, and the associated thresholds βm−b

and βa
m−95%. (e) Z-statistic distributions (ζa- and ζb-distributions), Z0, and the associ-

ated thresholds Zb, Z
a
95%, Z

b
5%. (f) Zm-statistic distributions (ζam- and ζbm-distributions),

Zm−0, and the associated thresholds Zm−b, Z
a
m−95%, Z

b
m−5%.

one magnitude difference causes about 31 times more seismic moment-release, and β-236

statistics based on earthquake occurrence would underestimate the impact of larger earth-237

quakes. To detect statistically significant seismic moment-release anomalies that may238

have been caused by earthquake dynamic triggering, we develop a new moment-release239

statistic, the βm-statistic. We sum the seismic moments of earthquakes in δa, denote it240

Ma, and compare it to the seismic moment-release in the reference time period δb (M̄a241

and σMa
). For simplicity, the magnitude (m) in the QTM catalog is taken as the moment-242

magnitude for this calculation, and the absolute moment-release estimate is therefore likely243

biased (e.g., Shearer et al., 2022). However, identification of moment-release anomalies244

is not impacted because the statistic focuses on relative differences. The βm-statistic is245

defined as:246

βm =
Ma − M̄a

σMa

, (4)247
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where248

Ma =

Na∑
i=1

101.5mi+9.1. (5)249

The procedure to sample the βm-statistic population and obtain Bm is similar to that250

of B. We estimate the population expected value (M̄a) and standard deviation (σMa
)251

from Bm and build the Bm-distribution to identify its statistical-significance threshold,252

βa
m−95% (e.g., Figure 2d). The sampling and construction procedures are similar to those253

outlined for the β-statistic. We then consider that the moment-release change is statis-254

tically significant for the given time window δa at a grid when βm−0 > βa
m−95% and βm−0 >255

βm−b (e.g., Figure 2d).256

2.3.2 Z- and Zm-statistics257

Similar to the β-statistic, the Z-statistic can also measure the degree of seismicity-258

rate changes in comparison to the background seismicity-rate (Habermann, 1981, 1983).259

In this study, we examine the Z-statistic and compare the results with the β-statistics260

for the same earthquakes. The Z-statistic is a symmetric measure of the seismicity-rate261

changes because its normalization depends on seismicity in both the time period of in-262

terest and reference period (Wyss & Marsan, 2011). Following Habermann (1983), we263

compute the Z-statistic as264

Z =
Na/δa − Nb/δb√(
σa/δa

)2
+
(
σb/δb

)2 , (6)265

where Nb is the number of earthquakes within δb, σb is the standard deviation associ-266

ated with the distribution of Nb, and Na, δa, δb, and σa are defined as above. The quan-267

tities Na/δa and Nb/δb represent the mean seismicity-rates during their respective time268

periods. The Z-statistic is free from seismicity occurrence assumptions if σa and σb are269

estimated empirically. Similar to the β-statistic sampling procedure, we sample the Nb270

population by randomly repositioning the δb window 10,000 times within one year of the271

candidate trigger earthquake, ranging from 6 months before to 6 months after the event272

origin time. We estimate the population statistics for the Nb population, particularly273

the expected value and standard deviation (σb), which are then used to compute a Z-274

statistic for the candidate trigger earthquake at a given grid point. We note that the sam-275

pling procedure implicitly assumes that σa and σb are invariant throughout their respec-276

tive sampling time periods, which is 30 days for σa and one year for σb.277

Similar to the β-statistic, the Z-statistic also attends to a zero-mean, unit-variance278

Gaussian distribution when the earthquake occurrence follows a Poisson distribution. In279

such a case, the seismicity-rate increase is statistically significant at the 95% confidence280

level when Z ≥ 1.96 (Aiken et al., 2018; Wyss & Marsan, 2011). In our approach, we281

require the Z-statistic exceed Za
95%, Zb, and Zb

5% (e.g., Figure 2e). The Za
95% threshold282

is the 95th percentile of a Z-statistic distribution (ζa-distribution) constructed by ran-283

domly sampling Ni for a window length of δa within 30 days before and after the can-284

didate trigger earthquake origin time. We hold Nb constant as the seismicity in the 30 days285

before the candidate trigger earthquake. The Zb threshold is for seismicity in a time win-286

dow that has equal length of δa but immediately precedes the candidate event origin time.287

The Zb
5% is the 5th percentile obtained from a Z-statistic distribution (ζb-distribution)288

constructed by sampling Ni for a window length of δb within 6 months before and af-289

ter the candidate trigger earthquake origin time. We keep Na constant as the seismic-290

ity within the δa window after the origin time.291
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Similar to the βm-statistic, we design the Zm-statistic to detect seismic moment-292

release anomalies. The Zm-statistic is given by:293

Zm =
Ma/δa − Mb/δb√(

σMa/δa
)2

+
(
σMb/δb

)2 , (7)294

where Mb follows Equation 5 but for the δb time period. The sampling procedure for the295

Zm-statistic is similar to that of the Z-statistic (e.g., Figure 2g), and we define a sim-296

ilar set of thresholds to evaluate the statistical significance of the moment-release anoma-297

lies, including, Zm−0 > Za
m−95%, Zm−0 > Zm−b, and Zm−0 > Zb

m−5% (e.g., Figure 2g).298

Taking the January 8, 2017 M6 Queen Charlotte earthquake as an example trig-299

ger earthquake (Figure 2a), we find that the earthquake may have triggered seismicity300

within the Coso Geothermal Field within 6 hours of its origin time (Figure 2 and Ta-301

ble S1), which is indicated by both the β-statistic and Z-statistic. However, neither the302

βm- or Zm-statistic suggests anomalous moment-release change at the location during303

the 6-hour time window.304

2.4 Waveform Metrics305

We inspect the velocity waveforms of the candidate trigger earthquakes in south-306

ern California and measure four instantaneous waveform metrics: peak ground velocity,307

peak frequency, kinetic energy, and relative frequency content. We measure the peak ground308

velocity (PGV) in two frequency bands, 0.01–0.1 Hz and 1–5 Hz (Figure 3a-b). After down-309

loading the records, we first remove the instrument response and decimate the data to310

a 20 Hz sampling rate. Then we band-pass filter the data and compute their envelope311

functions. The maximum envelope amplitudes are measured in both the pre-event noise312

window (10 minutes) and the signal window (2 hours) independently for all three chan-313

nels at each station. A signal-to-noise ratio (SNR) is computed as the ratio between the314

maximum amplitudes of the signal and noise windows for each channel. We only use traces315

that have a SNR greater than 5 for both the low- and high-frequency bands to measure316

the waveform metrics. If all three channels at a station have a SNR greater than the thresh-317

old, we take the geometric mean of the qualified waveform envelopes and calculate a sin-318

gle PGV value for the station. We use the same qualified traces for the other calculated319

metrics and discard the rest. Figure 3a-b demonstrates an example of measuring the PGV320

values of the 2017 M6 earthquake in the Queen Charlotte Islands, Canada at CI.JRC2321

(near Coso) in the two frequency bands. The 0.1 to 1 Hz frequency band is not inves-322

tigated here as the noise level is high due to microseisms.323

We measure the peak frequency of qualified ground velocity records at each sta-324

tion caused by the candidate trigger earthquakes (e.g., Figure 3c). For an earthquake-325

station pair, we estimate the power spectrum of the waveform in the signal window for326

each channel using the multitaper method with 11 Slepian tapers (Thomson, 1982). Given327

the earthquake-station distance, we focus on the 0.01–5 Hz frequency band and compute328

the geometric mean of the power spectra from the three channels. The corresponding329

frequency of the maximum power is taken as the peak frequency.330

For the kinetic energy calculation, the qualified seismic data are first band-pass fil-331

tered at 0.01 to 10 Hz (Figure 3d), and the root-mean-square (RMS) values are computed332

for each channel in the signal window. This leads to three measurements in total for each333

station. We then record the RMS-square-sum of the signal window as the kinetic energy334

per unit mass for the earthquake-station pair. Figure 3d shows an example of measur-335

ing the kinetic energy for the M6 Queen Charlotte earthquake at CI.JRC2.336
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Lastly, we examine the relative frequency content of the passing waveforms. We337

modify the Frequency Index (FI) metric (Buurman & West, 2010) given by:338

FI = log10

(
Āu

Āl

)
, (8)339

where Āl is the mean power spectrum amplitude in a lower frequency band and Āu in340

an upper frequency band. We replace the mean spectral amplitudes with the integrated341

total power within each frequency band, which is a more stable calculation. We refer to342

this as the Frequency Content Ratio (FCR):343

FCR = log10

(∫ fl2
fl1

S(f) df∫ fu2

fu1
S(f) df

)
= log10

(
Pl

Pu

)
(9)344

where S(f) is the geometric mean of the power spectra of the three channels and fl1,345

fl2, fu1, fu2 define the lower and upper frequency bands. Here the lower frequency band346

is taken as 0.01–1 Hz, and the upper frequency band is 1–5 Hz (Figure 3c). We place the347

lower band in the numerator to ensure that the FCR estimates are primarily positive for348

teleseismic earthquakes, due to their more prominent low frequency signals.349

The waveform metrics are computed for each station independently, and the mea-350

surements for each candidate trigger earthquake are interpolated to nearby grid points.351

For each grid point, we obtain the median of the waveform metrics at the five nearest352

stations within 100 km (Figure 4). We do not make measurements at grid points when353

less than three stations are available.354

3 Results355

In this section, we detail our observations of seismicity and moment-release anoma-356

lies in southern California associated with the candidate earthquakes, focusing on their357

spatial (Section 3.1) and temporal (Section 3.2) patterns. Since the seismicity-rate anoma-358

lies are identified at a 95% confidence level, we omit grid points that triggered less than359

5 times from our results and discussion (see Section 4.1 for details). In general, we find360

that up to 70% of candidate trigger earthquakes caused dynamic triggering in southern361

California from 2007 to 2017. We find that triggering occurrence varies from fault to fault,362

and triggering occurs most often at the Salton Sea and Coso geothermal fields as well363

as the San Jacinto Fault. Furthermore, we identify temporal patterns evolving at mul-364

tiple scales, from instantaneous to delayed responses, and from intermittent occurrence365

at a given site to frequent triggering in southern California. Lastly, we examine the wave-366

form metrics of candidate trigger earthquakes at sites with both normal and anomalous367

seismicity and moment-release rate changes.368

3.1 Spatial Triggering Patterns369

Dynamic triggering likely occurs frequently in southern California. About 70% of370

the candidate trigger earthquakes associate with seismicity anomalies that are identi-371

fied using the β-statistic (Figure 5). Given the close temporal correlation, we consider372

that the anomalies are dynamically triggered by the earthquakes. Spatially, seismicity373

at 54% of the grid points (a total of 222 points) was triggered at least five times. Us-374

ing the Z-statistic, we find that 60% of candidate earthquakes associate with seismic-375

ity anomalies, and seismicity at 42% of the grid points was likely dynamically triggered376

five or more times. Anomalous seismic moment-release is less commonly observed to as-377

sociate with the candidate earthquakes, with the βm- and Zm-statistics identifying trig-378

gered seismicity after 52% and 32% of the candidate earthquakes, respectively. Spatially,379
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Figure 3: Waveform metric calculations of the January 8, 2017 M6 Queen Charlotte
earthquake at station CI.JRC2, near the Coso Geothermal Field. (a–b) Waveform en-
velopes (geometric mean of the three-component envelopes) at the 0.01–0.1 Hz and 1–
5 Hz frequency bands. The maximum amplitudes of the envelopes are taken as the PGV
of the frequency bands, respectively. (c) Geometric mean of the three-component power
spectra. Peak frequency corresponds to the frequency yielding the maximum value of the
spectrum. FCR is calculated using the integral results Pl in the 0.01–1 Hz band and Ph

in the 1–5 Hz band (Equation 9). (d) Band-pass filtered waveforms. Square sum of the
three-component RMS values is taken as the kinetic energy per unit mass. The BHE data
is shifted 35 µm/s upwards, and BHN 70 µm/s.

moment-release anomalies are identified at 45% and 33% of grid points using the βm-380

and Zm-statistics, respectively.381

Spatial patterns of triggering occurrence for the four test statistics are highly het-382

erogeneous (Figure 5). Here triggering occurrence counts the number of candidate trig-383

ger earthquakes that caused seismicity or moment-release anomalies in any of the four384

time windows (δa as 2, 6, 12, or 24 hours) during the study period. The Salton Sea Geother-385

mal Field (SSGF), Coso Geothermal Field (CGF), and San Jacinto Fault (SJF) most386

frequently experienced seismicity-rate anomalies identified by the β- and Z-statistics, which387

are likely caused by the passing waves (Figure 5a,c). Seismicity at the Elsinore Fault,388

the merging connection of the San Andreas and San Jacinto Faults, the southern San389

Andreas, the southern Sierra Nevada, and the Ridgecrest region is frequently triggered390

by remote earthquakes. In contrast, moment-release anomalies that are identified by the391

βm- and Zm-statistics have different spatial patterns than those of the seismicity-rate392

anomalies (Figure 5b,d). Specifically, the SSGF and CGF are less likely to have moment-393
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Figure 4: Example interpolation of PGV values in the 0.01-0.1 Hz band for the January
8, 2017 M6 Queen Charlotte earthquake. (a) Measured values at each station. (b) Inter-
polated values for qualified grid points.

release anomalies than SJF, and their triggering occurrence is comparable to that of the394

Elsinore Fault (Figure 5b,d). Moment-release anomalies are less frequently observed at395

the merging connection of the San Andreas and San Jacinto Faults, Ridgecrest area, and396

southern San Andreas fault (Figure 5b,d).397

We observe more delayed (6 to 24 hour windows, Figures S1, S2 and 7) than in-398

stantaneous triggering cases (2 hour, Figure 6). Such triggering occurrence differences399

between the instantaneous and delayed cases are observed for all four statistics. While400

instantaneous triggering cases are often difficult to observe because the catalog complete-401

ness may suffer due to the passing wave coda, our results show that delayed dynamic trig-402

gering of both seismicity and moment-release occurs frequently in southern California403

at multiple sites. For example, 83% of the β-statistic seismicity-rate anomalies are de-404

layed cases, and 79% of the Z-statistic cases are delayed, showing strong agreement. Fur-405

ther, 91% and 89% of moment-release anomalies are delayed cases from the βm- and Zm-406

statistics, respectively. Around half of instantaneously triggered cases of seismicity also407

extended into later hours. Specifically, 51% and 46% of the instantaneous cases, as iden-408

tified by the β- and Z-statistics, had extended responses reaching up to and beyond the409

6-hour window. Intriguingly, more than half of the instantaneously triggered moment-410

release extended into later hours, with 63% and 59% of cases for the βm- and Zm-statistics,411

respectively.412

Our triggering occurrence patterns are similar to the triggerability pattern in Miyazawa413

et al. (2021) with some differences at the Beta Offshore Platform, San Andreas Fault,414

and the southern Sierra. Miyazawa et al. (2021) investigates dynamic triggering occur-415

rence in southern California using the same QTM catalog. Differently, Miyazawa et al.416

(2021) adapts the method in van der Elst and Brodsky (2010) and inverts for trigger-417

ability based on distributions of separation times between the candidate earthquake and418

the local earthquakes immediately preceding and succeeding the candidate. The discrep-419

ancies at a few sites in our results are likely because we examine seismicity in the en-420

tire time window and not just the temporally closest events. Our study corroborates the421

findings of Velasco et al. (2008), which finds that triggering is ubiquitous around the globe422

and independent of tectonic environment. Velasco et al. (2008) reports a triggering rate423

of 80% for M≥7 candidates.424
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Figure 5: Spatial triggering patterns in southern California. Triggering occurrence iden-
tified using the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d) are
denoted in color. Triggering occurrence is the number of candidate trigger earthquakes
that caused seismicity or moment-release anomalies in any of the four time windows.

