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Abstract

Distributed Acoustic Sensing (DAS) is a promising technique to improve the rapid detection and characterization of earthquakes.

Due to some instrumental limitations, current DAS studies primarily focus on the phase information but less on the amplitude

information. In this study, we compile earthquake data from two DAS arrays in California, USA, and one submarine array in

Sanriku, Japan. We develop a data-driven method to obtain the first scaling relation between DAS amplitude and earthquake

magnitude. Our results reveal that the DAS amplitude in different regions follows a similar scaling relation. The scaling relation

can provide a rapid magnitude estimation and effectively avoid uncertainties caused by the conversion to ground motions. We

finally show that the scaling relation is transferable from one to another new region. The scaling relation highlights the great

potential of DAS in earthquake source characterization and early warning.
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Abstract20

Distributed Acoustic Sensing (DAS) is a promising technique to improve the rapid de-21

tection and characterization of earthquakes. Due to some instrumental limitations, cur-22

rent DAS studies primarily focus on the phase information but less on the amplitude in-23

formation. In this study, we compile earthquake data from two DAS arrays in Califor-24

nia, USA, and one submarine array in Sanriku, Japan. We develop a data-driven method25

to obtain the first scaling relation between DAS amplitude and earthquake magnitude.26

Our results reveal that the DAS amplitude in different regions follows a similar scaling27

relation. The scaling relation can provide a rapid magnitude estimation and effectively28

avoid uncertainties caused by the conversion to ground motions. We finally show that29

the scaling relation is transferable from one to another new region. The scaling relation30

highlights the great potential of DAS in earthquake source characterization and early31

warning.32

Plain Language Summary33

Distributed Acoustic Sensing (DAS) is an emerging technique that can convert an34

optical fiber cable into a dense array to record clear earthquake signals. The recorded35

signals have essential information about earthquakes. For example, DAS can record higher36

amplitude signals from earthquakes with larger magnitude. However, conditions of the37

optical cables, such as how they are installed or how well they are attached to the sur-38

rounding medium, are often unknown, thus preventing quantitative measuring of earth-39

quake magnitude from the DAS measurement. In this study, we investigate the earth-40

quake data recorded by different DAS arrays and develop a data-driven method to get41

an empirical relation between the earthquake magnitude and the amplitude of DAS sig-42

nals. We show that this empirical relation can accurately estimate the earthquake mag-43

nitude directly from the DAS data. Furthermore, the empirical relation we obtain from44

one area can also be applied to another new region with slight calibration. Our empir-45

ical relation can significantly expand the applications of the DAS technique in earthquake46

research, such as seismic hazard assessment and earthquake early warning.47

1 Introduction48

Rapid earthquake source characterization is critical for earthquake monitoring, Earth-49

quake Early Warning (EEW), and prompt reactions to seismic hazards. However, this50

is still challenging for many remote areas with insufficient seismic station coverage. For51

example, subduction zones, which can hold the largest earthquakes, are generally poorly52

instrumented due to the large expenses involved in deploying and maintaining offshore53

seismic instruments. In this context, Distributed Acoustic Sensing (DAS), which can uti-54

lize pre-existing telecommunication fiber-optic cables in both onshore and offshore re-55

gions, appears to be a promising complementary sensing method to fill the geographi-56

cal gaps of conventional seismic networks.57

DAS is an emerging technique that has great potential in seismology. It converts58

every few meters of optical fiber into a single-component strainmeter (Benioff, 1935) to59

provide spatially coherent signals with high sensitivity. One single DAS array often con-60

sists of thousands of channels covering tens of kilometers, and can serve as a dense seis-61

mic array to achieve great spatial resolution. DAS has proved to be an effective tool to62

refine regional seismic structure (Ajo-Franklin et al., 2019; Trainor-Guitton et al., 2019;63

Yu et al., 2019; Spica, Nishida, et al., 2020; Yang et al., 2022; Spica, Perton, et al., 2020),64

detect local earthquakes (Ajo-Franklin et al., 2019; Li et al., 2021; Li & Zhan, 2018; At-65

terholt et al., 2022), and detect seismic signals from various sources (Williams et al., 2019;66

X. Wang et al., 2020; Zhan et al., 2021; Viens et al., 2022). The phase information of67

DAS has been well-validated to be accurate in the multiple aforementioned applications.68

However, DAS nano-strain amplitudes, which commonly represent the direct output from69
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an interrogator unit, are rarely considered for earthquake source characterization and70

early-warning purposes.71

The direct use of DAS amplitude information is mainly circumscribed by a few lim-72

itations such as unknown cable coupling, single-component sensing, uncertain instrumen-73

tal response, and uncommon amplitude saturation behaviors (Lindsey et al., 2020). DAS74

instruments record phase shifts of light traveling in the optical fiber and the phase in-75

formation is then converted into the strain along the cable direction (Lindsey et al., 2017;76

Fernández-Ruiz et al., 2020; Lindsey & Martin, 2021). However, the instrumental strain77

is not necessarily equal to the strain of the medium surrounding the cable due to differ-78

ent installation methods of telecommunication cables (Ajo-Franklin et al., 2019). This79

coupling issue commonly exists but varies with the unknown cable installation in differ-80

ent regions (Ajo-Franklin et al., 2019; Lindsey et al., 2020; Trainor-Guitton et al., 2019;81

Paitz et al., 2020). Moreover, the instrumental response of DAS is highly frequency-dependent82

(Lindsey et al., 2020; Paitz et al., 2020) and often hard to quantify without co-located83

seismometers. The frequency-dependent instrumental response can contaminate frequency84

components of the DAS data, and may prevent robust spectral analysis. The DAS am-85

plitude saturation is another issue and is sometimes observed for earthquakes close to86

DAS instruments (Viens et al., 2022). The DAS amplitude saturation is often presented87

by a flip from maximum to minimum due to the phase wrapping of the sensing laser pulse88

in the cable (Ajo-Franklin et al., 2022), making this behavior hard to identify and re-89

cover. All these instrumental limitations aggravate the accurate conversion of DAS am-90

plitude to ground motions (e.g., velocity and acceleration), thus further challenging the91

incorporation of DAS data into many seismology applications (Lindsey & Martin, 2021;92

Farghal et al., 2022). There have been many attempts to convert DAS-recorded strain93

to ground motions (Daley et al., 2016; H. F. Wang et al., 2018; Yu et al., 2019; Lindsey94

et al., 2020; Lior et al., 2021). For example, H. F. Wang et al. (2018) showed a good match95

between DAS amplitude and strain derived from individual co-located nodal sensors. How-96

ever, Muir and Zhan (2022) systematically reconstructed the strain-rate wavefield with97

the entire nodal array in the same experiment, and found that the DAS-recorded am-98

plitudes are on average twice that of conventional sensors. In general, accurate conver-99

sion requires good knowledge of the local geology, seismic velocity structure, and instru-100

mental information; and is still an active research direction in the DAS community.101

Instead of converting DAS-strain data to ground motion measurements (i.e., ve-102

locity and acceleration), we propose a data-driven way to explore the relationship be-103

tween the peak amplitude of DAS data and earthquake magnitude. In this study, we present104

the first DAS amplitude scaling relation for a rapid magnitude estimation of DAS-recorded105

earthquakes. Previous studies using conventional strainmeters show that the peak strain106

amplitude follows an empirical relation that can be used to estimate the earthquake mag-107

nitude (Barbour & Crowell, 2017; Barbour et al., 2021). Unlike conventional strainmeters,108

one DAS array can easily provide thousands of peak amplitude measurements from a sin-109

gle earthquake, allowing the development of robust scaling relation with fewer earthquakes.110

We analyze earthquakes recorded by DAS arrays in California, USA, and Sanriku,111

Japan (Figure 1). Both regions are seismically active and provide us with an unprece-112

dented opportunity to develop and validate the DAS scaling relation. We measure peak113

DAS amplitudes of earthquakes based on earthquake catalogs. We apply an iterative re-114

gression analysis to these datasets to obtain a robust scaling relation between the peak115

DAS strain rate, earthquake magnitude, and hypocentral distance, calibrated by channel-116

specific site terms. The obtained scaling relation can then give a rapid but accurate earth-117

quake magnitude estimation from the DAS amplitude measurements. Furthermore, we118

show that the DAS amplitudes in different regions follow the same scaling relation. The119

scaling relation built on terrestrial DAS arrays in California can be transferred to the120

submarine DAS data in Japan. We conclude that our DAS scaling relation is transfer-121
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able for earthquakes within similar distance range, and have great potential in earthquake122

source study and EEW.123

Figure 1. Earthquakes in the study areas. (a) Time variation of earthquakes used in the

analysis. Colors indicate earthquakes recorded by different DAS arrays. (b) Topographic map

including earthquake locations and the two California DAS arrays: Ridgecrest array and Long-

Valley. (c) Map showing the locations of earthquakes and the Sanriku DAS array. Earthquakes

are indicated by the black dots and the DAS arrays are shown by blue lines.
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2 Results124