3.2 Temporal Triggering Patterns425

To investigate the temporal evolution of dynamic triggering processes, we inspect426

time intervals between consecutive triggering incidences at every grid point, denoted as427

local recurrence times. We also investigate consecutive time intervals of dynamic trig-428

gering cases in southern California for any grid point, which we term interevent time.429

Dynamic triggering occurs at individual grid points intermittently, often on the timescale430

of months to years (e.g., Figure 8). The spatial pattern of recurrence times correlates431

with that of triggering occurrence and there are strong heterogeneities from site to site432

(Figures 5 and 8). The median recurrence times range from tens of days to years for dif-433

ferent sites, and adjacent sites tend to have similar recurrence times. For example, the434

Salton Sea Geothermal Field, Coso Geothermal Field, and San Jacinto Fault have fre-435

quent incidences of seismicity-rate anomalies, with average recurrence times around 2–436

2.5 months (Figure 8). In contrast, we rarely observe seismicity-rate anomalies in the437

LA Basin, showing gaps on the order of years between triggering cases (Figure 8). Sim-438

ilar to the spatial pattern of moment-release anomalies (Figure 5), the geothermal fields439
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Figure 6: Triggering occurrence during the 2 hour (δa=2) time window using the β-
statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d).

do not have significant moment-release anomalies very often (Figure 8). For example,440

Figure 9a–d shows the distributions of recurrence times for a few notable locations us-441

ing the β-statistic. Similar figures of other statistics are included in the Supplementary442

Material.443

On average, dynamically triggered seismicity is identified using the β- and Z-statistics444

at one or more of the grids in southern California every 3.4 and 3.9 days, respectively.445

Similarly, moment-release anomalies from the βm and Zm-statistics occur every 4.5 and446

7.4 days on average in the region, respectively. The distributions of interevent times in447

southern California are summarized in Figure 9e–h, showing that dynamic triggering oc-448

curs frequently in southern California on a scale of every few days. We also explored tem-449

poral variations of the recurrence and interevent times in the region during the study450

period, e.g., whether the triggering patterns evolve with the occurrence of the 2010 El451

Mayor Cucapah earthquake and the 2019 Ridgecrest earthquakes. We do not identify452

significant variations over the triggering patterns using the QTM catalog.453
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Figure 7: Triggering occurrence during the 24 hour (δa=24) time window using the β-
statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d).

3.3 Waveform Results454

We measure waveform metrics (e.g., Figures 3-4) at all 222 grid points for the 1388455

candidate trigger earthquakes, including events and grids that do not associate with seismicity-456

rate and moment-release anomalies (Figures 10-12). The measurements are then grouped457

into three categories: instantaneous (2-hour window), delayed (6- to 24-hour windows),458

and non-triggering. We examine distributions of waveform metrics for the three groups459

to evaluate their possible differences. For PGV in the 0.01–0.1 Hz band we observe no460

significant differences between the three distributions for the four test statistics (Figure 10a–461

d). Interestingly, instantaneous triggering cases seem to have a larger minimum PGV462

than the delayed cases in the 1–5 Hz frequency band (Figure 10e–h). The 1–5 Hz PGV463

distributions shift towards higher values compared to the delayed and non-triggering dis-464

tributions in Figure 10e–h, most clear for the βm- and Zm-statistics. On average, a PGV465

threshold of 0.2 and 0.5 µm/s in the 1–5 Hz band seems to be observed for the instan-466

taneously triggered seismicity and moment-release anomalies, respectively. The thresh-467

old does not exclude occurrence of delayed and non-triggering cases as there are incidences468

of both groups with similar or greater PGV values. The observed high-frequency thresh-469

old is also observed in the FCR metric, manifesting as a leftward shift of the instanta-470
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Figure 8: Median recurrence time at the qualified grid points using the β-statistic (a),
βm-statistic (b), Z-statistic (c), and Zm-statistic (d).

neous distributions (Figure 11e–h), which suggests higher PGV values at high frequen-471

cies and therefore lower FCR values. There are no obvious differences in the distribu-472

tions of the peak frequency or kinetic energy for the four test statistics (Figures 11a–d473

and 12). In summary, the waveform characteristics of the candidate earthquakes can-474

not deterministically differentiate the triggering incidence from non-triggering cases or475

separate instantaneous and delayed cases.476

4 Discussion477

Dynamically triggered seismicity occurs ubiquitously in southern California, albeit478

with strong occurrence heterogeneities in space and time. Moment-release anomalies share479

similar spatiotemporal patterns with the seismicity-rate anomalies but occur less frequently.480

In this section we will first evaluate the identification uncertainty and limitations (Sec-481

tion 4.1), and then examine possible triggering mechanisms (Section 4.5).482

4.1 Uncertainty and Resolution483

In this study, we identify seismicity-rate and moment-release anomalies at a 95%484

confidence level, and the identified anomalies are interpreted to associate with candidate485
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Figure 9: Distribution of triggering recurrence times at example sites and distribution
of interevent times for southern California. (a) Map view of three sites. Each polygon
may include more than one grid point, e.g., the San Jacinto Fault Zone. (b–d) Recurrence
times at the Salton Sea Geothermal Field (b), the San Jacinto Fault Zone (c), and the
Coso Geothermal Field (d). (e–f) Interevent times for southern California obtained using
the the β-statistic (e), Z-statistic (f), βm-statistic (g), and Zm-statistic (h).
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Figure 10: Distribution of PGV values in the 0.01–0.1 Hz (a–d) and 1–5 Hz (e–h) fre-
quency bands for triggering identified by the β-statistic (a,e), Z-statistic (b,f), βm-
statistic (c,g), and Zm-statistic (d,h). Histograms are color coded to represent the in-
stantaneous triggering (yellow), delayed triggering (plum), and no triggering cases (gray).
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(d,h). Histograms are color coded to represent the instantaneous triggering (yellow), de-
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Figure 12: Distribution of kinetic energy values for triggering identified by the β-statistic
(a), Z-statistic (b), βm-statistic (c), and Zm-statistic (d). Histograms are color coded to
represent the instantaneous triggering (yellow), delayed triggering (plum), and no trigger-
ing cases (gray).

trigger earthquakes. We omitted locations that triggered less than five times from our486

results. Assuming each triggering case is independent and has a 5% chance of being a487

false positive, there is less than a 3.1 × 10−5% probability that all triggering cases at488

a site are false positives if that site triggers at least five times. Our five-times selection489

criterion ensures that the observed spatial patterns are robust. Similarly, the temporal490

patterns are better resolved for sites with frequent triggering cases (Figure 9a–d), such491

as the San Jacinto Fault Zone, the Salton Sea Geothermal Field, and the Coso Geother-492

mal Field. The identification of dynamic triggering could be influenced by a variety of493

factors, including background seismicity, magnitude of completeness, window length, af-494
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False Positive Rate Poissonian Catalog ETAS Catalog

β-statistic 0.87% 1.53%
Z-statistic 0.87% 1.46%
βm-statistic 4.73% 2.26%
Zm-statistic 3.35% 1.31%

Table 1: False positive rates of the statistical identification procedures when applied to a
Poissonian and ETAS synthetic catalog.

tershocks of candidate events, and consecutive candidate earthquakes with short sepa-495

rations. To evaluate the robustness of the results, we examine the contribution of these496

factors item by item below. Through the suite of exercises, we confirm the robustness497

of our findings and outline possible biases in the results.498

We generate two synthetic catalogs that do not include triggering cases to test the499

statistical procedures. We first generate a ten-year-long Poissonian catalog, where the500

occurrence of seismicity follows a Poisson distribution with magnitudes drawn from the501

probability distribution associated with the Gutenberg-Richter Law (Fiedler et al., 2018;502

Gutenberg & Richter, 1944). To construct the Poisson distribution we use an earthquake503

rate parameter of 0.002 earthquakes per second, equivalent to the number of earthquakes504

above completeness per second in the QTM catalog. We set the Gutenberg-Richter Law505

b-value to 0.99, an empirically obtained value for southern California (Hardebeck, 2013).506

Without losing generality, we assume that the seismicity occurs within the footprint of507

one grid point. We then randomly select 1,500 times to represent global candidate earth-508

quakes and apply the same statistical procedures as detailed in Section 2.3 to evaluate509

the seismicity-rate and moment-release significance. Out of the 1,500 realizations, 0.87%510

of the cases are identified by both the β- and Z-statistics as anomalously high seismicity-511

rates, and 4.73% and 3.35% of the cases are labeled by the βm- and Zm-statistics as moment-512

release anomalies (Table 1). These cases are false positives, but the rates are less than513

the 5% threshold (95% confidence level) defined in our procedure.514

The Poissonian catalog does not include mainshock-aftershock sequences of local515

earthquakes. Therefore, we design a second synthetic ten-year-long catalog following the516

temporal Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988), and the cat-517

alog is created using the procedure outlined in Shearer (2012a) and Shearer (2012b). The518

ETAS catalog includes both the random background seismicity and mainshock-aftershock519

sequences governed by the Omori-Utsu Law (Utsu, 1961). The ETAS parameters required520

in this formulation are aftershock productivity, b-value, and the Omori’s Law time de-521

cay parameters c and p. We use an aftershock productivity of 0.003, an estimate spe-522

cific to the QTM catalog from Miyazawa et al. (2021), a b-value of 0.99 (Hardebeck, 2013),523

a c value of 10−4 days, in accordance with Moutote et al. (2021) for the QTM catalog,524

and a p value of 1, near the global median value (Utsu et al., 1995; Zhuang et al., 2012).525

The earthquake magnitudes are randomly drawn from the same Gutenberg-Richter mag-526

nitude distribution used for the Poissonian catalog. Similarly, the seismicity is attributed527

to one grid point, and 1,500 time realizations are inspected. We find false-positive rates528

of 1.53% and 1.46% for the β- and Z-statistics and 2.26% and 1.31% for the βm- and529

Zm-statistics (Table 1). The false positive rates of all-four statistics are below 5% for the530

ETAS catalog. These tests confirm the effectiveness of the method.531

We test if triggering occurrence correlates with the total number of earthquakes532

greater than Mc within each grid by computing the correlation coefficient (Figure 13a).533

The seismicity-rate anomalies identified by the β- and Z-statistics moderately correlate534
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Figure 13: (a) Correlation coefficients between triggering occurrence and the number of
earthquakes within the footprint of the grid points. (b) Correlation coefficients between
triggering occurrence and the magnitude of completeness of earthquakes within the foot-
print of the grid points. Horizontal axis denotes the four time windows.

with the total earthquake number. Interestingly, the correlation coefficient is higher for535

instantaneous triggering than delayed cases. For example, the β-statistic has a correla-536

tion coefficient of 0.59 for the 2 hour window, but only 0.31 for the 24 hour window. A537

similar pattern is observed for the Z-statistic (Figure 13a). We find a strong correlation538

between the triggering occurrence of moment-release anomalies and the distribution of539

earthquake numbers. On average, the moment-release anomaly patterns identified by the540

βm- and Zm-statistics have correlation values around 0.5-0.7, differing from the seismicity-541

rate patterns (Figure 13a). There are some variations in the correlation values among542

different window lengths, i.e., correlations for the βm-statistic vary from 0.76 at 2 hours543

to 0.68 at 24 hours, and correlations for Zm-statistic oscillate in between 0.62 to 0.73 for544

the four window lengths. These results differ from Miyazawa et al. (2021) which found545

no correlation between the triggerability and seismicity-rate for a given site, but are in546

qualitative agreement with observations reported in van der Elst and Brodsky (2010).547

These correlation coefficients suggest that areas of higher background seismicity-rates548

are moderately more likely to experience frequent dynamic triggering.549

Dynamically triggered earthquakes are generally small (Hill & Prejean, 2015), and550

lower magnitudes of completeness permit the identification of more triggered cases (Li551

et al., 2022). Therefore, the observed spatial pattern could be because the catalog has552

heterogeneous spatial resolutions. To determine the effect, we compute correlation co-553

efficients between spatial patterns of the triggering occurrence and magnitude of com-554

pleteness. The results are plotted in Figure 13b and show that each test statistic does555

not have a significant correlation with Mc since all coefficients are between -0.4 and 0.1.556

The seismicity anomalies identified by the β- and βm-statistics generally have a higher557

negative correlation with Mc than their Z-counterparts (Figure 13b). The coefficients558

for the βm- and Zm-statistics typically decrease with time window (δa). For example,559

the coefficients range from -0.26 to -0.38 from 2 to 24 hours for the βm-statistic, and they560

vary from -0.01 to -0.27 for the Zm-statistic from 2 to 24 hours. The correlation values561

suggest that our identified cases are not significantly biased by the magnitude of com-562

pleteness at different sites.563
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The overlapping δa windows may result in limited temporal resolutions of trigger-564

ing types. For example, the 24 hour window includes seismicity from the 2 hour window,565

and intensely triggered seismicity in the 2 hour window could lead to an identification566

at a later time window, even if the triggered seismicity ceases. Such scenarios may com-567

plicate the extended cases but would not impact our identification of instantaneously trig-568

gered cases. However, identification of instantaneous cases may have been hampered by569

the coda of the passing seismic waves, which causes challenges in detecting and locat-570

ing local microearthquakes. Furthermore, sporadic earthquakes could have been instan-571

taneously triggered with a low seismicity-rate or low magnitudes (below Mc). These cases572

may have been missed by our procedure, which therefore may have underestimated the573

instantaneous triggering cases.574

When multiple candidate earthquakes occur within 24 hours of each other and seismicity-575

rate and moment-release anomalies are identified at the sites of interest, it is challeng-576

ing to separate the triggering contributions from the candidate earthquakes. In such cases,577

we consider that each of the earthquakes have contributed to cause the observed dynamic578

triggering, which may overestimate triggering occurrence. Specifically, M≥7 earthquakes579

often have M≥6 aftershocks, whose effects in dynamic triggering might be marginal. To580

evaluate the effect of M≥6 aftershocks in identifying dynamic triggering, we compare the581

results before and after removing aftershocks of the candidate trigger earthquakes. Re-582

moving potential aftershocks as candidate events may help avoid counting duplicate trig-583

ger earthquakes and underestimating the recurrence and interevent times.584

For the removal procedure, we follow Knopoff et al. (1982) to define a spatial win-585

dow to identify aftershocks of the candidate earthquakes. The Knopoff et al. (1982) main-586

shock footprint covers 100 km for an M6 event to 900 km for an M8 event. We use lin-587

ear interpolation and extrapolation schemes to obtain the footprint dimension for a can-588

didate trigger earthquake. If a smaller candidate event is within 24 hours (correspond-589

ing to the largest δa) of a previous event and is within its spatial area defined by Knopoff590

et al. (1982), the smaller earthquake is considered an aftershock of the greater candidate591

event, and it is excluded from the candidate trigger list. The spatial footprint from Knopoff592

et al. (1982) overestimates the aftershock zone and yields upper limits of the recurrence593

and interevent times. The percentage of candidate earthquakes that caused dynamic trig-594

gering is largely invariant to the aftershock removal procedure (Table 2). Additionally,595

the interevent times remain stable for the test statistics with less than one day of a dif-596

ference. The aftershock removal exercise confirms the robustness of our finding and sup-597

ports the conclusion that triggering is ubiquitous across southern California.598

Not all large earthquakes close in time are part of the same sequence, and our pro-599

cedure does not separate the triggering effects from multiple candidate earthquakes oc-600

curring within 24 hours. Multiple candidate earthquakes may increase the chances of dy-601

namic triggering in southern California. We evaluate the hypothesis by examining the602

correlation between triggering occurrence and the number of candidate trigger earthquakes603

in the preceding 24 hours. When evaluating test statistics after each candidate earth-604

quake, we count the number of global M≥6 earthquakes that occurred in the immedi-605

ately preceding 24 hours, forming a ten-year time series. Correspondingly, we obtain a606

binary time series recording the triggering incidence. The correlation between the two607

time series has a coefficient of -0.02 for incidences identified using the β-statistic. The608

correlation coefficients for cases identified by other statistics (Z, βm, and Zm) have sim-609

ilar insignificant values. Therefore, we conclude that the presence of multiple candidate610

earthquakes within 24 hours does not impact the observed triggering patterns significantly.611

4.2 Statistic Comparison612

Several statistics have been introduced to measure the significance of seismicity-613

rate changes, e.g., the β-, Z-, and gamma-statistics (Habermann, 1983; Marsan & Nal-614
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All candidate
earthquakes

Aftershocks removed

Number of candidates 1388 1214
Percent of candidates that trigger (β) 70 68
Percent of candidates that trigger (Z) 60 60
Percent of candidates that trigger (βm) 52 52
Percent of candidates that trigger (Zm) 32 32
Interevent time in days (β) 3.4 4
Interevent time in days (Z) 3.9 4.5
Interevent time in days (βm) 4.5 5.2
Interevent time in days (Zm) 7.4 8.3

Table 2: Table of triggering results before and after removing aftershocks of candidate
trigger earthquakes using the Knopoff et al. (1982) spatial footprint and a one-day tempo-
ral window.

bant, 2005; Matthews & Reasenberg, 1988). Assuming that earthquakes occur randomly,615

the probability distributions of the statistics can be derived analytically, and their sig-616

nificance threshold can be obtained through the distributions (e.g., Wyss & Marsan, 2011).617

The Z-statistic is often favored over the β-statistic because of its symmetric formulation618

(e.g., Aiken et al., 2018). However, the difference of the two statistics in identifying dy-619

namic triggering is unclear because conventional approaches assume earthquake occur-620

rence as a Possionian process, and a triggering threshold of 2 is widely adopted follow-621

ing this assumption, which is inaccurate for triggered seismicity.622

To quantitatively compare the β- and Z-statistics (and the βm- and Zm-statistics),623

we compute correlation coefficients between pairs of statistics for each of the 1,388 can-624

didate earthquakes at the sites of interest. Triggering occurrence of each statistic is recorded625

in a binary array, with values consisting of either a 0 (non-triggered) or 1 (triggered) for626

the 222 grid points. The correlation coefficient is calculated between the resulting ar-627

rays for each statistic pair. This produces one coefficient for each candidate earthquake.628

A higher resulting correlation coefficient shows a higher level of consistency between the629

two statistics while a lower coefficient shows less consistency. The correlation coefficients630

are computed for each time window (Figure 14). Additionally, a coefficient examining631

whether any triggering occurred at a grid for an earthquake is computed between statis-632

tic pairs (Figure 14). With the collection of coefficient values, we find that seismicity anoma-633

lies identified by the β- and Z-statistics are highly correlated with over half of incidences634

having a coefficient of 1 (Figure 14a). Similarly, moment-release anomalies identified by635

the βm- and Zm-statistics have high correlations with low variances (Figure 14d). Cor-636

relation between the seismicity-rate and moment-release anomalies are noticeably dif-637

ferent, with smaller median coefficients and larger variances (Figure 14b,c). The results638

are consistent with the triggering rate results that seismicity-rate changes occur more639

frequently than moment-release anomalies. The results indicate that the choice of test640

statistic (e.g., β- or Z-statistic) is not crucial for our sampling procedure.641

Although the differences in results between the β- and Z-statistics are minor, the642

β-statistic identifies more seismicity-rate anomalies than the Z-statistic, which is likely643

due to the Z-statistic being a symmetric formulation of the β-statistic (Wyss & Marsan,644

2011). Both the βm- and Zm-statistics identify fewer moment-release anomalies than the645

seismicity-rate changes. However, significant moment-release anomalies are still common,646

with 54% and 34% triggering rates from the βm- and Zm-statistics. The synthetic cat-647
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Figure 14: Boxplots of correlation coefficients between the four statistics. Here Y/N
denotes if triggering was identified in any of the four time windows. Red line marks the
median and the surrounding box denotes the interquartile range. Dashed lines show the
range, omitting outliers. Outliers are denoted by plus-symbols, and are values greater
than the third quartile plus 1.5 times the interquartile range or less than the first quartile
minus 1.5 times the interquartile range.

alog tests show that the symmetric formulations, e.g., Z- and Zm-statistics, are more ac-648

curate in comparison to their counter parts, although the differences are small.649

The difference in results between the seismicity-rate and moment-release anoma-650

lies suggest that dynamically triggered seismicity in southern California is commonly ob-651

served while large earthquakes (significant moment-releases) are less frequently triggered652

(Figure 3.1). For example, the Salton Sea and Coso Geothermal Fields frequently ex-653

perience dynamic triggering in seismicity, but do not have moment-release anomalies very654

often. It is likely because the thermal production areas are dominated by fragmented faults655

with small spatial extents (e.g., Cheng & Chen, 2018), limiting the triggered earthquake656

sizes. Similarly, the immature Ridgecrest fault system may contain more small fault strands657

(e.g., Ross, Idini, et al., 2019), which may have contributed to the triggering differences658

of seismicity-rate and moment-release in the region. In contrast, the San Jacinto and Elsi-659

nore faults have comparable triggering occurrence for the seismicity-rate and moment-660

release anomalies.661

Moment-release anomalies are identified every week on average in southern Cal-662

ifornia by the βm- and Zm-statistics. The moment-release anomalies are dominated by663

the largest earthquakes in the time windows. However, we note that our statistical tests664
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cannot determine whether a specific individual earthquake was dynamically triggered.665

For simplicity, we convert the moment-anomalies to their equivalent moment magnitudes666

(Figure 15), remove duplicates from overlapping grid points and time windows, and find667

a nominal moment-release anomaly of Mw 3 (Figure 15). Intriguingly, the βm- and Zm-668

statistics identified 6 and 5 cases with equivalent moments above Mw 5, respectively. The669

cases correspond to 26% and 22% of the total M≥5 earthquakes in southern California670

during the study period. Except for one event likely related to the 2010 El Mayor Cu-671

capah earthquake, each case was identified as delayed triggering with delay times beyond672

6 and up to 24 hours. Close inspections of seismicity during the delay times reveal no673

obvious foreshock sequences for these cases. Our procedure cannot conclude whether these674

specific cases were dynamically triggered or not. Further, the delayed nature hinders re-675

jecting the null hypothesis that the occurrence was random. These unusual M≥5 cases676

warrant detailed investigations in future follow-up studies.677
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Figure 15: Distributions of equivalent moment magnitudes of the moment-release anoma-
lies identified by the βm- and Zm-statistics. For extended triggering cases, the equivalent
moment magnitudes are computed using the longest time window corresponding to a trig-
ger earthquake.

4.3 Triggering Scale678

To investigate the spatial footprint of the triggered seismicity and moment-release679

anomalies, we develop a metric of synchronization, termed the synchronization coeffi-680

cient, Si,j , between pairs of grid points:681

Si,j =
Ns

Ntot
, (10)682

where i and j are the indexes of two grid points, Ns is the number of shared candidate683

earthquakes that have caused dynamic triggering at both grids, and Ntot is the number684

of unique candidate earthquakes that have caused dynamic triggering at either or both685

of the grids. We define synchronization as grid points triggered by the same candidate686

earthquakes. Si,j is defined to range from 0 to 1. Si,j = 1 denotes 100% synchroniza-687

tion, where dynamic triggering concurs at both grids every time the grids trigger. Si,j =688

0 indicates that dynamic triggering is not observed simultaneously at the two grids dur-689
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ing the study period. We pairwise calculate Si,j for the grid points and investigate the690

parameter as a function of the separation distance between the ith and jth grids.691
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Figure 16: Synchronization coefficient versus pairwise grid distance. Inset displays a
zoom-in view for grids that are less than 50 km apart. Marker color shows the proportion
of local earthquakes that are shared between grid pairs during the study period. Marker
size indicates the number of candidate earthquakes that cause triggering at both loca-
tions, Ns.

We hypothesize that high synchronization coefficients reflect common triggering692

processes occurring at the grids and the separation distance may serve as a proxy of the693

spatial dimension of the processes (Figure 16). For example, there is a sharp drop in Si,j694

after a distance of 40 km for seismicity-rate anomalies identified using the β-statistic.695

Given the gridding configuration (Section 2.2), the 40 km threshold roughly equals the696

distance between the centers of two grid points. Since the footprints overlap between ad-697

jacent grids, the observed high synchronization may reflect some shared seismicity. There-698

fore, the results suggest highly localized triggering responses of seismicity in southern699

California, clustering over small spatial scales, likely on the order of 40 km or smaller.700

We observe the same pattern for the Z-, βm-, and Zm-statistics.701

Synchronization coefficients are generally low for grids separated beyond 40 km.702

However, there are two groups of outliers, denoted by the gray boxes in Figure 16, with703

a pairwise distance over 40 km. The first group of five pairs is around 175 km apart, and704

the second group is around 400 km apart. The first group associates with triggering re-705

sponses from the 2015 M8.3 Illapel earthquake, Chile and its aftershocks, and the sec-706

ond group is due to the 2010 M8.8 Maule earthquake, Chile and its aftershocks. The two707
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groups may suggest simultaneous triggering incidences across southern California due708

to the two M>8 earthquake sequences. These two groups are very rare cases as most grid709

pairs have low synchronization coefficients. In summary, our results suggest that trig-710

gering processes at different faults in southern California are primarily uncorrelated, and711

the triggering responses are highly heterogeneous. To investigate such processes, a dense712

network with comparable spatial scales (40 km), such as the Japanese Hi-net (Okada et713

al., 2004), is needed to accurately resolve the waveform characteristics within each grid.714
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Figure 17: Time series of the number of grid points triggered after each candidate earth-
quake (β-statistic). Candidate earthquakes within 60 days following the 2010 El Mayor
Cucapah earthquake are not analyzed (Section 2.1).

Another way to investigate the triggering scale is to count the number of triggered715

grids by each candidate trigger earthquake (Figure 17). We find large variability in trig-716

gering response among different candidate trigger earthquakes. For example, the 2010717

El Mayor Cucapah (EMC) earthquake triggered the most seismicity-rate anomalies (β-718

statistic) in southern California. Seismicity was triggered at 29 grid points (Figure S6)719

even after excluding locations within 50 km of the epicenter. The results agree with find-720

ings in Ross, Trugman, et al. (2019) and Meng and Peng (2014). An M6.7 aftershock721

of the 2015 M8.3 Illapel, Chile earthquake is the second most productive trigger earth-722

quake, causing seismicity anomalies at 14 grid points. The 2009 M6.6 Philippines earth-723

quake and the 2011 M6.4 Samoa earthquake both correlate with seismicity-rate anoma-724

lies at 13 grid points. On average, the candidate earthquakes cause triggering at about725

three sites. These results further confirm that dynamic triggering occurs at local scales,726

and the triggering responses at different sites are usually independent. Similar plots for727

the other three statistics (Z, βm, and Zm) are included in the Supplementary Material.728
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4.4 Triggering Threshold729

We find the triggering thresholds have large variabilities and are spatially hetero-730

geneous (Figures 18 and 19). We examine all thresholds that are used for identifying anoma-731

lies of each statistic, and focus on discussing the the 95th percentile thresholds (e.g. βa
95%)732

in this study as it is the most critical threshold used in our procedure. In general, the733

thresholds for identifying anomalies at the 95th percentile are greater than 2 (e.g., βa
95% ≥734

2), as reported in previous studies (Fan et al., 2021; Marsan & Nalbant, 2005). Figures 18735

and 19 show that the median 95% thresholds of the four test statistics at each grid point736

are all above 2, suggesting that using a threshold of 2 would overestimate triggering oc-737

currences in southern California. The San Jacinto Fault, Elsinore Fault, and Coso Geother-738

mal Field have relatively high values of the βa
95% and Za

95% triggering thresholds in the739

2-hour window (Figure 18) while the Salton Sea Geothermal Field has a lower thresh-740

old. The spatial pattern does not seem to correlate with seismicity-rates or triggering741

occurrence. In contrast, the βa
m−95% and Za

m−95% triggering thresholds in the 2-hour win-742

dow have significantly less spatial variation. The thresholds for the 24-hour window have743

the opposite patterns, the spatial heterogeneity for βa
95% and Za

95% is less significant in744

comparison to those of the 2-hour window, while there is an increase in spatial hetero-745

geneity for the βa
m−95% and Za

m−95% triggering thresholds. The thresholds also evolve746

over short time scales at each grid point. For example, Figure 20 shows the temporal evo-747

lution of the 95th percentile thresholds at the Salton Sea Geothermal Field for the 2-hour748

window. We observe that the thresholds vary significantly with time over the nine year749

period, especially for the βa
95% and Za

95% thresholds. The findings suggest that the trig-750

gering thresholds are space- and time-dependent, indicating constantly evolving fault-751

ing conditions, and our data-driven approach is effective in accounting for such variabil-752

ities and can effectively identify dynamic triggering cases.753

4.5 Physical Mechanisms754

A variety of physical processes may have occurred during earthquake dynamic trig-755

gering (Brodsky & Prejean, 2005; Freed, 2005; Prejean & Hill, 2018), and Coulomb fail-756

ure due to the transient stress perturbation can intuitively explain the instantaneously757

triggered cases (Gonzalez-Huizar & Velasco, 2011; Hill, 2008; Kilb, 2003). In this case,758

faults are at critical states, and the dynamic stress from the seismic waves pushes the759

faults to slip. Assuming the faults are at a uniform critical condition, there might be a760

correlation between the triggering occurrence and the instantaneous waveform metrics.761

Our waveform analyses find no obvious correlations between triggering occurrence and762

the waveform metrics, including peak ground velocity and kinetic energy. The findings763

agree with previous searches for PGV-based triggering thresholds, where no simple thresh-764

olds have been confirmed (Freed, 2005; Hill & Prejean, 2015). Intriguingly, the instan-765

taneously triggered seismicity and moment-release anomalies seem to require a minimum766

peak ground velocity above 0.2-0.5 µm/s, a unique feature compared to non-triggering767

and delayed triggering cases. However, such triggering cases do not always occur when768

the threshold is reached.769

The 2010 El Mayor Cucapah earthquake has caused widespread triggering responses770

(Figure S6), including both static and dynamic triggering cases (Meng & Peng, 2014;771

Miyazawa et al., 2021; Ross, Trugman, et al., 2019). The earthquake offers an opportu-772

nity to inspect relations between the triggering occurrence and waveform metrics. We773

find no obvious correlations between the triggering occurrence and the PGV distribu-774

tion; sites with comparably high PGV values show different triggering responses. For the775

El Mayor Cucapah earthquake, static triggering may have also regulated the triggering776

response in southern California (Meng & Peng, 2014). To further evaluate the Coulomb777

failure mechanism, we investigate candidate events that caused dynamic triggering at778

10 or more grid points, and find no clear patterns. We also find that the earthquakes with779

the most widespread triggering responses have no obvious characteristic features in mag-780
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Figure 18: Spatial patterns of the median of the 95% percentile thresholds during the 2
hour time window for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic
(d).

nitude or location. The negative results may be due to that the faults were at different781

critical states, requiring different levels of stress perturbations. Additionally, the local782

stress field may have facilitated triggering for incoming waves from preferred azimuths783

(Alfaro-Diaz et al., 2020; Gonzalez-Huizar & Velasco, 2011). Alternatively, nonlinear trig-784

gering processes that were governed by rate- and state-fault properties may have reg-785

ulated some of the triggering processes.786

Delayed dynamic triggering requires time-dependent developments of slips and fail-787

ures, which are likely controlled by non-linear mechanisms (e.g. Fan et al., 2021; Hill &788

Prejean, 2015; Miyazawa et al., 2021; Shelly et al., 2011). The non-linear triggering pro-789

cess could include a combination of mechanisms such as rate-and-state friction, mate-790

rial fatigue, aseismic slip, pore pressure, permeability enhancement, and granular flow791

among others (Brodsky & van der Elst, 2014; Hill & Prejean, 2015; Johnson & Jia, 2005;792

Rivera & Kanamori, 2002). Such processes may correlate better with wavefield features,793

including the frequency content of the passing seismic waves and the duration of intense794

ground motions. For example, triggering occurrence seems to relate to the PGV in low795

frequency bands at Long Valley (Brodsky & Prejean, 2005) and Parkfield (Guilhem et796

al., 2010). Our observations of delayed cases require nonlinear processes to initiate dy-797
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Figure 19: Spatial patterns of the median of the 95% percentile thresholds during the 24
hour time window for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic
(d).

namic triggering in southern California. Particularly, we find no correlation with the PGV798

or kinetic energy (Figures 10 and 12), nor any systematic correlations with the peak fre-799

quency or frequency content (Figure 11).800

Our analyses of triggering scale show that the spatial footprint of triggering is lo-801

calized and suggests that dynamic triggering is governed by conditions operating on spa-802

tial scales of tens of kilometers. Such heterogeneity may help explain the diverse trig-803

gering responses, including that Coulomb failure may be the driver for instantaneous trig-804

gering cases. Importantly, the results highlight that local conditions may play a more805

important role in the occurrence of triggering than features of the incoming wave, em-806

phasizing the importance of understanding the heterogeneous stress and strength states807

of faults in southern California.808

Models including experimentally derived rate- and state-dependent fault proper-809

ties suggest that earthquake production relates to the local stress states, and the stress-810

ing episodes due to the passing seismic waves may produce clusters of earthquakes in these811

regions (Dieterich, 1994). We find a moderate correlation between seismicity-rate anoma-812

lies and the total number of earthquakes above completeness at each grid point (Figure 13a).813
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Figure 20: Temporal evolution of the 95% percentile thresholds during the 2 hour time
window at a site in the Salton Sea Geothermal Field for the β-statistic (a), βm-statistic
(b), Z-statistic (c), and Zm-statistic (d).