2.1 Data125

We analyze strain-rate DAS data, which is shown to have a frequency-independent126

instrumental noise (Lior et al., 2022), recorded in both terrestrial and submarine envi-127

ronments (Figure 1 (a)). We start with the two terrestrial DAS arrays in the Ridgecrest128

(RC) and Long-Valley (LV) regions (Figure 1 (b)) in California. The two arrays recorded129

over two years of continuous data from July 10, 2019 to October 31, 2021. We first con-130

vert the DAS raw data, which is the phase shift of Rayleigh back-scattered laser signals131

in the optical fiber, to strain rate using Eq. S1 (Text S1 in the Supporting Information).132

We then apply PhaseNet-DAS (Zhu et al., 2022), which is a deep learning phase picker133

tailored for DAS data, to accurately pick P-wave and S-wave arrivals from earthquakes134

(Text S2 of the Supporting Information). We associate the picked earthquakes with the135

regional earthquake catalogs to determine their locations and magnitudes. We also in-136

vestigate two weeks of submarine data (November 11, 2019 to December 1, 2019) from137

a DAS array in Sanriku, Japan (Shinohara et al., 2022). The submarine DAS data suf-138

fers from various types of ocean noise and earthquake P-wave arrivals are rarely observed.139

Due to these limitations, PhaseNet-DAS is not as effective on submarine data as on ter-140

restial DAS arrays. Instead, we apply a template matching method to detect S-waves141

from earthquakes, and associate them with the local Japanese Meteorological Agency142

(JMA) catalog for their location and magnitude (Text S3 of the Supporting Information).143

In this study, we assume that the difference in catalog magnitude of the two regions, Cal-144

ifornia (local magnitude ML for most earthquakes or moment magnitude Mw if avail-145

able) and Sanriku MJMA (velocity magnitude according to JMA (Katsumata, 1996; Fu-146

nasaki, 2004)), is negligible to simplify the analysis.147

We successfully obtain 3,610 earthquakes with 2,363,585 P-wave and 2,411,592 S-148

wave peak measurements from the two California DAS arrays, and 47 earthquakes with149

34,803 S-wave peak measurements from the Sanriku DAS array. The measured peak DAS150

strain rates present strong correlations with the event magnitude (Figures 2 (c) and (f))151

and hypocentral distance (Figures 2 (d) and (g)), respectively. Furthermore, all arrays152

in different environments follow similar trends and imply the existence of a scaling re-153

lation (see Text S4 of the Supporting Information for details of data processing and qual-154

ity control).155

2.2 Scaling relation156

Based on the statistical correlations of data (Figure 2), we fit the data with a gen-157

eral form of scaling relation similar to Barbour and Crowell (2017); Barbour et al. (2021):158

log10 Ei = aM + b log10 Di +Ki, (1)

where E is the observed peak amplitude of DAS strain rate in microstrain/s (10−6/s),159

D is the hypocentral distance in kilometers to each DAS channel and M is the earth-160

quake magnitude. The subscript i corresponds to each DAS channel. We apply a channel-161

specific factor Ki to account for integrated local effects such as the cable construction,162

installation, instrumental coupling, and variety of regional geology.163

We use an iterative regression method to fit for the magnitude coefficient a, dis-164

tance coefficient b, and corresponding site terms Ki separately for P and S wave. We first165

apply it to individual DAS arrays and find that the values are almost the same among166

various arrays (Figure S1). Therefore, we further combine different data sets for an in-167

tegrated regression. Because of the unbalanced amount of measurements and different168

processing steps of terrestrial and submarine DAS data, we separate the two data sets169

for different purposes. We use the California DAS dataset with both P- and S-wave mea-170
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Figure 2. Distributions and correlations of DAS data. (a) Histograms of earthquake mag-

nitude. (b) Histograms of hypocentral distance. (c) Correlation between magnitude and peak

P-wave DAS strain rate EP . (d) Correlation between hypocentral distance and peak P-wave DAS

strain rate EP . (e) Histograms of peak P-wave DAS strain rate EP . (f) Correlation between

magnitude and peak S-wave DAS strain rate ES . (g) Correlation between hypocentral distance

and peak S-wave DAS strain rate ES . (h) Histograms of peak S-wave DAS strain rate ES . For

histograms, black lines indicate the entire data set of all DAS arrays. Colored lines are for in-

dividual arrays. For the 2-D correlation figures, peak DAS strain rate measurements have been

averaged by events. Different California arrays are shown by the colored contours, whose levels

correspond to 5%, 30%, 60% and 90% of the probability density from thin to thick lines. The

Sanriku data points are shown by pink dots on (f) and (g).

surements to fit for the coefficients of Eq.(1), and the Sanriku submarine DAS data as171

a validation set. This splitting scheme aims at testing the generality of the scaling re-172

lation. The best-fit scaling relation we obtain for P waves is:173

log10 E
P
i = 0.437M − 1.269 log10 Di +KP

i , (2)
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and for S waves is:174

log10 E
S
i = 0.690M − 1.588 log10 Di +KS

i . (3)

We refer the reader to Text S5 and Text S6 of the Supporting Information for further175

details about the iterative regressions and site calibration terms, respectively.176

Figure 3. Comparison between earthquake catalog magnitude and magnitude estimated

from the scaling relation. (a) Magnitude from the P-wave scaling relation applied to the Califor-

nia data. The scaling relation is from all three California DAS arrays. (b) Magnitude from the

S-wave scaling relation applied to the California data. The scaling relation is from all three Cal-

ifornia DAS arrays. (c) Magnitude from the S-wave scaling relation applied to the Sanriku data.

The scaling relation is from the Sanriku DAS array. (d) Magnitude from the S-wave scaling rela-

tion applied to the Sanriku data. The scaling relation is transferred from California DAS arrays.

Red dots highlight the events used to calibrate the local site terms. Black solid lines indicate the

accurate estimation that catalog magnitude is equal to the predicted magnitude. Dashed lines

indicate the plus/minus 1 unit of magnitude errors.
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2.3 Magnitude estimation from DAS177

We validate the scaling relation by comparing the measured peak strain rate with178

those calculated by the scaling relation Eq.(1) to guarantee that the regression can ro-179

bustly explain the features in the data (Text S7 and Figure S3 of the Supporting Infor-180

mation). Then, we reorganize the scaling relation Eq.(1) to estimate earthquake mag-181

nitudes from the DAS peak strain rate:182

Mi = (log10 Ei − b log10 Di −Ki)/a. (4)

Given the peak amplitude Ei and hypocentral distance Di, we calculate the mag-183

nitude Mi for each DAS channel and then use the median magnitude of all channels as184

the final magnitude estimation M . Our results show that the magnitude can be accu-185

rately estimated with an error of less than 1 unit of magnitude by using only 2 seconds186

of either P or S waves (Figure 3 (a)-(c)) for most earthquakes in both the California and187

Sanriku regions, especially for the larger earthquakes. Moreover, we show that the scal-188

ing relation can be transferred from California to Sanriku, and work equally well as that189

obtained from the Sanriku-only measurements (Figure 3 (d)). The transferred scaling190

relation inherits the same magnitude a and hypocentral distance b coefficients from the191

California dataset. They only require a small number of local earthquakes to recalcu-192

late the site calibration terms Ki. We apply a systematic random test to show that for193

the Sanriku case, 6 events are sufficient to get robust values of the site calibration terms194

(Text S8 of the Supporting Information). The transferred scaling relation can provide195

an excellent estimation of the magnitude of earthquakes beyond the fitting dataset (Fig-196

ure 3(d)).197

3 Discussion198

3.1 Transferable scaling relation of DAS amplitude199

Unlike conventional seismic sensors, DAS instruments are commonly deployed on200

preexisting telecommunication optical fibers with various properties and construction201

designs (Ajo-Franklin et al., 2019). These differences lead to difficulties in determining202

the instrument responses of DAS arrays. Some previous studies have shown that DAS203

instrument responses can be quantitatively determined by comparing DAS measurements204

with a co-located seismometer (Lindsey et al., 2020; Paitz et al., 2020), which is not al-205

ways available, especially in marine environments. There are multiple ways to convert206

DAS measurements to ground motions: for instance, direct calibration with co-located207

seismometers (Lindsey et al., 2017); correction based on apparent local phase velocity208

(Daley et al., 2016; H. F. Wang et al., 2018; Yu et al., 2019; Shinohara et al., 2022); spa-209

tial integration from one co-located seismometer (H. F. Wang et al., 2018); rescaling in210

the f−k or curvelet domains (Lindsey et al., 2020; Yang et al., 2022). Although shown211

to be effective, most of these methods require elaborate data preprocessing and analyst-212

intense quality control, making them cable-dependent and thus limiting the applications213

of DAS in different regions and for real-time operations.214

In this study, we evaluate how DAS amplitude is related to earthquake magnitude215

in a data-driven methodology. With the abundant peak amplitude measurements of earth-216

quakes in the Ridgecrest and Long-Valley regions, we apply the regression analysis to217

obtain a robust scaling relation for both P- and S-waves recorded by DAS instruments.218

Most importantly, we find that different regions have almost the same values of the scal-219

ing coefficients a and b (Figure S1) with regional site calibration terms Ki (Figures S2220

and S4 in the Supporting Information). Our results show that the scaling relation can221

be transferred/extrapolated from one well-studied area to other DAS arrays for earth-222

quakes within a similar distance range. The DAS peak amplitude scaling relation can223

be applied to earthquake source studies in different areas.224
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We further compare the DAS measurements with results from previous studies us-225

ing conventional strainmeters (Barbour et al., 2021). The distance coefficients of both226

conventional strainmeters and DAS are close, meaning that the dynamic strain follows227

the same geometrical spreading of wave propagation for both conventional strainmeters228

and DAS instruments. However, the magnitude coefficients are different mainly because229

the DAS scaling relation is built based on strain rate, while the scaling relation of con-230

ventional strainmeters are built based on strain. The different physical quantities scale231

differently with earthquake magnitude. Strain rate is theoretically proportional to ac-232

celeration (Benioff, 1935). Therefore, we analyze the peak ground acceleration (PGA)233

of the Next Generation Attenuation model (NGA-West2) project (Bozorgnia et al., 2014).234

For consistent comparisons, we fit the PGA dataset with the same model as Eq.1, as-235

signing the site calibration term to each station. We find that the distance coefficients236

from DAS are close to those from PGA (Figure S1). Differences in the magnitude co-237

efficients are probably due to the different frequency bands of DAS and conventional ac-238

celerometers. Nowadays, Ground Motion Prediction Equations (GMPEs) with many pa-239

rameters have been developed from various datasets to predict earthquake ground mo-240

tions for engineering and seismological applications (Zhao et al., 2006; Kanno et al., 2006;241

Boore & Atkinson, 2008; Bozorgnia et al., 2014; Boore et al., 2014; Campbell & Bozorg-242

nia, 2014). Modern GMPEs have detailed definitions of the distance dependence (geo-243

metrical and inelastic attenuation) and local site responses (local geology, seismic struc-244

ture, instrument deployment, etc.) to explain the ground motion data in different regions.245

Because of the relatively early stages of the DAS technique and limited data from dif-246

ferent locations, we decide to start with the simplest form of scaling relation as Eq.1 in247

this study for a first-order validation of the DAS scaling relation. We leave more com-248

plex DAS strain prediction equations for future studies.249

3.2 Potential applications of the DAS scaling relation250

Our peak DAS amplitude scaling relation is fundamental and significant for var-251

ious seismological studies such as earthquake seismology and EEW. Regarding earthquake252

source analyses using DAS, the current studies only focus on earthquake detection and253

location using the time information (Lindsey et al., 2017; Lellouch et al., 2020; Li et al.,254

2021; Yang et al., 2022; Atterholt et al., 2022; Viens et al., 2022). Adding the amplitude255

information and constraints on the earthquake magnitude can significantly help us to256

resolve more source parameters and physical details about the earthquake rupture.257

Another substantial application is for EEW, which has shown to be an effective method258

to mitigate seismic risk. EEW aims to rapidly estimate the ground motion from real-259

time data after an earthquake occurs and sends out alerts to specific users and the pub-260

lic (Allen & Melgar, 2019). Current EEW algorithms use conventional seismic data for261

ground motion predictions. As DAS leverages pre-existing telecommunication fiber-optic262

cables, it can complement the current EEW systems. Converting most telecommunica-263

tion cables located in highly seismic active regions into dense arrays of sensors could pro-264

vide an economical approach to extend and improve the current EEW system, especially265

in offshore seismogenic zones.266

A recent study has attempted to apply DAS in EEW (Lior et al., 2022). Their ap-267

plication relies on accurate conversion from DAS strain rate to ground acceleration, which268

is used for earthquake magnitude estimation and ground motion prediction (Lior et al.,269

2021). Our scaling relation provide an alternative and new approach to obtain earthquake270

magnitude from DAS measurements. Compared with conversion-based methods, there271

are a few advantages in using data-driven scaling relation of DAS measurements. Firstly,272

the scaling relation is built upon abundant direct DAS measurements, and they do not273

require an intensive manual pre-processing or parameter tuning, simplifying the deploy-274

ment on edge-computing (Shi et al., 2016). Secondly, the scaling relation accounts for275

the different coupling and regional effects among DAS channels with the site calibration276
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Figure 4. Idealized real-time earthquake magnitude estimation with the scaling relation. (a)

Streaming DAS data from an M4.57 earthquake that occurred in Ridgecrest region. The initial

time of earthquake is set as 0 second. (b) The corresponding magnitude estimation based on the

peak DAS amplitude for each channel. The black lines indicate the arrival of the P-wave and the

S-wave. (c) The final magnitude estimation from averaging magnitude estimation at all available

channels, shown by the red line. The red dashed lines indicate the standard deviation of magni-

tude estimation from channels. The green horizontal lines indicate the catalog magnitude. The

blue vertical lines show the earliest P- and S- arrivals, respectively. The blue vertical dashed lines

show 2 seconds after the latest P- and S- arrivals, respectively. (d)-(f) show results of another

M5.0 earthquake recorded by Long Valley north array.

terms, and no manual identification of well-coupled fiber is required. Last but not least,277

as demonstrated in the example of Sanriku results, the scaling relation is transferable.278

We can easily transfer the scaling relation from one well-studied region to other regions279

for deployment of new systems. Only a small number of earthquakes are required to cal-280

ibrate the site terms. Then, the scaling relation can be promptly employed for rapid earth-281

quake magnitude estimation in a new region. Technically, the regional scaling relation282

can also be consistently updated with more regional measurements of earthquakes.283

Finally, we conduct an idealized experiment to illustrate the potential application284

of the DAS scaling relation for rapid magnitude estimation. We assume that the earth-285

quake can be immediately detected and located. Therefore, we can apply the scaling re-286

lation to convert the streaming DAS signals (Figure 4 (a) and (d)) to real-time estima-287
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tion of earthquake magnitude (Figure 4 (b) and (e)) at available DAS channels. We keep288

the median value of magnitude estimated at each channel as the final estimation and keep289

updating it with time (Figure 4 (c) and (f)). We experiment with the recent M4.57 and290

M5.0 earthquakes recorded by the Ridgecrest and Long-Valley north arrays, respectively.291

The M4.57 earthquake occurred on July 15, 2022 in the Ridgecrest region and is about292

15 km from the Ridgecrest array. The M5.0 earthquake occurred on October 25, 2022,293

near Alum Rock and San Jose, California and is about 244 km from the Long Valley ar-294

ray. Both events are not included in the data sets that are used for the regression, and295

therefore are good candidates to test our scaling relation on earthquakes from different296

distance. We can accurately estimate the event magnitude with its uncertainty less than297

0.5 only 2 seconds after the earliest P-wave arrival. When some channels begin to de-298

tect the S wave, we also include the S wave information by averaging the magnitude from299

both P-wave and S-wave amplitudes to further update the magnitude estimation. It is300

also possible to combine rapid estimation of earthquake magnitude with the GMPEs (Atkinson301

& Boore, 2006; Boore & Atkinson, 2008; Bozorgnia et al., 2014; Douglas & Edwards, 2016)302

to predict the ground shaking and seismic intensity, similar to the conventional EEW303

systems based on earthquake point source modeling (Allen & Melgar, 2019). More de-304

tails about the method are provided in Section 9.305

However, this data-driven scaling analysis method also has some limitations that306

require further studies. The scaling relation of peak DAS amplitude relies on correct event307

association and peak amplitude measurement. Measurement of peak amplitude in the308

improper waveform window can lead to errors in the magnitude estimation. For instance,309

there are a few small events with largely overestimated magnitudes in our results (Fig-310

ures 3(a)-(b)). We investigate the waveforms of those events and find that the overes-311

timation is due to an incorrect event association. For instance, an M2 event in the Long-312

Valley region is estimated as an M6 earthquake, because this event is a foreshock occur-313

ring only 8 seconds before the M6.0 earthquake. We also find a few instances where mul-314

tiple events occur in different places but are recorded at the same time, leading to over-315

lapped arrivals in the same time window. In such cases, the peak amplitudes of weaker316

arrivals will be overestimated. Combining DAS with other independent seismic sensors317

can help to exclude the incorrectly associated event, thus improving the magnitude es-318

timation. Finally, our current datasets only contain moderate magnitude earthquakes319

(M < 6) due to the short period of DAS deployment. Future DAS campaigns focus-320

ing on EEW and recording large earthquakes should explore if the scaling relation still321

holds or behaves differently due to potential complex non-linear site response (Bonilla322

et al., 2011; Astorga et al., 2018; Viens et al., 2022).323

4 Conclusion324

This work presents the first scaling relation between DAS peak amplitude, earth-325

quake magnitude, and hypocentral distance from terrestrial and submarine DAS arrays.326