The correlation coefficients decrease with δa, which suggests that the instantaneous trig-814

gering cases are likely dominated by linear processes acting upon the heterogeneous stress815

field, while the delayed cases are likely caused by complex nonlinear processes. The strong816

correlation values observed for the moment-anomalies may have been due to the obser-817

vation that more seismically active regions can generate larger earthquakes.818

The clear evidence of dynamic triggering operating on local spatial scales (∼40 km)819

suggests that the process is irrelevant to the macro-scale tectonic regimes, such as re-820

ported in Velasco et al. (2008). However, there is conflicting evidence showing that larger-821

scale tectonic processes can inhibit dynamic triggering (Harrington & Brodsky, 2006),822

suggesting directions for future comparative investigations. Qualitatively, we notice that823

frequent triggering occurs at the San Jacinto Fault, Salton Sea Geothermal Field, Coso824

Geothermal field, and the merging connection of the San Andreas and San Jacinto faults,825

where the fault geometries are complex (Chu et al., 2021; Marshall et al., 2022). The ge-826

ometric complexities may further indicate complex stress fields at those sites (Yang &827

Hauksson, 2013). We experimented computing correlations between the triggering oc-828

currence and the surface trace complexity metrics from Chu et al. (2021) but found no829
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obvious correlation. It is possible that the surface traces do not fully reflect the 3D fault830

geometry and stress field complexities, and future investigations on the relations between831

earthquake focal mechanisms and triggering occurrence may offer new insights into the832

physical mechanisms of dynamic triggering processes.833

5 Conclusions834

We have developed an assumption-free approach to statistically identify seismicity-835

rate and moment-release anomalies caused by earthquake dynamic triggering. We ap-836

ply the method to southern California seismicity from 2008 to 2017 and find837

1. Earthquake dynamic triggering is ubiquitous throughout southern California, and838

up to 70% of the global M≥6 earthquakes may have caused dynamic triggering839

in the region.840

2. Dynamic triggering was identified at most of the major faults in the area. The Salton841

Sea Geothermal Field, Coso Geothermal Field, and San Jacinto Fault are the most842

prone regions to triggering.843

3. Dynamic triggering occurs every 4 days on average in southern California.844

4. Individual sites in southern California are triggered less frequently, ranging from845

once a month to every few years.846

5. Most dynamic triggering cases are delayed.847

6. Significant moment-release anomalies are common in southern California, but oc-848

cur less often than significant seismicity-rate increases.849

7. The β-based and Z-based test statistics identify similar sets of dynamic trigger-850

ing cases.851

8. There are no clear connections between triggering patterns and instantaneous wave-852

form metrics, including the peak ground velocity, peak frequency, kinetic energy,853

and frequency content.854

9. Local fault conditions likely govern dynamic triggering occurrence.855

These observations suggest that time-dependent nonlinear mechanisms acting on local856

scales are likely responsible for the majority of the observed triggering cases.857
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Key Points:5

• Earthquake dynamic triggering is ubiquitous in southern California.6

• Triggered earthquakes are frequently associated with significant moment-release7

anomalies and are likely controlled by local processes.8

• The choice of statistical test is less impactful for identifying earthquake dynamic9

triggering using the method developed here.10
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Abstract11

Earthquakes can be dynamically triggered by the passing waves of events from discon-12

nected faults. The frequent occurrence of dynamic triggering offers tangible hope in re-13

vealing earthquake nucleation processes. However, the physical mechanisms behind earth-14

quake dynamic triggering have remained unclear, and contributions of competing hypothe-15

ses are challenging to isolate with individual case studies. Therefore, developing a sys-16

tematic understanding of the spatiotemporal patterns of dynamic triggering can provide17

insights into the physical mechanisms, which may aid mitigation of earthquake hazards.18

Here we investigate earthquake dynamic triggering in Southern California from 2008 to19

2017 using the Quake Template Matching catalog and an approach free from assuming20

an earthquake occurrence distribution. We develop a new set of statistics to examine the21

significance of seismicity-rate changes as well as moment-release changes. We show that22

up to 70% of global M≥6 events may have triggered earthquakes in southern California23

and that the triggered seismicity often occurred several hours after the passing seismic24

waves. On average, earthquakes are triggered about every 4 days in the region, albeit25

at different locations. Although adjacent fault segments can be triggered by the same26

earthquakes, the majority of triggered earthquakes seem to be uncorrelated, suggesting27

that the process is primarily governed by local conditions. Further, the occurrence of dy-28

namic triggering does not seem to correlate with ground motion (e.g., peak ground ve-29

locity) at the triggered sites. These observations indicate that nonlinear processes may30

have primarily regulated the dynamic triggering cases.31

Plain Language Summary32

Earthquakes interact with each other, such as mainshocks triggering nearby after-33

shocks. Earthquake dynamic triggering is a type of interaction where seismic waves from34

an earthquake trigger other earthquakes beyond several fault lengths, and sometimes,35

up to thousands of kilometers away. Triggered earthquakes may occur upon the arrival36

of the seismic waves but may also be delayed hours after the wave passage, suggesting37

the involvement of time-dependent processes. Identifying delayed cases relies on robust38

measures of seismicity-rate changes. Here we present a new method that can identify trig-39

gering cases without many assumptions. We find that earthquakes in southern Califor-40

nia are frequently triggered by distant earthquakes around the globe, and the triggered41

earthquakes tend to cluster in space and time. Some of the triggered earthquakes are larger42

in magnitude than the background seismicity. We also find that the triggering incidences43

do not seem to correlate with the seismic wave characteristics of the distant earthquakes.44

Our findings suggest that dynamically triggered earthquakes in southern California are45

likely caused by time-dependent, complex processes.46

1 Introduction47

While large earthquakes are difficult to predict on a given fault, earthquake occur-48

rence is not completely random (e.g., Abercrombie & Mori, 1996; Ross, Idini, et al., 2019;49

Trugman & Ross, 2019; Utsu, 1961). Earthquakes interact with each other and often clus-50

ter in space and time, such as commonly observed mainshock-aftershock sequences. For51

example, the 1992 Landers earthquake caused widespread aftershocks that occurred in52

the near-field (Bosl & Nur, 2002; Harris & Simpson, 1992; Parsons & Dreger, 2000) and53

the far-field (Gomberg, 1996; Gomberg et al., 2001). The far-field aftershocks were likely54

triggered by the passing seismic waves, termed earthquake dynamic triggering (Aiken55

& Peng, 2014; Gomberg & Johnson, 2005; Gonzalez-Huizar & Velasco, 2011). As seis-56

mic waves pass through a region, transient dynamic stresses perturb local fault systems57

that ultimately trigger earthquakes (Hill & Prejean, 2015). This direct correlation be-58

tween the triggered seismicity and passing waves reflects an observable process that promises59

tangible hope of deciphering earthquake nucleation mechanisms (Brodsky & van der Elst,60

–2–



manuscript submitted to JGR: Solid Earth

2014). Despite numerous observations of dynamic triggering around the globe, its oc-61

currence conditions and associated precise physical mechanisms remain unclear (e.g., Fan62

et al., 2021; Meng & Peng, 2014; Velasco et al., 2008). Understanding the physical pro-63

cesses is crucial, as damaging earthquakes can be dynamically triggered (e.g., Pollitz et64

al., 2012; Uchide et al., 2016; Yoshida, 2016) but are not considered in most seismic haz-65

ard models (e.g., Field et al., 2014).66

California is an ideal natural laboratory to study earthquake dynamic triggering67

because of its rich geophysical datasets including high quality catalogs, seismic records,68

and geodetic observations. The long-term continuous records provide an opportunity to69

examine the phenomenon by comparing statistical observations to a variety of geophys-70

ical observables (e.g., Fan et al., 2021; Miyazawa et al., 2021). Dynamic triggering has71

been frequently observed in California following M7 earthquakes from different regions72

(e.g., Aiken & Peng, 2014; Fan et al., 2022; Meng & Peng, 2014; Prejean et al., 2004).73

Further, geothermal and volcanic areas in the region, such as the Salton Sea Geother-74

mal Field (e.g., Fan et al., 2021), Coso Geothermal Field (e.g., Aiken & Peng, 2014), Gey-75

sers Geothermal Field (e.g., Stark & Davis, 1996), and Long Valley Caldera (e.g., Brod-76

sky & Prejean, 2005) seem to be particularly susceptible to dynamic triggering.77

In practice, earthquake dynamic triggering is often identified using statistical meth-78

ods that examine the significance of seismicity-rate changes following candidate trigger79

earthquakes (e.g., Marsan & Nalbant, 2005; Pankow & Kilb, 2020; Wyss & Marsan, 2011).80

If the changes are statistically significant, the local earthquakes are inferred to be trig-81

gered seismicity (e.g., Marsan & Nalbant, 2005; Pankow & Kilb, 2020; Wyss & Marsan,82

2011). Such statistical exercises often assume that local earthquake occurrence is a ran-83

dom and independent process, following a Poissonian distribution (Marsan & Nalbant,84

2005; Pankow & Kilb, 2020). However, this assumption is inaccurate for transient, trig-85

gered seismicity due to its correlated activity, small sample size, and short duration (e.g.,86

Fan et al., 2021). Fan et al. (2021) experimented using a sampling method to identify87

statistically significant changes in seismicity-rate. Here we critically reevaluate the ap-88

proach and construct new statistics that are free from the Poissonian assumption.89

There are several families of statistics that have been used to evaluate seismicity-90

rate changes, and we focus on the two most commonly used statistics for comparison,91

the β-statistic (Matthews & Reasenberg, 1988) and the Z-statistic (Habermann, 1983).92

We further develop two additional statistics to investigate earthquake moment-release93

changes, the βm-statistic and the Zm-statistic, which can help identify anomalous oc-94

currence of earthquakes with large magnitudes. The four test statistics were applied to95

southern California earthquakes to identify cases of dynamic triggering from 2008 to 2017.96

The statistical results are then compared with seismic waveform characteristics, includ-97

ing peak ground velocity (PGV), peak frequency, kinetic energy, and relative frequency98

content. Our approach provides a systematic way to investigate the physical mechanisms99

of earthquake dynamic triggering.100

We find that dynamic triggering is common throughout southern California, and101

about 70% of global M≥6 earthquakes may have triggered seismicity in the region. Sig-102

nificant seismic moment-release is triggered less often, but 52% of the global earthquakes103

may have triggered anomalies. Triggering of both types, seismicity and moment-release,104

is widespread in southern California, albeit with strong spatial heterogeneities in their105

triggering frequency. For example, earthquakes at geothermal fields and the San Jacinto106

Fault are frequently triggered, but triggering is rarely observed in the Los Angeles Basin.107

The general triggering patterns are consistent regardless of the test statistic that is used108

to evaluate the cases. We observe no obvious correlations between the triggering pat-109

tern and the instantaneous waveform metrics (e.g., PGV), suggesting that the transient110

dynamic stress is unlikely the primarily control for the observed cases. Our findings sug-111

gest that dynamic triggering in southern California likely involves nonlinear, time-dependent112

processes that may occur over hours to a day. Triggered seismicity clusters in space and113
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time, indicating that the regulating physical processes likely operate on local length scales114

on the order of tens of kilometers.115

2 Data and Methods116

2.1 Catalog and Waveform Data117

To study dynamic triggering in southern California, we use the Quake Template118

Matching catalog (QTM) with a detection threshold of 12 times the median average de-119

viation (MAD) for local seismicity (Ross, Trugman, et al., 2019). This catalog has nearly120

900 thousand earthquakes across southern California. We opt to use the 12 times MAD121

catalog over the 9.5 times MAD QTM version because it is more robust and is free from122

occasional day-long seismicity bursts that could be misinterpreted as triggering by our123

algorithm (e.g., Moutote et al., 2021).124

We consider global M≥6 earthquakes as possible candidate trigger earthquakes, which125

are obtained from the International Seismological Centre (ISC) catalog (International126

Seismological Centre, 2022). The catalog is downloaded from the Incorporated Research127

Institutions for Seismology Data Management Center. We consider 1,580 M≥6 candi-128

date trigger earthquakes between 2008 and 2017. To achieve a uniform sampling pro-129

cedure, we do not examine earthquakes from January to June 2008 and July to Decem-130

ber 2017; the details are described in Section 2.3. We also do not consider global earth-131

quakes that occurred in the two months after the 2010 El Mayor Cucapah Earthquake132

due to its extended triggering behavior in southern California (e.g., Inbal et al., 2017;133

Meng & Peng, 2014). In total, 1,388 candidate earthquakes are investigated in this study.134

To investigate local ground motions caused by the candidate trigger earthquakes,135

we examine the three-component, broadband, velocity seismograms recorded by stations136

in the region of interest, which roughly brackets southern California from 31◦ to 38◦ in137

latitude and from -123◦ to -113◦ in longitude. For each candidate event, we downloaded138

data from 10 minutes before the candidate earthquake origin time to two hours after.139

Thus, the data contains a 10-minute pre-event noise window and a two-hour signal win-140

dow, which include body wave phases and minor arc surface wave phases. Waveform data141

is downloaded using the Obspy Mass Downloader tool (Beyreuther et al., 2010).142

2.2 Study Area143

We focus on identifying dynamic triggering in southern California where the QTM144

catalog continuously reported local earthquakes (Figure 1). Ideally, the region would be145

gridded to have uniform coverage of southern California. Such a gridding scheme would146

lead to about 1,750 grids using a 0.2◦ separation distance. In practice, we take advan-147

tage of the well-documented surface fault traces from the Southern California Earthquake148

Center Community Fault Model (CFM) (Marshall et al., 2022) to identify sites of inter-149

est. We first discretize the study area into 429 circular sites centering on the CFM sur-150

face traces (Figure 1a). Each site has a radius of 20 km and we space them ∼20 km apart151

such that each grid overlaps by ∼50% in area (inset, Figure 1a). Overlapping the grids152

avoids a cluster of triggered seismicity being split by a region border, leading to possi-153

ble misidentification of dynamic triggering. Despite centering the grids on the CFM fault154

traces, our gridding strategy ensures the entire study area is nearly contained within the155

boundaries of the grid points. In each grid, we associate the QTM earthquakes contained156

within its footprint to the grid and estimate the magnitude of completeness (Mc) for the157

earthquakes using both the maximum-curvature and goodness-of-fit methods (Wiemer,158

2000). The estimate with the greater value is taken as the Mc for the grid (Figure 1c).159

When evaluating dynamic triggering for the grids, we only consider earthquakes with mag-160

nitudes greater than the Mc for the individual sites. Grid points containing less than 500161

earthquakes above Mc during the study period are not evaluated to ensure reliable re-162
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sults, leaving 222 grid points (Figure 1b-c). Our gridding approach leads to almost eight163

times less grid points than using an equal-separation uniform gridding scheme, which greatly164

improves the computational efficiency.165

Figure 1: Study area in southern California. (a) Map of locations (grid points) where
earthquake dynamic triggering is evaluated. Gray lines show surface fault traces from the
Southern California Earthquake Center Community Fault Model (CFM). Each red dot
represents a site of interest covering a region within a 20 km radius. Gray box shows the
region highlighted in the inset demonstrating the boundaries and overlapping of the grid
points near the Salton Sea area. (b) Earthquake density, representing the average number
of earthquakes per year that have magnitudes above the Mc within each grid point. (c)
Magnitude of completeness of the grid points. Grid points that have less than 500 earth-
quakes during the study period are removed.