We show that we could use the scaling relation to rapidly estimate the magnitude of earth-327

quakes in near real time. Furthermore, we find that the scaling relation is transferable328

from terrestrial DAS arrays in California to a submarine DAS array in Sanriku, Japan.329

Our results indicate a possibly universal scaling relation for DAS recorded peak ampli-330

tudes. The DAS amplitude scaling relation has great potential in different seismologi-331

cal studies such as EEW and earthquake source characterization.332
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Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., . . . Fichtner, A.446

(2020). Empirical investigations of the instrument response for distributed447

acoustic sensing (das) across 17 octaves. Bulletin of the Seismological Society448

of America, 111 (1), 1–10. doi: 10.1785/0120200185449

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and450

challenges. IEEE internet of things journal , 3 (5), 637–646.451

Shinohara, M., Yamada, T., Akuhara, T., Mochizuki, K., & Sakai, S. (2022). Perfor-452

mance of seismic observation by distributed acoustic sensing technology using453

a seafloor cable off sanriku, japan. Frontiers in Marine Science, 466.454

Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada,455
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Abstract20

Distributed Acoustic Sensing (DAS) is a promising technique to improve the rapid de-21

tection and characterization of earthquakes. Due to some instrumental limitations, cur-22

rent DAS studies primarily focus on the phase information but less on the amplitude in-23

formation. In this study, we compile earthquake data from two DAS arrays in Califor-24

nia, USA, and one submarine array in Sanriku, Japan. We develop a data-driven method25

to obtain the first scaling relation between DAS amplitude and earthquake magnitude.26

Our results reveal that the DAS amplitude in different regions follows a similar scaling27

relation. The scaling relation can provide a rapid magnitude estimation and effectively28

avoid uncertainties caused by the conversion to ground motions. We finally show that29

the scaling relation is transferable from one to another new region. The scaling relation30

highlights the great potential of DAS in earthquake source characterization and early31

warning.32

Plain Language Summary33

Distributed Acoustic Sensing (DAS) is an emerging technique that can convert an34

optical fiber cable into a dense array to record clear earthquake signals. The recorded35

signals have essential information about earthquakes. For example, DAS can record higher36

amplitude signals from earthquakes with larger magnitude. However, conditions of the37

optical cables, such as how they are installed or how well they are attached to the sur-38

rounding medium, are often unknown, thus preventing quantitative measuring of earth-39

quake magnitude from the DAS measurement. In this study, we investigate the earth-40

quake data recorded by different DAS arrays and develop a data-driven method to get41

an empirical relation between the earthquake magnitude and the amplitude of DAS sig-42

nals. We show that this empirical relation can accurately estimate the earthquake mag-43

nitude directly from the DAS data. Furthermore, the empirical relation we obtain from44

one area can also be applied to another new region with slight calibration. Our empir-45

ical relation can significantly expand the applications of the DAS technique in earthquake46

research, such as seismic hazard assessment and earthquake early warning.47

1 Introduction48

Rapid earthquake source characterization is critical for earthquake monitoring, Earth-49

quake Early Warning (EEW), and prompt reactions to seismic hazards. However, this50

is still challenging for many remote areas with insufficient seismic station coverage. For51

example, subduction zones, which can hold the largest earthquakes, are generally poorly52

instrumented due to the large expenses involved in deploying and maintaining offshore53

seismic instruments. In this context, Distributed Acoustic Sensing (DAS), which can uti-54

lize pre-existing telecommunication fiber-optic cables in both onshore and offshore re-55

gions, appears to be a promising complementary sensing method to fill the geographi-56

cal gaps of conventional seismic networks.57

DAS is an emerging technique that has great potential in seismology. It converts58

every few meters of optical fiber into a single-component strainmeter (Benioff, 1935) to59

provide spatially coherent signals with high sensitivity. One single DAS array often con-60

sists of thousands of channels covering tens of kilometers, and can serve as a dense seis-61

mic array to achieve great spatial resolution. DAS has proved to be an effective tool to62

refine regional seismic structure (Ajo-Franklin et al., 2019; Trainor-Guitton et al., 2019;63

Yu et al., 2019; Spica, Nishida, et al., 2020; Yang et al., 2022; Spica, Perton, et al., 2020),64

detect local earthquakes (Ajo-Franklin et al., 2019; Li et al., 2021; Li & Zhan, 2018; At-65

terholt et al., 2022), and detect seismic signals from various sources (Williams et al., 2019;66

X. Wang et al., 2020; Zhan et al., 2021; Viens et al., 2022). The phase information of67

DAS has been well-validated to be accurate in the multiple aforementioned applications.68

However, DAS nano-strain amplitudes, which commonly represent the direct output from69
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an interrogator unit, are rarely considered for earthquake source characterization and70

early-warning purposes.71

The direct use of DAS amplitude information is mainly circumscribed by a few lim-72

itations such as unknown cable coupling, single-component sensing, uncertain instrumen-73

tal response, and uncommon amplitude saturation behaviors (Lindsey et al., 2020). DAS74

instruments record phase shifts of light traveling in the optical fiber and the phase in-75

formation is then converted into the strain along the cable direction (Lindsey et al., 2017;76

Fernández-Ruiz et al., 2020; Lindsey & Martin, 2021). However, the instrumental strain77

is not necessarily equal to the strain of the medium surrounding the cable due to differ-78

ent installation methods of telecommunication cables (Ajo-Franklin et al., 2019). This79

coupling issue commonly exists but varies with the unknown cable installation in differ-80

ent regions (Ajo-Franklin et al., 2019; Lindsey et al., 2020; Trainor-Guitton et al., 2019;81

Paitz et al., 2020). Moreover, the instrumental response of DAS is highly frequency-dependent82

(Lindsey et al., 2020; Paitz et al., 2020) and often hard to quantify without co-located83

seismometers. The frequency-dependent instrumental response can contaminate frequency84

components of the DAS data, and may prevent robust spectral analysis. The DAS am-85

plitude saturation is another issue and is sometimes observed for earthquakes close to86

DAS instruments (Viens et al., 2022). The DAS amplitude saturation is often presented87

by a flip from maximum to minimum due to the phase wrapping of the sensing laser pulse88

in the cable (Ajo-Franklin et al., 2022), making this behavior hard to identify and re-89

cover. All these instrumental limitations aggravate the accurate conversion of DAS am-90

plitude to ground motions (e.g., velocity and acceleration), thus further challenging the91

incorporation of DAS data into many seismology applications (Lindsey & Martin, 2021;92

Farghal et al., 2022). There have been many attempts to convert DAS-recorded strain93

to ground motions (Daley et al., 2016; H. F. Wang et al., 2018; Yu et al., 2019; Lindsey94

et al., 2020; Lior et al., 2021). For example, H. F. Wang et al. (2018) showed a good match95

between DAS amplitude and strain derived from individual co-located nodal sensors. How-96

ever, Muir and Zhan (2022) systematically reconstructed the strain-rate wavefield with97

the entire nodal array in the same experiment, and found that the DAS-recorded am-98

plitudes are on average twice that of conventional sensors. In general, accurate conver-99

sion requires good knowledge of the local geology, seismic velocity structure, and instru-100

mental information; and is still an active research direction in the DAS community.101

Instead of converting DAS-strain data to ground motion measurements (i.e., ve-102

locity and acceleration), we propose a data-driven way to explore the relationship be-103

tween the peak amplitude of DAS data and earthquake magnitude. In this study, we present104

the first DAS amplitude scaling relation for a rapid magnitude estimation of DAS-recorded105

earthquakes. Previous studies using conventional strainmeters show that the peak strain106

amplitude follows an empirical relation that can be used to estimate the earthquake mag-107

nitude (Barbour & Crowell, 2017; Barbour et al., 2021). Unlike conventional strainmeters,108

one DAS array can easily provide thousands of peak amplitude measurements from a sin-109

gle earthquake, allowing the development of robust scaling relation with fewer earthquakes.110

We analyze earthquakes recorded by DAS arrays in California, USA, and Sanriku,111

Japan (Figure 1). Both regions are seismically active and provide us with an unprece-112

dented opportunity to develop and validate the DAS scaling relation. We measure peak113

DAS amplitudes of earthquakes based on earthquake catalogs. We apply an iterative re-114

gression analysis to these datasets to obtain a robust scaling relation between the peak115

DAS strain rate, earthquake magnitude, and hypocentral distance, calibrated by channel-116

specific site terms. The obtained scaling relation can then give a rapid but accurate earth-117

quake magnitude estimation from the DAS amplitude measurements. Furthermore, we118

show that the DAS amplitudes in different regions follow the same scaling relation. The119

scaling relation built on terrestrial DAS arrays in California can be transferred to the120

submarine DAS data in Japan. We conclude that our DAS scaling relation is transfer-121
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able for earthquakes within similar distance range, and have great potential in earthquake122

source study and EEW.123

Figure 1. Earthquakes in the study areas. (a) Time variation of earthquakes used in the

analysis. Colors indicate earthquakes recorded by different DAS arrays. (b) Topographic map

including earthquake locations and the two California DAS arrays: Ridgecrest array and Long-

Valley. (c) Map showing the locations of earthquakes and the Sanriku DAS array. Earthquakes

are indicated by the black dots and the DAS arrays are shown by blue lines.
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2 Results124

2.1 Data125

We analyze strain-rate DAS data, which is shown to have a frequency-independent126

instrumental noise (Lior et al., 2022), recorded in both terrestrial and submarine envi-127

ronments (Figure 1 (a)). We start with the two terrestrial DAS arrays in the Ridgecrest128

(RC) and Long-Valley (LV) regions (Figure 1 (b)) in California. The two arrays recorded129

over two years of continuous data from July 10, 2019 to October 31, 2021. We first con-130

vert the DAS raw data, which is the phase shift of Rayleigh back-scattered laser signals131

in the optical fiber, to strain rate using Eq. S1 (Text S1 in the Supporting Information).132

We then apply PhaseNet-DAS (Zhu et al., 2022), which is a deep learning phase picker133

tailored for DAS data, to accurately pick P-wave and S-wave arrivals from earthquakes134

(Text S2 of the Supporting Information). We associate the picked earthquakes with the135

regional earthquake catalogs to determine their locations and magnitudes. We also in-136

vestigate two weeks of submarine data (November 11, 2019 to December 1, 2019) from137

a DAS array in Sanriku, Japan (Shinohara et al., 2022). The submarine DAS data suf-138

fers from various types of ocean noise and earthquake P-wave arrivals are rarely observed.139

Due to these limitations, PhaseNet-DAS is not as effective on submarine data as on ter-140

restial DAS arrays. Instead, we apply a template matching method to detect S-waves141

from earthquakes, and associate them with the local Japanese Meteorological Agency142

(JMA) catalog for their location and magnitude (Text S3 of the Supporting Information).143

In this study, we assume that the difference in catalog magnitude of the two regions, Cal-144

ifornia (local magnitude ML for most earthquakes or moment magnitude Mw if avail-145

able) and Sanriku MJMA (velocity magnitude according to JMA (Katsumata, 1996; Fu-146

nasaki, 2004)), is negligible to simplify the analysis.147

We successfully obtain 3,610 earthquakes with 2,363,585 P-wave and 2,411,592 S-148

wave peak measurements from the two California DAS arrays, and 47 earthquakes with149

34,803 S-wave peak measurements from the Sanriku DAS array. The measured peak DAS150

strain rates present strong correlations with the event magnitude (Figures 2 (c) and (f))151

and hypocentral distance (Figures 2 (d) and (g)), respectively. Furthermore, all arrays152

in different environments follow similar trends and imply the existence of a scaling re-153

lation (see Text S4 of the Supporting Information for details of data processing and qual-154

ity control).155

2.2 Scaling relation156

Based on the statistical correlations of data (Figure 2), we fit the data with a gen-157

eral form of scaling relation similar to Barbour and Crowell (2017); Barbour et al. (2021):158

log10 Ei = aM + b log10 Di +Ki, (1)

where E is the observed peak amplitude of DAS strain rate in microstrain/s (10−6/s),159

D is the hypocentral distance in kilometers to each DAS channel and M is the earth-160

quake magnitude. The subscript i corresponds to each DAS channel. We apply a channel-161

specific factor Ki to account for integrated local effects such as the cable construction,162

installation, instrumental coupling, and variety of regional geology.163

We use an iterative regression method to fit for the magnitude coefficient a, dis-164

tance coefficient b, and corresponding site terms Ki separately for P and S wave. We first165

apply it to individual DAS arrays and find that the values are almost the same among166

various arrays (Figure S1). Therefore, we further combine different data sets for an in-167

tegrated regression. Because of the unbalanced amount of measurements and different168

processing steps of terrestrial and submarine DAS data, we separate the two data sets169

for different purposes. We use the California DAS dataset with both P- and S-wave mea-170
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Figure 2. Distributions and correlations of DAS data. (a) Histograms of earthquake mag-

nitude. (b) Histograms of hypocentral distance. (c) Correlation between magnitude and peak

P-wave DAS strain rate EP . (d) Correlation between hypocentral distance and peak P-wave DAS

strain rate EP . (e) Histograms of peak P-wave DAS strain rate EP . (f) Correlation between

magnitude and peak S-wave DAS strain rate ES . (g) Correlation between hypocentral distance

and peak S-wave DAS strain rate ES . (h) Histograms of peak S-wave DAS strain rate ES . For

histograms, black lines indicate the entire data set of all DAS arrays. Colored lines are for in-

dividual arrays. For the 2-D correlation figures, peak DAS strain rate measurements have been

averaged by events. Different California arrays are shown by the colored contours, whose levels

correspond to 5%, 30%, 60% and 90% of the probability density from thin to thick lines. The

Sanriku data points are shown by pink dots on (f) and (g).

surements to fit for the coefficients of Eq.(1), and the Sanriku submarine DAS data as171

a validation set. This splitting scheme aims at testing the generality of the scaling re-172

lation. The best-fit scaling relation we obtain for P waves is:173

log10 E
P
i = 0.437M − 1.269 log10 Di +KP

i , (2)
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and for S waves is:174

log10 E
S
i = 0.690M − 1.588 log10 Di +KS

i . (3)

We refer the reader to Text S5 and Text S6 of the Supporting Information for further175

details about the iterative regressions and site calibration terms, respectively.176

Figure 3. Comparison between earthquake catalog magnitude and magnitude estimated

from the scaling relation. (a) Magnitude from the P-wave scaling relation applied to the Califor-

nia data. The scaling relation is from all three California DAS arrays. (b) Magnitude from the

S-wave scaling relation applied to the California data. The scaling relation is from all three Cal-

ifornia DAS arrays. (c) Magnitude from the S-wave scaling relation applied to the Sanriku data.

The scaling relation is from the Sanriku DAS array. (d) Magnitude from the S-wave scaling rela-

tion applied to the Sanriku data. The scaling relation is transferred from California DAS arrays.

Red dots highlight the events used to calibrate the local site terms. Black solid lines indicate the

accurate estimation that catalog magnitude is equal to the predicted magnitude. Dashed lines

indicate the plus/minus 1 unit of magnitude errors.
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2.3 Magnitude estimation from DAS177

We validate the scaling relation by comparing the measured peak strain rate with178

those calculated by the scaling relation Eq.(1) to guarantee that the regression can ro-179

bustly explain the features in the data (Text S7 and Figure S3 of the Supporting Infor-180

mation). Then, we reorganize the scaling relation Eq.(1) to estimate earthquake mag-181

nitudes from the DAS peak strain rate:182

Mi = (log10 Ei − b log10 Di −Ki)/a. (4)

Given the peak amplitude Ei and hypocentral distance Di, we calculate the mag-183

nitude Mi for each DAS channel and then use the median magnitude of all channels as184

the final magnitude estimation M . Our results show that the magnitude can be accu-185

rately estimated with an error of less than 1 unit of magnitude by using only 2 seconds186

of either P or S waves (Figure 3 (a)-(c)) for most earthquakes in both the California and187

Sanriku regions, especially for the larger earthquakes. Moreover, we show that the scal-188

ing relation can be transferred from California to Sanriku, and work equally well as that189

obtained from the Sanriku-only measurements (Figure 3 (d)). The transferred scaling190

relation inherits the same magnitude a and hypocentral distance b coefficients from the191

California dataset. They only require a small number of local earthquakes to recalcu-192

late the site calibration terms Ki. We apply a systematic random test to show that for193

the Sanriku case, 6 events are sufficient to get robust values of the site calibration terms194

(Text S8 of the Supporting Information). The transferred scaling relation can provide195

an excellent estimation of the magnitude of earthquakes beyond the fitting dataset (Fig-196

ure 3(d)).197

3 Discussion198

3.1 Transferable scaling relation of DAS amplitude199

Unlike conventional seismic sensors, DAS instruments are commonly deployed on200

preexisting telecommunication optical fibers with various properties and construction201

designs (Ajo-Franklin et al., 2019). These differences lead to difficulties in determining202

the instrument responses of DAS arrays. Some previous studies have shown that DAS203

instrument responses can be quantitatively determined by comparing DAS measurements204

with a co-located seismometer (Lindsey et al., 2020; Paitz et al., 2020), which is not al-205

ways available, especially in marine environments. There are multiple ways to convert206

DAS measurements to ground motions: for instance, direct calibration with co-located207

seismometers (Lindsey et al., 2017); correction based on apparent local phase velocity208