2.3 Dynamic Triggering Identification166

We hypothesize that statistically significant seismicity-rate changes within the im-167

mediate 24 hours following a candidate earthquake are likely caused by earthquake dy-168

namic triggering. The seismicity-rate changes are examined using two different statis-169

tics: the β-statistic (Matthews & Reasenberg, 1988) and the Z-statistic (Habermann,170

1983). Furthermore, we modify the two statistics to evaluate significant seismic moment-171

release anomalies, which we term the βm-statistic (Section 2.3.1) and the Zm-statistic172

(Section 2.3.2). The statistics compare seismicity or seismic moment within two differ-173

ent time periods, δa and δb, where δa is the time period of interest and δb is the refer-174

ence time period. For the time period of interest (δa), we evaluate seismicity-rate and175

moment-release changes within 2-, 6-, 12-, and 24-hour time windows at each grid after176

the candidate earthquake origin time. The time-window length can be adjusted for cus-177

tomized applications. We select the 2-hour window to monitor possible instantaneous178

triggering and use the other three windows to characterize delayed dynamic triggering.179

It is worth noting that the instantaneous-triggering window length can be shorter, al-180

beit at the cost of the robustness of the statistics due to the small number of samples.181

The reference time period (δb) is set to be the immediate 30 days before and after the182

candidate earthquake for the β- and βm-statistics (a total of 60 days) and the immedi-183

ate 30 days before the candidate earthquake for the Z- and Zm-statistics. Positive statis-184

tic values suggest an increase in seismicity-rate or moment-release and the negative val-185

ues suggest a decrease. Our procedure aims to identify spatiotemporal dependent thresh-186

olds to quantify the significance of the changes in seismicity and moment-release after187

a candidate trigger earthquake.188
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2.3.1 β- and βm-statistics189

The β-statistic characterizes seismicity-rate changes with respect to a reference time190

period that is normalized by its standard deviation (a dispersion parameter), which can191

be given by192

β =
Na − N̄a

σa
, (1)193

where Na is the number of earthquakes during the time period of interest (δa), and N̄a194

and σa are its expected value and standard deviation during the reference time period195

(δb). The expected value can be obtained analytically as N̄a = Λ = Nb · δaδb . When as-196

suming that earthquake occurrence follows a Poisson distribution, the standard devia-197

tion is the square root of the expected value, or σa =
√
Λ. Alternatively, N̄a and σa198

can be estimated empirically from the statistical population of Na. Specifically, we ran-199

domly reposition the δa time window within the δb time window 10,000 times, leading200

to 10,000 samples of Na. The population expected value and standard deviation are es-201

timated as202

N̄a =
1

M

M∑
i=1

Ni, (2)203

σa =

√√√√ 1

M − 1

M∑
i=1

(Ni − N̄a)2, (3)204

where M is the number of samples (10,000 in this study) and Ni is the earthquake num-205

ber in the i-th reposition time window. The obtained Na samples are converted to their206

corresponding β-values (Equation 1), and we term this set of values B. The β-statistic207

of the original time period of interest is denoted as β0. The procedure is similar to that208

outlined in Fan et al. (2021), but N̄a and σa are obtained empirically from the sampled209

population and our new procedure is free from earthquake occurrence assumptions. We210

construct the Na samples and their associated β-values for every candidate trigger earth-211

quake at every grid and time window.212

Typically, the β-statistic is considered 95% significant when β ≥ 1.96 (Wyss &213

Marsan, 2011). In this case, the β-statistic attends to a zero-mean, unit-variance Gaus-214

sian distribution, which is a result of the Poissonian assumption about seismicity occur-215

rence (Wyss & Marsan, 2011). However, the assumption may be inaccurate and the β ≥216

1.96 threshold may cause erroneous identifications of significant seismicity-rate changes217

(e.g., Fan et al., 2021; Marsan & Nalbant, 2005; Pankow & Kilb, 2020; Prejean & Hill,218

2018). Therefore, we adopt the procedure described in (Fan et al., 2021) to evaluate the219

statistical significance of β0. To assess its statistical significance, we use the β-statistic220

values (B) to construct the B-distribution, a β-statistic probability density function (PDF,221

e.g., Figure 2c), by using the kernel density estimator (Bowman & Azzalini, 1997; Fan222

et al., 2021; Silverman, 1986). The 95th percentile from the PDF accords with a 95% sig-223

nificance level, and the value is taken as one threshold, βa
95%, for evaluating the signif-224

icance of the seismicity-rate changes. We choose the 95th confidence level as suggested225

in Fan et al. (2021) and emphasize that the value of the parameter is chosen subjectively.226

One can and sometimes should use a different value, but this is dependent on the specifics227

of individual cases (e.g., Cattania et al., 2017; Pankow & Kilb, 2020). Additionally, we228

calculate βb as the β-statistic for seismicity in a time window that has equal length of229

δa but immediately precedes the candidate event origin time. We consider the seismicity-230

rate change statistically significant for the given time window δa and grid point if β0 >231

βa
95% and β0 > βb (e.g., Figure 2c). For such cases, we hypothesize that the seismicity-232

rate change was caused by dynamic triggering.233

When computing the β-statistic for seismicity-rate changes, earthquakes with dif-234

ferent magnitudes are treated equally as only their occurrences are evaluated. However,235
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Figure 2: Example statistic distributions for δa as 6 hours. (a) Earthquake occurrence
at a grid point footprint near the Coso Geothermal Field within 24 hours of a candidate
trigger earthquake. Inset: candidate trigger earthquake (2017-01-08 23:47:13.66, M6.0,
ISC ID: 611831502) and the study site. (b) Cumulative seismicity and moment-release
within the grid point boundary and within 24 hours of a candidate trigger earthquake. (c)
β-statistic distribution (B-distribution), β0, and the associated thresholds βb and βa

95%.
(d) βm-statistic distribution (Bm-distribution), βm−0, and the associated thresholds βm−b

and βa
m−95%. (e) Z-statistic distributions (ζa- and ζb-distributions), Z0, and the associ-

ated thresholds Zb, Z
a
95%, Z

b
5%. (f) Zm-statistic distributions (ζam- and ζbm-distributions),

Zm−0, and the associated thresholds Zm−b, Z
a
m−95%, Z

b
m−5%.

one magnitude difference causes about 31 times more seismic moment-release, and β-236

statistics based on earthquake occurrence would underestimate the impact of larger earth-237

quakes. To detect statistically significant seismic moment-release anomalies that may238

have been caused by earthquake dynamic triggering, we develop a new moment-release239

statistic, the βm-statistic. We sum the seismic moments of earthquakes in δa, denote it240

Ma, and compare it to the seismic moment-release in the reference time period δb (M̄a241

and σMa
). For simplicity, the magnitude (m) in the QTM catalog is taken as the moment-242

magnitude for this calculation, and the absolute moment-release estimate is therefore likely243

biased (e.g., Shearer et al., 2022). However, identification of moment-release anomalies244

is not impacted because the statistic focuses on relative differences. The βm-statistic is245

defined as:246

βm =
Ma − M̄a

σMa

, (4)247
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where248

Ma =

Na∑
i=1

101.5mi+9.1. (5)249

The procedure to sample the βm-statistic population and obtain Bm is similar to that250

of B. We estimate the population expected value (M̄a) and standard deviation (σMa
)251

from Bm and build the Bm-distribution to identify its statistical-significance threshold,252

βa
m−95% (e.g., Figure 2d). The sampling and construction procedures are similar to those253

outlined for the β-statistic. We then consider that the moment-release change is statis-254

tically significant for the given time window δa at a grid when βm−0 > βa
m−95% and βm−0 >255

βm−b (e.g., Figure 2d).256

2.3.2 Z- and Zm-statistics257

Similar to the β-statistic, the Z-statistic can also measure the degree of seismicity-258

rate changes in comparison to the background seismicity-rate (Habermann, 1981, 1983).259

In this study, we examine the Z-statistic and compare the results with the β-statistics260

for the same earthquakes. The Z-statistic is a symmetric measure of the seismicity-rate261

changes because its normalization depends on seismicity in both the time period of in-262

terest and reference period (Wyss & Marsan, 2011). Following Habermann (1983), we263

compute the Z-statistic as264

Z =
Na/δa − Nb/δb√(
σa/δa

)2
+
(
σb/δb

)2 , (6)265

where Nb is the number of earthquakes within δb, σb is the standard deviation associ-266

ated with the distribution of Nb, and Na, δa, δb, and σa are defined as above. The quan-267

tities Na/δa and Nb/δb represent the mean seismicity-rates during their respective time268

periods. The Z-statistic is free from seismicity occurrence assumptions if σa and σb are269

estimated empirically. Similar to the β-statistic sampling procedure, we sample the Nb270

population by randomly repositioning the δb window 10,000 times within one year of the271

candidate trigger earthquake, ranging from 6 months before to 6 months after the event272

origin time. We estimate the population statistics for the Nb population, particularly273

the expected value and standard deviation (σb), which are then used to compute a Z-274

statistic for the candidate trigger earthquake at a given grid point. We note that the sam-275

pling procedure implicitly assumes that σa and σb are invariant throughout their respec-276

tive sampling time periods, which is 30 days for σa and one year for σb.277

Similar to the β-statistic, the Z-statistic also attends to a zero-mean, unit-variance278

Gaussian distribution when the earthquake occurrence follows a Poisson distribution. In279

such a case, the seismicity-rate increase is statistically significant at the 95% confidence280

level when Z ≥ 1.96 (Aiken et al., 2018; Wyss & Marsan, 2011). In our approach, we281

require the Z-statistic exceed Za
95%, Zb, and Zb

5% (e.g., Figure 2e). The Za
95% threshold282

is the 95th percentile of a Z-statistic distribution (ζa-distribution) constructed by ran-283

domly sampling Ni for a window length of δa within 30 days before and after the can-284

didate trigger earthquake origin time. We hold Nb constant as the seismicity in the 30 days285

before the candidate trigger earthquake. The Zb threshold is for seismicity in a time win-286

dow that has equal length of δa but immediately precedes the candidate event origin time.287

The Zb
5% is the 5th percentile obtained from a Z-statistic distribution (ζb-distribution)288

constructed by sampling Ni for a window length of δb within 6 months before and af-289

ter the candidate trigger earthquake origin time. We keep Na constant as the seismic-290

ity within the δa window after the origin time.291
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Similar to the βm-statistic, we design the Zm-statistic to detect seismic moment-292

release anomalies. The Zm-statistic is given by:293

Zm =
Ma/δa − Mb/δb√(

σMa/δa
)2

+
(
σMb/δb

)2 , (7)294

where Mb follows Equation 5 but for the δb time period. The sampling procedure for the295

Zm-statistic is similar to that of the Z-statistic (e.g., Figure 2g), and we define a sim-296

ilar set of thresholds to evaluate the statistical significance of the moment-release anoma-297

lies, including, Zm−0 > Za
m−95%, Zm−0 > Zm−b, and Zm−0 > Zb

m−5% (e.g., Figure 2g).298

Taking the January 8, 2017 M6 Queen Charlotte earthquake as an example trig-299

ger earthquake (Figure 2a), we find that the earthquake may have triggered seismicity300

within the Coso Geothermal Field within 6 hours of its origin time (Figure 2 and Ta-301

ble S1), which is indicated by both the β-statistic and Z-statistic. However, neither the302

βm- or Zm-statistic suggests anomalous moment-release change at the location during303

the 6-hour time window.304

2.4 Waveform Metrics305

We inspect the velocity waveforms of the candidate trigger earthquakes in south-306

ern California and measure four instantaneous waveform metrics: peak ground velocity,307

peak frequency, kinetic energy, and relative frequency content. We measure the peak ground308

velocity (PGV) in two frequency bands, 0.01–0.1 Hz and 1–5 Hz (Figure 3a-b). After down-309

loading the records, we first remove the instrument response and decimate the data to310

a 20 Hz sampling rate. Then we band-pass filter the data and compute their envelope311

functions. The maximum envelope amplitudes are measured in both the pre-event noise312

window (10 minutes) and the signal window (2 hours) independently for all three chan-313

nels at each station. A signal-to-noise ratio (SNR) is computed as the ratio between the314

maximum amplitudes of the signal and noise windows for each channel. We only use traces315

that have a SNR greater than 5 for both the low- and high-frequency bands to measure316

the waveform metrics. If all three channels at a station have a SNR greater than the thresh-317

old, we take the geometric mean of the qualified waveform envelopes and calculate a sin-318

gle PGV value for the station. We use the same qualified traces for the other calculated319

metrics and discard the rest. Figure 3a-b demonstrates an example of measuring the PGV320

values of the 2017 M6 earthquake in the Queen Charlotte Islands, Canada at CI.JRC2321

(near Coso) in the two frequency bands. The 0.1 to 1 Hz frequency band is not inves-322

tigated here as the noise level is high due to microseisms.323

We measure the peak frequency of qualified ground velocity records at each sta-324

tion caused by the candidate trigger earthquakes (e.g., Figure 3c). For an earthquake-325

station pair, we estimate the power spectrum of the waveform in the signal window for326

each channel using the multitaper method with 11 Slepian tapers (Thomson, 1982). Given327

the earthquake-station distance, we focus on the 0.01–5 Hz frequency band and compute328

the geometric mean of the power spectra from the three channels. The corresponding329

frequency of the maximum power is taken as the peak frequency.330

For the kinetic energy calculation, the qualified seismic data are first band-pass fil-331

tered at 0.01 to 10 Hz (Figure 3d), and the root-mean-square (RMS) values are computed332

for each channel in the signal window. This leads to three measurements in total for each333

station. We then record the RMS-square-sum of the signal window as the kinetic energy334

per unit mass for the earthquake-station pair. Figure 3d shows an example of measur-335

ing the kinetic energy for the M6 Queen Charlotte earthquake at CI.JRC2.336
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Lastly, we examine the relative frequency content of the passing waveforms. We337

modify the Frequency Index (FI) metric (Buurman & West, 2010) given by:338

FI = log10

(
Āu

Āl

)
, (8)339

where Āl is the mean power spectrum amplitude in a lower frequency band and Āu in340

an upper frequency band. We replace the mean spectral amplitudes with the integrated341

total power within each frequency band, which is a more stable calculation. We refer to342

this as the Frequency Content Ratio (FCR):343

FCR = log10

(∫ fl2
fl1

S(f) df∫ fu2

fu1
S(f) df

)
= log10

(
Pl

Pu

)
(9)344

where S(f) is the geometric mean of the power spectra of the three channels and fl1,345

fl2, fu1, fu2 define the lower and upper frequency bands. Here the lower frequency band346

is taken as 0.01–1 Hz, and the upper frequency band is 1–5 Hz (Figure 3c). We place the347

lower band in the numerator to ensure that the FCR estimates are primarily positive for348

teleseismic earthquakes, due to their more prominent low frequency signals.349

The waveform metrics are computed for each station independently, and the mea-350

surements for each candidate trigger earthquake are interpolated to nearby grid points.351