(Daley et al., 2016; H. F. Wang et al., 2018; Yu et al., 2019; Shinohara et al., 2022); spa-209

tial integration from one co-located seismometer (H. F. Wang et al., 2018); rescaling in210

the f−k or curvelet domains (Lindsey et al., 2020; Yang et al., 2022). Although shown211

to be effective, most of these methods require elaborate data preprocessing and analyst-212

intense quality control, making them cable-dependent and thus limiting the applications213

of DAS in different regions and for real-time operations.214

In this study, we evaluate how DAS amplitude is related to earthquake magnitude215

in a data-driven methodology. With the abundant peak amplitude measurements of earth-216

quakes in the Ridgecrest and Long-Valley regions, we apply the regression analysis to217

obtain a robust scaling relation for both P- and S-waves recorded by DAS instruments.218

Most importantly, we find that different regions have almost the same values of the scal-219

ing coefficients a and b (Figure S1) with regional site calibration terms Ki (Figures S2220

and S4 in the Supporting Information). Our results show that the scaling relation can221

be transferred/extrapolated from one well-studied area to other DAS arrays for earth-222

quakes within a similar distance range. The DAS peak amplitude scaling relation can223

be applied to earthquake source studies in different areas.224
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We further compare the DAS measurements with results from previous studies us-225

ing conventional strainmeters (Barbour et al., 2021). The distance coefficients of both226

conventional strainmeters and DAS are close, meaning that the dynamic strain follows227

the same geometrical spreading of wave propagation for both conventional strainmeters228

and DAS instruments. However, the magnitude coefficients are different mainly because229

the DAS scaling relation is built based on strain rate, while the scaling relation of con-230

ventional strainmeters are built based on strain. The different physical quantities scale231

differently with earthquake magnitude. Strain rate is theoretically proportional to ac-232

celeration (Benioff, 1935). Therefore, we analyze the peak ground acceleration (PGA)233

of the Next Generation Attenuation model (NGA-West2) project (Bozorgnia et al., 2014).234

For consistent comparisons, we fit the PGA dataset with the same model as Eq.1, as-235

signing the site calibration term to each station. We find that the distance coefficients236

from DAS are close to those from PGA (Figure S1). Differences in the magnitude co-237

efficients are probably due to the different frequency bands of DAS and conventional ac-238

celerometers. Nowadays, Ground Motion Prediction Equations (GMPEs) with many pa-239

rameters have been developed from various datasets to predict earthquake ground mo-240

tions for engineering and seismological applications (Zhao et al., 2006; Kanno et al., 2006;241

Boore & Atkinson, 2008; Bozorgnia et al., 2014; Boore et al., 2014; Campbell & Bozorg-242

nia, 2014). Modern GMPEs have detailed definitions of the distance dependence (geo-243

metrical and inelastic attenuation) and local site responses (local geology, seismic struc-244

ture, instrument deployment, etc.) to explain the ground motion data in different regions.245

Because of the relatively early stages of the DAS technique and limited data from dif-246

ferent locations, we decide to start with the simplest form of scaling relation as Eq.1 in247

this study for a first-order validation of the DAS scaling relation. We leave more com-248

plex DAS strain prediction equations for future studies.249

3.2 Potential applications of the DAS scaling relation250

Our peak DAS amplitude scaling relation is fundamental and significant for var-251

ious seismological studies such as earthquake seismology and EEW. Regarding earthquake252

source analyses using DAS, the current studies only focus on earthquake detection and253

location using the time information (Lindsey et al., 2017; Lellouch et al., 2020; Li et al.,254

2021; Yang et al., 2022; Atterholt et al., 2022; Viens et al., 2022). Adding the amplitude255

information and constraints on the earthquake magnitude can significantly help us to256

resolve more source parameters and physical details about the earthquake rupture.257

Another substantial application is for EEW, which has shown to be an effective method258

to mitigate seismic risk. EEW aims to rapidly estimate the ground motion from real-259

time data after an earthquake occurs and sends out alerts to specific users and the pub-260

lic (Allen & Melgar, 2019). Current EEW algorithms use conventional seismic data for261

ground motion predictions. As DAS leverages pre-existing telecommunication fiber-optic262

cables, it can complement the current EEW systems. Converting most telecommunica-263

tion cables located in highly seismic active regions into dense arrays of sensors could pro-264

vide an economical approach to extend and improve the current EEW system, especially265

in offshore seismogenic zones.266

A recent study has attempted to apply DAS in EEW (Lior et al., 2022). Their ap-267

plication relies on accurate conversion from DAS strain rate to ground acceleration, which268

is used for earthquake magnitude estimation and ground motion prediction (Lior et al.,269

2021). Our scaling relation provide an alternative and new approach to obtain earthquake270

magnitude from DAS measurements. Compared with conversion-based methods, there271

are a few advantages in using data-driven scaling relation of DAS measurements. Firstly,272

the scaling relation is built upon abundant direct DAS measurements, and they do not273

require an intensive manual pre-processing or parameter tuning, simplifying the deploy-274

ment on edge-computing (Shi et al., 2016). Secondly, the scaling relation accounts for275

the different coupling and regional effects among DAS channels with the site calibration276
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Figure 4. Idealized real-time earthquake magnitude estimation with the scaling relation. (a)

Streaming DAS data from an M4.57 earthquake that occurred in Ridgecrest region. The initial

time of earthquake is set as 0 second. (b) The corresponding magnitude estimation based on the

peak DAS amplitude for each channel. The black lines indicate the arrival of the P-wave and the

S-wave. (c) The final magnitude estimation from averaging magnitude estimation at all available

channels, shown by the red line. The red dashed lines indicate the standard deviation of magni-

tude estimation from channels. The green horizontal lines indicate the catalog magnitude. The

blue vertical lines show the earliest P- and S- arrivals, respectively. The blue vertical dashed lines

show 2 seconds after the latest P- and S- arrivals, respectively. (d)-(f) show results of another

M5.0 earthquake recorded by Long Valley north array.

terms, and no manual identification of well-coupled fiber is required. Last but not least,277

as demonstrated in the example of Sanriku results, the scaling relation is transferable.278

We can easily transfer the scaling relation from one well-studied region to other regions279

for deployment of new systems. Only a small number of earthquakes are required to cal-280

ibrate the site terms. Then, the scaling relation can be promptly employed for rapid earth-281

quake magnitude estimation in a new region. Technically, the regional scaling relation282

can also be consistently updated with more regional measurements of earthquakes.283

Finally, we conduct an idealized experiment to illustrate the potential application284

of the DAS scaling relation for rapid magnitude estimation. We assume that the earth-285

quake can be immediately detected and located. Therefore, we can apply the scaling re-286

lation to convert the streaming DAS signals (Figure 4 (a) and (d)) to real-time estima-287
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tion of earthquake magnitude (Figure 4 (b) and (e)) at available DAS channels. We keep288

the median value of magnitude estimated at each channel as the final estimation and keep289

updating it with time (Figure 4 (c) and (f)). We experiment with the recent M4.57 and290

M5.0 earthquakes recorded by the Ridgecrest and Long-Valley north arrays, respectively.291

The M4.57 earthquake occurred on July 15, 2022 in the Ridgecrest region and is about292

15 km from the Ridgecrest array. The M5.0 earthquake occurred on October 25, 2022,293

near Alum Rock and San Jose, California and is about 244 km from the Long Valley ar-294

ray. Both events are not included in the data sets that are used for the regression, and295

therefore are good candidates to test our scaling relation on earthquakes from different296

distance. We can accurately estimate the event magnitude with its uncertainty less than297

0.5 only 2 seconds after the earliest P-wave arrival. When some channels begin to de-298

tect the S wave, we also include the S wave information by averaging the magnitude from299

both P-wave and S-wave amplitudes to further update the magnitude estimation. It is300

also possible to combine rapid estimation of earthquake magnitude with the GMPEs (Atkinson301

& Boore, 2006; Boore & Atkinson, 2008; Bozorgnia et al., 2014; Douglas & Edwards, 2016)302

to predict the ground shaking and seismic intensity, similar to the conventional EEW303

systems based on earthquake point source modeling (Allen & Melgar, 2019). More de-304

tails about the method are provided in Section 9.305

However, this data-driven scaling analysis method also has some limitations that306

require further studies. The scaling relation of peak DAS amplitude relies on correct event307

association and peak amplitude measurement. Measurement of peak amplitude in the308

improper waveform window can lead to errors in the magnitude estimation. For instance,309

there are a few small events with largely overestimated magnitudes in our results (Fig-310

ures 3(a)-(b)). We investigate the waveforms of those events and find that the overes-311

timation is due to an incorrect event association. For instance, an M2 event in the Long-312

Valley region is estimated as an M6 earthquake, because this event is a foreshock occur-313

ring only 8 seconds before the M6.0 earthquake. We also find a few instances where mul-314

tiple events occur in different places but are recorded at the same time, leading to over-315

lapped arrivals in the same time window. In such cases, the peak amplitudes of weaker316

arrivals will be overestimated. Combining DAS with other independent seismic sensors317

can help to exclude the incorrectly associated event, thus improving the magnitude es-318

timation. Finally, our current datasets only contain moderate magnitude earthquakes319

(M < 6) due to the short period of DAS deployment. Future DAS campaigns focus-320

ing on EEW and recording large earthquakes should explore if the scaling relation still321

holds or behaves differently due to potential complex non-linear site response (Bonilla322

et al., 2011; Astorga et al., 2018; Viens et al., 2022).323

4 Conclusion324

This work presents the first scaling relation between DAS peak amplitude, earth-325

quake magnitude, and hypocentral distance from terrestrial and submarine DAS arrays.326

We show that we could use the scaling relation to rapidly estimate the magnitude of earth-327

quakes in near real time. Furthermore, we find that the scaling relation is transferable328

from terrestrial DAS arrays in California to a submarine DAS array in Sanriku, Japan.329

Our results indicate a possibly universal scaling relation for DAS recorded peak ampli-330

tudes. The DAS amplitude scaling relation has great potential in different seismologi-331

cal studies such as EEW and earthquake source characterization.332
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Text S1. Conversion of raw DAS phase shift data to strain

A DAS system measures the phase/phase shift of Rayleigh back-scattered laser signal.

When the DAS amplitude information is the focus, conversion from phase to strain is

required:

dϕ =
4πnGξ

λ
ϵ, (1)

where dϕ and ϵ are the phase and strain, respectively. n ≈ 1.468 and λ = 1550 nm are

the refractive index of sensing fiber and optical wavelength, respectively. ξ = 0.78 is the

photo-elastic scaling factor and G is the gauge length. Among all the parameters, only

the gauge length G can be configured. All other parameters are related to cable properties

and regarded as constants.

Text S2. Event detection and phase arrival-time picking using PhaseNet-DAS

on the California arrays

Fast and accurate detection and picking of seismic phase arrivals are critical to an effec-

tive earthquake early warning (EEW) system. We used a deep learning model, PhaseNet-

DAS (Zhu et al., 2022), to detect and pick the arrival times of both P and S phases

from earthquakes. Deep-learning-based phase-picking models, such as PhaseNet (Zhu &

Beroza, 2019), have dramatically improved earthquake detection and phase picking on

conventional seismic stations. The DAS-tailored PhaseNet-DAS (Zhu et al., 2022) model

is based on semi-supervised learning to transfer deep learning models trained on large

seismic datasets to DAS data (Zhu & Beroza, 2019). We use the two California DAS

arrays (i.e., the Ridgecrest and Long-Valley arrays) to train PhaseNet-DAS so it can di-
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rectly process 2-D spatio-temporal DAS data. The trained model achieves a high-picking

accuracy and good earthquake detection performances on DAS data.

Text S3. Waveform Similarity Search on the Sanriku array

PhaseNet-DAS cannot be directly applied to the submarine Sanriku DAS array because

it is trained based on terrestrial data. Therefore, we apply a Waveform Similarity Search

(WSS), which utilizes the spatial coherency of earthquake waveforms across DAS channels

for detection from the Sanriku dataset. We collect 10,379 high-SNR S-wave waveforms

from 34 nearby Hi-net seismometers (Aoi et al., 2020), and cross-correlate them with

continuous DAS data to find similar events. Before cross-correlating waveforms, the entire

dataset is downsampled from 500 to 25 Hz and bandpass filtered between 1-8 Hz, which is

the average dominant frequency band of earthquakes recorded along the array. Cross-

correlations are finally computed independently for each individual DAS channel. A

detection is triggered when the cross-correlation value exceeds nine times the median

absolute deviation of the cross-correlation function at a single channel (Shelly et al.,

2007). Then, a new event is kept if it matches at more than 40 channels. This relatively

high threshold guarantees a large spatial consistency (i.e., an earthquake is detected over

at least a 208-m section of the cable) and excludes non-coherent detections. In total, we

detect 10,321 events over the 12-day period.

We then associate these events with the Japan Meteorological Agency (JMA) catalog to

find their epicenter locations and magnitude information. We first compute the theoretical

arrival time based on the 1-D preliminary reference Earth model(Dziewonski et al., 1981).

We also apply an amplitude attenuation threshold to filter out cataloged earthquakes that
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are likely too weak to be recorded. A body wave geometrical spreading model is applied:

A(r) = A0e
−Br/r, where r is the hypocentral distance, A0 is the amplitude at the source

and B is a constant when assuming all earthquakes coming from different azimuth with

a constant frequency (i.e., 2 Hz) as well as a homogeneous medium. This allows us to

constrain further and refine the association process and only keep high-probability events

in our analysis. Finally, a total of 464 earthquakes were selected as detected earthquakes

for further analysis.

Text S4. Peak strain rate from DAS

With the event picking, we further extract the peak amplitude. We apply a series

of quality control steps to ensure reliable peak amplitude extraction. Because of the

different picking methods on the land (California) and submarine (Sanriku) DAS data,

their processings are slightly different.

The California DAS arrays use the OptaSense ODH Plexus interrogator unit (IU), which

gives the phase-converted raw measurement of strain. We down-sample the data to 100 Hz

and convert strain data to strain rate to remove the low-frequency noise and instrumental

drifts. No further filtering is applied to the land DAS data. The Sanriku DAS array is

probed with an AP Sensing N5200A IU, which is different from that used in California.

The submarine DAS data are contaminated by oceanic noise at low frequencies (<0.5 Hz),

especially for the channels near the coast (Spica et al., 2020). Therefore, we apply a 0.5

Hz high-pass filter to remove most of the ocean noise.

Because of the nature of the earthquake signals recorded by a DAS array, coherent

signals should appear on most DAS channels as seismic waves propagate through the
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cable within a short period (less than the cable length divided by the apparent wave

speed). We inspect the event picking and exclude events that are only detected by a few

channels (≤ 100) in the DAS array. If the waveforms of an earthquake are only detected

by a few channels, the detection is likely a false detection, and the recorded waveforms

are mostly from local noise signals. Including those false-detected waveforms can lead

to a magnitude overestimation of many small earthquakes ( M2 − 3). We also tune this

threshold of detection channel number to make sure the channel number we use can give

the optimal results, regarding the qualified event number and final results of magnitude

estimation.

We further calculate the signal-to-noise ratio (SNR) for P and/or S waves of each

channel with the detected events. In this study, SNR is defined as 10 log10(||S||2/||N ||2),

which is the average power ratio of the signal window (S) to the noise window (N) in

decibel (dB). For the California data with clear P and/or S arrivals, the noise window is

chosen as a 2-second time window ending 1 second before the detected P-wave arrival.

The signal windows are the 2-second time window after the P and/or S direct arrivals,

respectively. For the Sanriku DAS array, the situation is different. The Sanriku events

are mainly detected by template-matching of S-waves, and it is difficult to get clear P

phase arrivals. Therefore, we approximate the noise window as a 10-second-long window

ending 10 seconds before the detected event time. The signal window is chosen as 10-

second long centered around the detected event time after we carefully check the event

waveforms to ensure the SNR is robustly estimated. For the California data, we only keep

the channels from M2+ earthquakes with SNR > 10dB to ensure a good signal quality.
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For the Sanriku data, which is mainly used for validation, we only keep M2+ events with

SNR values higher than 5dB.

After quality control, we measure the peak DAS strain rate for all available channels of

the qualifying events. For the California DAS arrays with clear P and/or S pickings, we

measure the peak amplitude of strain rate 2 seconds after the corresponding phase arrivals.

We also test other window lengths up to 10 seconds. We find that the final regression

results do not vary much with window lengths, but shorter time windows significantly help

to suppress incorrect measurements due to noise from vehicle traffic. We show the results

from the California DAS arrays using a 2-second window length in the main manuscript.

For the Sanriku DAS array, we directly measure the peak S-wave amplitude from the 20-s

long signal window centered at the event detection time.

Text S5. Iterative regression analysis

Based on the strong correlations between the peak amplitude and earthquake catalog

magnitude and hypocentral distance (Figure 2), we fit for the empirical relations between

earthquake magnitude, hypocentral distance, and peak amplitude (strain rate) for both P

and S waves. Previous results on strainmeters (Barbour & Crowell, 2017; Barbour et al.,

2021) have validated the use of a generalized functional model to describe the observed

peak values of dynamic strain:

log10Ei = aM + b log10Di +Ki, (2)

where E is the observed peak amplitude of dynamic strain/strain rate, D is the hypocen-

tral distance in kilometers to each station/channel and M is the earthquake magnitude.
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The subscript i corresponds to each channel, and Ki is the corresponding site calibration

term that compensates for the combined local effects such as instrumental coupling, fiber

material properties, geological features, and noise. The goal is to fit the corresponding

magnitude coefficient a, distance coefficient b, and Ki. We apply an iterative regression

method to obtain the coefficients. Firstly, we assume that all channels in a DAS array

share a constant site calibration term K0. With the peak amplitude measurements and

the targeting scaling relation, we apply regression to the data to fit for the coefficients a,

b and the constant site calibration term K0. Secondly, we fix the coefficients a and b, and

fit for the specific site calibration term Ki for each channel to minimize the data misfit.