For each grid point, we obtain the median of the waveform metrics at the five nearest352

stations within 100 km (Figure 4). We do not make measurements at grid points when353

less than three stations are available.354

3 Results355

In this section, we detail our observations of seismicity and moment-release anoma-356

lies in southern California associated with the candidate earthquakes, focusing on their357

spatial (Section 3.1) and temporal (Section 3.2) patterns. Since the seismicity-rate anoma-358

lies are identified at a 95% confidence level, we omit grid points that triggered less than359

5 times from our results and discussion (see Section 4.1 for details). In general, we find360

that up to 70% of candidate trigger earthquakes caused dynamic triggering in southern361

California from 2007 to 2017. We find that triggering occurrence varies from fault to fault,362

and triggering occurs most often at the Salton Sea and Coso geothermal fields as well363

as the San Jacinto Fault. Furthermore, we identify temporal patterns evolving at mul-364

tiple scales, from instantaneous to delayed responses, and from intermittent occurrence365

at a given site to frequent triggering in southern California. Lastly, we examine the wave-366

form metrics of candidate trigger earthquakes at sites with both normal and anomalous367

seismicity and moment-release rate changes.368

3.1 Spatial Triggering Patterns369

Dynamic triggering likely occurs frequently in southern California. About 70% of370

the candidate trigger earthquakes associate with seismicity anomalies that are identi-371

fied using the β-statistic (Figure 5). Given the close temporal correlation, we consider372

that the anomalies are dynamically triggered by the earthquakes. Spatially, seismicity373

at 54% of the grid points (a total of 222 points) was triggered at least five times. Us-374

ing the Z-statistic, we find that 60% of candidate earthquakes associate with seismic-375

ity anomalies, and seismicity at 42% of the grid points was likely dynamically triggered376

five or more times. Anomalous seismic moment-release is less commonly observed to as-377

sociate with the candidate earthquakes, with the βm- and Zm-statistics identifying trig-378

gered seismicity after 52% and 32% of the candidate earthquakes, respectively. Spatially,379
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Figure 3: Waveform metric calculations of the January 8, 2017 M6 Queen Charlotte
earthquake at station CI.JRC2, near the Coso Geothermal Field. (a–b) Waveform en-
velopes (geometric mean of the three-component envelopes) at the 0.01–0.1 Hz and 1–
5 Hz frequency bands. The maximum amplitudes of the envelopes are taken as the PGV
of the frequency bands, respectively. (c) Geometric mean of the three-component power
spectra. Peak frequency corresponds to the frequency yielding the maximum value of the
spectrum. FCR is calculated using the integral results Pl in the 0.01–1 Hz band and Ph

in the 1–5 Hz band (Equation 9). (d) Band-pass filtered waveforms. Square sum of the
three-component RMS values is taken as the kinetic energy per unit mass. The BHE data
is shifted 35 µm/s upwards, and BHN 70 µm/s.

moment-release anomalies are identified at 45% and 33% of grid points using the βm-380

and Zm-statistics, respectively.381

Spatial patterns of triggering occurrence for the four test statistics are highly het-382

erogeneous (Figure 5). Here triggering occurrence counts the number of candidate trig-383

ger earthquakes that caused seismicity or moment-release anomalies in any of the four384

time windows (δa as 2, 6, 12, or 24 hours) during the study period. The Salton Sea Geother-385

mal Field (SSGF), Coso Geothermal Field (CGF), and San Jacinto Fault (SJF) most386

frequently experienced seismicity-rate anomalies identified by the β- and Z-statistics, which387

are likely caused by the passing waves (Figure 5a,c). Seismicity at the Elsinore Fault,388

the merging connection of the San Andreas and San Jacinto Faults, the southern San389

Andreas, the southern Sierra Nevada, and the Ridgecrest region is frequently triggered390

by remote earthquakes. In contrast, moment-release anomalies that are identified by the391

βm- and Zm-statistics have different spatial patterns than those of the seismicity-rate392

anomalies (Figure 5b,d). Specifically, the SSGF and CGF are less likely to have moment-393
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Figure 4: Example interpolation of PGV values in the 0.01-0.1 Hz band for the January
8, 2017 M6 Queen Charlotte earthquake. (a) Measured values at each station. (b) Inter-
polated values for qualified grid points.

release anomalies than SJF, and their triggering occurrence is comparable to that of the394

Elsinore Fault (Figure 5b,d). Moment-release anomalies are less frequently observed at395

the merging connection of the San Andreas and San Jacinto Faults, Ridgecrest area, and396

southern San Andreas fault (Figure 5b,d).397

We observe more delayed (6 to 24 hour windows, Figures S1, S2 and 7) than in-398

stantaneous triggering cases (2 hour, Figure 6). Such triggering occurrence differences399

between the instantaneous and delayed cases are observed for all four statistics. While400

instantaneous triggering cases are often difficult to observe because the catalog complete-401

ness may suffer due to the passing wave coda, our results show that delayed dynamic trig-402

gering of both seismicity and moment-release occurs frequently in southern California403

at multiple sites. For example, 83% of the β-statistic seismicity-rate anomalies are de-404

layed cases, and 79% of the Z-statistic cases are delayed, showing strong agreement. Fur-405

ther, 91% and 89% of moment-release anomalies are delayed cases from the βm- and Zm-406

statistics, respectively. Around half of instantaneously triggered cases of seismicity also407

extended into later hours. Specifically, 51% and 46% of the instantaneous cases, as iden-408

tified by the β- and Z-statistics, had extended responses reaching up to and beyond the409

6-hour window. Intriguingly, more than half of the instantaneously triggered moment-410

release extended into later hours, with 63% and 59% of cases for the βm- and Zm-statistics,411

respectively.412

Our triggering occurrence patterns are similar to the triggerability pattern in Miyazawa413

et al. (2021) with some differences at the Beta Offshore Platform, San Andreas Fault,414

and the southern Sierra. Miyazawa et al. (2021) investigates dynamic triggering occur-415

rence in southern California using the same QTM catalog. Differently, Miyazawa et al.416

(2021) adapts the method in van der Elst and Brodsky (2010) and inverts for trigger-417

ability based on distributions of separation times between the candidate earthquake and418

the local earthquakes immediately preceding and succeeding the candidate. The discrep-419

ancies at a few sites in our results are likely because we examine seismicity in the en-420

tire time window and not just the temporally closest events. Our study corroborates the421

findings of Velasco et al. (2008), which finds that triggering is ubiquitous around the globe422

and independent of tectonic environment. Velasco et al. (2008) reports a triggering rate423

of 80% for M≥7 candidates.424
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Figure 5: Spatial triggering patterns in southern California. Triggering occurrence iden-
tified using the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d) are
denoted in color. Triggering occurrence is the number of candidate trigger earthquakes
that caused seismicity or moment-release anomalies in any of the four time windows.

3.2 Temporal Triggering Patterns425

To investigate the temporal evolution of dynamic triggering processes, we inspect426

time intervals between consecutive triggering incidences at every grid point, denoted as427

local recurrence times. We also investigate consecutive time intervals of dynamic trig-428

gering cases in southern California for any grid point, which we term interevent time.429

Dynamic triggering occurs at individual grid points intermittently, often on the timescale430

of months to years (e.g., Figure 8). The spatial pattern of recurrence times correlates431

with that of triggering occurrence and there are strong heterogeneities from site to site432

(Figures 5 and 8). The median recurrence times range from tens of days to years for dif-433

ferent sites, and adjacent sites tend to have similar recurrence times. For example, the434

Salton Sea Geothermal Field, Coso Geothermal Field, and San Jacinto Fault have fre-435

quent incidences of seismicity-rate anomalies, with average recurrence times around 2–436

2.5 months (Figure 8). In contrast, we rarely observe seismicity-rate anomalies in the437

LA Basin, showing gaps on the order of years between triggering cases (Figure 8). Sim-438

ilar to the spatial pattern of moment-release anomalies (Figure 5), the geothermal fields439
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Figure 6: Triggering occurrence during the 2 hour (δa=2) time window using the β-
statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d).

do not have significant moment-release anomalies very often (Figure 8). For example,440

Figure 9a–d shows the distributions of recurrence times for a few notable locations us-441

ing the β-statistic. Similar figures of other statistics are included in the Supplementary442

Material.443

On average, dynamically triggered seismicity is identified using the β- and Z-statistics444

at one or more of the grids in southern California every 3.4 and 3.9 days, respectively.445

Similarly, moment-release anomalies from the βm and Zm-statistics occur every 4.5 and446

7.4 days on average in the region, respectively. The distributions of interevent times in447

southern California are summarized in Figure 9e–h, showing that dynamic triggering oc-448

curs frequently in southern California on a scale of every few days. We also explored tem-449

poral variations of the recurrence and interevent times in the region during the study450

period, e.g., whether the triggering patterns evolve with the occurrence of the 2010 El451

Mayor Cucapah earthquake and the 2019 Ridgecrest earthquakes. We do not identify452

significant variations over the triggering patterns using the QTM catalog.453
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Figure 7: Triggering occurrence during the 24 hour (δa=24) time window using the β-
statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d).

3.3 Waveform Results454

We measure waveform metrics (e.g., Figures 3-4) at all 222 grid points for the 1388455

candidate trigger earthquakes, including events and grids that do not associate with seismicity-456

rate and moment-release anomalies (Figures 10-12). The measurements are then grouped457

into three categories: instantaneous (2-hour window), delayed (6- to 24-hour windows),458

and non-triggering. We examine distributions of waveform metrics for the three groups459

to evaluate their possible differences. For PGV in the 0.01–0.1 Hz band we observe no460

significant differences between the three distributions for the four test statistics (Figure 10a–461

d). Interestingly, instantaneous triggering cases seem to have a larger minimum PGV462

than the delayed cases in the 1–5 Hz frequency band (Figure 10e–h). The 1–5 Hz PGV463

distributions shift towards higher values compared to the delayed and non-triggering dis-464

tributions in Figure 10e–h, most clear for the βm- and Zm-statistics. On average, a PGV465

threshold of 0.2 and 0.5 µm/s in the 1–5 Hz band seems to be observed for the instan-466

taneously triggered seismicity and moment-release anomalies, respectively. The thresh-467

old does not exclude occurrence of delayed and non-triggering cases as there are incidences468

of both groups with similar or greater PGV values. The observed high-frequency thresh-469

old is also observed in the FCR metric, manifesting as a leftward shift of the instanta-470
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Figure 8: Median recurrence time at the qualified grid points using the β-statistic (a),
βm-statistic (b), Z-statistic (c), and Zm-statistic (d).

neous distributions (Figure 11e–h), which suggests higher PGV values at high frequen-471

cies and therefore lower FCR values. There are no obvious differences in the distribu-472

tions of the peak frequency or kinetic energy for the four test statistics (Figures 11a–d473

and 12). In summary, the waveform characteristics of the candidate earthquakes can-474

not deterministically differentiate the triggering incidence from non-triggering cases or475

separate instantaneous and delayed cases.476

4 Discussion477

Dynamically triggered seismicity occurs ubiquitously in southern California, albeit478

with strong occurrence heterogeneities in space and time. Moment-release anomalies share479

similar spatiotemporal patterns with the seismicity-rate anomalies but occur less frequently.480

In this section we will first evaluate the identification uncertainty and limitations (Sec-481

tion 4.1), and then examine possible triggering mechanisms (Section 4.5).482

4.1 Uncertainty and Resolution483

In this study, we identify seismicity-rate and moment-release anomalies at a 95%484

confidence level, and the identified anomalies are interpreted to associate with candidate485
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Figure 9: Distribution of triggering recurrence times at example sites and distribution
of interevent times for southern California. (a) Map view of three sites. Each polygon
may include more than one grid point, e.g., the San Jacinto Fault Zone. (b–d) Recurrence
times at the Salton Sea Geothermal Field (b), the San Jacinto Fault Zone (c), and the
Coso Geothermal Field (d). (e–f) Interevent times for southern California obtained using
the the β-statistic (e), Z-statistic (f), βm-statistic (g), and Zm-statistic (h).
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Figure 10: Distribution of PGV values in the 0.01–0.1 Hz (a–d) and 1–5 Hz (e–h) fre-
quency bands for triggering identified by the β-statistic (a,e), Z-statistic (b,f), βm-
statistic (c,g), and Zm-statistic (d,h). Histograms are color coded to represent the in-
stantaneous triggering (yellow), delayed triggering (plum), and no triggering cases (gray).
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Figure 11: Distribution of peak frequency (a–d) and FCR (e–h) values for triggering
identified by the β-statistic (a,e), Z-statistic (b,f), βm-statistic (c,g), and Zm-statistic
(d,h). Histograms are color coded to represent the instantaneous triggering (yellow), de-
layed triggering (plum), and no triggering cases (gray).
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Figure 12: Distribution of kinetic energy values for triggering identified by the β-statistic
(a), Z-statistic (b), βm-statistic (c), and Zm-statistic (d). Histograms are color coded to
represent the instantaneous triggering (yellow), delayed triggering (plum), and no trigger-
ing cases (gray).

trigger earthquakes. We omitted locations that triggered less than five times from our486

results. Assuming each triggering case is independent and has a 5% chance of being a487

false positive, there is less than a 3.1 × 10−5% probability that all triggering cases at488

a site are false positives if that site triggers at least five times. Our five-times selection489

criterion ensures that the observed spatial patterns are robust. Similarly, the temporal490

patterns are better resolved for sites with frequent triggering cases (Figure 9a–d), such491

as the San Jacinto Fault Zone, the Salton Sea Geothermal Field, and the Coso Geother-492

mal Field. The identification of dynamic triggering could be influenced by a variety of493

factors, including background seismicity, magnitude of completeness, window length, af-494
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False Positive Rate Poissonian Catalog ETAS Catalog

β-statistic 0.87% 1.53%
Z-statistic 0.87% 1.46%
βm-statistic 4.73% 2.26%
Zm-statistic 3.35% 1.31%

Table 1: False positive rates of the statistical identification procedures when applied to a
Poissonian and ETAS synthetic catalog.

tershocks of candidate events, and consecutive candidate earthquakes with short sepa-495

rations. To evaluate the robustness of the results, we examine the contribution of these496

factors item by item below. Through the suite of exercises, we confirm the robustness497

of our findings and outline possible biases in the results.498

We generate two synthetic catalogs that do not include triggering cases to test the499

statistical procedures. We first generate a ten-year-long Poissonian catalog, where the500

occurrence of seismicity follows a Poisson distribution with magnitudes drawn from the501

probability distribution associated with the Gutenberg-Richter Law (Fiedler et al., 2018;502

Gutenberg & Richter, 1944). To construct the Poisson distribution we use an earthquake503

rate parameter of 0.002 earthquakes per second, equivalent to the number of earthquakes504

above completeness per second in the QTM catalog. We set the Gutenberg-Richter Law505

b-value to 0.99, an empirically obtained value for southern California (Hardebeck, 2013).506

Without losing generality, we assume that the seismicity occurs within the footprint of507

one grid point. We then randomly select 1,500 times to represent global candidate earth-508

quakes and apply the same statistical procedures as detailed in Section 2.3 to evaluate509

the seismicity-rate and moment-release significance. Out of the 1,500 realizations, 0.87%510

of the cases are identified by both the β- and Z-statistics as anomalously high seismicity-511

rates, and 4.73% and 3.35% of the cases are labeled by the βm- and Zm-statistics as moment-512

release anomalies (Table 1). These cases are false positives, but the rates are less than513

the 5% threshold (95% confidence level) defined in our procedure.514

The Poissonian catalog does not include mainshock-aftershock sequences of local515

earthquakes. Therefore, we design a second synthetic ten-year-long catalog following the516

temporal Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988), and the cat-517

alog is created using the procedure outlined in Shearer (2012a) and Shearer (2012b). The518

ETAS catalog includes both the random background seismicity and mainshock-aftershock519

sequences governed by the Omori-Utsu Law (Utsu, 1961). The ETAS parameters required520

in this formulation are aftershock productivity, b-value, and the Omori’s Law time de-521

cay parameters c and p. We use an aftershock productivity of 0.003, an estimate spe-522

cific to the QTM catalog from Miyazawa et al. (2021), a b-value of 0.99 (Hardebeck, 2013),523

a c value of 10−4 days, in accordance with Moutote et al. (2021) for the QTM catalog,524

and a p value of 1, near the global median value (Utsu et al., 1995; Zhuang et al., 2012).525