Thirdly, we fix the site calibration terms Ki and further update the coefficients a and

b. The second and third steps are repeated until the data misfit does not improved. We

found that our dataset only need 3-5 iterations for the misfit values to converge within 1%.

The regression can be done flexibly for either individual DAS arrays or multiple arrays at

the same time. We test all cases and show our final coefficients a, b, and site calibration

terms in Figure S1 and Figure S2, respectively.

The dynamic strain signal may also include earthquake-specific source terms (Barbour &

Crowell, 2017; Barbour et al., 2021). For real time EEW applications, however, such prior

information on the source process is difficult to obtain. Therefore, we do not explicitly fit

for the source terms.

Text S6. Site calibration terms

Through our regression, we can also obtain the site calibration terms. Unlike conven-

tional seismic sensors, which have standardized sensor designs and well-quantified instru-
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mental responses, DAS instrument response is not as well constrained. The DAS cables

used in this study are all dark fibers of the telecommunication optical fibers, and the ca-

ble constructions and installations vary significantly with regions. Both local conditions

and cable installation properties greatly affect the recorded DAS data. Potential coupling

issues are commonly noticed in the data(Ajo-Franklin et al., 2019; Lindsey et al., 2020;

Trainor-Guitton et al., 2019; Paitz et al., 2020), but challenging to characterize from the

instruments.

Our fully data-driven methodology, however, can directly quantify the local differences

of DAS channels by introducing the site calibration terms Ki measured from earthquakes.

The site-calibration terms Ki aim at quantifying all local effects that can change the

measured amplitude, and are functions of channel locations. The obtained Ki are shown

in Figure S2. We find that the values of Ki vary significantly along the cables in different

regions. There are a few spikes of Ki values along the cables, which are caused by poorer

data quality at local channel, likely due to fiber loops or the fiber not being coupled to

the ground. Moreover, we find that the patterns of site calibration terms from P- and S-

waves are similar. Understanding the local variations of Ki is essential to characterize the

local cable properties. Neverthess, we emphasize that the site calibration terms are just

calibration terms that integrate many different local factors, such as the cable properties,

instrumental coupling, and local geology. It is non-trivial to interpret Ki as a proxy of

some specific factor, although we do see strong correlations between Ki and local shallow

velocity structure(Spica et al., 2020; Viens, Bonilla, et al., 2022; Viens, Perton, et al.,

2022) or wave amplification(Yang et al., 2022).
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We also notice that the land (Figure S1) and submarine DAS arrays (Figure S4) are

quite different in terms of the local site effects. The site calibration term values from

the California arrays are all above 1 except for a few channels located at fiber loops.

However, site calibration terms of the Sanriku array present larger variations. The site

calibration terms in Sanriku are mostly less than 1 and indicate a local attenuation in the

DAS-recorded amplitude. Further investigations of the differences between the land and

submarine DAS and the transition from amplification to attenuation along DAS arrays

would be an important future direction to explore.

Text S7. Validation of strain rate measurements and magnitude estimation

We first validate the scaling relation by comparing the measured peak strain rate with

that calculated by the scaling relation Eq. (2) with the catalog magnitudeM and hypocen-

tral distanceD (Figure S3). Most of the calculated values of peak strain rate are consistent

with the measured values. The difference between predicted and measured values is less

than one in logarithmic scale for all arrays. This validation guarantees that the regression

is done properly, and the fitted scaling relation can robustly explain features in the data.

We can then use the determined scaling relation to estimate earthquake magnitude by

reorganizing the scaling relation:

Mi = (log10Ei − b log10Di −Ki)/a. (3)

Given the distance Di and measured peak amplitude Ei, the magnitude can be calcu-

lated at each individual DAS channel to get an estimation Mi, and the final magnitude

M can be obtained by calculating the mean and median values of all Mi.
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Text S8. Transferring scaling relation from California to Sanriku

We find that different regions have similar values of the scaling coefficients a and b

(Figure S1). The regional differences mainly lie in the regional site calibration terms

Ki (Figure S2). This implies that the DAS-recorded strain rate data follow the same

magnitude scaling relation that can be transferred/extrapolated to other DAS arrays in

different regions.

To test this hypothesis, we transfer the scaling relation obtained solely from California

data to the Sanriku region, where the tectonic setting is different. We fix the magnitude

and distance coefficients to the same as the values from California. Then, we randomly

choose n events from the 47 qualified earthquakes in the Sanriku dataset as the fitting Set

1. Peak measurements of events in Set 1 are used to constrain the local site calibration

term KS
i(Sanriku). The remaining events are used as validation Set 2 for magnitude estima-

tion. This allocation of data sets allows us to test both the validity and transferability of

the obtained scaling relation Eqs.(1)-(3) at the same time. Finally, we measure the per-

centage of good estimation for Set 2 events, which is defined as the percentage of events

whose magnitude is estimated within 0.5 unit of its catalog magnitude, as the metric to

quantify how well the transferred scaling relation performs.

We systematically explore the event allocation: we increase the number of events n in

Set 1 from 2, 3, ... to 30. For each n, we repeat the test for 50 times to measure the

average percentage of good estimation. The variation of percentage is shown in Figure

S5.
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Our results show that only a few events are needed to calibrate the regional site terms

(Figure S5), then the updated scaling relation can be used to estimate the earthquake

magnitude (Figure 3). On average, two events give about 80% of good estimation percent-

age; and 5 events give relatively stable percentage from most random tests. Theoretically,

we only need one well-cataloged earthquake measurement for each channel to measure the

corresponding site calibration. Considering the uncertain data quality in a real situation,

a few events with clear waveforms are sufficient to robustly constrain the site terms.

Text S9. Real-time magnitude estimation

We provide an idealized experiment to illustrate the application of our scaling relation

for EEW. We assume that we can immediately detect and locate earthquakes. When the

P wave arrives and the earthquake is detected, the system begins to measure the peak

P-wave amplitude from the incoming DAS waveforms, and calculates the corresponding

magnitude with the P-wave scaling relation Eq.(4) for the available channels. If the S-

wave is also detected, the system also measures the peak S-wave amplitude and uses

the S-wave scaling relation to estimate the magnitude. If one channel happens to have

both P-wave and S-wave estimated magnitude, the mean value is taken. Our scaling

relations are obtained with the peak amplitude in the 2-second window after P- or S-

arrivals. Therefore, for each channel the peak amplitude is measured and updated to

estimate magnitude until 2 seconds after the corresponding P-arrival or S-arrival. This

time window can be easily adjusted based on how the scaling relations are built.

In this way, the incoming DAS data at each channel can be efficiently converted to real-

time magnitude estimation. Finally, the magnitude estimations at all available channels
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are averaged to give the final magnitude estimation for the earthquake, and the standard

deviation of magnitude estimation is taken as the uncertainty estimation. We tested on

many events, including one event outside of our regression data sets, and find that all of

them can give an accurate estimation of the magnitude.
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Figure S1. Regression coefficients from different data sets: (a) the P wave magnitude coeffi-

cients; (b) the S wave magnitude coefficients; (c) the P wave hypocentral distance coefficients;

(d) the S wave hypocentral distance coefficients. RC is for Ridgecrest data only; LV-N is for

Long-Valley northern array data only; LV-S is for Long-Valley southern array data only; Sanriku

is for Sanriku data only; RC+LV are the results from combining RC, LV-N and LV-S arrays’

data. The dashed lines also indicate the coefficients from strainmeter data (Barbour et al., 2021)

and fit the same model Eq.(1) with the NGA-West 2 PGA dataset, respectively.
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Figure S2. Site calibration terms of arrays: (a) Ridgecrest array, P wave; (b) Ridgecrest

array, S wave; (c) Long-Valley Northern array, P wave; (d) Long-Valley Northern array, S wave;

(e) Long-Valley Southern array, P wave; (f) Long-Valley Southern array, S wave. Black lines are

results from fitting all arrays and red lines are results from fitting individual array data.
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Figure S3. Validation on the peak DAS strain rate by comparing the measured strain rate and

calculated peak strain rate based on the scaling relations. (a) Validation on the P-wave scaling

relation applied to the California data. The scaling relation is from all three California DAS

arrays. (b) Validation on the S-wave scaling relation applied to the California data. The scaling

relation is from all three California DAS arrays. (c) Validation on the S-wave scaling relation

applied to the Sanriku data. The scaling relation is from the Sanriku array. (d) Validation on

the S-wave scaling relation applied to the Sanriku data. The scaling relation is transferred from

California DAS arrays. Red dots highlight measurements that are used to calibrate the local site

terms. Black solid lines indicate the accurate estimation.January 27, 2023, 6:20pm
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Figure S4. Site calibration terms of Sanriku array. (a) Number of peak DAS strain rate

measurements at each channel. (b) Best fit site calibration term at each channel is shown by the

red dots. The standard deviation is indicated by the blue error bars.
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Figure S5. Number of events for transferring scaling relation. Each black dot corresponds to

results of one random test. The red line is the average percentage of good magnitude estimation

with uncertainty less than 0.5 units of magnitude.
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