The earthquake magnitudes are randomly drawn from the same Gutenberg-Richter mag-526

nitude distribution used for the Poissonian catalog. Similarly, the seismicity is attributed527

to one grid point, and 1,500 time realizations are inspected. We find false-positive rates528

of 1.53% and 1.46% for the β- and Z-statistics and 2.26% and 1.31% for the βm- and529

Zm-statistics (Table 1). The false positive rates of all-four statistics are below 5% for the530

ETAS catalog. These tests confirm the effectiveness of the method.531

We test if triggering occurrence correlates with the total number of earthquakes532

greater than Mc within each grid by computing the correlation coefficient (Figure 13a).533

The seismicity-rate anomalies identified by the β- and Z-statistics moderately correlate534
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Figure 13: (a) Correlation coefficients between triggering occurrence and the number of
earthquakes within the footprint of the grid points. (b) Correlation coefficients between
triggering occurrence and the magnitude of completeness of earthquakes within the foot-
print of the grid points. Horizontal axis denotes the four time windows.

with the total earthquake number. Interestingly, the correlation coefficient is higher for535

instantaneous triggering than delayed cases. For example, the β-statistic has a correla-536

tion coefficient of 0.59 for the 2 hour window, but only 0.31 for the 24 hour window. A537

similar pattern is observed for the Z-statistic (Figure 13a). We find a strong correlation538

between the triggering occurrence of moment-release anomalies and the distribution of539

earthquake numbers. On average, the moment-release anomaly patterns identified by the540

βm- and Zm-statistics have correlation values around 0.5-0.7, differing from the seismicity-541

rate patterns (Figure 13a). There are some variations in the correlation values among542

different window lengths, i.e., correlations for the βm-statistic vary from 0.76 at 2 hours543

to 0.68 at 24 hours, and correlations for Zm-statistic oscillate in between 0.62 to 0.73 for544

the four window lengths. These results differ from Miyazawa et al. (2021) which found545

no correlation between the triggerability and seismicity-rate for a given site, but are in546

qualitative agreement with observations reported in van der Elst and Brodsky (2010).547

These correlation coefficients suggest that areas of higher background seismicity-rates548

are moderately more likely to experience frequent dynamic triggering.549

Dynamically triggered earthquakes are generally small (Hill & Prejean, 2015), and550

lower magnitudes of completeness permit the identification of more triggered cases (Li551

et al., 2022). Therefore, the observed spatial pattern could be because the catalog has552

heterogeneous spatial resolutions. To determine the effect, we compute correlation co-553

efficients between spatial patterns of the triggering occurrence and magnitude of com-554

pleteness. The results are plotted in Figure 13b and show that each test statistic does555

not have a significant correlation with Mc since all coefficients are between -0.4 and 0.1.556

The seismicity anomalies identified by the β- and βm-statistics generally have a higher557

negative correlation with Mc than their Z-counterparts (Figure 13b). The coefficients558

for the βm- and Zm-statistics typically decrease with time window (δa). For example,559

the coefficients range from -0.26 to -0.38 from 2 to 24 hours for the βm-statistic, and they560

vary from -0.01 to -0.27 for the Zm-statistic from 2 to 24 hours. The correlation values561

suggest that our identified cases are not significantly biased by the magnitude of com-562

pleteness at different sites.563
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The overlapping δa windows may result in limited temporal resolutions of trigger-564

ing types. For example, the 24 hour window includes seismicity from the 2 hour window,565

and intensely triggered seismicity in the 2 hour window could lead to an identification566

at a later time window, even if the triggered seismicity ceases. Such scenarios may com-567

plicate the extended cases but would not impact our identification of instantaneously trig-568

gered cases. However, identification of instantaneous cases may have been hampered by569

the coda of the passing seismic waves, which causes challenges in detecting and locat-570

ing local microearthquakes. Furthermore, sporadic earthquakes could have been instan-571

taneously triggered with a low seismicity-rate or low magnitudes (below Mc). These cases572

may have been missed by our procedure, which therefore may have underestimated the573

instantaneous triggering cases.574

When multiple candidate earthquakes occur within 24 hours of each other and seismicity-575

rate and moment-release anomalies are identified at the sites of interest, it is challeng-576

ing to separate the triggering contributions from the candidate earthquakes. In such cases,577

we consider that each of the earthquakes have contributed to cause the observed dynamic578

triggering, which may overestimate triggering occurrence. Specifically, M≥7 earthquakes579

often have M≥6 aftershocks, whose effects in dynamic triggering might be marginal. To580

evaluate the effect of M≥6 aftershocks in identifying dynamic triggering, we compare the581

results before and after removing aftershocks of the candidate trigger earthquakes. Re-582

moving potential aftershocks as candidate events may help avoid counting duplicate trig-583

ger earthquakes and underestimating the recurrence and interevent times.584

For the removal procedure, we follow Knopoff et al. (1982) to define a spatial win-585

dow to identify aftershocks of the candidate earthquakes. The Knopoff et al. (1982) main-586

shock footprint covers 100 km for an M6 event to 900 km for an M8 event. We use lin-587

ear interpolation and extrapolation schemes to obtain the footprint dimension for a can-588

didate trigger earthquake. If a smaller candidate event is within 24 hours (correspond-589

ing to the largest δa) of a previous event and is within its spatial area defined by Knopoff590

et al. (1982), the smaller earthquake is considered an aftershock of the greater candidate591

event, and it is excluded from the candidate trigger list. The spatial footprint from Knopoff592

et al. (1982) overestimates the aftershock zone and yields upper limits of the recurrence593

and interevent times. The percentage of candidate earthquakes that caused dynamic trig-594

gering is largely invariant to the aftershock removal procedure (Table 2). Additionally,595

the interevent times remain stable for the test statistics with less than one day of a dif-596

ference. The aftershock removal exercise confirms the robustness of our finding and sup-597

ports the conclusion that triggering is ubiquitous across southern California.598

Not all large earthquakes close in time are part of the same sequence, and our pro-599

cedure does not separate the triggering effects from multiple candidate earthquakes oc-600

curring within 24 hours. Multiple candidate earthquakes may increase the chances of dy-601

namic triggering in southern California. We evaluate the hypothesis by examining the602

correlation between triggering occurrence and the number of candidate trigger earthquakes603

in the preceding 24 hours. When evaluating test statistics after each candidate earth-604

quake, we count the number of global M≥6 earthquakes that occurred in the immedi-605

ately preceding 24 hours, forming a ten-year time series. Correspondingly, we obtain a606

binary time series recording the triggering incidence. The correlation between the two607

time series has a coefficient of -0.02 for incidences identified using the β-statistic. The608

correlation coefficients for cases identified by other statistics (Z, βm, and Zm) have sim-609

ilar insignificant values. Therefore, we conclude that the presence of multiple candidate610

earthquakes within 24 hours does not impact the observed triggering patterns significantly.611

4.2 Statistic Comparison612

Several statistics have been introduced to measure the significance of seismicity-613

rate changes, e.g., the β-, Z-, and gamma-statistics (Habermann, 1983; Marsan & Nal-614
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All candidate
earthquakes

Aftershocks removed

Number of candidates 1388 1214
Percent of candidates that trigger (β) 70 68
Percent of candidates that trigger (Z) 60 60
Percent of candidates that trigger (βm) 52 52
Percent of candidates that trigger (Zm) 32 32
Interevent time in days (β) 3.4 4
Interevent time in days (Z) 3.9 4.5
Interevent time in days (βm) 4.5 5.2
Interevent time in days (Zm) 7.4 8.3

Table 2: Table of triggering results before and after removing aftershocks of candidate
trigger earthquakes using the Knopoff et al. (1982) spatial footprint and a one-day tempo-
ral window.

bant, 2005; Matthews & Reasenberg, 1988). Assuming that earthquakes occur randomly,615

the probability distributions of the statistics can be derived analytically, and their sig-616

nificance threshold can be obtained through the distributions (e.g., Wyss & Marsan, 2011).617

The Z-statistic is often favored over the β-statistic because of its symmetric formulation618

(e.g., Aiken et al., 2018). However, the difference of the two statistics in identifying dy-619

namic triggering is unclear because conventional approaches assume earthquake occur-620

rence as a Possionian process, and a triggering threshold of 2 is widely adopted follow-621

ing this assumption, which is inaccurate for triggered seismicity.622

To quantitatively compare the β- and Z-statistics (and the βm- and Zm-statistics),623

we compute correlation coefficients between pairs of statistics for each of the 1,388 can-624

didate earthquakes at the sites of interest. Triggering occurrence of each statistic is recorded625

in a binary array, with values consisting of either a 0 (non-triggered) or 1 (triggered) for626

the 222 grid points. The correlation coefficient is calculated between the resulting ar-627

rays for each statistic pair. This produces one coefficient for each candidate earthquake.628

A higher resulting correlation coefficient shows a higher level of consistency between the629

two statistics while a lower coefficient shows less consistency. The correlation coefficients630

are computed for each time window (Figure 14). Additionally, a coefficient examining631

whether any triggering occurred at a grid for an earthquake is computed between statis-632

tic pairs (Figure 14). With the collection of coefficient values, we find that seismicity anoma-633

lies identified by the β- and Z-statistics are highly correlated with over half of incidences634

having a coefficient of 1 (Figure 14a). Similarly, moment-release anomalies identified by635

the βm- and Zm-statistics have high correlations with low variances (Figure 14d). Cor-636

relation between the seismicity-rate and moment-release anomalies are noticeably dif-637

ferent, with smaller median coefficients and larger variances (Figure 14b,c). The results638

are consistent with the triggering rate results that seismicity-rate changes occur more639

frequently than moment-release anomalies. The results indicate that the choice of test640

statistic (e.g., β- or Z-statistic) is not crucial for our sampling procedure.641

Although the differences in results between the β- and Z-statistics are minor, the642

β-statistic identifies more seismicity-rate anomalies than the Z-statistic, which is likely643

due to the Z-statistic being a symmetric formulation of the β-statistic (Wyss & Marsan,644

2011). Both the βm- and Zm-statistics identify fewer moment-release anomalies than the645

seismicity-rate changes. However, significant moment-release anomalies are still common,646

with 54% and 34% triggering rates from the βm- and Zm-statistics. The synthetic cat-647
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Figure 14: Boxplots of correlation coefficients between the four statistics. Here Y/N
denotes if triggering was identified in any of the four time windows. Red line marks the
median and the surrounding box denotes the interquartile range. Dashed lines show the
range, omitting outliers. Outliers are denoted by plus-symbols, and are values greater
than the third quartile plus 1.5 times the interquartile range or less than the first quartile
minus 1.5 times the interquartile range.

alog tests show that the symmetric formulations, e.g., Z- and Zm-statistics, are more ac-648

curate in comparison to their counter parts, although the differences are small.649

The difference in results between the seismicity-rate and moment-release anoma-650

lies suggest that dynamically triggered seismicity in southern California is commonly ob-651

served while large earthquakes (significant moment-releases) are less frequently triggered652

(Figure 3.1). For example, the Salton Sea and Coso Geothermal Fields frequently ex-653

perience dynamic triggering in seismicity, but do not have moment-release anomalies very654

often. It is likely because the thermal production areas are dominated by fragmented faults655

with small spatial extents (e.g., Cheng & Chen, 2018), limiting the triggered earthquake656

sizes. Similarly, the immature Ridgecrest fault system may contain more small fault strands657

(e.g., Ross, Idini, et al., 2019), which may have contributed to the triggering differences658

of seismicity-rate and moment-release in the region. In contrast, the San Jacinto and Elsi-659

nore faults have comparable triggering occurrence for the seismicity-rate and moment-660

release anomalies.661

Moment-release anomalies are identified every week on average in southern Cal-662

ifornia by the βm- and Zm-statistics. The moment-release anomalies are dominated by663

the largest earthquakes in the time windows. However, we note that our statistical tests664

–23–



manuscript submitted to JGR: Solid Earth

cannot determine whether a specific individual earthquake was dynamically triggered.665

For simplicity, we convert the moment-anomalies to their equivalent moment magnitudes666

(Figure 15), remove duplicates from overlapping grid points and time windows, and find667

a nominal moment-release anomaly of Mw 3 (Figure 15). Intriguingly, the βm- and Zm-668

statistics identified 6 and 5 cases with equivalent moments above Mw 5, respectively. The669

cases correspond to 26% and 22% of the total M≥5 earthquakes in southern California670

during the study period. Except for one event likely related to the 2010 El Mayor Cu-671

capah earthquake, each case was identified as delayed triggering with delay times beyond672

6 and up to 24 hours. Close inspections of seismicity during the delay times reveal no673

obvious foreshock sequences for these cases. Our procedure cannot conclude whether these674

specific cases were dynamically triggered or not. Further, the delayed nature hinders re-675

jecting the null hypothesis that the occurrence was random. These unusual M≥5 cases676

warrant detailed investigations in future follow-up studies.677
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Figure 15: Distributions of equivalent moment magnitudes of the moment-release anoma-
lies identified by the βm- and Zm-statistics. For extended triggering cases, the equivalent
moment magnitudes are computed using the longest time window corresponding to a trig-
ger earthquake.

4.3 Triggering Scale678

To investigate the spatial footprint of the triggered seismicity and moment-release679

anomalies, we develop a metric of synchronization, termed the synchronization coeffi-680

cient, Si,j , between pairs of grid points:681

Si,j =
Ns

Ntot
, (10)682

where i and j are the indexes of two grid points, Ns is the number of shared candidate683

earthquakes that have caused dynamic triggering at both grids, and Ntot is the number684

of unique candidate earthquakes that have caused dynamic triggering at either or both685

of the grids. We define synchronization as grid points triggered by the same candidate686

earthquakes. Si,j is defined to range from 0 to 1. Si,j = 1 denotes 100% synchroniza-687

tion, where dynamic triggering concurs at both grids every time the grids trigger. Si,j =688

0 indicates that dynamic triggering is not observed simultaneously at the two grids dur-689
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ing the study period. We pairwise calculate Si,j for the grid points and investigate the690

parameter as a function of the separation distance between the ith and jth grids.691
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Figure 16: Synchronization coefficient versus pairwise grid distance. Inset displays a
zoom-in view for grids that are less than 50 km apart. Marker color shows the proportion
of local earthquakes that are shared between grid pairs during the study period. Marker
size indicates the number of candidate earthquakes that cause triggering at both loca-
tions, Ns.

We hypothesize that high synchronization coefficients reflect common triggering692

processes occurring at the grids and the separation distance may serve as a proxy of the693

spatial dimension of the processes (Figure 16). For example, there is a sharp drop in Si,j694

after a distance of 40 km for seismicity-rate anomalies identified using the β-statistic.695

Given the gridding configuration (Section 2.2), the 40 km threshold roughly equals the696

distance between the centers of two grid points. Since the footprints overlap between ad-697

jacent grids, the observed high synchronization may reflect some shared seismicity. There-698

fore, the results suggest highly localized triggering responses of seismicity in southern699

California, clustering over small spatial scales, likely on the order of 40 km or smaller.700

We observe the same pattern for the Z-, βm-, and Zm-statistics.701

Synchronization coefficients are generally low for grids separated beyond 40 km.702

However, there are two groups of outliers, denoted by the gray boxes in Figure 16, with703

a pairwise distance over 40 km. The first group of five pairs is around 175 km apart, and704

the second group is around 400 km apart. The first group associates with triggering re-705

sponses from the 2015 M8.3 Illapel earthquake, Chile and its aftershocks, and the sec-706

ond group is due to the 2010 M8.8 Maule earthquake, Chile and its aftershocks. The two707
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groups may suggest simultaneous triggering incidences across southern California due708

to the two M>8 earthquake sequences. These two groups are very rare cases as most grid709

pairs have low synchronization coefficients. In summary, our results suggest that trig-710

gering processes at different faults in southern California are primarily uncorrelated, and711

the triggering responses are highly heterogeneous. To investigate such processes, a dense712

network with comparable spatial scales (40 km), such as the Japanese Hi-net (Okada et713

al., 2004), is needed to accurately resolve the waveform characteristics within each grid.714
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Figure 17: Time series of the number of grid points triggered after each candidate earth-
quake (β-statistic). Candidate earthquakes within 60 days following the 2010 El Mayor
Cucapah earthquake are not analyzed (Section 2.1).

Another way to investigate the triggering scale is to count the number of triggered715

grids by each candidate trigger earthquake (Figure 17). We find large variability in trig-716

gering response among different candidate trigger earthquakes. For example, the 2010717

El Mayor Cucapah (EMC) earthquake triggered the most seismicity-rate anomalies (β-718

statistic) in southern California. Seismicity was triggered at 29 grid points (Figure S6)719

even after excluding locations within 50 km of the epicenter. The results agree with find-720

ings in Ross, Trugman, et al. (2019) and Meng and Peng (2014). An M6.7 aftershock721

of the 2015 M8.3 Illapel, Chile earthquake is the second most productive trigger earth-722

quake, causing seismicity anomalies at 14 grid points. The 2009 M6.6 Philippines earth-723

quake and the 2011 M6.4 Samoa earthquake both correlate with seismicity-rate anoma-724

lies at 13 grid points. On average, the candidate earthquakes cause triggering at about725

three sites. These results further confirm that dynamic triggering occurs at local scales,726

and the triggering responses at different sites are usually independent. Similar plots for727

the other three statistics (Z, βm, and Zm) are included in the Supplementary Material.728
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4.4 Triggering Threshold729

We find the triggering thresholds have large variabilities and are spatially hetero-730

geneous (Figures 18 and 19). We examine all thresholds that are used for identifying anoma-731

lies of each statistic, and focus on discussing the the 95th percentile thresholds (e.g. βa
95%)732

in this study as it is the most critical threshold used in our procedure. In general, the733

thresholds for identifying anomalies at the 95th percentile are greater than 2 (e.g., βa
95% ≥734

2), as reported in previous studies (Fan et al., 2021; Marsan & Nalbant, 2005). Figures 18735

and 19 show that the median 95% thresholds of the four test statistics at each grid point736

are all above 2, suggesting that using a threshold of 2 would overestimate triggering oc-737

currences in southern California. The San Jacinto Fault, Elsinore Fault, and Coso Geother-738

mal Field have relatively high values of the βa
95% and Za

95% triggering thresholds in the739

2-hour window (Figure 18) while the Salton Sea Geothermal Field has a lower thresh-740

old. The spatial pattern does not seem to correlate with seismicity-rates or triggering741

occurrence. In contrast, the βa
m−95% and Za

m−95% triggering thresholds in the 2-hour win-742

dow have significantly less spatial variation. The thresholds for the 24-hour window have743

the opposite patterns, the spatial heterogeneity for βa
95% and Za

95% is less significant in744

comparison to those of the 2-hour window, while there is an increase in spatial hetero-745

geneity for the βa
m−95% and Za

m−95% triggering thresholds. The thresholds also evolve746

over short time scales at each grid point. For example, Figure 20 shows the temporal evo-747

lution of the 95th percentile thresholds at the Salton Sea Geothermal Field for the 2-hour748

window. We observe that the thresholds vary significantly with time over the nine year749

period, especially for the βa
95% and Za

95% thresholds. The findings suggest that the trig-750

gering thresholds are space- and time-dependent, indicating constantly evolving fault-751

ing conditions, and our data-driven approach is effective in accounting for such variabil-752

ities and can effectively identify dynamic triggering cases.753

4.5 Physical Mechanisms754

A variety of physical processes may have occurred during earthquake dynamic trig-755

gering (Brodsky & Prejean, 2005; Freed, 2005; Prejean & Hill, 2018), and Coulomb fail-756

ure due to the transient stress perturbation can intuitively explain the instantaneously757

triggered cases (Gonzalez-Huizar & Velasco, 2011; Hill, 2008; Kilb, 2003). In this case,758

faults are at critical states, and the dynamic stress from the seismic waves pushes the759

faults to slip. Assuming the faults are at a uniform critical condition, there might be a760

correlation between the triggering occurrence and the instantaneous waveform metrics.761

Our waveform analyses find no obvious correlations between triggering occurrence and762

the waveform metrics, including peak ground velocity and kinetic energy. The findings763

agree with previous searches for PGV-based triggering thresholds, where no simple thresh-764

olds have been confirmed (Freed, 2005; Hill & Prejean, 2015). Intriguingly, the instan-765

taneously triggered seismicity and moment-release anomalies seem to require a minimum766

peak ground velocity above 0.2-0.5 µm/s, a unique feature compared to non-triggering767

and delayed triggering cases. However, such triggering cases do not always occur when768

the threshold is reached.769

The 2010 El Mayor Cucapah earthquake has caused widespread triggering responses770

(Figure S6), including both static and dynamic triggering cases (Meng & Peng, 2014;771

Miyazawa et al., 2021; Ross, Trugman, et al., 2019). The earthquake offers an opportu-772

nity to inspect relations between the triggering occurrence and waveform metrics. We773

find no obvious correlations between the triggering occurrence and the PGV distribu-774

tion; sites with comparably high PGV values show different triggering responses. For the775

El Mayor Cucapah earthquake, static triggering may have also regulated the triggering776

response in southern California (Meng & Peng, 2014). To further evaluate the Coulomb777

failure mechanism, we investigate candidate events that caused dynamic triggering at778

10 or more grid points, and find no clear patterns. We also find that the earthquakes with779

the most widespread triggering responses have no obvious characteristic features in mag-780
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Figure 18: Spatial patterns of the median of the 95% percentile thresholds during the 2
hour time window for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic
(d).

nitude or location. The negative results may be due to that the faults were at different781

critical states, requiring different levels of stress perturbations. Additionally, the local782

stress field may have facilitated triggering for incoming waves from preferred azimuths783

(Alfaro-Diaz et al., 2020; Gonzalez-Huizar & Velasco, 2011). Alternatively, nonlinear trig-784

gering processes that were governed by rate- and state-fault properties may have reg-785

ulated some of the triggering processes.786

Delayed dynamic triggering requires time-dependent developments of slips and fail-787

ures, which are likely controlled by non-linear mechanisms (e.g. Fan et al., 2021; Hill &788

Prejean, 2015; Miyazawa et al., 2021; Shelly et al., 2011). The non-linear triggering pro-789

cess could include a combination of mechanisms such as rate-and-state friction, mate-790

rial fatigue, aseismic slip, pore pressure, permeability enhancement, and granular flow791

among others (Brodsky & van der Elst, 2014; Hill & Prejean, 2015; Johnson & Jia, 2005;792

Rivera & Kanamori, 2002). Such processes may correlate better with wavefield features,793

including the frequency content of the passing seismic waves and the duration of intense794

ground motions. For example, triggering occurrence seems to relate to the PGV in low795

frequency bands at Long Valley (Brodsky & Prejean, 2005) and Parkfield (Guilhem et796

al., 2010). Our observations of delayed cases require nonlinear processes to initiate dy-797
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Figure 19: Spatial patterns of the median of the 95% percentile thresholds during the 24
hour time window for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic
(d).

namic triggering in southern California. Particularly, we find no correlation with the PGV798

or kinetic energy (Figures 10 and 12), nor any systematic correlations with the peak fre-799

quency or frequency content (Figure 11).800

Our analyses of triggering scale show that the spatial footprint of triggering is lo-801

calized and suggests that dynamic triggering is governed by conditions operating on spa-802

tial scales of tens of kilometers. Such heterogeneity may help explain the diverse trig-803

gering responses, including that Coulomb failure may be the driver for instantaneous trig-804

gering cases. Importantly, the results highlight that local conditions may play a more805

important role in the occurrence of triggering than features of the incoming wave, em-806

phasizing the importance of understanding the heterogeneous stress and strength states807

of faults in southern California.808

Models including experimentally derived rate- and state-dependent fault proper-809

ties suggest that earthquake production relates to the local stress states, and the stress-810

ing episodes due to the passing seismic waves may produce clusters of earthquakes in these811

regions (Dieterich, 1994). We find a moderate correlation between seismicity-rate anoma-812

lies and the total number of earthquakes above completeness at each grid point (Figure 13a).813
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(b), Z-statistic (c), and Zm-statistic (d).

The correlation coefficients decrease with δa, which suggests that the instantaneous trig-814

gering cases are likely dominated by linear processes acting upon the heterogeneous stress815

field, while the delayed cases are likely caused by complex nonlinear processes. The strong816

correlation values observed for the moment-anomalies may have been due to the obser-817

vation that more seismically active regions can generate larger earthquakes.818

The clear evidence of dynamic triggering operating on local spatial scales (∼40 km)819

suggests that the process is irrelevant to the macro-scale tectonic regimes, such as re-820

ported in Velasco et al. (2008). However, there is conflicting evidence showing that larger-821

scale tectonic processes can inhibit dynamic triggering (Harrington & Brodsky, 2006),822

suggesting directions for future comparative investigations. Qualitatively, we notice that823

frequent triggering occurs at the San Jacinto Fault, Salton Sea Geothermal Field, Coso824

Geothermal field, and the merging connection of the San Andreas and San Jacinto faults,825

where the fault geometries are complex (Chu et al., 2021; Marshall et al., 2022). The ge-826

ometric complexities may further indicate complex stress fields at those sites (Yang &827

Hauksson, 2013). We experimented computing correlations between the triggering oc-828

currence and the surface trace complexity metrics from Chu et al. (2021) but found no829
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obvious correlation. It is possible that the surface traces do not fully reflect the 3D fault830

geometry and stress field complexities, and future investigations on the relations between831

earthquake focal mechanisms and triggering occurrence may offer new insights into the832

physical mechanisms of dynamic triggering processes.833

5 Conclusions834

We have developed an assumption-free approach to statistically identify seismicity-835

rate and moment-release anomalies caused by earthquake dynamic triggering. We ap-836

ply the method to southern California seismicity from 2008 to 2017 and find837

1. Earthquake dynamic triggering is ubiquitous throughout southern California, and838

up to 70% of the global M≥6 earthquakes may have caused dynamic triggering839

in the region.840

2. Dynamic triggering was identified at most of the major faults in the area. The Salton841

Sea Geothermal Field, Coso Geothermal Field, and San Jacinto Fault are the most842

prone regions to triggering.843

3. Dynamic triggering occurs every 4 days on average in southern California.844

4. Individual sites in southern California are triggered less frequently, ranging from845

once a month to every few years.846

5. Most dynamic triggering cases are delayed.847

6. Significant moment-release anomalies are common in southern California, but oc-848

cur less often than significant seismicity-rate increases.849

7. The β-based and Z-based test statistics identify similar sets of dynamic trigger-850

ing cases.851

8. There are no clear connections between triggering patterns and instantaneous wave-852

form metrics, including the peak ground velocity, peak frequency, kinetic energy,853

and frequency content.854

9. Local fault conditions likely govern dynamic triggering occurrence.855

These observations suggest that time-dependent nonlinear mechanisms acting on local856

scales are likely responsible for the majority of the observed triggering cases.857
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β0 4.6 Z0 4.4 βm−0 0.4 Zm−0 0.2
β95% 3.1 Z95% 3.0 βm−95% 2.5 Zm−95% 2.5

Z5% 1.9 Zm−5% -3.2
βb -0.6 Zb -0.6 βm−b -0.1 Zm−b -0.1

Trigger? Yes Yes No No

Table S1: Table of test statistic values at a grid point in Coso after the January 8, 2017 M6 Queen Charlotte
earthquake (Figure 2).

Median Recurrence Times (days) β Z βm Zm

SSGF 40 48 80 138
CGF 13 53 46 97
SJF 51 53 54 72

Table S2: Table of median recurrence times in days under each statistic for multiple grid points within the
Salton Sea Geothermal Field (SSGF), Coso Geothermal Field (CGF), and the San Jacinto Fault Zone (SJF).

2



Figure S1: Triggering occurrence during the 6 hour (δa=6) time window using the β-statistic (a), βm-statistic
(b), Z-statistic (c), and Zm-statistic (d).
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Figure S2: Triggering occurrence during the 12 hour (δa=12) time window using the β-statistic (a), βm-
statistic (b), Z-statistic (c), and Zm-statistic (d).
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Figure S3: Distribution of triggering recurrence times at example sites that are identified using the βm-
statistic. (a–c) Recurrence times at the Salton Sea Geothermal Field (a), the San Jacinto Fault Zone (b),
and the Coso Geothermal Field (c).
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Figure S4: Distribution of triggering recurrence times at example sites that are identified using the Z-
statistic. (a–c) Recurrence times at the Salton Sea Geothermal Field (a), the San Jacinto Fault Zone (b),
and the Coso Geothermal Field (c).

5



Mean: 
180
Median: 
97

(c) Coso

10-2 10-1 100 101 102 103

Mean: 
128
Median: 
72

(b) SJF

10-2 10-1 100 101 102 103

Recurrence Time (days)

Mean: 
185
Median: 
138

(a) SSGF

10-2 10-1 100 101 102 103
100

102

O
cc

ur
re

nc
es

Figure S5: Distribution of triggering recurrence times at example sites that are identified using the Zm-
statistic. (a–c) Recurrence times at the Salton Sea Geothermal Field (a), the San Jacinto Fault Zone (b),
and the Coso Geothermal Field (c).
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Figure S6: Triggered grid points following the 2010 El Mayor Cucapah earthquake.
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Figure S7: Synchronization coefficient versus pairwise grid distance for the Z-statistic. Inset displays a zoom-
in view for grids that are less than 50 km apart. Marker color shows the proportion of local earthquakes
that are shared between grid pairs during the study period. Marker size indicates the number of candidate
earthquakes that cause triggering at both locations, Ns.
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Figure S8: Synchronization coefficient versus pairwise grid distance for the βm-statistic. Inset displays a
zoom-in view for grids that are less than 50 km apart. Marker color shows the proportion of local earthquakes
that are shared between grid pairs during the study period. Marker size indicates the number of candidate
earthquakes that cause triggering at both locations, Ns. Points beyond 100 km that have S > 0.2 fall
into two categories: either too few triggering occurrences to be significant, or trigger after multiple M ≥ 6
aftershocks within an aftershock sequence of a larger earthquake.
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Figure S9: Synchronization coefficient versus pairwise grid distance for the Zm-statistic. Inset displays a
zoom-in view for grids that are less than 50 km apart. Marker color shows the proportion of local earthquakes
that are shared between grid pairs during the study period. Marker size indicates the number of candidate
earthquakes that cause triggering at both locations, Ns.
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Figure S10: Time series of the number of grid points triggered after each candidate earthquake (βm-statistic).
Candidate earthquakes within 60 days following the 2010 El Mayor Cucapah earthquake are not analyzed.
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Figure S11: Time series of the number of grid points triggered after each candidate earthquake (Z-statistic).
Candidate earthquakes within 60 days following the 2010 El Mayor Cucapah earthquake are not analyzed.
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Figure S12: Time series of the number of grid points triggered after each candidate earthquake (Zm-statistic).
Candidate earthquakes within 60 days following the 2010 El Mayor Cucapah earthquake are not analyzed.
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Figure S13: Spatial patterns of the median of the 95% percentile thresholds during the 6 hour time window
for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d).
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Figure S14: Spatial patterns of the median of the 95% percentile thresholds during the 12 hour time window
for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic (d).
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Figure S15: Temporal evolution of the 95% percentile thresholds during the 6 hour time window at a site
in the Salton Sea Geothermal Field for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic
(d).
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Figure S16: Temporal evolution of the 95% percentile thresholds during the 12 hour time window at a site
in the Salton Sea Geothermal Field for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic
(d).
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Figure S17: Temporal evolution of the 95% percentile thresholds during the 24 hour time window at a site
in the Salton Sea Geothermal Field for the β-statistic (a), βm-statistic (b), Z-statistic (c), and Zm-statistic
(d).
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